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Abstract. Sampling theorems are one of the basic tools in information theory. The

signal function f whose band–region is contained in a certain interval can be recon-

structed from their values f ðxkÞ at the sampling points fxkg. We obtain analogues of

this theorem for the cases of the Fourier–Jacobi series, the complex sphere Sn�1
c and the

complex semisimple Lie groups. And as an application of these formulae, we show a

version of the sampling theorem for the Radon transform on the complex hyperbolic

space.

1. Introduction

Sampling theorems are one of the basic tools in information theory

and various types of sampling theorems are obtained in many papers. The

Shannon sampling theorem is well known as a fundamental tool. A signal

function is called to be band–limited if its band–region is contained in a certain

interval. In the terminology of Fourier analysis, the band–limitedness con-

dition is equivalent to the condition that the support of the Fourier transform
~ff of f A L2ðRÞ is contained in a certain interval. The Shannon sampling

theorem yields that if a function f A L2ðRÞ is band–limited, then f can be

reconstructed by samples taken at the equidistant sampling points. We are

interested in generalizing sampling theorems to the cases of homogeneous

spaces. In this paper, we obtain analogues of this theorem in the cases of

the Fourier–Jacobi series, the complex sphere Sn�1
c ¼ UðnÞ=Uðn� 1Þ and the

complex semisimple Lie groups.

On the other hand, the problem how to recover the values of the functions

from the samples of their Radon transforms is studied in the theory of the
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computerized tomography. There are also many papers related to these

tomographic inversion problems. We can find a number of algorithms in the

book of Natterer [9]. An irregular version of this problem is studied in the

paper [4]. In [2] we study the Fourier reconstruction algorithm and extend

this algorithm to the case of Riemannian symmetric spaces. In [2] we fix a K-

type d and give the reconstruction formula for the function of type d on the

Riemannian symmetric space G=K . By using this, the reconstruction formula

for the band–limited function can be formally constructed. In this paper, by

taking sampling points suitably, we concretely construct the sampling function

for the complex sphere. And using this, we obtain a version of the sampling

theorem for the Radon transform on the complex hyperbolic space.

We shall describe here the context of this paper. Section 2 is devoted

to the overview of the Shannon sampling theorem on Rd and the regular or

irregular sampling theorems on the torus Td . These are directly proved by

using the Lagrange interpolation theorem. In Section 3, applying the sampling

theorem on Td , we show a sampling theorem for the Fourier–Jacobi series. In

Section 4, with the help of the Shannon sampling theorem on Rd , we give a

sampling theorem for the complex semisimple Lie group. Section 5 is devoted

to showing a sampling theorem for the complex sphere Sn�1
c ¼ UðnÞ=Uðn� 1Þ.

In this case, the spherical functions of the Uðn� 1Þ-invariant irreducible

representations of UðnÞ are written in terms of the Jacobi polynomials. So by

using the sampling formula for the Fourier–Jacobi series given in Section 3 and

the sampling formula for the torus given in Section 2, we can obtain a sampling

theorem for Sn�1
c . In Section 6 we consider the Fourier reconstruction al-

gorithm for the case of the complex hyperbolic space. Applying the Shannon

sampling theorem on Rd and the one on Sn�1
c to this theorem, we can get a

version of the sampling formula for the Radon transform on the complex

hyperbolic space.

2. Sampling theorems on the Euclidean space and the torus

We shall first survey the sampling theorems on the Euclidean space and the

torus. These theorems are used to derive sampling theorems for the complex

semisimple Lie groups and the complex sphere Sn�1
c . For details, see [2, 7].

The Fourier transform ~ff of f A L1ðRdÞ is defined by

~ff ðlÞ ¼ 1

ð2pÞd=2
ð
Rd

e�il�x f ðxÞdx; ðl A RdÞ:

Here l � x denotes the natural inner product of l and x. f A L2ðRdÞ is called

to be band–limited on ½�L;L�d if supp ~ff J ½�L;L�d . Then the following

proposition is called the Shannon sampling theorem.
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Proposition 2.1 ([7, Theorem 14.1]). Let f A L2ðRdÞ be band–limited on

½�L;L�d . Then f is reconstructed by

f ðxÞ ¼
X
k AZ d

f
p

L
k

� �Yd
j¼1

sinc
L

p
xj � kj

� �
;

where k ¼ ðk1; . . . ; kdÞ A Zd and x ¼ ðx1; . . . ; xdÞ A Rd .

The Shannon sampling theorem is called a regular sampling theorem

because, in this theorem, the samples are taken at the equidistant sampling

points.

On the other hand, in the case of the torus Td ¼ Rd=ð2pZÞd , various

types of sampling theorems are given in [2, 7]. For p A L1ðTdÞ, its Fourier

transform ~pp is defined by

~ppðmÞ ¼ 1

ð2pÞd
ð
Td

pðyÞe�im�y dy; ðm A ZdÞ:

And the inversion formula is the following:

pðyÞ ¼
X
m AZ d

~ppðmÞeim�y: ð2:1Þ

In this case, the band–limitedness condition is interpreted as the condition

that the support of ~pp is a finite set. We call p A L2ðTdÞ is band–limited

on f�N1; . . . ;N1g � � � � � f�Nd ; . . . ;Ndg if supp ~ppJ f�N1; . . . ;N1g � � � � �
f�Nd ; . . . ;Ndg. In this case we can directly obtain an irregular sampling

theorem on Td by way of the Lagrange interpolation formula.

Proposition 2.2 ([2, Lemma 3]). Let yl;�Nl
; . . . ; yl;Nl

be 2Nl þ 1 distinct

numbers in ½�p; pÞ for each l ¼ 1; . . . ; d. If a function p A L2ðTdÞ is band–

limited on f�N1; . . . ;N1g � � � � � f�Nd ; . . . ;Ndg, then we have

pðy1; . . . ; ydÞ ¼
XN1

k1¼�N1

. . .
XNd

kd¼�Nd

pðy1;k1 ; . . . ; yd;kd ÞS
N1;...;Nd

k1;...;kd
ðy1; . . . ; ydÞ;

where

S
N1;...;Nd

k1;...;kd
ðy1; . . . ; ydÞ ¼ e�iT

d

l¼1Nlðyl�yl; kl Þ
Yd
l¼1

Y
jl0kl

eiyl � eiyl; jl

eiyl; kl � eiyl; jl

( )
: ð2:2Þ

Remark. If we take yl;kl ¼ klp=ð2Nl þ 1Þ, ðkl ¼ �Nl; . . . ;Nl; l ¼ 1; . . . ;

dÞ in (2.2), then we have
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S
N1;...;Nd

k1;...;kd
ðy1; . . . ; ydÞ ¼

Yd
l¼1

Y
jl0kl

sin 1
2 yl � jlp

2Nlþ1

� �
sin

ðkl� jlÞp
2Nlþ1

8<
:

9=
;; ð2:3Þ

and Proposition 2.2 gives a version of the regular sampling theorem on Td .

In [7], there is another version of the sampling theorem on T which is

deduced from Cauchy’s formula.

Proposition 2.3 ([7, Example 4.1]). If p A L2ðTÞ is band–limited on

f�N; . . . ;Ng, then we have

pðyÞ ¼
XN
k¼�N

p
2kp

2N þ 1

� �
1

2N þ 1

XN
l¼�N

e�ilðy�2kp=ð2Nþ1ÞÞ:

We shall next describe a sampling theorem for the Radon transform on

R2 that is called the Fourier reconstruction algorithm (see [9, Chapter 5]).

Let CðR2Þ denote the set of rapidly decreasing functions on R2. For

f A CðR2Þ, its Radon transform Rf is defined by

ðRf Þðof; rÞ ¼
ðy
�y

f ðr cos f� t sin f; r sin fþ t cos fÞdt;

ðr A R;of ¼ ðcos f; sin fÞ A TÞ:

It is known that the Fourier transform of f is the composition of the Radon

transform Rf and the 1-dimensional Fourier transform F2 with respect to the

second variable r:

~ff ðtofÞ ¼ ð2pÞ�1=2ðF2ðRf ÞÞðof; tÞ: ð2:4Þ

This formula is called the Fourier slice formula. Let L;N > 0. We call that

f A CðR2Þ is band–limited if

(1) supp ~ff J fx A R2; jxjaLg;
(2) 1

2p

Ð 2p
0

~ff ðtofÞe�imf df ¼ 0 for jmj > N.

The Fourier reconstruction algorithm is performed by the following process.

Since

ðF2ðRf ÞÞðof; tÞ ¼ ð2pÞ1=2 ~ff ðtofÞ ¼ 0 for jtj > L;

it follows from the Shannon sampling theorem that

ðRf Þðof; rÞ ¼
X
n AZ

ðRf Þ of;
p

L
n

� �
sinc

L

p
r� n

� �
:

And hence from the Fourier slice formula (2.4) we have
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~ff ðtofÞ ¼
X
n AZ

ðRf Þ of;
p

L
n

� �
1

2p

ðy
�y

sinc
L

p
r� n

� �
e�itr dr

¼
X
n AZ

ðRf Þ of;
p

L
n

� �
1

2L
e�inpt=Lwð�L;LÞðtÞ;

where wð�L;LÞðtÞ denotes the characteristic function of the open interval

ð�L;LÞ. Applying Proposition 2.3 to the last equation, we have

~ff ðtofÞ ¼
XN
k¼�N

X
n AZ

ðRf Þ ofk ;
p

L
n

� �
1

2Lð2N þ 1Þ e
�inpt=Lwð�L;LÞðtÞ

XN
l¼�N

e�ilðf�fkÞ;

where fk ¼ 2kp=ð2N þ 1Þ. Noting

~ffmðtÞ ¼
1

2p

ð2p
0

~ff ðtofÞe�imf df

¼
XN
k¼�N

X
n AZ

ðRf Þ ofk ;
p

L
n

� �
1

2Lð2N þ 1Þ e
�inpt=Lwð�L;LÞðtÞe�imfk ;

we have

f ðxÞ ¼ 1

2p

ð
R2

~ff ðxÞeix�x dx

¼
Xy

m¼�y

imeimy

ðy
0

~ffmðtÞJmðrtÞt dt ðx ¼ royÞ

¼
XN
k¼�N

X
n AZ

ðRf Þ ofk ;
p

L
n

� �
1

2Lð2N þ 1Þ

�
XN

m¼�N

imeimðy�fkÞ
ðL
0

e�inpt=LJmðrtÞt dt:

Here Jm denotes the Bessel function of the first kind. We use the sampling

theorem on the Fourier–Bessel transform (cf. [8]) to compute the integral

appeared in the last equation. We set

jðrÞ ¼
ðL
0

e�inpt=LJmðrtÞt dt:

Because j is band–limited on ½0;L� with respect to the Fourier–Bessel

transform

~jjðtÞ ¼
ðy
0

jðrÞJmðrtÞr dr;
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we have from the sampling theorem on the Fourier–Bessel transform that

jðrÞ ¼
Xy
l¼1

2rlJmðLrÞ
ðr2l � L2r2ÞJmþ1ðrlÞ

ðL
0

e�inpt=LJm
rlt

L

� �
t dt;

where frlg denotes the set of positive zeroes of Jm. Summarizing these, we

have the following proposition.

Proposition 2.4. Let L;N > 0 and assume that f A CðR2Þ is band–limited

in the above sence. Then f is reconstructed as follows:

f ðroyÞ ¼
XN
k¼�N

X
n AZ

ðRf Þ ofk ;
p

L
n

� �
L

2N þ 1

�
XN

m¼�N

imeiðy�fkÞ
Xy
l¼1

cmnrlJmðLrÞ
ðr2l � L2r2ÞJmþ1ðrlÞ

;

where fk ¼ 2kp=ð2N þ 1Þ and cmn ¼
Ð 1
0 e

�inptJmðrltÞt dt.

The concepts of the Radon transforms are generalized by various ho-

mogeneous spaces (cf. e.g. [5, 6]). In [1], Berenstein explaines how the Radon

transform on the hyperbolic plane is utilized to solve the problem of Electrical

Impedance Tomography. So we think that it is meaningful to study the

generalization of the above proposition to the cases of homogeneous spaces.

In Section 6, we shall treat the case of the complex hyperbolic space.

3. A sampling theorem on the Fourier–Jacobi series

We shall first summarize the notation of the Jacobi polynomials and the

Fourier–Jacobi series. For the detail of the Fourier–Jacobi series, see [10].

Let a; b > �1 and put r ¼ aþ b þ 1. Let n A Zb0. The polynomial

Rða;bÞ
n ðxÞ ¼ 2F1 �n; nþ r; aþ 1;

1� x

2

� �
; ð�1a xa 1Þ

is called the Jacobi polynomial. Here 2F1 denotes the Gauss hypergeometric

function. It is known that the system fRða;bÞ
n ðxÞ; n A Zb0g is an orthogonal

system with respect to the measure

dmða;bÞðxÞ ¼ Gðrþ 1Þ
2rGðaþ 1ÞGðb þ 1Þ ð1� xÞað1þ xÞbdx:

Moreover, it is satisfied that
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ð1
�1

Rða;bÞ
n ðxÞ2dmða;bÞðxÞ ¼ n!Gðrþ 1ÞGðaþ 1ÞGðb þ nþ 1Þ

ðrþ 2nÞGðrþ nÞGðaþ nþ 1ÞGðb þ 1Þ

ð¼ ðd ða;bÞ
n Þ�1; sayÞ: ð3:1Þ

For f A L2ð½�1; 1�; dmða;bÞðxÞÞ, its Fourier–Jacobi transform ~ff is defined by

~ff ðnÞ ¼
ð 1
�1

f ðxÞRða;bÞ
n ðxÞdmða;bÞðxÞ:

And the inversion formula is the following:

f ðxÞ ¼
Xy
n¼0

d ða;bÞ
n

~ff ðnÞRða;bÞ
n ðxÞ: ð3:2Þ

The above series is called the Fourier–Jacobi series of f .

Take x ¼ cos 2y, ð0a ya p=2Þ. Then it follows from (3.2) that

f ðcos 2yÞ ¼
XN
n¼0

d ða;bÞ
n

~ff ðnÞRða;bÞ
n ðcos 2yÞ:

By definition, R
ða;bÞ
n ðcos 2yÞ is a polynomial of sin y with degree 2n and hence f

is a polynomial of eGiy with degree at most 2N. Then the following theorem

is easily follows from Proposition 2.2 with d ¼ 1.

Theorem 3.1. Let x�2N ; . . . ; x2N be 4N þ 1 distinct points on ½�1; 1Þ. If

f A L2ð½�1; 1�; dmða;bÞðxÞÞ is band–limited to f0; . . . ;Ng, then we have

f ðxÞ ¼
X2N

k¼�2N

f ðxkÞS2N
k

1

2
cos�1 x

� �
;

where S2N
k is given in (2.2).

Remark. As is well-known (cf. [6, 10]), the spherical functions on the

compact isotropic Riemannian spaces are written in terms of the Jacobi

polynomial. We thus have a sampling theorem for the spherical transform on

the compact isotropic Riemannian spaces as special cases of Theorem 3.1.

4. A sampling theorem on the complex Lie group

In the case of the complex semisimple Lie groups, since the zonal spherical

functions and the Harish-Chandra c-functions are explicitly written, we can get

a sampling theorem on such groups by way of the Shannon sampling theorem

on the Euclidean space.
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Let G be a complex semisimple Lie group of rank r and K a maximal

compact subgroup of G. We denote by g and k the Lie algebras of G and K ,

respectively. Let g ¼ kþ p be a fixed Cartan decomposition of g with Cartan

involution y, a a maximal abelian subspace of p, and S the corresponding set

of restricted roots. The Killing form h� ; �i induces an inner product on a and

on its dual space a�. Let M 0 and M be the normalizer and the centralizer of a

in K, respectively, and denote by W ¼ M 0=M, the Weyl group of G=K , and let

w be its order. Fix a positive Weyl chamber aþ and put Aþ ¼ exp aþ. We

then obtain the Cartan decomposition G ¼ KAþK . Let Sþ be the corre-

sponding set of positive restricted roots and jSþj be its order. For a A Sþ,

ga denotes the root subspace and ma ¼ dim ga the multiplicity of a. Let n ¼P
a ASþ ga and r ¼ 1

2

P
a ASþ maa. Then g ¼ kþ aþ n is an Iwasawa decom-

position of g. Let N denote the analytic subgroup of n. Then we have G ¼
KAN. For x A G, HðxÞ A a denotes the element uniquely determined by

x A K expðHðxÞÞN. For a A A, we sometimes write log a instead of HðaÞ.
We choose an orthonormal basis fH1; . . . ;Hrg of a and its dual basis

fe1; . . . ; erg of a� and identify both a and a� to Rr. We normalize them by

multiplying ð2pÞ�r=2 and denote them by dH and dl, respectively. According

to the Cartan decomposition, we have a Haar measure dg ¼ DðHÞdk1dHdk2
on G. Here DðHÞ ¼

Q
a ASþ sinh2 aðHÞ. The zonal spherical function jl on G

is given by

jlðgÞ ¼
ð
K

eðil�rÞðHðgkÞÞ dk; ðg A G; l A a�Þ:

We set

IL ¼ fl A a�;�La hl; eiiaL for i ¼ 1; 2; . . . ; rg:

For f A CðKnG=KÞ, the space of rapidly decreasing functions on KnG=K , its

spherical Fourier transform ~ff ðlÞ is given by

~ff ðlÞ ¼
ð
aþ

f ðexp HÞj�lðexp HÞDðHÞdH:

And the inversion formula is the following:

f ðexp HÞ ¼
ð
a�þ

~ff ðlÞjlðexp HÞjcðlÞj�2
dl:

Let f A CðKnG=KÞ be such that suppð ~ff ÞJ IL. Similarly to the case of

Euclidean sapce, f is called to be band–limited on IL. From [3, p. 251], we

have

pðrÞDðHÞ1=2f ðexp HÞ ¼
ð
a �

~ff ðlÞpð�ilÞeilðHÞ dl;
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where pðlÞ ¼
Q

a ASþhl; ai. By definition, pð�ilÞ is a polynomial on a� and

hence the support of ~ff ðlÞpð�ilÞ is also contained in IL. And the function

H ! DðHÞ1=2f ðexp HÞ on a is square–integrable with respect to the usual

Euclidean measure dH. Consequently, applying Proposition 2.1 to the func-

tion H ! ðHÞ1=2f ðexp HÞ, we have the following theorem.

Theorem 4.1. Retain the above notation. Suppose that f A CðKnG=KÞ is

band–limited on IL. Then f is reconstructed as follows:

f ðexp HÞ ¼
X

ðn1;...;nrÞ AZ r

DðHÞ�1=2D
Xr
i¼1

p

L
niHi

 !1=2
f exp

Xr
i¼1

p

L
niHi

 !

�
Yr
i¼1

sinc
L

p
eiðHÞ � ni

� �
:

5. A sampling theorem on the complex sphere

Let Sn�1
c be the unit sphere jx1j2 þ � � � þ jxnj2 ¼ 1 in Cn. The unitary

group U ¼ UðnÞ acts naturally on Sn�1
c and the stabilizer of the element en ¼

tð0; . . . ; 0; 1Þ A Sn�1
c is isomorphic to K ¼ Uðn� 1Þ. So Sn�1

c GU=K . We

define the elements djðjÞ and gjðyÞ in U by

djðjÞ ¼ diagð1; . . . ; 1; eij
ð jÞ

; 1; . . . ; 1Þ; gjðyÞ ¼

Ij�1

cos y sin y

�sin y cos y

In�j�1

0
BBB@

1
CCCA;

where 0a jj < 2p and 0a yj a p=2. For any g A U , we define j1; . . . ; jn,

y1; . . . ; yn�1 as follows:

Let gen ¼ tðx1; . . . ; xnÞ. We set jj ¼ arg xj and rj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP j

s¼1 jxsj
2

q
. If

rk ¼ 0 and rkþ1 0 0 for some k, we set y1 ¼ � � � ¼ yk ¼ 0. And for j > k, we

give yj by cos yj ¼ jxjþ1j=rjþ1 and sin yj ¼ rj=rjþ1. Then an arbitrary g A U is

written as

g ¼ d1ðj1Þd2ðj2Þg1ðy1Þ . . . dnðjnÞgn�1ðyn�1Þk; ðk A KÞ: ð5:1Þ

By using this polar coordinate system, we write g A U=K as

gðj; yÞ ¼ gðj1; . . . ; jn; y1; . . . ; yn�1Þ

¼ d1ðj1Þd2ðj2Þg1ðy1Þ . . . dnðjnÞgn�1ðyn�1Þ: ð5:2Þ

We set A ¼ fgn�1ðyn�1Þg and Unð1Þ ¼ fdnðjnÞg. We consequently have the

Cartan decomposition U ¼ KUnð1ÞAK . Let dgK denote the Haar measure on
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U=K normalized so that the total measure is 1. Then under the above Cartan

decomposition, we have

dgK ¼ ðn� 1Þ!
2pn

Yn
j¼1

djj
Yn�1

k¼1

sin2k�1 yk cos yk dyk:

Let Vp;q be the set of harmonic polynomials in z A Cn of bidegree ðp; qÞ. We

define the action tp;q of UðnÞ on Vp;q by

ðtp;qðgÞjÞðz; zÞ ¼ jðg�1z; g�1zÞ; ðj A Vp;qÞ:

Then ðtp;q;Vp;qÞ is a class 1 representation with respect to K . We use the

terminology of the Gel’fand–Tsetline basis for UðnÞ to denote the elements in

Vp;q. We set

1

nþ 1
Z

� �l
b

¼
�
ðm1; . . . ;mlÞ A Rl;mj A

1

nþ 1
Z and

mj �mjþ1 A Zb0 for all j

�
:

A sequence M ¼ ðmn;mn�1; . . . ;m1Þ is called a Gel’fand–Tsetline data if

(1) mj ¼ ðm1; j; . . . ;mj; jÞ A
1

nþ 1
Z

� �j

b

;

(2) mj;k �mj;k�1 A Zb0 and mj;k�1 �mjþ1;k A Zb0.

Let ðtl;VlÞ be a finite dimensional irreducible representation of UðnÞ with

highest weight l. It is known that for any Gel’fand–Tsetline data M ¼ ðmn;

mn�1; . . . ;m1Þ with mn ¼ l, there exists an element vðMÞ A Vl such that the set

fvðMÞg forms a basis for Vl. This basis is called a Gef ’fand–Tsetline basis.

For detail, see [11, Vol. 3, p. 363].

We restrict our attention to the case of ðtp;q;Vp;qÞ. Let p2; . . . ; pn A
Zb0, q2; . . . ; qn A Zb0 and r A Z be such that p ¼ pn b pn�1 b � � �b p2, q ¼
qn b qn�1 b � � �b q2 and �q2 a ra p2, respectively. For a previous r, we

define p1; q1 A Zb0 by p1 ¼ maxfr; 0g and q1 ¼ �minfr; 0g. In the following

we interprets p0, q0 as 0 when they appear in a calculation. We define mj

by mj ¼ ðpj ; 0; . . . ; 0
zfflfflfflffl}|fflfflfflffl{j�2

;�qjÞ, ð jb 2Þ and m1 ¼ ðrÞ. We define the Gel’fand–

Tsetline datas M and M0 by M ¼ ðmn;mn�1; . . . ;m1Þ and M0 ¼ ðmn;

0n�1; . . . ; 01Þ, respectively. Here 0i ¼ ð0; . . . ; 0Þ
zfflfflfflfflfflffl}|fflfflfflfflfflffl{i

. Putting p ¼ ðpn; . . . ; p1Þ and

q ¼ ðqn; . . . ; q1Þ, we frequently write ðp; qÞ instead of M. Keeping these

notation, we define the spherical function Fðp;qÞðgÞ on U=K by
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Fðp;qÞðgKÞ ¼ htp;qðgKÞvðM0Þ; vðp; qÞiVp; q
:

The explicit expression of Fðp;qÞðgÞ is given as follows (see [11, Vol. 2,

p. 313]):

For the above Gel’fand–Tsetline data M ¼ ðp; qÞ, we put aj ¼ pj þ qj þ
j � 1, bj ¼ pjþ1 � pj � qjþ1 þ qj, bj ¼ jbjj and gj ¼ minfpjþ1 � pj; qjþ1 � qjg.
Moreover we put

bðp;qÞ ¼
1

ðn� 1Þ!2n�1

Yn�1

j¼1

d
ðaj ;bjÞ
gj

( )1=2
;

where d
ða;bÞ
g is the constant given in (3.1). Using these notation and the

Cartan decomposition (5.1), we have

Fðp;qÞðgðj; yÞKÞ ¼ bð p;qÞ
Yn
j¼1

e�ibj�1jj
Yn�1

k¼1

sinpkþqk yk cosbk ykR
ðak ;bkÞ
gk

ðcos 2ykÞ: ð5:3Þ

For f A L2ðU=KÞ, its Fourier transform ~ff ðp; qÞ is defined by

~ff ðp; qÞ ¼
ð
U=K

f ðgðj; yÞKÞFðp;qÞðgðj; yÞKÞdgK :

And the Plancherel inversion formula is the following:

f ðgðj; yÞKÞ ¼
Xy

pn¼pn�1

Xy
qn¼qn�1

Xpn
pn�1¼pn�2

Xqn
qn�1¼qn�2

. . .

Xp3
p2¼0

Xq3
q2¼0

Xp2
r¼�q2

~ff ðp; qÞFð p;qÞðgðj; yÞKÞ:

After these preparations, we can deduce a sampling theorem for the complex

sphere. By the explicit expression of Fð p;qÞ, the Fourier transform ~ff ðp; qÞ can

be regarded as the composition of the Fourier transform on Tn related to

the variable ðj1; . . . ; jnÞ A Tn and the Fourier–Jacobi transforms related to

the variables y1; . . . ; yn�1. Therefore we obtain a sampling formula for the

complex sphere by combining the sampling theorem for Tn (Proposition 2.2)

and the one for the Fourier–Jacobi series (Theorem 3.1). This theorem is used

to show a sampling theorem for the Radon transform of the complex hy-

perbolic space in Section 6.

In Section 2, to get the expression of the reconstruction formula on R2

(Proposition 2.4), we use the regular sampling theorem on T. For constructing

a similar sampling function to the case of R2, we shall here take the samples at

the equidistant sampling points on Tn and use the sampling function given in
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(2.3). Let N1; . . . ;Nn A Zb0 be such that Nn bNn�1 b � � �bN1. We call that

f A L2ðU=KÞ is band–limited on the n-tuple ðN1; . . . ;NnÞ if f ðp; qÞ ¼ 0 unless

0amaxfpj; qjgaNj for j ¼ 1; . . . ; n. We suppose that f A L2ðU=KÞ is band–
limited on the n-tuple ðN1; . . . ;NnÞ. Then it is easy to check that �Nj a bj�1 a

Nj for j ¼ 1; . . . ; n. And we have from the Plancherel inversion formula

that

f ðgðj; yÞKÞ ¼
XN1

r¼�N1

( XN2

p2¼p1

XN2

q2¼q1

XN3

p3¼p2

XN3

q3¼q2

. . .

XNn

pn¼pn�1

XNn

qn¼qn�1

~ff ðp; qÞFðp;qÞðgðj; yÞKÞ
)
: ð5:4Þ

We first note that sinpkþqk yk cos
bk ykR

ðak ;bkÞ
gk ðcos 2ykÞ is a polynomial of eGiyk

with degree pk þ qk þ bk þ 2gk ¼ pkþ1 þ qkþ1. Therefore the right-hand side

of (5.4) is a polynomial of eGiy1 ; . . . ; eGiyn�1 with degree at most 2N2; . . . ; 2Nn,

respectively. Therefore by using Proposition 2.2 and remark, we have the

following theorem.

Theorem 5.1. Let N1; . . . ;Nn A Zb0 be such that Nn bNn�1 b � � �bN1

and suppose that f A L2ðU=KÞ is band–limited on the n-tuple ðN1; . . . ;NnÞ. Let

yj;kj , ðkj ¼ �2Njþ1; . . . ; 2Njþ1Þ be distinct points in ½0; p=2� for each j ¼ 1; . . . ;

n� 1. And we put jj;kj ¼ kjp=ð2Nj þ 1Þ for j ¼ 1; . . . ; n and kj ¼ �Nj ; . . . ;Nj.

Then f is reconstructed by

f ðgðj; yÞKÞ

¼
XN1

k1¼�N1

. . .
XNn

kn¼�Nn

X2N2

l1¼�2N2

. . .
X2Nn

ln�1¼�2Nn

� f ðgðj1;k1 ; . . . ; jn;kn ; y1;l1 ; . . . ; yn�1;ln�1
ÞKÞ

� S
N1;...;Nn

k1;...;kn
ðj1; . . . ; jnÞS2N2

l1
ðy1Þ . . .S2Nn

ln�1
ðyn�1Þ;

where SN1;...;Nn

k1;...;kn
ðj1; . . . ; jnÞ are given in (2.3) and S2Nk

lk
ðykÞ are given in (2.2) with

d ¼ 1.

6. A sampling theorem on the complex hyperbolic space

In this section, as an application of Theorem 5.1, we give a sampling

theorem for the Radon transform on the complex hyperbolic space. Let

G ¼ SUðn; 1Þ, ðnb 2Þ and define subgroups K , A and N of G by
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K ¼ X

u

� �
;X A UðnÞ; u A Uð1Þ; u det X ¼ 1

� �
;

A ¼ at ¼
In�1

cosh t sinh t

sinh t cosh t

0
B@

1
CA; t A R

8><
>:

9>=
>;;

N ¼ nðz; uÞ ¼
In�1 z �z

�z� 1� o=2 o=2

�z� �o=2 1þ o=2

0
B@

1
CA; z A Cn�1; u A iR;o ¼ jzj2 � 2u

8><
>:

9>=
>;:

Then we have an Iwasawa decomposition G ¼ KAN . For g A G, we

define tðgÞ A R by g A KatðgÞN. By a simple calculation we have tðgÞ ¼
logjgðen þ enþ1Þ=

ffiffiffi
2

p
j. The Lie algebra a of A and the centralizer M of a in K

are given by

a ¼ Ht ¼
On�1

0 t

t 0

0
B@

1
CA; t A R

8><
>:

9>=
>;;

M ¼
X

u

u

0
B@

1
CA;X A Uðn� 1Þ; u A Uð1Þ; u2 det X ¼ 1

8><
>:

9>=
>;:

In our case K=M can be identified with the complex sphere Sn�1
c . We thus give

the coordinate system on K=M induced from the polar coordinate system on

Sn�1
c described in the previous section. Let dk denote the invariant measure

on K normalized so that
Ð
K
dk ¼ 1. We identify R with A via the mapping

t 7! at and dat denotes the measure on A indeuced from the measure ð2pÞ�1=2
dt

on R. We write dn for the invariant measure on N given by

dn ¼ dnðz; uÞ ¼ 2nðn� 1Þ!
pn

dzdzdu:

Denoting a� by the real dual of a, we identify a and a� with R via the

correspondence Ht 7! t and l 7! lðH1Þ, respectively.

We define the invariant measure dg on G by dg ¼ e2nt dkdatdn. Let dgK
be the measure on G=K such thatð

G

f ðgÞdg ¼
ð
G=K

ð
K

f ðgkÞdkdgK :

Let CðG=KÞ denote the space of rapidly decreasing functions on G=K . For

f A CðG=KÞ, its Radon transform Rf and Helgason–Fourier transform ~ff are

defined by
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ðRf ÞðkM; atÞ ¼
ð
N

f ðkatnÞdn;

~ff ðkM; lÞ ¼
ð
G=K

f ðgÞeðil�nÞðtðg�1kÞÞ dgK :

And the Fourier inversion formula is the following:

f ðgÞ ¼ 1

2

ð
K=M

ð
a �
e�ðilþnÞðtðg�1kÞÞ ~ff ðkM; lÞjcðlÞj�2

dkmdl: ð6:1Þ

Here cðlÞ is the Harish-Chandra c-function.

In the case of the Helgason–Fourier transform on the Riemannian

symmetric space, the Fourier slice formula is given by the following form:

~ff ðkM; lÞ ¼
ð
A

eð�ilþnÞtðRf ÞðkM; atÞdat: ð6:2Þ

We shall here prove a sampling theorem for the Radon transform by using the

Fourier reconstruction algorithm that is similar to the case of R2. Let L > 0

and N1; . . . ;Nn A Zb0 be such that Nn b � � �bN1. We call that f A CðG=KÞ is
band–limited if

(1) suppð ~ff ÞJK=M � fl A R; jljaLg;
(2)

Ð
K=M

~ff ðkM; lÞFðp;qÞðkMÞdkM ¼ 0 unless 0amaxfpj; qjg < Nj .

The Fourier slice theorem (6.2) yields that the Fourier transform of ~ff ðkM; lÞ
on A is equal to entðRf ÞðkM; atÞ. Therefore using the Shannon sampling

theorem, we have

entðRf ÞðkM; atÞ ¼
X
p AZ

enpp=LðRf ÞðkM; app=LÞ sinc
L

p
t� p

� �
; ð6:3Þ

(see [2, Lemma 3.1]). Substituting (6.3) into (6.2), we have

~ff ðkM; lÞ ¼
X
p AZ

ðRf ÞðkM; app=LÞ
ð
A

enpp=L sinc
L

p
t� p

� �
e�ilt dat

¼
ffiffiffi
p

pffiffiffi
2

p
L

X
p AZ

ðRf ÞðkM; app=LÞeð�ilþnÞðpp=LÞwð�L;LÞðlÞ: ð6:4Þ

In this case, by using Theorem 5.1, we can explicitly construct the recon-

struction formula for ðRf ÞðkM; app=LÞ (cf. [2, Corollary 3.4]). From the as-

sumption (2), ðRf ÞðkM; app=LÞ is band–limited to the n-tuple ðN1; . . . ;NnÞ as a

function of Sn�1
c and hence
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ðRf ÞðkM; app=LÞ

¼
XN1

k1¼�N1

. . .
XNn

kn¼�Nn

X2N2

l1¼�2N2

. . .
X2Nn

ln�1¼�2Nn

� ðRf Þðkðj1;k1 ; . . . jn;kn ; y1;l1 ; . . . yn�1;ln�1
ÞM; app=LÞ

� S
N1;...;Nn

k1;...;kn
ðj1; . . . ; jnÞS2N2

l1
ðy1Þ . . .S2Nn

ln�1
ðyn�1Þ; ð6:5Þ

where yj;kj are chosen as arbitrary distinct points in ½0; p=2� and jj;kj ¼
kjp=ð2Nj þ 1Þ. We set

S
N1;...;Nn

k1;...;kn;l1;...;ln�1
ðkMÞ ¼ S

N1;...;Nn

k1;...;kn
ðj1; . . . ; jnÞS2N2

l1
ðy1Þ . . .S2Nn

ln�1
ðyn�1Þ:

Substituting (6.4) and (6.5) into the Fourier inversion formula (6.1), we finally

obtain the following theorem.

Theorem 6.1. Let L > 0 and N1; . . . ;Nn A Zb0 be such that Nn b � � �b
N1. Assume that f A CðG=KÞ is band–limited. Then f is reconstructed as

follows:

f ðgÞ ¼
X
p AZ

XNþ1

k1¼�N1

. . .
XNn

kn¼�Nn

X2N2

l1¼�2N2

. . .
X2Nn

ln�1¼�2Nn

ðRf Þðkðj1;k1 ; . . . jn;kn ; y1;l1 ; . . . yn�1;ln�1
ÞM; app=LÞ

ffiffiffi
p

p

2
ffiffiffi
2

p
L

ðL
�L

ð
K=M

S
N1;...;Nn

k1;...;kn;l1;...;ln�1
ðkMÞeð�ilþnÞðpp=LÞ

� e�ðilþnÞðtðg�1kÞÞjcðlÞj�2
dkMdl:
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