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ABSTRACT. Stasheff showed that if a map between H-spaces is an H-map, then the
suspension of the map is extendable to a map between projective planes of the H-
spaces. Stahseff also proved the converse under the assumption that the multiplication
of the target space of the map is homotopy associative. We show by giving an example
that the assumption of homotopy associativity of the multiplication of the target space is
necessary to show the converse. We also show an analogous fact for maps between 4,,-
spaces.

1. Introduction

Let X and Y be H-spaces, and f: X — Y a map. Stasheff [4] showed
that if f is an H-map, then it’s suspension Xf : XX — XY is extendable to
a map P,f : P,X — P,Y between projective planes P,X and P,Y of X and
Y, respectively. He also showed the converse under the assumption that the
multiplication x4y of Y is homotopy associative. It has not been known
whether the converse holds without the assumption of the homotopy asso-
ciativity of uy. In this paper we show by giving an example that the as-
sumption of homotopy associativity of uy is necessary to show the converse.

Our example is the retraction r:J(X) — X for an H-space X. Here,
J(X) is the reduced power space of X introduced by James [2], which has
the homotopy type of QXX. By definition J(X) is an identification space
of ()., X’. Then the map r is defined by

r([xl,...7xi]) = (((xl 'XZ)'XS)"')'X[,

where [x,...,x;] is the class of (xj,...,x;) € X’ and x-y denotes the mul-
tiplication of x and y. Our result is stated as follows.

THEOREM 1.1. For any H-space X, there is an extension Pyr: P,J(X) —
PX of Zr:2J(X) — ZX.

Stasheff showed the following

THEOREM 1.2 ([4]). The retraction r is an H-map if and only if the multi-
plication of X is homotopy associative.
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Thus in particular, if the multiplication of X is not homotopy associative,
then r is not an H-map even though there exists a map between projective
planes extending the suspension of r.

Now, the above result is a special case of the main theorem of this paper,
which deals with the case that the H-space X is an A,-space. An A,-space is
an H-space such that the multiplication satisfies higher homotopy associativity
of order n. For example, an A4)-space is just an H-space, an Ajz-space is a
homotopy associative H-space, and an A, -space is a space with the homotopy
type of a loop space.

Any A,-space X has an associated space P;X for each i with 1 <i<n
which is called the projective i-space of X. By definition, P1X is the sus-
pension XX, P, X is the projective plane, and P, X is the classifying space of X.

Maps preserving A,-space structures are called 4,-maps. An A,-map is
an H-map, and an A, -map is a map homotopic to a loop map. See [1] for
the definition. By definition, if f: X — Y is an A,-map, then there are maps
Pf:PX — PY (1 <i<n) such that

PleZf, P[+1f|P[X2P,‘f (1Sl£l’l—1) (11)

Then the problem becomes whether the converse of the above fact holds.
To state our main theorem we call a map f : X — Y between A,-spaces a quasi
Ap-map if there are maps P;f : PX — P;Y for (1 <i<n) with (1.1). Then
we shall prove the following

THEOREM 1.3. Let X be an A,-space for some n > 2. Then the retraction
r:J(X)— X is a quasi A,-map.

We notice that the above theorem for n =2 is just Theorem 1.1.

We can show a fact analogous to Theorem 1.2 for A,-spaces. Thus the
existence of an A,.|-space structure for X is essential for the quasi A4,-map
r:J(X)— X to be an A,-map. We discuss it in §3.

2. Proof of the main theorem

First we recall some facts on the reduced product space given by James
[2]. Let f:ZxJ(X)— Y beamap. Put f,=fo(idzxv,):ZxX"—>Y
for n > 1, where v, : X" — J(X) (n > 1) is the canonical map. Then we have

flZx X xs x X = f, for 1 <i<n,

where X771 x % x X"~ is identified with X"~! by the obvious way.

On the other hand, if we have a sequence of maps (f, : ZXx X" —Y),_;,
with the above property, then there is a map f:Z xJ(X) — Y such that
fo(idz xv,) = f,. Such a sequence (f,),_;, is called a compatible se-
quence of invariant maps. B
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The space J(X) has the homotopy type of QXX. A homotopy equiv-
alence s:J(X) — QXX is defined by means of a compatible sequence of
invariant maps (s, : X" — QXX),_,, , where 51 : X — QXX is the adjoint of
idsy : ZX — XX, and s, (n>2) is defined by using the loop multiplication
of QXX as

Sn(X1y oy x0) = (o (s1(x) - s1(x2)) -+ <) - s1(xn).

Note that to make (s,) a compatible sequence of invariant maps we need to
modify the loop multiplication so that the constant loop is the strict unit of the
loop multiplication.

Let e: 2QXX — XX be the evaluation map, that is, the adjoint of the
idory : QXX — QXX. Then we prove the following

LemMma 2.1. Let X be an H-space and ¢ : XX — P, X the inclusion. Then
golr~goeols.

Proor. The projective plane P>X is the mapping cone of the Dold-
Lashoff construction ¢: XU, X x CX — XX, where p: X xX — X is the
multiplication of X. Morisugi [3, (1.3)] showed that there exists a homotopy
equivalence X U, X x CX — X (X AX) such that if we identify X U, X x CX
with X'(X A X) by this homotopy equivalence, then ¢ is identified with a map
q (X AX)— XX with

g oZrn~Xp+2pp—2u:2(X xX)— XX,
where 7: X x X — X A X is the quotient map and p; is the projection to the
i-th factor. Thus,
goXu~cgo (Xp+2pa).
Put 4, =rov,: X" — X. Then u, =pu and u, =po (4, xidy). We

show that there are homotopies H, : I x 2X" — P,X (n > 1) between ¢o Xy,
and goeoXs, such that Hy =¢o p, and

H,|I x XX/ ' x+«xX"/y=H, , forany 1 <j<n. (2.1)

Then (Hy),_, ,,. defines a homotopy between ¢o X7 and ¢oeo Xs.
Now eo Xs, = Xp + Xp, since the adjoint of the both maps are the same
s». Thus,

goXu, ~eo0(XZp+2Zpy) =¢coceols.

We notice that the above homotopy H> : I x X2 — P, X can be chosen to be
constant on I x (X v X).

Let n > 2. Suppose inductively that we have H; for i < n with the desired
properties. Then H, is defined as the composition of homotopies as follows.
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eoXu, =¢0XuoX(u, ; xidy)
~eo (Zp1+2p2) o 2(p,y xidy)
=¢oXu, 102p +¢eoeoXs;op,
~goeoXs,_10Xp +eoeoXs;olp,
=¢goeo sy,

where p’: X" — X! is the projection to the first (n — 1)-factors, and the
second homotopy is given by using H, ;. It is clear that we can modify H,
to satisfy (2.1). Thus we have H, for all » by induction. O

Now we prove Theorem 1.3. Theorem 1.1 is a special case of Theorem
1.3.

Proor oF THEOREM 1.3. Since J(X) is a topological monoid, we have the
projective co-space P,,J(X). It is known that P,,J(X) has the homotopy type
of 2X such that the inclusion 2J(X) — P,J(X) followed by the homotopy
equivalence P,J(X) ~ XX is homotopic to eo Xs (cf. [5, Proof of Theorem
4.8)).

Define P;r: PJJ(X) — P;(X) for 2 <i<n by the following composition

PJ(X)c P J(X)~2XX 5 PX c PX.

Then by Lemma 2.1 we have the result. O

3. A,-form of the retraction

In this section we show the following theorem which is analogous to
Theorem 1.2.

THEOREM 3.1. Let X be an A,-space for some n > 2. Then the retraction
r:J(X)— X is an A,_1-map. Moreover, if r is an A,-map then the A,-space
structure of X is extendable to an A,.i-space structure.

Proor. The idea of the proof is not so hard to understand. But, writing
down the explicit proof is very complicated.

Let {y: Kix X' — X},_,_, be the 4,-form on X, where K; is an i —2
dimensional CW ball called the associahedron. The second part of the theorem
is a corollary to Iwase-Mimura [I, p. 196, P10)]. They claim that if
f:X —Yand g: Y — X are maps between A,-spaces such that go f ~idy,
and if one of f and g is an A4,-map, then the A,-space structure of X is
extendable to an 4, j-space structure. In fact, in our case the extended 4, ;-
form on X is given as follows.
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z-(y-(2-w))

(@-y)- (2 w) z-((y-2) w)
Ri&(Ta V1 (x)’ Vl(y)’ VQ(va))
RS(TB Vl(x)v VQ(yv Z)? Vl(w))
(z9)-2)w (e (y-2)w

Fig' 1. /’t4(‘[7x7 Y,z W)

Let {R;:J; x J(X)i — X},_, be the 4,-form on r, where J; is an i— 1
dimensional CW ball called the multiplihedron. We consider n — 1 higher
homotopies

Ryo(Ixvixwmxvp M, xXx"™" -x (I<s<n-—1).

Then by combining these higher homotopies, we can construct a map g, :
K11 x X" — X which extend {x};_, to an A, -form on X. For example,
the associating homotopy x5 : K3 x X* — X is given as u;(t,x, y,z) = Ry(t, [x],
[y,2]) (teJr=Ks,x,y,z€ X), and the homotopy p, : K4 x X* — X is illus-
trated in Figure 1.

Next we consider the first part of Theorem 3.1. An A, ;-form {R;:
Jix J(X)' = X}, ~n_1 1s defined by means of compatible sequences of invariant
maps (Ri;:J; x J(X) ™' x X/ = X),_,, .

First we define R, ; as the constant homotopy. For j > 2, R, ; is given as
the composition of u, o (R, ;-1 x idy) and gz o (1 x rx rovi_y x idy).

For i > 3 the explicit definition for R;; is very complicated. Unlike with
the case of i =2, the homotopy R;; for i >3 is not a constant homotopy.
For example, R3 | : J3 x J(X )2 x X — X should be a map illustrated in Figure
2, where the double lines mean constant homotopies. By definition, the
homotopy R,(t,x,y-vi(z)) is given as the composition of two homotopies
Ry(t,x,y) -z and pus(t,r(x),r(y),z), which means that the homotopy repre-
sented by the upper left edge equals to the one represented by the composition
of the lower right and the bottom edges. Thus R3; can be defined by using a
suitable degeneracy map 63 : J3 — Jo» as Rz (1, x,y,z) = Ra(0(1), x, ¥ - vi(2)).

For i > 4 the definition of R;; is similar. It is defined by using a suitable
degeneracy map J; : J; — Ji_1 as R; (7, x1,...,Xi—1,2) = Ri_1(0:(7), %1, ..., Xi_1 -
vi(2)).

To define R;; for j > 1 we decompose J; into small polytopes homeo-
morphic to Ky x J, with k+¢=1i+2. Then we define R;; by combining
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r(x - (y-11(2))) r((z-y) - 11(z))
Ro(t,x,y - 11(2))

r(x) - r(y - 1n(z) r(x-y) -z

Rolt,x,y) - 2

r(z) - (r(y) - 2) (r(x) - r(y)) -z

/L:;(t,’['(m),’f'(y), Z)
Fig. 2. Ry i(t,x,y,2)

higher homotopies hkﬁs': K X Jijo i X J(X)Fl XX/ — X (s+3<k<i) and
WK X Jia ke x J(X)"' x X7 — X (k <i+ 1) defined as follows:

he s(t,p,xt, . xim, (D1, i)
= w(t,x1,..., Rivoic(pyXgity ooy Xopivo—k)s s Xiet, F (Vi1 (V15 - -+ Vi-1)), Vi)
h(t,p,x1, . xio, (01, - - i)
= (t,x1,..., Rivorj—1(p,xi—1,- ., xit, (1, s Yi-1))s ¥j)
where we put Ry ;_i(*, yi,..., Vi) =r(vic1(y1, -, Vi-1))-

Rj3 ; is illustrated in Figure 3. Here the points (a)-(k) and the homotopies
(A)-(D) are as follows, where z =v;(zy,..., z;) and ' =vi_1(z1,...,zj-1):
@: rlx-(y-2)=rx-(y-2)) -z
(b): r((x-p)-2) =r((x-p)-2') -z
©:  (r(x)-r(y-2')) -z
(d): (r(x-p)-r(2') -z
(): r(x)-(r(y-2')-z)=r(x)-r(y-z)

() (r(x) - (r(w) - 1(2")) -

(@:  ((r(x)-r(¥))-r(@")) -z

(h): r(x-p)-(r(@') - z) =r(x-p) - r(z)

@ r(x) - ((r(») - r(z") - z7)

(0): r(x) - (r(p) - (r(2") - 7)) = r(x) - (r(p) - 1(2))

(k) (r(x) - r(») - (r(&) - 27) = (r(x) - r(p)) - 1(2)

(A) R3,]',1(‘L',x7_)77 (21 ..... Zj,1) 'Zj

(B):  ws(t,r(x), Raj—1(s, y, (21, .., zj-1)), %)

(C): ﬂ3(17 R27J*1(57 X, y)7r<z/)7zj)

(D) py(7,r(x), 7 (p),1(2), 77) O
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(a) (b)
(d)

(€)) (h)

) &)

Fig. 3. R;3;(7,x,»,(z1,...,2))
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