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ABSTRACT. For any finite type connected surface .S, we give an infinite presentation of
the fundamental group 7;(S,*) of S based at an interior point * € S whose generators
are represented by simple loops. When S is non-orientable, we also give an infinite
presentation of the subgroup of 7 (S, ) generated by elements which are represented by
simple loops whose regular neighborhoods are annuli.

1. Introduction

For any surface S and any point x in the interior of S, let 7;(.S, ) denote
the fundamental group of S based at x. When S is non-orientable, we denote
by 7 (S,*) the subgroup of 7;(S,*) generated by elements which are repre-
sented by simple loops whose regular neighborhoods are annuli, called fwo-
sided simple loops. A presentation of 7;(S,«) is well known. In particular,
mi(S, ), and also 7} (S,%), are free groups if S has a boundary. For a
connected closed orientable surface S, Putman [14] gave an infinite presentation
of 71 (S,*). In this paper we give infinite presentations of 7 (S, *) and 7} (.S, *)
whose generators are represented by simple loops, for any finite type connected
surface S, as follows.

THEOREM 1.1. For any finite type connected surface S, let n be the group
generated by symbols S, for o€ m(S,*) which is represented by a non-trivial
simple loop, and with the defining relations

(1) Sy-1 = Sojl;

(2) SuSp=3S, if aff=7.

Then 7 is isomorphic to m;(S,*).

THEOREM 1.2. For any finite type connected non-orientable surface S, let
nt be the group generated by symbols S, for o€ n(S,*) which is represented
by a non-trivial simple loop, and with the defining relations
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(1) Sy-1 = S(;l,

(2) SaSﬂ = Sy ljf (Xﬂ = %

(3) S.SpS; ' =S, if afa !t =1
Then ©" is isomorphic to m| (S, *).

These results are useful in studies on the mapping class group of S and
its subgroups. For example, in [8], Theorem 1.2 is used to obtain an infinite
presentation for the twist subgroup of the mapping class group of a compact
non-orientable surface.

In order to prove Theorems 1.1 and 1.2, we use the following lemma.

Lemma 1.3 (cf. [14])). Let G and H be groups generated by sets X and Y,
respectively, such that H acts on G. Suppose that X' C X satisfies the following
conditions.

s H(X')=X.
e For any xe X' and ye Y, yt'(x) is in the subgroup of G generated
by X'

Then X' generates G.

As groups acting on 7 and n*, we consider the pure mapping class group
of S. Using this lemma, we show that = and =" are generated by symbols
corresponding to basic generators of 7;(S, ) and 7} (S, ), respectively.

In Section 2, we define mapping class groups and pure mapping class
groups of surfaces, and explain their generators. In Sections 3 and 4, we prove
Theorems 1.1 and 1.2, respectively.

Throughout this paper, we do not distinguish a loop from its homotopy
class.

2. On mapping class groups of surfaces

For g > 0 and m > 0, let X, ,, be a surface which is obtained by removing
m disks from a connected sum of ¢ tori, as shown in Figure 2 (a). We call
2,.m a genus g orientable surface with m boundary components. We define the
mapping class group M (%, ) of X, ,, as the group consisting of isotopy classes
of all orientation preserving diffeomorphisms of %, ,,. The pure mapping class
group PM(Zy ) of X, is the subgroup of .# (2, ,) consisting of elements
which do not permute order of the boundary components of %, ,,. Regarding
some boundary component of X, ,.1 as *, we notice that 2# (%, ,+1) acts on
71 (2 n, *) naturally.

For g > 1 and m > 0, let N, ,,, be a surface which is obtained by removing
m disks from a connected sum of g real projective planes. We call N,
a genus g non-orientable surface with m boundary components. We can
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regard N, , as a surface which is obtained by attaching g Mdbius bands to g
boundary components of Xy ,.,,, as shown in Figure 2 (b) or (c). We call
these attached Mobius bands crosscaps. We define the mapping class group
M(Ny,m) of Ny, as the group consisting of isotopy classes of all diffeo-
morphisms of N, . The pure mapping class group P4 (Ny ;) of Ny, is the
subgroup of .# (N, ,) consisting of elements which do not permute order of
the boundary components of N,,. Regarding some boundary component
of Ny,41 as %, we notice that 2# (N, ,41) acts on 7;(Ny,,*), and also
7 (N n, %), naturally.

It is well known that 2#(Z%, ,,) can be generated by only Dehn twists (for
instance see [3, 4, 12]). On the other hand, Z4#(N, ,,) can not be generated
by only Dehn twists. We need boundary pushing maps and crosscap pushing
maps as generators of 24 (N, ,,), in addition to Dehn twists (see [11, 13]).
We now define the Dehn twist, the boundary pushing map and the crosscap
pushing map. For a two-sided simple closed curve ¢ of a surface S, the Dehn
twist 7. about ¢ is the isotopy class of a map as shown in Figure 1 (a). When
S is orientable, the direction of ¢, is the right side with respect to an orientation
of S. When S is non-orientable, the direction of 7. is indicated by an arrow
written beside ¢ as shown in Figure 1 (a). Let « be an oriented arc of S with
its two endpoints at a boundary component, as shown in Figure 1 (b). The
boundary pushing map B, about « is the isotopy class of a map obtained by
pushing the boundary component along «. Let « and x be an oriented simple
closed curve and a simple closed curve whose regular neighborhood is a
crosscap, called a one-sided simple loop, of a non-orientable surface, respec-

. g

(a) The Dehn twist ¢ about c.

—

(¢) The crosscap pushing map Y}, o about a and
1.

Fig. 1. Elements of mapping class groups of surfaces.
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tively, such that o« and u intersect transversally at one point, as shown in Figure
1 (c). The crosscap pushing map Y, , about o« and x is the isotopy class of a
map obtained by pushing the crosscap, which is the regular neighborhood of u,
along «.

We have the following theorems.

THEOREM 2.1 (c.f. [5]). Let co,ci,...,¢oq and di,...,d, be simple closed
curves of Xy 1 as shown in Figure 2 (a). Then PM(Zy ,11) is generated by
Legslepsy ooy tczg and Layy s ld,.

THEOREM 2.2. Let ay,...,a,-1, b, u, s,y and ro,ry,...,r, be simple closed
curves and simple arcs of Ny 1 for 1 <k <I<wn, as shown in Figures 2 (b)
and (c). Then PAl(Nyni1) is generated by tu,...,ta, . th, Yya, ts, and

B,.B,,....,B, for 1 <k<l<n.

(a) Simple closed curves ¢; and dj, of Xy 41 for 0 < ¢ < 2g
and 1 <k <n.

b =

(TS
1'.:”:1;;3

2
¢
as

Gg—1

‘\ EEEER
a
70

(b) Simple closed curves and simple arcs a;, b, p and ri of Ny ny1 for
1<i<g—land0<Ek<n.

(c) A simple closed curve sy; of Ng 41 for
1<k<l<n.

Fig. 2.
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Fig. 3. Oriented simple loops x; and y; of N, , based at = for 1 <i<g and 1 <k <n.

Proor. There is an exact sequence
1 (Nyg,ny %) = Pl (Nyg,ni1) — PAl(Ng,n) = 1,

introduced by Birman [1] for orientable surfaces. The homomorphism
71 (Ngn, %) — PM(Ny ny1) is defined as o — Bz, where & is an arc which is
obtained from o by regarding x as a boundary component. The homomor-
phism 24#(Ny p1) — PAM(Ny,,) is defined as the map which is induced by
capping the boundary component with a disk.

Let xi,...,x, and yi,..., y,—1 be oriented simple loops of N, , based at
*, as shown in Figure 3. It is well known that 7;(N,,,,*) is generated by

. _1)i-! .
Xiy..Xg and pi,..., y,1. It is easy to check that 7, F'! Y,,(,a}) F'i(xiy) =

x;fori=1,...,9 — 1, where F = 1,14, ---1,,,. Therefore, since the homomor-
phism 7y (N o, %) — 24 (N, 1) sends x, to By, we see that this homomorphism
sends x; to a conjugate element of B, by #,...,t, , and Y,, from the

relation By, = fB,, /' (for example see Lemma 2.4 in [10]). In addition,
regarding * as the n-th boundary component of N, ,.i, it follows that the
homomorphism 7;(Ny, ,, %) — P4 (N, 1) sends x; to a conjugate element of

B, by t4,...,tq, , and Y, , forn>1and 1 <i<g from a similar argument,
and yr to sg, for n>2 and 1 <k <n-—1. It is known that 2#(Ny,) is
generated by 4,...,1, ,, &, and Y, (see [2, 16]). Therefore using the exact

sequence above, we obtain the generating set inductively.

Note that a finite generating set of 2#(Ny ,11) which is different from
that of Theorem 2.2 was already given by Korkmaz [10]. However we use the
generating set of Theorem 2.2 in this paper.

3. Proof of Theorem 1.1

In Subsection 3.1, we prove Theorem 1.1 of the case where S is ori-
entable. In Subsection 3.2, we prove Theorem 1.1 of the case where S is
non-orientable.
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Fig. 4. Oriented simple loops o;, f;, 7, 0; and ¢ of %, , based at x for 1 <i<gand 1 <k <n,
except for i =g for J;.

3.1. The case where S is orientable

Let ay,... 0, By,...,B, and y,,...,7,_, be oriented simple loops of %, ,
based at %, as shown in Figure 4. It is well known that 7;(Z} ,, %) is the free
group freely generated by these loops for n > 1 and the group generated by
a,...,05 and fBy,..., B, which has one relation [o, 8] - - [ay, B,] = 1 for n =0,
where [x, y] = xyx~'y~l.

Let X be a set consisting of S,, where o is a non-separating simple loop
or a separating simple loop which bounds the m-th boundary component for

l<m<n—1, and let X' be the following subset of X:

X' = {8y, s Sy Spis S, Sy Sy, 1
Let Y be the generating set for 24 (%, ,41) given in Theorem 2.1. In the
actions on 7y(%, ,,*) and n by 24 (2, 1), we regard the (n+ 1)-st boundary
component of X, ,,1 as * We define f(S,) = Sy for S,en and fe

PM(Zy ni1), where f; is the map on m (2, ,,*) induced from f. We prove
the following proposition.

ProposiTiON 3.1. (1) X generates .

) 2l(Zyn1)(X') = X.

(3) For any xe X' and ye Y, y*'(x) is in the subgroup of n generated
by X'.

In order to prove the proposition, we show the following lemma.

Lemma 3.2, For 1 <i<g—1and 1 <k <n, S, , Ss and S, are in the

subgroup of m generated by X', where y,, 6; and & are simple loops of %, , based
at x as shown in Figure 4.

Proor. By the relations (1) and (2) of n, we calculate

-1
S, = St b 1 = (Sur Syl (52,8518, 8, )7,

1 -1

S, = Sﬂfldf+lﬁi+1°‘ijrl1 - Sﬂi S Sﬂiﬂs‘%wl’
— _ g1

Sgk - SﬁJ1y1<--;rk - S/)’q SV[ e Syk
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Fig. 5. An oriented simple loop [o, /] -+ [on, Bulyi -+ Vs One of a component of whose com-
plement is homeomorphic to X} 41, for 0 <h<g and 0 <m <n.

for1<i<g-—1and 1<k <n. Since each symbol of the right hand sides is
in X', we get the claim.

PrOOF (Proof of Proposition 3.1). (1) For any generator S, of =, if o is
a non-separating simple loop, S, is in X clearly. If « is a separating simple
loop, one of a component of the complement of o is homeomorphic to
2 m+1 for some 0 </ < gand 0 <m <n. Therefore, there is ' € P (X, +1)
such that oo = fi([our, ] - - - [, Brlyx, - 7x,) for some 1 <ky < --- <k, <n (see
Figure 5). Then, by the relation (2) of =, we have S, = [S;(), Syl
[Sfjé(a/z)’Sfﬂ(ﬁ11>]S/ﬂ(yA'l> =+ S(,,)- Since each symbol of the right hand side is in
X, we conclude that X generates 7.

(2) For any S, e X, if o is a non-separating simple loop, there is f €
P (Zy ny1) such that fi(oy) = o, and hence f(S,)=S,. If «is a separating
simple loop which bounds the m-th boundary component for 1 <m <n-—1,
there is f € 24 (%, 1) such that fi(y,,) = o, and hence f(S, ) =S,. There-
fore we obtain the claim.

(3) In this proof, we omit details of calculations.

Let y =1t,. We calculate

(1),(2) - - o)
V(Ss) = Sogz/jz" = SﬁfzSﬂzlv y I(Sotv) = Sup, = S Sp,

and y*!(x) = x for any other xe X'.
Let y =1, , for 1 <i<g. We calculate

2
y(SOCH) = S“i—lfji—l (:) S“[—lsfsi—l’

N 1), (2) _
y IS, ) = Syl = Sy, S5

i1

©)

y(SO(i) = Sffiilloc[ = S(;}l S“H yil(SO!f) = S(SH%' = sti—lsai’

1 (1,2 o1 1
yH(Sp,) = Sdi‘lﬁ,.,l(sg‘] = S5 Sh S5,

i-170i-1

and y*!(x) = x for any other xe X'.
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Let y =1, for 1 <i<g. We calculate
@ (1.2
V(Sp) = Spa,

2SS, yNSp) =Sy EY S8
and y*!'(x) = x for any other xe X'.
Let y =14 for 1 <k <n. We calculate

(2) _
y(Szxg) = SD(gEk = Saé/SSk; y 1(S9£_(,) =

(1.2

ge; ! (1%:(2) Sat Sila
9%k 9 &

Sj,:lSﬁ Sil’

g Ek

+1 N
y (Spy)—ngrl/),q%l

(Uaz(z) S$1S Sil
&

Yi~ey

1
yi (S"//) = Sezr'y,sf]
for I <k, and y*'(x) = x for any other xe X'.

Hence we have that for any x € X’ and ye Y, y*!(x) is in the subgroup
of 7 generated by X', by Lemma 3.2.

PrOOF (Proof of Theorem 1.1 of the case where S is orientable). By
Lemma 1.3 and Proposition 3.1, it follows that = is generated by X’'. There
is a natural map 7 — m;(2, ,,*). The relations (1) and (2) of n are satisfied
in 7 (2, %) clearly. Hence the map is a homomorphism. In addition, the
relation [S,,, Sp]---[Sy,,Sp] =1 is obtained from the relation (2) of = for
n=0. Therefore the map is an isomorphism for any n > 0. Thus we com-
plete the proof.

3.2. The case where S is non-orientable

Let xy,...,x, and yq,..., y,—1 be oriented simple loops of N, , based at x,
as shown in Figure 3. It is well known that 7;(Ny, ,, *) is the free group freely
generated by these loops for n > 1 and the group generated by xi,...,x, which
has one relation x7---x; =1 for n=0.

Let X be a set consisting of S,, where « is a one-sided simple loop whose
complement is non-orientable, or a separating simple loop which bounds the
m-th boundary component for 1 <m <n—1, and let X’ be the following

subset of X:
X, = {le’. . 7SXg7S}’17 .. 7Sy;x—1}'

Let Y be the generating set for Z#(Ny ,41) given in Theorem 2.2. In the
actions on 71 (Ny , *) and 7 by 24 (N 1), we regard the (n + 1)-st boundary
component of Ny ,,1 as *. We define f(S,) =S, for S,en and fe
PAM(Ny ns1), where f; is the map on 7 (N, ,,*) induced from f. We prove
the following proposition.
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ProrosiTION 3.3. (1) X generates .

(2) Qﬂ(Ng,nH)(X/) =X

(3) For any xe X' and ye Y, y*'(x) is in the subgroup of n generated
by X'

In order to prove the proposition, we show the following lemma.

Lemma 3.4. S, is in the subgroup of m generated by X', where y, is a
simple loop of N, , as shown in Figure 3.

Proor. By the relations (1) and (2) of =, we calculate

-1
Syn = S = (S)%] e szg,Syl e SJGH) N

(XIZN.xjyl.‘.y“il)*l

Since each symbol of the right hand side is in X', we get the claim.

ProoOF (Proof of Proposition 3.3). (1) For any generator S, of =z, the
complement of o is homeomorphic to either

(1) Ngfl,nJrl;

(2) Ng72,n+2;
(3) Zhper if g=2h+r for r=1,2,
4) Nimst UNg—pp—mp for 1 <h<g—1and 0 <m<n or
(5

) Zhmtt UNg_op pemy1 for 0 <h < 9 and 0 <m<n

(see [15]). Therefore, there is f € 24#(Ny 1) such that o = fi(f), where f
is either one of the simple loops as in Figure 6. For the case (a), we have
Sy = Sf(v). For the case (b), by the relation (2) of =, we have S,=
Sr(x)Sf(x,)- For the cases (c), by the relation (2) of n, we have S, =
Stv)Sf(x,)- For the case (d), by the relation (2) of =, we have
S, = S]%(x]) e szj(x/,)Sf?(yk1> -+ Sp(y,) for some 1 <k <---<k,<n For the
case (e), by the relations (1) and (2) of =, we have

— -1 -2 -2 -1
S = Sk ShCon) ShCone) St S Shin)

“SE) S ) ) T Sh(e)

for some | <k <---<k,<nif h#0. If h=0, by the relation (2) of =,
we have S, = an()’kl) < Sr(y,,) for some 1 <k <---<k,<n Since each
symbol of the right hand sides is in X, we conclude that X generates 7.

(2) For any S, e X, if o is a one-sided simple loop whose complement
is non-orientable, there is f € Z#(Ny 11) such that fi(x;) =« and hence
f(Sy,) =S,. If ais a separating simple loop which bounds the m-th boundary
component for 1 <m <n—1, there is f € Z#(Ny 1) such that fi(ym) =a,
and hence f(S,,)=S,. Therefore we obtain the claim.
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(a) A standard position oriented simple loop whose
complement is homeomorphic to Ng—1,n41-

(b) A standard position oriented simple loop whose
complement is homeomorphic to Ng—2 2.

(¢) A standard position oriented simple loop whose
complement is homeomorphic to Xy, 5,4, if g = 2h+r
for r =1, 2.

(d) A standard position oriented simple loop whose complement is
homeomorphic to Npmi1 U Ng_ppn—my1 for 1 < h < g—1 and
0<m<n.

(e) A standard position oriented simple loop whose complement is
-1

g and
2

homeomorphic to X, i1 U Ng_op n—my1 for 0 < h <
0<m<n.

Fig. 6.
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(3) In this proof, we omit details of calculations.
Let y=1, for 1 <i<g. We calculate

o Xixi P
y(8y) = Sey, 2828,
WSu) =S 28,82

y S0 ) = S, s STS

and y*!'(x) = x for any other xe X'.
Let y=1t,. We calculate

(1),(2) o2 o2 a—
y(‘gxl) = lexzx3x4’1x3’2x2’2xl’l = SXJSXZS S ISx32Sx22Sx|l7

X3 x4

B 1,2 P
Y USa) = S 2 82S2828,5,S,)

1X5 X3 X1 5 x M xy M X xs

U g, s282 5,850,

X2 T X3

y(sz) = Sx1x§x§x4x3’]

_ (1),(2) [ TP S P
y I(sz) - szxgx;lx’zx’le’lxz - szsxzs, 41SX32Sx22Sx11szv

3% X

10 ¢ ool a2 o2 am
y(SX3) = Smx;‘x}’zxz’le’lxzn = stSx41SX32Sx22SxIISx2Sx37
_ (1),(2) o=
y I(SX3):SX;IX1X22X32X4 = szleISiSinu

(1,2 -1 o-
y(Sx4) = sz’lxz’lxlxzzxzzxj = SX31Sx21SX1 Sv%zSi Sia

_ (D,(2) 1 2 v v
y I(SX4):Sx;‘xfzrzx;‘xzxgx“ = SX41SX3ZSXZZSX11SXZSXSSX4

3 72

and y*!'(x) = x for any other xe X'.
Let y=Y,,. We calculate

1),(2) “1o-1g—
y(le):lezxzxflx;‘x;Z = S)%IS S ]SxZISMZ’

X2 x
_ 1),(2) o—1 -
Y I(S)q) = sz"xl’lxz = szlsxllsxza

) - (1,2 -
y(Skz) - lezx2 = S.)%lezv y I(sz) - Sx x? - S 'S S;

and y*!(x) = x for any other xe X'.
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Let y=B, for 1 <k <n. We calculate

(1),(2) - - (2)
y(SXy) = ngJ’kal = SiqSykagl’ y ](Sxy) = quyk = SXySyk7

(1),(2) -
y(Syk) = Sx(,}’/cxgl = ngSykagl,

- 1),2) o=1 -
y I(Syk):Sy,zleykxgyk = SylexglsykaqSyk7

(1,2 el ol -1
y(Sy,) - S)(gy/:]X;l}"/:lylykxg}’kXJI - S—’CgSyk ng S}'k SV/SJ’ka;;SYka;: ’

-1 _ (1:2) -1 g-1¢-1 -1
y (S)’I) - Syk’lx;lyk’]x,,y,x_(’*lykx,,yk - Syk ng Syk SX;/S}’ISXU S)’k ngSyk

for / <k, and y*!(x) = x for any other xe X'.
Let y = B,,. We calculate

yil (Sx]) = Sxilx/xjrl

g

<1>-,:(2) S$1S Sil
Xy

Xj Xg 0

1,2 «F
PE(Sy) = Sypyn = SELS, ST
forl1<j<gand 1 </<n-1
Let y=1t,, for 1 <k <Il<n We calculate
(1),2) el
y (SJ’/r) = SJ’k}’kayf 1)’,: = SykSy, SykS)’[ S}’k ’

_ (1),(2) -
y I(S}’k) = S}’flyk}’/ = SyIISJ’/fS}’/7

-

(1),(2) -1
y(Syz) = Syky/yATI = SykSyISyk )

~1 (1,2) o—1¢-1
Y (S}’l):Sy,"y,j'yzym =5, 8y SnSuSu»

0.0 [

Vi

-1
y<Sym> = S[yhy]]ym[yk’y]]il S)”/]Sym [SyIH Syl] )

_ 1,2 ra-1 o— 1 o—17-1
Y I(SJ’"'):S[yf‘,y;‘]ym[yf‘qy;‘]’l - [Syzl’Sy/cl]S)"”[SJ’II’SJ’/cl}

for k <m <[, and y*'(x) = x for any other x e X'.

Hence we have that for any x € X’ and ye Y, y*!(x) is in the subgroup

of 7 generated by X', by Lemma 3.4.

ProOF (Proof of Theorem 1.1 of the case where S is non-orientable).
Lemma 1.3 and Proposition 3.3, it follows that = is generated by X'.

is a natural map 7 — 71 (N, *).

The relations (1) and (2) of = are satisfied
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in 71(Ny,,, %) clearly. Hence the map is a homomorphism. In addition, the
relation S}, ---S7 =1 is obtained from the relation (2) of 7 for n=0. There-
fore the map is an isomorphism for any n > 0. Thus we complete the proof.

4. Proof of Theorem 1.2

Let x; = x;x; and z = xgykxgl for 1 <i,j<gand 1 <k <n—1, where
X1,...,Xg and yp,..., y,—1 are simple loops of N, , as shown in Figure 3. We
first consider a presentation for 7 (N ,,*) as follows.

LEMMA 4.1. 7] (N, *) is the free group freely generated by X1, ..., X414,

Xl Xggs ViyevosVu—1 and zi,...,z,21 for n>1, and the group generated

by x12,...,X4-14 and xi1,...,Xyg which has two relations xi1---X,9 =1 and
- - -1 _ _

XggXg -1 gXg—1g—1Xy 2 g1 """ X22X 3 X11X12 " Xg—1 g = 1 for n=0.

Proor. It is known that =z, (N, ,,*) is an index two subgroup of
71 (Ng,n, %) (see [8]). Hence we can obtain a presentation of 7 (N, ,,*) by
the Reidemeister Schreier method (for details, for instance see [6]). Note
that 7;(Ny,,, *) is generated by xi,...,x, and yi,...,y,-1. We chose {1,x,}
as a Schreier transversal for 7, (N, ,,*) in 7(Ny,,*). Then it follows that
7 (Ng,n, %) is generated by xix, !, ..., xg 1,1, XgX1,. -, XXy, Y1,--., yut and
Zly...,zZp—1 (see [7]). In addition, we see

1

2 2y7 -1 - -1 -1
I(xy---x)1 = XIX,  XgX1X2X, | XgXp et Xgo1X,  XgXg1 * XgXg,

g

2 2

~1
Xy (a7 2

— -1 -1 -1
g = XgX1 - xlxg s XgX2 szg cr XgXg—1 0 xg,lxg * XgXg-

)x
Hence when n =0, we have two relations

—1 -1 -1 —
xlxg + XgX1 -X2xg s XgX2 - ~xg_1xg c XgXg—1 - XgXyg = 1,

-1 -1 -1 —
XgX1 'xlxg * XgX2 - xeg cr XgXg—1 0 xy,lxg * XgXg = 1.

Let G be the group which has the presentation of the lemma. We
next show that G is isomorphic to n;" (Ny,,*). Let ¢: G — 7} (Ny ,,*) and
Y 7 (Ny %) — G be homomorphisms defined as

P(Xiip1) = Xix;1 * XgXitl, p(x;) = "./’ng1 " XgXjs o(Vk) = Vi o(zk) = zx,

— . x L oL -
) = Xiit1Xiy 1 Xid 1 i42X050 40 " Xg-1 9%gg >

<

XiX,

@

<

(

-1 -1 ~1
(xgx;) = XggXg—1gXg—19-1%g-2 g1 " Xj+1 j+1%; j11%))>
() =y, Wlz) =z

for 1<i<g—1,1<j<gand 1 <k<n-—1. We calculate
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eyl -1
QX1 Xgo1g—1Xgg) = X1X, * XgX1+ Xg_1X, "+ XgXg—1 * XgX,

—1 —1 —1
P(XggXy 1 gXg—1g—1X, 2 g1 " X22X3 X11X12*** Xg—1 g)

= xgXg(xg-1X, .xgxg)_l(xg,lxgl  xgXg1)(xg2x, ! XgXg1) !

1 1

e (ax T xx) (s ) T e ) (s - xg)
24y g2 1y g2 1y gl 1y g2
(x xil.xx)
g—11g gtg

= . _1. . _l... - X x_l.xx

= XgX1 - X1X, - XgXp - Xa X, XgXg—1 " Xg—1X gg»
P(xrx; e xxy xoxs XXy X X XX - Xx,)

1Ay gAML T A2 g2 g—11g grg—1 " Agrg

= X11X22 "+ - Xg—1 g—1Xgg,
Y(xgxt - X1 XX XX XXy X1 X Xyx,)

grl T ALA, g2 T A2y grg—1 " Ag—11y grg

-1 -1

Xg—1g-1X,

_ -1
= XggX g-2g-1" " X02Xp X11X12 0 Xg—1 g-

g-lg
Hence ¢ and  are well defined even if n=0. In addition, we have

Yo(xii) = l//(xixgl * XgXit1)

_ -1 ~1 ~1 1 o
= X1 Xy Xg=19Xgg T XggXg_1 g Xik2 i42X 41 o Xi i

= Xii+ls
Yo(xy) = Y(xx, " - x.x;)

= xjj+1x_/:rll 1 Xyl gx;gl : xggx;—ll g X+ j+1x/ijl+lxjj
= Xjj»
Yvo(ye) =¥ (k) =y, bo(z) =¥ (zk) = zk,
oy (xix, ') = p(xiiaxih e X1 9%,,)
= (xix;1 ~ngi+1)(xi+1x;1 'xgxi+l)71 "'(xg—IX;1 ‘xgxy)(xgxg)71
= x,»xg_l7
o (%)) = p(xggxy "y Xpa1 1 )
= (xgxg)(xg,lxg_l 'xgxg)i1 (xj+1xg_l * XgXjt1)
. (xjxg’1 ‘ngj+1)71(ij!;1 - XgXj) = XX,

oy (vi) = 0(yvi) = yi,  ov(zk) = 9(2k) = zk.

Therefore ¢ and W are the isomorphisms. Thus we finish the proof.
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Let X be a set consisting of S,, where o is a non-separating two-sided
simple loop whose complement is non-orientable, or a separating simple loop
which bounds the m-th boundary component for 1 <m < n — 1 or one crosscap
whose complement is non-orientable, and let X’ be the following subset of X:

X' = {Suiss ey S 1ysSurs s Sy Sors e os Sy s Seyy vy oy b

Xgg )

Let Y be the generating set for 24 (N, ,41) given in Theorem 2.2. In the
actions on ;" (Ny ,,*) and n* by 24 (N, »41), we regard the (n+ 1)-st bound-
ary component of N, ,.; as . Recall that the action f(S,) of f € Z#(Ny p+1)
on S, € 7 was defined in Subsection 3.2. We prove the following proposition.

ProposITION 4.2. (1) X generates n™.

(@) PUN,)(XT) = X,

(3) For any xe X' and ye Y, yt'(x) is in the subgroup of n* generated
by X'

In order to prove the proposition, we show the following lemma.

Lemma 4.3. S, Sy, Sy, and S., are in the subgroup of n" generated by

X' for 1 <i< j<g, where y, is a simple loop of Ny, as shown in Figure 3 and

_ ~1
Zn = XgVnX, .

Proor. For 1<i< j<yg, if j—i=1, then x; is in X’ clearly. If
j—1i>2, we calculate
s

e S
NN N e

S

L -1 ¢ .
Xij Xij=1% ) j X1

(1)7(2)7(3) S S S71 S*l S — S S*l S

Xij12 X1 Xy X i T Xij1Ex oy o PN

By induction on j — i, it follows that S, is in the subgroup of " generated
by X’. In addition, we calculate
Sy, =S Bs s o srg s

e T . XX
XjjXy; i Xy XXXy Xii Xij XXX

2 5018, 8,, 5718y, = Sy, SIS,

~ij X xig Xjj = X

Hence S,, is also in the subgroup of 7" generated by X'. Moreover, by the
relations (1) and (2) of =, we calculate

o o -1
Syn = S(Xll...xggyl...y,kl)*l = (an ngyS}’l Sy:m) )
SZ" = S(X_(;IXIZXZ_“?”'nglyZl"'anl>71

_ -1

- (ngISXquzs T SX;H _qSZI e SZVH) .



102 Ryoma KoOBAYASHI

Therefore S,, and S. are also in the subgroup of 7n* generated by
X'
Thus we get the claim.

Proor (Proof of Proposition 4.2). (1) For any generator S, of n", the
complement of o is homeomorphic to either

(b) Ng72,n+2:

() Zpnso only if g =2h+2,

(d) Npmrit UNy_ppms1 for 1<h<g—1and 0<m<n or

(€) Znm+1 UNy_oppms1 for 0 <h < g and 0 <m <n.

(see [15]). Therefore, there is f € 24/ (Ny ,41) such that o« = f;(f), where f is
either one of the simple loops as in Figure 6 (b), (c), (d) and (e). For the case
(b), we have S, = Sy(y,,). For the case (c), by the relation (2) of n*, we have
Sy = Sk(x) " Sp(x,1,)- For the case (d), by the relation (2) of n*, we have
Sy = Sken) St ki) S, for some I <ky <--- <k, <n. For the
case (e), by the relation (1) and (2) of =™, we have

_ —1 —1 —1
Sy = Sﬂ(XIZ)S/‘B(XM) T Sfﬁ(XZh—th) ’ Sf;(m 2h+1)Sﬁ(th71 w) Sf:t(xlz)

S 000 S 0es) T Shonae ) ) T S ()

for some | <k; <--- <k, <nif h#0. If h=0, by the relation (2) of zn™,
we have S, = Sﬂ(nl) Sk () for some 1<k <---<k,<n. Since each
symbol of the right hand sides is in X, we conclude that X generates =.

(2) For any S, € X, if o is a non-separating two-sided simple loop whose
complement is non-orientable, there is f € 2#(Ny 1) such that fi(x2) = a,
and hence f(Sy,) =S,. If o is a separating simple loop which bounds the
m-th boundary component for 1 <m <n—1, there is f € 24#(Nynt1) such
that f;(ym) =o, and hence f(S,,)=3S,. If o is a separating simple loop
which bounds one crosscap whose complement is non-orientable, there is f €
PAM(Ngni1) such that fi(x;;) =o, and hence f(S,,)=S,. Therefore we
obtain the claim.

(3) In this proof, we omit details of calculations. In calculations, we use
the relation (3) as little as possible (see Remark 4.4).

Let y=1¢, for 1 <i<g. We calculate

y(SXHi) = Sx,-,l xl (l%:(2> S .

it Xie1i™Xi 417

_ 2
y I(Sx[—li) - Sx[,“x;[ﬂ (:> Sxi 115

X1~ Xi i1

(2)
y(Sxm i+2) = qu+1xi+1i+2 = Sxii+lei+l i+27
1),2) o-1

-1 S
y (Sx Li ) = 1 e = ¢ Xitli42)
i+1 42 X; i+1x’+1 i+2 Xiivl i+1 42
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(1),(3) ~1 -1
y(an) - SJ\,,HXHUH X1 Sxim Sx,ﬂ ,-HSx,-,vH?
y IS, = S L s S,
Xii Xii X i+1X; 1y XiiXi i1 it Ni Ui LS X XX i
(1),(2),03) ~1
= SxiSxiy i+l Sx,- i+l Sy Ssz+1 )
V(Sx) = 8, X X XX i
2 'S
- x,,+1x,+1,+1x“+1 Xii Xit1 i+1
(1),(2),03)
= SxmISXHliHSr,,HS)»nSXulnl?
—1 _ 1.0) g1 g1
y (Sxi+li+l) - leil}f’l X Xiigl Sx,,“ Sx,, S‘C:i+l7
(1.2 41 1
lay I(SZ/) - Sxi,lll,’l\;rllq - Sxy—lySZ/Sxy—ly

for 1 </<n—1, and y*!(x) = x for any other xe X'
Let y =1t,. We calculate

(1,(2) -
y(Sx45) = szgl X12X23X34X45 = szi lez SXZ} SX34 Sx45 ’

—
—

-1 _ 12 o1 g-1g-1
Y (Sx45) 7Sx3741.x2731X1721x23x45 = Sx34sz3SX12Sx23Sx457

(Sy) = S 2 s
y X11 - xlzxux‘alx 1 1‘C|3Y Iy, lxﬁl - xlzxux‘alx;}lx ! X13X;3 lxglrl’zl

X 34 Y23 12

U g S Sotsls s, sols s

37X120

“H(Sw)
= 11
y lel SX11A22X32X44)»;4 X X112 ‘612x23X34X,;

(2)
- SX11>»22Y32X44SX xplx
3 11X12X23X34X5,

UL g S Sh S S 'S,

Y44 x34 M X ‘C11\12X7z‘€z4\

= SXHSMzS’CnSA S Sx7>mx12S

447 X34 X23X34X{31

1), _ _ —
( ><:) ( ) lelSAZZS’C?s}SXAMS ]SXJS’CIISYIZSXZ}S’CMS 1

X237

2
2 S S

y(szz) - Sx12x23x34xf31x11X22x33x44x3}1

—
\_/
A
B

Y S S..8.8-\s

A2 X23 X34 X3 X X0 X33 X44 X3,

—
)

)

S S‘CZS S)*34 S ! Sx] 1 SYZZ S

X12 X13 X33X44X 5, 4

S BV 1
X343 X11X22X33X44 X5
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2)
- lezsxz,%Sme 1S\11SY22SX3%X44S X

X13 X34

—

) - _
= lezSX23 SX34 wal an szz Sx33 SX44 S 1

X347

(S) = S
y X2 g v g g v

—
-

Serixar STyl 1 T S R
B3MLTX gy gy Xz Xy X22X34 Xy Xagt Xoy Xy X2

—
5
-

szx Sx4z S

S
¥y xu ’523 ¥y X Pvaxg, X33 Xop Xy A2

S S Sl S S S

X420 X ‘C x22

S

B N RTI)

1 () -1 1o-1
AR Sx23SX34Sx2’3IXESX7ZSX S SsxSx

34 x4 P x X12

Vs, S sls: S S S St St S

X34 T X23 34~ xgq X12

Mg s So)S,, S Solsols s s,

X34 X447 X337 X X129

(S ) = S i 1 T
YOxs N34Xgy X33 Xy Xy X13Xp3 X22X33X 3, Xp3 X5 X23

== S —1 =1y =1y -1 S

1 1yl
N34Xgy X33 Xop Xy X137 %53 X¥22X33X57 X557 X5 23

= S¢S

1S S
g g vy Py v D gy v

-1 1 1 1 1
SX34S Sx x22 X ‘c13S S‘Q?’CssS Sx23S S

X23 X127 X23

—

=SSt Se xS St S Sy Syt SL ST Sy

Xa4 X;; xz') X34

2)
= S S S S S S S S S S S LS S,

X447 X33 X11 X34
-1 .
y (Sx33) - le’z‘xl]Xsz33x44xg‘xlzx23X34
U gotig
- J\11X22X33X44Xz4 X12X23X34
&) 1
= S le1X22x3‘;X44x74 SX12x23x34
@ -1
= SX]z le] Ssz X33X44.X5, ! lez SXZ} Sx34
(1,2) -1 ~1
= SxIZSX|15X22X33XMSx24 SX12SX23 SX34
2

= S 1‘Sv‘cll SX7Z SX'R SV44S SV12S)~2? SX?A’

X4
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y(SX44) = szglxlzngxmxux;tlxl’zlxllxzzmgxM
(1M2> S IS
- X123 X34 X44 X3, X ! X1 622 X33 X4
) 1
- S SXIZSXZ?SM4X44X34 X X11X00 33 X4
2 1
- S SXIZSXZ? SM4X44X34 Sxlexnxzzxnxu
(1),(2).03) -1 1g-1
= S S\12SX22SX24SY44S>V34SV S‘CIIYZ?xﬂ‘CM
818, S Sy S S S Sy S Sy S
- X3 P X120 X23 P X34 M X9 M xgy My X115 X222 X335 X449
-1
Y (SX44 ) Sx;‘I Xy xphxaax g gt v xag
)
- Sx;‘] X3 xpphxs Sx3’41 Xy g X
)
= ngngl Sx;zlme»cM Xy x ! SXlzm
UL g1 1518, 50080 8018,,8
- Xpp P X24 X1 X2 X340
2
y(SZk) - sz’;x12x23x34zkx;t'xz’3]xl’zlx23 - sz’}]xlngxMzk Sx;t'nglxl’z]ng
(1),(2) 1o—1g—1
= SXZBI X12X23X34 Szk SX34 S S S‘CZ‘%

) 8,81 S 82, S0 S S S,

2

71( )
S. = St =808 .
y <k X34 x23 le X23hkk23 X12X23X34 X34 x23 )'12 X23Z;{)x23 X12X23X34

S—‘S;zjs—lsms S S Sy S,

X12 “k T X23

for 1 <k <n-—1 only if g=4, and y*!(x) = x for any other x e X'.

Let y=Y,4. We calculate

(1), (
y(SXIZ) = anxzzxle = SXIIS‘Q’S !

X
_ (1,2 -
Y I(lez) =S8, = lezlsx”Sx227

X, X11X22

2
y(SXB) = Sy = SxiSxass

- @ (1),03) -
y I(szz) =Sy = Sy szz = qulSXnleszzs’

Xy X11X12X23 X1y X11X12
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()
y(SXn) = lelxzzx]’zlx]’llxlzxz’zlxl’ll = lelxzzsxl’zlxl’llxlgxz’zlxl’ll

2
= S0 SwSo

e S
Xpp Xy X127 X5y Xy

(l),(_),(3) S. S S71S71S S71S71
- X11

22X Mg M X2 X Mg

PN (Sa) = S, 2 s s s

1 .
X1y Xqp X12 X102 M X M X2

y(szz) = S @ S

X11X02X ], X11X12 lelxﬂ Xpp X11X12

W2 o s-lg g
- X11

X222 x5 P X11P0x12)

_ (2)
Y ! (szz) = S =

xlexnxlzxnxzz = SX(ZanXlexlleZ
(1),2),03) o-1
= SXIZSXHSXIZSXHSXzza

(1).(2) _
y(SZk) = lelzkxﬁl Sy S. S-!

- X112k~ X

_ 2
yUs) = s Y

-1 —1y -1 -1
le X[])C]zZ/()Clz xll X12 X P)

X11X12Zk szlellxlz

(1),

—
=

NE) .
= S Sa S, Sy S

kN xp M MY

(1

—
—

LG g-1g. 8.8, Solsols

X12 2k X M x M ae

for 1 <k <n-—1 only if g=2, and y*!(x) = x for any other x e X'.
Let y=B, for 1 <k <n. We calculate

2
¥(Sy, ) =5 s s

Xg—1gZk Xg—1g~Zko

_ @)
Y (Sx.) =S =S

Xg-19Vk Xg-1yg

S

Yies

@) @)
y(Sng) = ngyykzk = SngykSZk = S S S'

Xgg P Vi Zis

_ (2)
Y 1(Sxyg) = Sz = S25x,S

g Oyics
WSy) =S s,
yil(SYk) = Syl\flxgzllz/:lxg(,yA, = Sy;‘xyfqlz,;‘nggyk
(1.(2) Syk’lx@l S_,;l Sv,Si (1),2) Syll Sx:]: SZZI Sy Syes
Y(S) = Septyzyma 2 Sy vncSa Ha 8. Sy, S SSees
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-1 (S ) 2
= S, 1 -1, =8, 1,.1.18 1
y Ym Vi Xgq 2 XggYmX gy ZkXgq Vi Vi Xgg Z - XagYmXgg ZkXgg Vie

(1,2 ¢-1¢-1c-1
- S}’k ngg Szk Sx;mymx_‘,:/l Szkx.zmyk

(1

—

2 ¢-1o-1c-1 -1
- S}’k Sx_qg Szk SX;/.{/YW:SXW SZkaq.t/Syk

—
)

—1g-1¢-1
Slsc st

k g9

S S 82 S Sy

Xgg
(1),(2) 1 o—
P(82) =S = Sy, S8
-1 _ M) -1
y(S.,) = Sy;1 = S_Vk ,
(1),2) o=
y(SZm) = Sz;'zmzk = S_A,ISZmSZk7

_ (2) (1),(2) -
y I(S” ) = Syk’lzmyk = Syk’lz,,,Syk = SyleZmSyk7

Zm

-

( —

S = S -1 S =S Y 1
y( A,,,/) XggVkXgq Zm! Xgg Vie X g Xgg ViXgg O 2,01 Xgq Vi X,

s

Xgg

(1),(2) -1 -1 -1 “1¢g-1
=S S8 Sy, S, S Sy SXW Szm,waSyk ngg,

-1
XggVk ™ Xgq 99" Vi T Xgg

s ) =8, o s s g g g

m! =

for  <m<kand k<m' <n—1, and y*'(x) = x for any other x e X'.
Let y=B,. We calculate

M goig. s

y(S.‘Cfi+1) = Sxijx,-[xfﬂ!, Xig OXii D Xit1 99
~1 _ (1),(2) ~1
Y (Sx,' f+l) - ng,-,x,-+1i+1xg*,.‘+l - Sxyfxx‘ﬂ i+lSX””|
) ~1
= SXginf+1 i+Ing i1
(1,(2) =1
y(Sxy—l g) - Sxy:II gxg,l g—1Xgg - Xg-1g ng—l g—1 ngg )
1 N
y (ng,flg) =Sy, 1
(1,03) =1
P(Sy;) = S-\’,zlxﬁxm o ijy Sy Sy
1 N 1),3) 1
y (SXU) - ng/-xj/xg’/l - ng/’Sx/'/’SxW ?
+1 _
y (Sxy.z/) - SXW’

(1,2) o=
y(Syz) :Sx,jg‘zzxyg = ngjSZISxyg’

yil(S}’z) = SZU
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y(Sz) =Sy,
S = S 2V s 80 2 s, 8,0

-1
XggV1Xgq Xgg V1% Xgg Xgg = V1 xgg

for1<i<g-2,1<j<g—-—land 1 </<n-1

Let y =1, for 1 <k<[!<n We calculate
2 (1),(2) —1g-1
y<Syk) = S)’ky/yk)’fly/:l - Syky/SykyflJ’{I - SykSy'SykS)/l Syk )
-1 1,2) -
y (Syk) = Sy,"yky, = SyllSJ/kS)’I’
(1),(2) 1@ _
y(Sy/) = Sykylyk*l = Syky/Sykl = SykSy[Sykla

. @
Yo (Sy) = Syfly[lhykyl = Syfly;ly’Sy"yl
) (1,2) o—1 o—
= Syfly,:lSy/Syk Syl = SyIIS}’leyISyk Syl’

(2)
»(Sy,) = Syky/y; Y iy vt T Syky/y; Yy 1ymyzSykyf !

1ol
Syev Sy Sy, Sy,

(1),(2) —1g- “1o—
= Sy/\’ylSyklSy[1SymSy/S S 1Sykl

ey,

2 Sy S8y, S, 80,8 S0 S, 'S,
yU(Sy,) = Sy vy vy e 2 Sytae Sy i e

s S,'S,1Sy, Sy Syt

1. Sy_llS};lSy,SykymSy_ley_/ISy’cSy’

2 §15.18,8,8,5,15, 15,5,
$8:) = oo 28,08, Y s 8,8, 80180,
yH(85) = Sz, L 8,182z,

(1),(2) 1@ _
y(SZJ) = Szk:,zk" ="85..S 12 SZA»S’ S 17

ZkZ1N zk 21z
- ©)
Y I(SZ/) - Sz/’lzk’lz,zkz, - Szl’lzk’lz,SZkZ/
O] (1),(2)

= 8.1.18,8, 8, =SS, 'S, 8., 8.

&
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)
y(SZm) - S"kZIZ,:lz,’lzmz;zk:flz’l - Szk:/zk’l7,’12,,7Z/S:kzl’lzk’1

Z * z

=S 1S, S S S !

~ =1 1
Zk=17) 2 =m=l

(1),:(2> SszIS;le;lS” SZ/SZ/(S»;ISZ;I

Zm z

= 8.S,8.'s.'s. S.S.S;'s;

z Im= MMz

©)

- zl’lzkm =

SZI—IZ,:IZ[S |

zkzmzy 2 2z

S-ls-ls. S S

z1 Tz Al ZkZmZ,:l Zfllkzl

W g5, s

ZkZm

S 'S 'S, S,

@ s-isols. s, s, STSCUS. S,
z1 Mz z

“mTZy

for k <m <[, and y*'(x) = x for any other x e X'.
Hence we have that for any xe X’ and ye Y*!, y(x) is in the subgroup
of nt generated by X’, by Lemma 4.3.

ProOF (Proof of Theorem 1.2). By Lemma 1.3 and Proposition 4.2, it
follows that =t is generated by X’. There is a natural map 7" — 7] (N, ,, *).
The relations (1), (2) and (3) of #" are satisfied in n;" (N, ,,*) clearly. Hence

the map is a homomorphism. In addition, the relations Sy, ---S,, =1 and
SvaSe xS, S St Sy Sy, -+ Sy, , = 1 are obtained from the

relations (1), (2) and (3) of n* for n=0. Therefore the map is an isomor-
phism for any n > 0. Thus we complete the proof.

REMARK 4.4. Simple loops o, f and y of the relation (3) in Theorem 1.2
can be reduced to the form as shown in Figure 7. In fact, we used only this
reduced relation as the relation (3), in the proof of Theorem 1.2. We do not
know whether the relation (3) in Theorem 1.2 can be obtained from the rela-
tions (1) and (2) there or not.

v

« B
@o|e®|Ee

Fig. 7. The reduced relation S,SgS; ! =S,.
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