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ABSTRACT. We study modules over quandles and classify irreducible quandle modules.
The main result of this paper states that there is a correspondence between irreducible
modules over a quandle Q and irreducible modules over certain groups: more specif-
ically, irreducible modules over the fundamental group of Q and nontrivial irreducible
modules over the associated group As(Q). As an application, we classify irreducible
modules over generalized dihedral quandles, the quandles obtained from generalized
dihedral groups, and connected quandles in SL,(IF,) where IF, denotes the finite field
of ¢ = p/ elements.

Introduction

A quandle is an algebraic system given by an operation > that generalizes
the conjugation operation of groups, and quandles play an important role
in knot theory. The notion of a quandle was first introduced by Joyce and
Matveev in 1980s ([Joy|, [Mat], see Definition 1.1). Just as in the cases of
other algebraic objects such as groups and rings, it is expected that the quandle
modules are important in studying quandles. The notion of a general quandle
module was given by Andruskiewitsch and Grafia [AG] and Jackson [Jac]
(Definition 1.12). As an example of application of modules, homology of
quandle modules is defined and some important homological invariants of
quandle modules are found.

As suggested above, every group can be regarded as a quandle by the
conjugation operation. For a group G and ¢,/ € G, the operation g> h =
ghg~! defines a quandle denoted by Conj(G), which is called the conjugation
quandle of G. In the converse direction, a quandle Q naturally induces a
group As(Q) called the associated group (Definition 1.4). These assignments
give rise to functors Conj: Grp — Qd and As: Qd — Grp where Grp and Qd
denote the categories of groups and quandles respectively, and these functors
are adjoint to each other. A module over As(Q) naturally defines a module
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over Q. Such a module will be called a module induced from an As(Q)-
module. However, there also exist quandle modules that are not induced
from As(Q)-modules. This makes the classification of quandle modules more
interesting.

In this paper, we study the problem of classifying irreducible modules over
connected quandles. For a quandle Q, there is another group Inn(Q) called
the inner automorphism group that is generated by left multiplication actions
on Q. A quandle Q is said to be connected if the action of Inn(Q) on Q is
transitive. Given a quandle module .#, we first look at the inner automor-
phism group Inn(.#) of .# regarded as a quandle. Then we can construct
another quandle module #(.#) over Q from Inn(.#), which is induced from
an As(Q)-module, and a homomorphism i, : # — J(#) of quandle modules
over Q. In particular, if .# is an irreducible quandle module, i, is either
injective or zero. The main result of this paper is the following:

* An irreducible module .# such that i, is zero corresponds to an
irreducible module over a group 7;(Q,¢), which is called the funda-
mental group of Q at ge Q. (Theorem 3.4)

* Otherwise, .# corresponds to an irreducible As(Q)-module in a certain
way. (Theorem 3.5)

As applications of the theorems, we classify irreducible modules over two series
of finite quandles. The first one is the generalized dihedral quandle, the
quandle of reflections in a generalized dihedral group. It can be also regarded
as an Alexander quandle on an Abelian group. We classify the irreducible
modules over dihedral quandles with coefficients in fields of characteristic
0. The second one is the connected quandle Q in the special linear group
SL,(IF,) over a finite field IF, of ¢ = p/ elements. We classify the irreducible
modules over Q with coeflicients in certain fields of characteristic char(IF,) = p
by applying Brauer theory on modular representations of finite groups.

This paper is organized as follows. In the first section, we recall the
definitions of quandles, associated groups of quandles, and quandle modules
and state some related results. The second section states some facts on quandle
modules and their inner automorphism groups. We see that the inner auto-
morphism group of a quandle module .# has an Abelian normal subgroup
T(.#) with an action of As(Q) in Proposition 2.5. We also define the quandle
module .#(.#) and the homomorphism i, for a quandle module .# in
Proposition 2.9.

In the third section, we prove the main theorems on irreducible quandle
modules over a connected quandle Q. Note that Theorems 3.4 and 3.5 cor-
repond to the cases i, =0 and i, # 0 respectively.

In the fourth section, we explain how to make the list of irreducible
modules over As(Q) for connected quandles Q. When Q is finite, As(Q) is
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written in the form of the semidirect product N > Z for some finite group
N (Proposition 3.1, Corollary 1.11). We see how an irreducible module
over As(Q) is obtained from an irreducible module over N in Proposition
4.4.

The last section gives explicit descriptions of irreducible modules over
generalized dihedral quandles and connected quandles in SL(IF,).
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1. Preliminaries

1.1. Quandles. In this section, we explain the definitions and some basic facts
on quandles and quandle modules. For recent development in related subjects,
see [Nosl] and [Aki].

DeriNiTION 1.1, Let QO be a set and > : O x O — Q be a binary operator.
Then the pair (Q,>) is called a quandle (of left action) if the following
properties are satisfied:

(1) (Idempotency) For any g€ Q, ¢>¢q=gq.

(2) (Left invertibility) For any pe Q, the maps,: Q — Q; g+— p> g is

a bijection. Denote by p>~! ¢ the element s, Yq).
(3) (Left self-distributivity) For any p,q,re Q, p>(¢g>r)=(p>q)>
(p>r).
Let (Q,>) and (Q’,>') be quandles. Then a map f:Q — Q' is called a
homomorphism of quandles if f(p>q) = f(p) > f(q). We denote the cate-
gory of quandles by Qd.

By (2) and (3) of the definition, the map s, for p € O is an automorphism
of the quandle Q.

DeriNITION 1.2. Let Q be a quandle.

(1) The group Inn(Q) generated by s, for pe Q is called the inner
automorphism group of Q.

(2) An orbit of ¢ € Q under the action of Inn(Q) is called a connected
component of Q. We denote the set of connected components by
%(Q).

(3) A quandle Q is said to be connected (or transitive) if the action of
Inn(Q) on Q is transitive. It is equivalent to saying that §¢(Q) = 1.
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ExaMpPLE 1.3. Let G be a group. By defining g >h =ghg~', G has a
quandle structure. This quandle is called the conjugation quandle of G and is
denoted by Conj(G). A group homomorphism is also a quandle homomor-
phism under this operation, hence Conj is a functor from the category Grp
of the groups to Qd. In this case Inn(Conj(G)) is isomorphic to the inner
automorphism group Inn(G) = G/Z(G) of the group G where Z(G) denotes
the center of the group G.

A union Q of some conjugacy classes in G forms a subquandle of Conj(G).
Let H be the subgroup of G generated by elements in Q. Then an inner
automorphism of Q as a quandle is regarded as an inner action of some &1 € H
as a group. Since Q generates H, h acts trivially on Q if and only if 1 € Z(H).
Therefore Inn(Q) =~ H/Z(H) = Inn(H).

DEerINITION 1.4. Let Q be a quandle. Then the group given by the group
presentation

As(Q) =<4y (€ Q)| gprq =9p949," (P.q€Q)>

is called the associated group of Q. A quandle homomorphism f: Q — Q'
induces a group homomorphism As(f) : As(Q) — As(Q’); g4 — gy(y)- There-
fore As is a functor from Qd to Grp.

ProrosiTION 1.5 ([FR, Proposition 2.1]). The functor As: Qd — Grp is a
left adjoint of Conj: Grp — Qd.

From the definitions above, we have the following elementary facts.

ProposITION & DEFINITION 1.6. Let Q be a quandle.

(1) The map mp: As(Q) — Inn(Q); g, — s, gives a well-defined surjec-
tive group homomorphism and defines an action of As(Q) on Q. For
x € As(Q) and qe€ Q, denote by x.q the action defined above (i.e.
x4 = mo(x)(q)).

(2) For xe As(Q) and qe Q, xg,x~ ' = gry

(3) Let Z(Q) be the kernel of ng. Then Z(Q) is a central subgroup of
As(0).

(4) The map deg: As(Q) — @ce(g‘(g) Ze; g4 e where [q] is the con-
nected component containing q defines a well-defined surjective group
homomorphism. Denote by Asy(Q) the commutator subgroup of
As(Q). Then Asy(Q) =ker(deg). In particular the Abelianization
As(0)™ of As(Q) is isomorphic to Z®*(Q),

(5) Q is connected if and only if Aso(Q) acts transitively on Q.

Proor. (1)-(4) are proved in [Nos2]. For (5), see [Eis, Remark 2.25].
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DrerFINITION 1.7. Denote by Inng(Q) the image of Aso(Q) by mp and by
Zy(Q) the kernel of mpla, (g : Aso(Q) — Inng(Q).

It is clear that Zy(Q) = Aso(Q) N Z(0Q).
To summarize, we have the following short exact sequences of groups:

1 —Z(0) — As(Q) — Inn(Q) — 1, (+1)
1 — Zp(Q) — Aso(Q) — Inng(Q) — 1, (x2)
1 — Aso(Q) — As(Q) — As(Q)*™® — 1. (*3)

To calculate Zy(Q), the following formula for group homologies is useful.

THeorem 1.8 (Five term exact sequence of group homology). Let
1= N—G— H—1 be an exact sequence of groups and A a G-module.
Then there exists a natural exact sequence

H)(G,A) — H2(H,Ay) — H\(N,A),; — H\(G,A) — H|(H,Ay) — 0.
Here
A =L Rz A=A/{(l —g)alac 4, geG)
where Z is regarded as a G-module by the trivial action.

DerINITION 1.9. For a group G and the trivial G-module Z, the group
H,(G,Z) is called the Schur multiplier of G and is denoted by M(G).

In [Kar], the definition of M(G) is given by the second cohomology group
H?*(G,C*) where G acts on C* trivially. By [Kar, Theorem 2.7.3], if G is
finite, H,(G,Z) is isomorphic to H?*(G,C*).

From five term exact sequence, we have the following result:

ProposiTION 1.10 ([Nosl, Lemma 3.9]). Let Q be a quandle. Then there
is a natural surjective homomorphism

M(Inn(Q)) = Hy(Inn(Q), Z) — Zy(Q).
In particular if Q is a finite quandle, Zo(Q) is a finite Abelian group.

From the exact sequence (x2), we also have the following. See also
[Eis, Remark 1.13].

CoroLLARY 1.11. If Q is finite, Aso(Q) is also a finite group.
1.2. Quandle modules. Now we recall the notion of quandle modules. We

adopt the definition given by Jackson in [Jac]. Later we also refer to the
definition given by Andruskiewitsch and Grafa in [AG] before Jackson.
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DerNITION 1.12. Let Q be a quandle. For each p e Q, let an Abelian
group A4, be given. Let o/ = HpEQAP (the disjoint union as a set). For
p.qeQ, let n,,: Ay — Apq be an isomorphism of groups and 7, ,: 4, —
Ap>g a homomorphism of groups. Then o/ together with parameters {771,’ q},
{1p,4} is called a quandle module over Q (or simply a Q-module) if the following
properties hold:

(1) 77p,ql>r’7q,r = 77pl>q,pl>r’7p,r‘

(2) My, qorTa,r = Tpoq,porllp ¢

B) wgor= Npsq,porTp.r T Tpbq,p>rTp.g-

4) ny,+ 744 =1dy,.

An element a € A4, C ./ will be denoted by (a, p). The group A4, is called the
fiber of o/ at p.

Note that if Q is connected, the fibers are isomorphic to each other.
Any quandle module .« has a quandle structure.

ProposiTiON 1.13 ([Jac, Proposition 2.1]). For (a,p),(b,q) € o/, define
(a,p) > (b,q) = (n, b+ 7pqa,p>q). Then </ is a quandle.

REMARK 1.14. There are some other definitions of quandle modules.

One of the definitions is as “Abelian group objects” in the category of
quandles over a given quandle.

Let Q be a quandle and n:.«/ — Q, n': o/' — Q be quandle homomor-
phisms. Then the fiber product of o/ and o/’ over Q is the quandle

o xg A" ={(a,a') e o x o' (as a set)|n(a) =7n'(a")}

with binary operator (a,a’) > (b,b") = (a > b,a’ > b').

It is easy to see that the fiber product of quandles is the category-
theoretical fiber product in Qd. Let X, Y, Z be quandles and 7y : X — Z and
ny : ¥ — Z be given. Then recall that for given fy : W — X and fy: W —
Y with ny o fy = my o fy, there exists uniquely f : W — X Xz Y such that the
following diagram is commutative:

We denote the map f by fy xz fr.
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Let Q be a quandle and 7z : .o/ — Q a quandle homomorphism. Then .o/
is called a quandle module over Q if it is endowed with quandle homomor-
phisms o : o/ xg o — 4, {: Q— o/, and 1: o/ — o/ such that the following
diagrams are commutative:

(xop1)%gp2

(&/XQJZ/) XQ&/ JP/XQ&/

" o

P1xg(o0p2) «

JZ{XQ(,%XQJZ/) J?fXQJZf

of

(Copr)xo P2

o/ QXQ!,Q/ JZ{XQ&/

1\J

A xp0Q P st Py

oA X oA oA xgd —LE L f o

N TN A
o 7

%XQ,,Q/

where the map p;: ./ xg9 o/ — o/ is the i-th projection. These four dia-
grams correspond respectively to associativity, existence of identity, existence
of inverse, and commutativity. This definition turns out to be equivalent to
Definition 1.12 [Jac, Theorem 2.6].

Another definition is as “modules over the algebra associated with the
quandle” defined by Andruskiewitsch and Grafa [AG]. Let F be the unital
free associative Z-algebra generated by 7, ,, 7, l], 754 for p,qe O and I the
two-sided ideal generated by the following elements:

(1) 77p,ql>r77q,r - ﬂpbq,pbr’?p.ra

() My gorTar = Tpoa.porilp g

() Tougor = Mppg porTor = Toba.p>rTp.gs

(4) Ngqg+ Tgq— 1,

() Mgty = 1 My gllpg = 1.

We define an algebra Z(Q) = F/I. Then a module over Q is defined as a
module 4 over Z(Q) in [AG]. If Q is connected, a quandle module can be
identified with a module over Z(Q).

In this paper we will mainly be concerned with irreducible modules.
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DerINITION 1.15. A nonzero quandle module .# is said to be irreducible
(or simple) if there is no non-trivial quandle submodule of ./Z.

DerNiTiON 1,16, Let (o7, ,,7..) and (/',n ,,7.,) be Q-modules.

Then a family of group homomorphisms {4, : 4, — A;[}qE o is called a homo-
morphism of Q-modules if the following diagrams are commutative:

2 ¢

I li
Aq Aq A[’ Ap
! !
Jrﬂp.q Jrﬂp.q JVT[?-Q Jrrp.q
boog S
b ’ P>q ’
APDKI Apbq’ APDKI Apbq'

The Q-modules (.7, ,,7..) and (o/',n, 7. ) are said to be isomorphic if

there exists a homomorphism {4, : 4, — 4;},., of O-module such that each
¢, 1s an isomorphism.

NotaTioN 1.17. Let G be a group. Then denote by Z[G] the group
algebra of G. For a commutative ring R, denote by R[G] the group algebra
over R. We sometimes denote them simply by ZG, RG.

The following proposition states that an As(Q)-module induces a
Q-module.

ProposiTiON 1.18. Let M be a Z[As(Q)|-module. Then the disjoint
union M =1],.oM is a Q-module by n, ,= gq, Tpg =1~ gpoq Denote this
O-module by Mo(M).

In terms of modules over rings, this corresponds to the pullback by
the ring homomorphism Z(Q) — Z[As(Q)l; 1, , dg» Tpg— 1 = gpog- A
homomorphism f: M — N of Z[As(Q)]-modules naturally induces a homo-
morphism #o(M) — Mo(N); My,>m— f(m)e N, where M,, N, are the
fibers at gq.

DeriNITION 1.19. A Q-module .# is said to be induced from an As(Q)-
module if .4 is isomorphic to .#y(M) for some Z[As(Q)]-module M.

Now we extend the definitions above to modules over a commutative ring
R. If the ring R is obvious from the context, we omit writing R.

DerNITION 1.20. Let R be a commutative ring.

(1) A Q-module .# is called an RQ-module if M, is an R-module for
g € Q and parameters 7, , and 7, , are R-homomorphisms.

(2) An  RQ-homomorphism of RQ-modules is a family of
R-homomorphisms {¢,} such that the diagrams in Definition 1.16
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are commutative. Two RQ-modules are said to be R-isomorphic if
they are isomorphic through R-isomorphisms {¢q}qu and ./ is said
to be R-simple if ./ is simple as an RQ-module.

(3) An RQ-module .# is said to be induced from an As(Q)-module if 4 is
R-isomorphic to .#o(M) for some R[As(Q)]-module M.

(4) If Ris a field and Q is connected, the dimension dimg M, for ¢ € O
is called the dimension of the module .#. (Note that the dimension is
well-defined since fibers are isomorphic.)

2. As(Q)-modules associated to a quandle module

DEFINITION 2.1. - For a Q-module .# =[], o My, let M(M) =D, oM,

Now we show that M(.#) has a structure of As(Q)-module.

PropoSITION 2.2. Let M =]],.o M, be a Q-module.
(1) For pe Q, define a homomorphism f,: M(M) — M(AM) as follows:

Jp(my) = Ny, Mg € Mg (my € My).

Then p: As(Q) — Aut(M(MA)); g, — f, gives a structure of As(Q)-
module on M (M).
(2) If M and A" are isomorphic, M(M) = M(M") as As(Q)-modules.

ProoF. The first statement is immediately from Definition 1.12 (1). If .#
and ./ are isomorphic through {¢, : M, — M_}, o, M(.4/) = M(.4") through
M(AM) D> My>my— ¢,(my) € My C M(AM").

DeriNiTiION 2.3, The group TUA) ={¢: M — M; my — my+ b, for
some b, € M,} with composition of maps is called the group of translations.

Clearly TI(.#) is Abelian and is isomorphic to [, o M,. It is also an
As(Q)-module by

9p-{baty = {1p po-14bpe14}4-

We again denote by TI(.#) the As(Q)-module defined as above. Note that
this extends the As(Q)-action on M (.#). In particular if Q is finite, we can
identify TI(#) with M ().

Now we look at the structure of the group Inn(.#).

DerFINITION 2.4, For (a,q) € .4, let t,, :S(M)s@} - Let T(4) be the
subgroup of Inn(.#) generated by ¢,, for (a,q)e.#. Let K(.#) be the
subgroup generated by s, for g€ Q.
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ProposSITION 2.5. The following hold:

(1) T(A) is a subgroup of TI(.M). The element t,, is represented by
{tp. o140t yeq as an element in TI(.M).

(2) T(A) is normal in Inn(#). The inner action of K(M) on T(M)
is compatible with the action of As(Q) on TI.#) through As(Q) —
K(A); gy S04,

(3) The map M(M)— T(M);, My>aw— t,, is a homomorphism of
As(Q)-modules.

(4) Inn(A) is isomorphic to the semidirect product T(M) > K(M).

Proor. (1) Noting that (a, p) >~" (b,q) = (1,1, (b — 7, p14a), p >~ q),
we have

tu,[’(bv q) = S(a,p)(’?,;;,qubvp [>71 q)
= (”p,pb*lqupill;pflqb + Tp,p>1q% q)
= (b + Tp,p>—'q% q)

Therefore t,, = {1, ;5-14a},.0 as an element in TI(.Z).
(2),(3) For (a,p),(b,q) € A,

-1
S(a.p) 1,45 (a,p) = S(a,p)>(5,9)5(a, p)> (0, q)

= S(’?p. qb"'fp.qaapbq)s(quamb‘l) ’

We write X b+1,4a and Y =1, ,a. Now for (¢,r) € A,

= Mp.q
S(XsPDq)s(}l,qu)(cv r) = S(qubq)(”;blq,(qu)D*lr(c — Tpng, (g7 Y ), (P> 4) >~r)
= ('71'!>q,(Wq)b"r”p;lq,(17>q)l>*‘r(c ~ Tpog, (pogpir ¥)
F Tpog. (pgp X T)
= (¢4 Tyog, (pogo1r(X = Y),7)
= (¢4 Tpog, (pog)o-1r1p,. ¢ (), 7)
= ly, b.pog(CsT).
Therefore
S(a,p)tb«,qs@,lp) =1y, borq € T(A). (E)

This shows the normality of T'(.#). The compatibility in (2) holds since for
p'eQ and t,,e T(M)C TI(M),
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Gp'-tap = {1y pro-14Tp po1 (pro-19) @ ge 0
={Tpep. (pop)p 14y p9 e 0
=y, a,p'>p-

Note that the second equality holds from (2) of Definition 1.12, with p, ¢, r
replaced by p'.p,p>7" (p' >7! q) respectively. Since we also have by ap'>p =
5(0,p") ups(op from (E), (3) holds.

(4) We have to show that Inn(.#)/T(#) is represented by elements
in K(.#) and that T(.#)NK(.4)=1. Since sy ) = tapS0,p that generates
Inn(#), Inn(.4)/T () is represented by elements in K(.#). Let f e T(.#)N
K(#). The condition f e T(.#) implies that f(M,) = M, for all g. More-
over f e K(.4) implies f((b,q)) = (n;} , ---ny ,b,q) for some p;,q; € Q and
¢ € {£1}, which is an additive action on each M,. Since an additive map is a
translation if and only if it is the identity map, f must be the identity.

By (1) of the proposition, the composition of maps in 7(.#) is commu-
tative and corresponds to the pointwise addition in TI(.#). Thus we write the
group operation on T(.#) by +.

NotaTioN 2.6. For te T(.#) and k e K(#), we denote by (t;k) the
element tk in Inn(.#). Then the product is given by (t1;k;)(t2;k2) =
(ty + ki1.t2;k1ky) where k.t =ktk=" is the conjugation of ¢ by k. Similarly
the inverse is given by (k)" = (=k~.;k71).  We write k, = s, € K(4).

PROPOSITION 2.7. Let ./ be a Q-module and I = {(t;k)|te T(.)} for
ke K(AM). Then J'(M):= Conj(Inn(-4)) = [xcx(m Ix is a Conj(K(.4))-
module.  Moreover 9'(M) is a module induced from an As(Conj(K(.4)))-
module.

Note that #'(.#) is a module with fiber T(.#) through T(.4)>1t+—
(t;k) € I, where each fiber is regarded as an additive group by (#;k) + (¢';k) =
(t+1;k).

Proor. For ki, ke K(#) and t),t, € T(M),
t ki) (k) (k) ™

(t1:k1) > (123h2) = (
(13 k1) (123 ea) (= s ey )
(
= (ki

Hh+k.tp -k kzk ll;klkzkfl)

.+ (1 — ki kzk ).ll;kl |>k2).
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Therefore the parameters are given by . =ki, T =1—kikok!.
This means that #'(.#) is a Conj(K(.#))-module induced from the
As(Conj(K(.#)))-module T(4).

In general, for a group G and a G-module M, the semidirect product
M X G as a conjugation quandle is a quandle module over Conj(G) induced
from the G-module M through the map As(Conj(G)) — G derived from the
adjunction of identity map.

DeriNiTION 2.8, Let f: Q — Q' be a quandle homomorphism and
(M =1y co My,n. ..7.,) be a Q'-module. Then f*. 4" =1], oM/, is a

E

Q-module by setting 7, , = 17}( oS A4 T = rji( S This module is called
the pullback of ./4' by f.

Note that in terms of ring modules, this corresponds to the pullback of
modules by the natural ring homomorphism R(Q) — R(Q’).

ProposITION 2.9. (1) Let 9(M) be the pullback of J' (M) by Q —
Conj(K(A)); q— ky=50.q Then I(M) =1,c01y where I, = I,éq,
is isomorphic to Mo(T(.M)). Denote by (t,q) the element (t;k;) €
I, =1y Then (1,q) > (t',q') = (9" + (1 = ggoq') 1,4 > ¢').  In par-
ticular, I (M) is a Q-module induced from the As(Q)-module T(M).

(2) The quandle homomorphism

M — Conj(Inn(.4)); M3 (a,q) = Saq) € I,;q

induces a module homomorphism i, : M — F(M) over Q. This
implies that every quandle module has a homomorphism to a quandle
module induced from the As(Q)-module T(M#). Note that

Sta.q) = la.g(0.q) = (la.g kg)
and hence the map i, is defined by (a,q) — (taq,q).

Proor. The first statement follows from the construction. To see (2),
let 1717* and 7!, denote the parameters of .#(.#). Then for p,ge Q and
ae M,

l:/;/(ﬂp’q(l,p > (I) = (tﬂ,,vqa.pbmp > (])
= (gp~ta,qv P> q)

=1} Julaq).
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Note that the addition on T(.#) is the composition in Aut(.#) and we have
T;,pi'/”f/(a7 q) = (la,cp q) l> (Oa p)
=((1- gql>p)~ta,q7q > p)

e |
= (la,qS(O,qbp)taﬁqs(o,’qpp)7 q > P)

-1 -1 1
= (S(a,q)S<o,q)s(&ql>p>s(0,q)s<a,q)5<o.q>p)v q>p)

-1 -1
= (S(a,0)5(0,0)5(a,)50,qvp)» 4 > P)

—1
= (S(Tq,ﬂ"vqbp)s(o,qbp)7 q > p)

= (trq_],u,qbpa qb> p)
= i,/i(fq‘,pm q>p).
Therefore (2) holds.

The homomorphism i, is not necessarily injective. For the extreme case,
we make the following definition:

DErFINITION 2.10. A Q-module .# is called a covering module if 7, , =0
for any p,qe Q.

This is equivalent to saying that s, ,) = S(,,) in Inn(.#) for all me M,
and that #(.#) is the zero module.

3. Irreducible modules over connected quandles

Throughout this section, let Q be a connected quandle. We reduce the
classification of irreducible Q-modules to that of irreducible modules over
certain groups. We fix a commutative ring R.

PrOPOSITION 3.1.  For a connected quandle Q, As(Q) = Asy(Q) > Z.

Proor. This is obvious from (4) of Proposition 1.6 (note that an exten-
sion of Z by a group is always a semidirect product).

Let G be a group and H be a subgroup of G. For an RG-module A4
and an RH-module B, denote by B 15 = RG ®gy B the induced module and
by 4 |5 the restricted module. Recall that the induction functor is the left
adjoint of the restriction functor.

DeriNiTiON 3.2 ([Eis, Definition 1.7]). For ge Q, let As,(Q) =
{x e As(Q)|x.q=¢q}. The group 7(Q,q) = As,(Q) NAso(Q) is called the
Sfundamental group of Q at q.
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ProprosITION 3.3. Let Q be a connected quandle and q € Q.
(1) For a Q-module M =1],.oMp, M(M) is isomorphic to the induced
R[As(Q)]-module of the R[As,(Q)]-module M, through

A
M, TA;((QQ)) Sg@m— gme M(M).

(Note that this map is the adjunction of the As,(Q)-homomorphism
M, — M(M).)
(2) Asy(Q) =m(Q,q) x {gy>-

Proor. For pe Q, fix x, € As(Q) such that x,.¢g = p. Then {x,},., is
a complete system of representatives for the set As(Q)/As,(Q) of the left
cosets and x,.M, = M), in M(./). This implies that R[As(Q)] ®gjas,(0) Mg =
M (). The second statement holds since 7;(Q, ¢) is normal in As,(Q) and g,
centralizes 7;(Q,¢q) by Proposition 1.6 (2).

THEOREM 3.4. Let Q be a connected quandle. Fix q € Q and x, € As(Q)
such that x,.q = p and let X ={x,},.o. Then x,},g,%, € As,(Q). For an
R[71(Q, q)]-module M, we regard M as a module over As,(Q) = n1(Q,q) % {gq4>
with g, acting trivially.  We write M%, x(M) =11,.o M and define an oper-

ation > by
(m, p) > (m', p) = (x50, 9pXp )", p &> p).

Then the following hold:

(1) AE, x(M) is a covering RQ-module.  For another representative ¥ =
{wtpeq such that y,.q = p, #%, x(M) and M€, y(M) are naturally
isomorphic.

(2) The assignments tes,; M — M, for a covering RQ-module 4 and
MCyx : M — ME, x(M) give a one-to-one correspondence between
isomorphism classes of covering RQ-modules and isomorphism classes
of R[m(Q, q)]-modules.

(3) A covering RO-module .4 is irreducible if and only if M, is irreducible
as an R[n;(Q, q)]-module.

Proor. First,

(X GpXp)-q = Xy p)-P’
= Xy (P> D)
=q

shows that x,.!.g,x, € As,(Q).

(1) Let M be an R[m(Q,q)]-module and regard it as an R[As,(Q)]-
module. Let p: As,(Q) — Aut(M) be the group homomorphism of the action
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on M. The above definition of > corresponds to setting 7, , = p(xp’;p,gpxpr)
and 7, ,» = 0. Clearly the conditions (2) and (3) of Definition 1.12 hold since
.. =0. Since 7, , = p(xp"gpxp) = p(gq) and g, acts trivially on M, (4) also
holds. For p,p’,p" € O,

_ -1 -1
”pr’,pr”’/]]L[)” = p((pr(p/bp”)gpbp/prpn)(prp,,gpxp//))

= (x71 ’ X H)

=P 1)>(p’>p”)gp|>[’ 9pXp

1
= P(Xp (propr) 9090 Xp")

_ -1 1
= p(pr(p/bp//)gpxp/pp//xp Dp//gp/xp//)
= ﬂp,plbp//r]p/’p//.

Therefore (1) holds and we see that .#%, y(M) is a covering module. Let
Y ={y,} be another representative. For pe Q, let a, =X, yp It is clear
that a, € As,(Q). Then

-1 _ o1
Yospr9pYVp' = YprprXpop! p>p’gpxp’xp yp

—a -1

p>p’ pr’ng[’IaP

Therefore .#/%, x(M) and .#%, y(M) are isomorphic through {p(a,)},co-
(2) Let #=][,.oM, be a covering Q-module. Then let
@ MCyx(My) — M; (m,p)— xp.(m,q) € M, C 4. It is clear that ¢ is
bijective and additive. For (m, p),(m’, p’) € MC, x(M,),
¢((m, p)) > o((m', p)) = (xp.(m, q)) > (xpr-(m", q))
=(0,p) > ((xp).(m", )
= (gpxp).(m", q)
(xpl>p pbp’gpxp) (m/aQ)
= xp>17"((x;|>lp/gpxp’)'ml7 q)

= o((m,p) > (m', p")).

Note that the second equality holds since .# is a covering module. Therefore
@ 1s an isomorphism of Q-modules.

Conversely, let M be an R[n1(Q, ¢)]-module. Regarding M as an As,(Q)-
module, we have M (M€, x(M)) =M 1| :;((QQ)). Therefore the fiber M’ =
(M x(M)), is isomorphic to M.
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(3) Since these mappings give an equivalence of categories between the
category of covering RQ-modules and the category of R[ri(Q, ¢)]-modules, the
assertion holds.

The word “covering” comes from quandle coverings in [Eis]. A quandle
Q' is called a quandle covering of Q if there exists a surjective quandle homo-
morphism 7: Q" — Q such that 7n(p) =n(q) implies s, =s, € Inn(Q’) for
p,q€ Q. Eisermann showed that there is a one-to-one correspondence be-
tween the set of connected quandle coverings of Q and the set of subgroups of

(0, q).

Next we classify irreducible modules that are not coverings.

THEOREM 3.5. Let Q be a connected quandle.

(1) Let M be an irreducible RQ-module that is not a covering. Then
T(M) is an irreducible R[As(Q)]-module with nontrivial action. In
particular, M is a submodule of a module induced from an irreducible
As(Q)-module.

(2) Let M be an irreducible R[As(Q)|-module with nontrivial action. For
qe Q, let My=(1—gy)M. Then #2(M)=]],.oM, is an irreduc-
ible RQ-module that is not a covering.

(3) Let Irry(RQ) denote the set of isomorphism classes of irreducible RQ-
modules that are not a covering module and lIrry(R[As(Q)]) be the
set of isomorphism classes of non-trivial irreducible R[As(Q)]-modules.
Then the assignments M — T (M) for an irreducible RQ-module M
that is not a covering, and M — #H2(M) for a nontrivial irreducible
R[As(Q)]-module, give a one-to-one correspondence between Irry.(RQ)
and Trry (R[AS(Q)]), and they are inverse to each other.

Note that the dimension of the module is not neccesarily preserved under
the correspondence. For an irreducible module .#, the dimension is preserved
if and only if .# is induced from As(Q)-module.

To show the theorem, we give some lemmas.

LEMMA 3.6. Let M be an R[As(Q)]-module and {My},., a family of
R-submodules of M. Then M =1],.o M, forms an RQ-submodule of #o(M)
if and only if g,.M, = My, and (1 —g,).M, C M, for any p,qe Q.

Proor. Straightforward from the conditions 7, ,(M,;) = M), and
7, 4(M,) C My, The second one is applied with ¢ replaced by p>~'¢.

Lemma 3.7. Let M =1]],.o M, be an RQO-module and T' an R[As(Q)]-
submodule of T(M). Then M'=1],.o(MyN i}(T") is a submodule of M.
(Recall that I (M) = Mo(T(.M)) by Proposition 2.9. Therefore M' is regarded
as the inverse image of Mo(T') C Mo(T(M)) by iy.)
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Proor. This is easy to see since the inverse image of a submodule by a
module homomorphism is a submodule.

DerFiNiTION 3.8, Let .# be an RQ-module. Then a quandle automor-
phism ¢ : .4 — M is called a central translation if ¢ € TI(.#) and ¢ centralizes
Inn(.#) (i.e. for all ¥ € Inn(.#), poy = o g).

LemMA 3.9. If 4 has a non-trivial central translation, .# has a nonzero
submodule that is a covering module.

Proor. Let ¢((a,q)) =(a+bys,q) be a central translation. Then
(500.)((@,9))) = 50,5 (#((a,9))). The left hand side equals to ¢(1, ,a, p > ¢q) =
(1).40 + bpog, p> q) and the right hand side equals to (0,p) > (a+by,q) =
(npvq(a +by),p>q) = (np,qa +n,,4bg, P > ¢). This implies that b, = M. qbq
for all p,ge Q an(.i JV:: quQRb,, is closed under 7, . .On the other hand,
(bg»q) = 9((0,q)) implies that sq 4 = 980,09 " = 50,.q)> i-€. Tp4=0 for all
p,q € Q. Therefore 4" is a submodule of .# that is a covering module.

Now we prove Theorem 3.5.

Proor. (1) First note that T'(.#) # 0 since T(.#) = 0 implies that .Z is a
covering module. Given .#, we have the module homomorphism i, : .# —
J(M). Since 4 is irreducible, i, is injective or zero. Since i, = 0 implies
that .# is a covering module, i, is injective. For g e Q, let T, be the image
of My, by i,. Then T,~ M, and when regarded as subgroups of T(.Z),
> geo Tq=T(4) by definition (see Proposition 2.9 (2)).

Let T' be a proper R[As(Q)]-submodule of T(.#). Then .#' =
]_[qEQMqﬁij”l(T’) is a submodule of .# by Lemma 3.7. Since .# is irre-
ducible, M, Ni;}(T'") = T,N T is either M, for all ¢ € Q or zero for all ¢ € Q.
Moreover, since M, =~ T, generates T(.#) as an R[As(Q)]-module, we must
have T,N T’ =0 for all 4.

Now for g€ Q, by Lemma 3.6, (1 —g,).7' C T'N T, =0, which means
that (1 —g,).t’ =0 for any ge Q. Therefore T’ is an R[As(Q)]-submodule
of T(.#) with trivial action. Recall that As(Q) acts on T(.#) via conjugation
by K(.#). This means that an element ¢/ in 7’ is a central translation. By
Lemma 3.9, if T’ # 0, .# has a covering submodule, which contradicts the
assumption that .# is a non-covering irreducible RQ-module. Therefore
T'=0.

(2) By Lemma 3.6, it is straightforward to show that .#2(M) is an RQO-
submodule of .#o(M). Let .#'=1]],., M, be an RQ-submodule of .#2(M).
Then M'=3%_ _,M, is an R[As(Q)]-submodule of M. Since M is irreduc-
ible, M" is either M or 0. If M" = M, by Lemma 3.6, M; D > (1 —g,)M,
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=(1-gy).M" =(1-g,).M=M, Therefore M;= M, for all ¢, and hence
M = MIM).

Next we show that .#2(M) is not a covering module. For (m,gq),
(l’l,p) € %’@(M)v lm-,q(nal’) = (n + Tq,qb’lp(m)7p) =(n+ (1 - gp)M,p). There-
fore T(.#2(M)) is the set of translations {(1 —g,)m},., for me M. Since
M is irreducible and nontrivial, the mapping m — {(1 — gp)m}peQ is injective.
Moreover, for g e Q,

{(1—9gp)-(94m)}, = {(94(1 — gyp-1,)).m},
=gq-{(1 = gp).m},

implies that this mapping is a homomorphism of As(Q)-modules. Therefore
T(M2M)) =M #0. Therefore .#2(M) is not a covering module.

(3) Let # be an irreducible RQ-module that is not a covering.
Then in the notation of (1) as we saw above, (1 —g,)T(.#) C T, for all
g€ Q. Therefore .#/2(T(.4)) is a submodule of [], ., 7, However since
M = qu o Ty that is irreducible, they must be equal. This implies that
M= MIAT(M)).

The converse direction is also true since we have already shown that
T(M2(M)) =~ M for a nontrivial irreducible R[As(Q)]-module M in proof
of (2).

4. As(Q)-modules

Throughout this section, let Q be a connected quandle. Let F be a field
and F its algebraic closure. For a group G, denote by Rep(G) the set of
isomorphism classes of finite dimensional F-representations and by Irr(G) the
set of isomorphism classes of finite dimensional irreducible F-representations.
An extension E of F is called a decomposition field of G if any irreducible
representation of G is realized over E. Then the arguments in this section are
valid over any decomposition field FE.

Recall that As(Q) = Asy(Q) X Z by Proposition 3.1.

DEerFINITION 4.1. Let N be a group and ¢ € Aut(N).

(1) For (V,p:N — Aut(V)) e Rep(N), the representation (V,¢*p)
defined by ¢*p(n) = p(p(n)) is called the pullback of p. We some-
times denote (V,p*p) by o*V. We write ¢*"p = (p*)"p and ¢*(=")p
= ((p~1)")"p for a positive integer m.

(2) Let (V,p),(U,0) e Rep(N). Then a linear map f: V — U is called
a g-morphism if the following diagram is commutative:



On classification of irreducible quandle modules over a connected quandle 45

% p(n) %

b b

‘T(W "))

This is equivalent to saying that f is an N-homomorphism from ¥ to
p*U.

(3) (V,p),(U,o) € Rep(N) are said to be g-equivalent if there exists an
integer m such that (V,¢""p) = (U, o).

(4) Let (V,p) e Rep(N). Denote by ord,(p) (or ord,(?")) the minimum
positive integer m such that (V,p) and (¥, ¢™p) are isomorphic if such
an m exists, otherwise oo. This is called the order of p with respect
to ¢. Note that if ¢ is of order m in Aut(N), ord,(p) divides m.

Clearly the following properties hold:

PropOSITION 4.2. Let N be a group and (V,p) € Rep(N). Then the
following hold:

(1) Hy={peAut(N)|V = ¢*V} is a subgroup of Aut(N).

(2) For pe Aut(N), let M,={f:V — V|f is a p-morphism}. Then
M, is a subspace of Endz(V) and M,M, C M,y for ¢,y € Aut(N).
The set My is the endomorphism ring of (p, V).

(3) For 9eHy, let M) C M, be the set of invertible (i.e. bijective)
g-morphisms (note that M # & by the definition of Hy ). Then for
a fixed feMy;, there is a bijection between Miq and M, through
a < fa for ae Miq and this bijection induces a bijection between M}
and M.

(4) If V is irreducible, every nonzero ¢-morphism for g€ Hy is a
linear automorphism. In particular, for ¢ € Hy, M, = fF for some
p-isomorphism f.

DeriNiTION 4.3. Let N be a group and ¢ € Aut(N). Let G=N X {f)
where (f> =~ Z and faf ' = ¢p(n) for ne N. For (V,p) e Rep(N) such that
ord,(p) is finite and o€ M* o) let

ord,(V)-1
yrt = Vi
i=0
where V; = ¢*'V for each i and
PIPE () V1P = V%% Visue pPp(n)(o) € Vi
pIPE () V1% - V1% Vs, {e Vit (1#0)
’ ’ ! O!(Uo) S Vordw(p)—l (l = O)
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Then p 17% (f)p 17* (m)p 1% (f 1) =p 17* (p(n)) = p 17* (faf ') and this
implies that (V' 1% p 17%) € Rep(G). The representation (V 17% p1%%) is
called the g-induced representation of (V,p) by o.

PRrOPOSITION 4.4. Let N be a finite group, ¢ € Aut(N), and G =N X, Z.
Let (V,p)elrr(N) and oe M o) Then (V17%p1%%) is an irreducible
G-representation. Conversely, a finite dimensional irreducible G-representation
is obtained in this way.

LemMA 4.5. Let G be a group and (W,o) € Irr(G). Then for a positive
integer n, End(@ﬁl.”:1 W) is isomorphic to the matrix algebra M,(F).

ProoF. Straightforward from the Schur’s lemma.
Now we prove Proposition 4.4.

PrOOF. As an N-representation, (V 1%% p 17%) lg is the direct sum of
mutually non-isomorphic irreducible representations Hence any irreducible
N-subrepresentation of (V 1% p 1%%) 19 ~ is equal to one of the summands V;
in the definition above. By the definition of the action of f, V; generates
(V17% p17%) as a G-representaion. Therefore (V' 17% p 1%%) is irreducible.

On the other hand, let (W,o) € Irr(G). Then there exists an irreducible
N-subrepresentation U of (W,a) |y. Let Wo=3p~picw W' (W' runs
through all N-submodules isomorphic to U). Since W is finite dimensional,
W is isomorphic to U" for some integer r as an N-representation. Moreover,
for an irreducible submodule W' C Wy, o(f %)) (W’) is isomorphic to U,
thus o(fo4% W) (W') € Wy. Therefore o(f°%(V)) is an automorphism of the
N-representation W,. By Lemma 4.5, this is represented by some matrix
Ae M,(F). Note that a subspace of M,(F)-module F' corresponds to a
subrepresentation of W,. Let w be an eigenvector of 4 and let W' be the
subrepresentation of W, corresponding to the eigenspace Fw. Then W' is
irreducible and isomorphic to U, o(f %)) (W') = W' and @Ord Loiwr
is a nonzero submodule of W. Since W is irreducible, r = 1 and the statement
holds.

5. Examples

In this section, we will describe irreducible modules over some connected
quandles. Let C, denotes the cyclic group of order n.

5.1. Dihedral quandle.

DerFNITION 5.1. Let 4 be an Abelian group. Then the generalized
dihedral group of A is the group Dy = A > C, where C, is generated by 7,
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1

with action tat™! =a~! for ae A (we write the group operation on A by

multiplication as the subgroup of D).

PrOPOSITION 5.2. Let A be an Abelian group of odd order. Then
{ta|a e A} forms a connected subquandle of Conj(D,).

PROOF. For a,be A, (ta) > (th) = (ra)(th)(ra) ™" = ratha™'t! = rab~'a
=1th~'a®. Since A is of odd order, the map a s a®> is an automorphism
of A.

DEerFINITION 5.3. Let 4 be an Abelian group of odd order. Denote by Q4
the quandle obtained as in Proposition 5.2.

More generally, for an Abelian group A with group operator +, the
quandle A4 with the operation a > b = a + t(b — a) for some ¢ € Aut(A) is called
an Alexander quandle on A. The dihedral quandles are special cases of
Alexander quandles (the map ¢ is the inversion map a — —a).

Since Q4 generates D4 and the center of D, is trivial, the inner auto-
morphism group Inn(Q,4) is isomorphic to D4 by Example 1.3 and it is easy to
see that Inng(Q4) = A. As particular examples, we look at the case 4 = C,
and C, x C, for an odd number n. To find irreducible modules, we have to
study the structure of As(Q). By Proposition 1.10, there is a natural surjective
homomorphism M (Inn(Q4)) = Hy(Inn(Q4),Z) — Zy(Q4). Recall the exact
sequence (x2):1 — Zy(Q4) — Aso(Q4) — Inng(Qy) — 1.

Now we study the structure of As(Q4). The structure of the associated
group of an Alexander quandle is given in [Cla].

THEOREM 5.4 ([Cla, Theorem 1]). Let M be an Abelian group and T be
an automorphism of M. Denote by A(M,T) the Alexander quandle on M with
the automorphism T. Suppose that the quandle A(M,T) is connected. Let
T MIM - MM, x®y+— (Ty) ®x and S(M,T) the cokernel of 1 —1.
Then the associated group As(A(M,T)) is isomorphic to the group F(M,T) =
ZxMxS(M,T) (as a set) with the operation

k., ) (m, v, ) = (k +m, T"x + y,0+ B+ [T"x ® y))

where [y] in the third component denotes the element y mod (1 —7)(M ® M).
Moreover, the isomorphism is given by As(A(M,T)) — F(M,T); g, +— (1,x,0).

In particular, if T is the inversion map of M, the subgroup S(M, T) is the
exterior square M A M.

Clauwens also gives a description of the fundamental group of Alexander
quandles.
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RemMARK 5.5 ([Cla]). Let M and T be as above and let the quandle
A(M,T) be connected. Then n;(4(M,T),0) is isomorphic to S(M,T)
through the isomorphism As(4(M,T)) =~ F(M,T) given in Proposition 5.4.

DEerFINITION 5.6. Let n be a positive integer. Then the group
He, = <S, Ta U | Snv Tna Unv [Tv S]U717 [Uv S]v [Ua T}>
is called the Heisenberg group of order n?.

In general, for a commutative ring R, the subgroup of the form

1 a b
0 1 ¢||ab,ceRrR
0 0 1

of GL;(R) is called the Heisenberg group over R. The definition above is the
case where R=7Z/nZ.
Applying the results above, we have the following facts:

PrROPOSITION 5.7. Let n be an odd number.

(1) Let A= C, and ¢ € Aut(A4) be the inversion. Then S(A4,¢9) =0 and
As(Q4) = AXZ with 1 €Z acting by inversion. The fundamental
group m1(Qu,q) is trivial for any q € Q.

(2) Let A= C, x C, and ¢ € Aut(A) be the inversion. Then S(A,¢) =~ C,
and As(Q4) =~He, XZ where 1€Z acts on He, by S— NS
T— T, U—U in the representation above. The fundamental

group m(Qa,q) is S(A,¢) = C, for q€ Q.
Proor. (1) As stated above, S(4,9)=C,AC,=0 since n is odd.
Moreover, let u = (1,0,0) € F(A4,9). Then u~' = (—1,0,0) and
u(0, I,O)Ll_l = (1,0,0)(0,1,0)(-1,0,0) = (1,1,0)(-1,0,0) = (0, —1,0).

Therefore As(Q4) = A < Z with 1 € Z acting by inversion. By Remark 5.5,
71(Q4,q) is trivial.

(2) Let A=C, x C,=<x1)x<x2). Then S(4,p)=(Cyx C,) A(C, x Cp)
= C, generated by [x; ® x3]. Now let s = (0,x,0), = (0,x,,0), u= (0,0,
[-2x] ® x3]) € F(A4,9). Then for i =1,2,

(Oa Xiy 0)((); —Xi, 0) - (O, 0, [xi ® (7)6,‘)])
= (0,0,0)

since x; ® x; =0mod (1 —7)(4® A4). Therefore s~'=(0,—x,0), ¢ '=
(0, —x2,0). It is clear that su = us, tu = ut. Moreover
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_l _1 0 y X2, ) 0 X],O)(O, _szo)(oa _Xl,o)

= (
= (0, x1 4+ x2, [x2 ® x1])(0, —x3,0)(0, —x1, 0)
= (0,x1, [x2 ® x1 — (x1 + x2) ® x2])(0, —x1,0)
=(0,0,[-2x1 ® x2])

since x] ® x; = —x» ® x; mod (1 —7)(4 ® A). Therefore the group generated
by s, ¢, u is isomorphic to He,. Moreover, let v = (1,0,0) € F(4,p). Then
~=(-1,0,0) and

vsv~ ! = (1,0,0)(0,x1,0)(—1,0,0) = (1,x1,0)(—1,0,0) = (0, —x1,0) = s,
vtv™ = (1,0,0)(0, x2,0)(=1,0,0) = (1,x2,0)(—1,0,0) = (0, —x,,0) = ¢!
and
vu = uv.

Therefore As(Q4) =~ He, X Z where 1€ Z acts as in the statement. Remark
5.5 implies that 71(Q4,q9) = C, = S(4, p).

Next we classify FQ4-modules. Let F be an algebraically closed field
of characteric 0 and consider irreducible F[As(Q4)]-modules. If A = C,,
As(Q4) = C, X Z where 1 € Z acts on C, through the inversion automorphism
p e Aut(C,). Let Asg(Q4)=C,=<oy and for ie{0,...,.n—1}, let y;
o C,i where (, € F is a fixed primitive n-th root of unity. Then Irr(C,) =
{x;1i€{0,...,n—1}}. The ¢-equivalence classes are {xo}, {11, Xu_1}>---s
{X(n-1)/2: Xn41)/2}- By Proposition 4.4, Irr(As(Qa)) = {x 17| x € Irr(C,),
oe F*}.

Fix 1€ Q4. Since 7;1(Q4,7) = 1 by Proposition 5.7, there exists only one
irreducible covering Q4-module by Theorem 3.4. Let p =y 17% € Irr(As(Q4))
for y e Irr(C,), € F* and V be the representation space. If y =y, V is
l-dimensional. If « =1, p is the trivial As(Q)-module. Otherwise, .#2(V)
is isomorphic to .#p(V) and is induced from the As(Q)-module defined by
As(Q) — F*; g; — a.

Let y =y for ie{l,...,%3}. Then p(g;) can be identified with the

. 0 1 . . .
matrix ( 0). If o # 1, the matrix has no eigenvector with respect to
o

eigenvalue 1. Therefore .#2(V) = .#o(V) that is induced from an As(Q)-
modules. If o =1, the eigenvalues of the matrix are 1 and —1, each with
multiplicity 1. Therefore .#2(V) is a 1-dimensional Q-module that is not
induced from As(Q)-modules.



50 Kosuke UEMATSU

Now we give a more concrete description of .#2(V) for p =y, 1*!. For
an element ¢’ € Q4 C D4 where A = {¢) = C,, the representation p is given as

follows:
Po) =\ o)\ o) \d o)

1
Then (1 —g,,)V is a l1-dimensional subspace with basis v; = <_ Ci>' With

this basis,
. — 0 Cn_i 1 _ _C}{_l)_ J—i
g“’"”"(c,’; 0)(—6"’)_( g )T T

1 ¢ 1 RG] .
(=g = (-Czi_j Cnl ) (—Ci> - (_;z% _ Ci) =14 o

where k = 2i— jmod n, 0 <k <n. These imply that #,,: ,,; = fC,{*", Tigi 107 =
1+ ¢

Next let 4 = C, x C, where p is an odd prime. For the group He,, the
following holds:

PROPOSITION 5.8. There are p*> + p — 1 irreducible representations of He,.
Among them, p> are 1-dimensional and the others are p-dimensional.

Proor. Let X;;=S'T/ for i,je{0,...,p—1}. Recall that 7ST~! =
SU and STS™'=TU"!. Therefore SX;;S™!=X,;U7 and TX,,T7'=
X;;U'. Hence the conjugacy classes are represented by X;; for i,je
{0,...,p—1} except for i=j=0, and U* for ke {0,...,p—1} and there
are p> + p — 1 conjugacy classes. Since the number of 1-dimensional represen-
tations is equal to the order of the abelianization, there are p>. Moreover
since the dimension of an irreducible representation divides the order of the
group by [NT, Chapter 3, Theorem 2.4] and p* > p3, the others must be
p-dimensional. Then 1-p%+ p?-(p—1) = p°.

Specifically, every 1-dimensional irreducible representation is constructed
by lifting an irreducible representation of C[f = He,"jb. Denote by pSQ the
irreducible representation defined by S +— C;, T — Cl’,. Every p-dimensional
representation is of the following form for se{l,...,p—1}:

1
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1

U~

We denote by ps(” ) the irreducible representation above. Then its character is
given as follows:

XpSm (Afz,) =0 if i#0 or Jj# 0, ngp)(Uk) _ PC;k-

Since two representations of a finite group are isomorphic if and only if
their characters coincide, the following holds:

PROPOSITION 5.9. Let ¢ be the automorphism of He, defined by S — S7!,
T— T, Uw— U. Then a g-equivalence class is one of the following:

1,0

(1) {/)0,0};

(2) {p‘sﬂlt),pp(l,)w,,} for s,te{0,...,p—1} except for s=1=0,

3) {p\"} for se{l,....,p—1}.

Let o € Irr(He,), p =0 17 and V be the representation space of p. The
case dim ¢ = 1 is similar to the case 4 = C,. For o= pé% and o # 1, .42(V)
is a module induced from an As(Q)-module and for'a:psilt and o =1,
AM2(V) is a module that is not induced from As(Q)-modules. If ¢ is
p-dimensional, ord,(¢) =1 and a g-automorphism « is of the form

1
1
P,=a
1
for ae F*. The matrix P, has eigenvalues ¢ of multiplicity pTH and —a of
multiplicity prl Therefore if a =1, #2(V) is £ gl-dimensional and if a = —1,

MIAV) is pTH-dimensional. Otherwise, .#2(V) is a module induced from an
As(Q)-module. In particular, if p = 3, there is a 1-dimensional module that is
not induced from As(Q)-modules.

On the other hand, by Proposition 5.7 7;(Q, ¢) = <U)» = C,, which implies
that there are p irreducible covering modules.
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5.2. Connected quandles in Conj(SL,(IF,)). We consider the special linear
group SL>(IF,) where IF, denotes the field of ¢ = p/ elements for a prime p.
First we state some basic facts on SL,(IF,). A proof for odd p is in [Bon,
Chapter 1] and the case p =2 is similar.

PROPOSITION 5.10. (1) The order of SL»(IF,) is q(¢> —1).

(2) If =4, SLy(IF,) is a perfect group, i.e. its commutator subgroup is
the whole group.

(3) Let PSL,(IF,) = SLy(IF,)/Z(SL,(IF,)) denote the projective special
linear group where Z(G) denotes the center of the group G. If p # 2,
Z(SLy(IF,)) = {+hL} where L, is the identity matrix. If p=2,
Z(SLy(IF,)) is trivial.

(4) PSLy(FF,) is a simple group if q >4. PSL,(IF3) is the alternating
group Wy and SL,(IFy) = PSLy(IF,) is the symmetric group S3 that
are solvable.

It is also known that SL,(IFs) =~ PSLy(IFs) =~ s and PSLy(IFy) =~ .

REMARK 5.11. Note that the group PSLy(IF,) acts faithfully on the pro-
jective space P!'(IF,). The isomorphism in (4) of Proposition 5.10 is obtained
from this action. The commutator subgroup of S3 = PSLy(IF,) = SLy(IF») is
C; (generated by 3-cycles). The commutator subgroup of 2y =~ PSL,(IF3) is
C, x G, (generated by (2,2)-cycles). Through the surjective group homomor-
phism 7 : SLy(IF3) — PSL,(IF3), we have that the commutator subgroup of
SL,(IF3) is of order 8 (recall that the commutator subgroup of SL,(IF3) is
mapped onto the commutator subgroup of PSL,(IF3) by ). In fact, the com-
mutator subgroup is isomorphic to the quaternion group Q.

On Schur multipliers of special linear groups, the following holds [Kar,
Chapter 7]:

0 (¢ #4.9),
THEOREM 5.12. M(SLy(IF,))) = Z/2Z (q=4),
Z/3Z (¢=9).
0 q is even and q # 4),

(

Z/2Z (q=4, or q is odd and
q#9),

Z/6Z (q=9).

THEOREM 5.13. M(PSL,(F,)) =

These theorems were originally proven by Steinberg in 1960s.
Next we look at conjugacy classes of SL,(IF,). For a finite field F,
denote by F99 the quadratic extension of F. Fix a generator z of the multi-
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plicative group ]qu and a primitive (¢ + 1)-st root y of unity. Then y € IFf}d =
IF,..
q

Next we describe the conjugacy classes of SL,(IF,). Let D.. =

0 0 -1
(Z Z’) and Ty,-:<1 Tr(y’)>' If ¢ is odd, let neIFqX\(]F;)2 and

11 1
Ny = +(0 1), Ni_ = i(o T) Then the following facts are known.
PROPOSITION 5.14.  For A € SLy(IF,), let n(A) be the size of the conjugacy
class containing A.
(1) n(D)=q(g+1) for 1 <r< %? ifpisodd, 1 <r<4—1if p=2
(2) n(Ty)=gq(g—1) for 1 <r< %1 if pisodd, 1 <r<4%if p=2
(3) n(N..) is qu,l if p#2 and ¢* -1 if p=2.

ProoF. See [Bon, Proposition 1.3.1] for odd ¢. Similar proof works for
even g.

PROPOSITION 5.15. A4 € SLy(IF,) is conjugate to exactly one of the follow-
ing matrices:

(1) b,

2) —Lifp#2,

(3) D. for 1 <r< % if pisodd, 1<r<%—1if p=2 (This occurs

ifqz=4),
@) Ty for l<r< if pisodd 1<r<%if p=2,
(5) N+A,+)
(6) N—-,+ J V4 # 25
(7) Ny,— and N_ _ where neF; is a non-square element, if p # 2.

ProoF. See [Bon, Theorem 1.3.3] for odd ¢. Similar proof works for
even g.

PROPOSITION 5.16.  If g > 4, any conjugacy class of SL»(IF,) except for +I
generates the whole group. If q <4, a conjugacy class C generates SLy(IF,) if
and only if C is the conjugacy class of N, ..

Proor. If g >4, the group SL,(IF,) is simple (if p =2) or a non-split
central extension of PSL,(IF,) that is simple (if p # 2, for the extension is non-
split since SL,(IF,) is perfect by Proposition 5.10). Thus any proper normal
subgroup of SL,(IF,) is a subgroup of the center. Since every subgroup that
is generated by some conjugacy class is normal in the whole group, the first
statement holds.

If ¢ <3, we saw in Remark 5.11 that SLy(IF,)’ is the 2- (resp. 3-)Sylow
subgroup of SLy(IF,) if ¢ =3 (resp. ¢ = 2). Now the order of T, is 4 (resp. 3)
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if g=3 (resp. ¢ =2) that is a power of 2 (resp. 3). Therefore T, is con-
tained in SL(IF,)" and T, does not normally generate the group SL(TF,).
On the other hand, if ¢ = 3, the order of N, , (resp. N_ ) is 3 (resp. 6). By
Proposition 5.10, PSL,(IF3) =~ A4 and N, . is mapped to a 3-cycle. Since a
3-cycle normally generates the group 24 and SL,(IF3) is a non-split central
extension (since the order of the Abelianization of SL,(IF3) is 3 that is coprime
to 2) of PSL,(IF3), N_ . normally generates the group SL,(IF3). If ¢ =2, the
order of N, . is 2. Since SL,(IF;) = &3 and a 2-cycle normally generates s,
N, . normally generates SL(IF5).

COROLLARY 5.17.  If ¢ > 4, every non-central conjugacy class forms a con-
nected subquandle of Conj(SL>(IF,)). If q <4, only the conjugacy classes of
N... are connected subquandles of Conj(SL>(IF,)).

If ¢ =2, the conjugation quandle Q generated by N, . is isomorphic to
the dihedral quandle of 4 = C;. If g =3, the quandle generated by N, ., is
isomorphic to a subquandle of Conj(2l4) generated by (1,2,3).

Next we give definitions and basic facts on modular representations, i.e.
representations of groups over fields of positive characteristics. For details, see
[NT, Chapter 3, §6].

DerINITION 5.18.  Let p be a prime. For a positive integer n, denote by
n’ the positive integer satisfying n = p“n’ and ged(n’, p) = 1.

DerINITION 5.19. Let R be a complete discrete valuation ring of char-
acteristic 0 with uniformizer . Let F be the residue field R/zR, p the char-
acteristic of F and K the field of fractions of R. Let G be a finite group.
(1) The triplet (K, R, F) is called a p-modular system for G if R contains
every exp(G)-th root of unity where exp(G) denotes the exponent of
the group G, i.e. the least common multiple of ord(g) for g € G.

(2) Let (K,R,F) be a p-modular system for G and F’ be the subfield of
F generated by roots of unity. Then the Teichmiiller character tg is
defined on (F')* as follows:

tR:(F/)Xg’R; aHCm

where {, is the root of unity in R with {, =amod=. Such an
element exists uniquely by Hensel’s lemma.

(3) An element g € G is said to be p-regular if ord(g) is coprime to p.
Otherwise, g is said to be p-singular. Denote by G[; the set of
p-regular elements in G.

DEerNITION 5.20. Let G be a finite group and (K, R, F) be a p-modular
system for G. Let (V,p) be a representation of G over F. For ge G, let
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o1,...,q be the eigenvalues of p(g), where r = dim p (note that eigenvalues are
in F* since F contains enough roots of unity). Then the map ¢, : GIQ — R;
g — >.i_; tr(e;) is called the Brauer character for (p, V') over a characteristic p.
Denote by IBr,(G) the set of irreducible Brauer characters over characteristic
p, 1.e. Brauer characters induced from irreducible F-representations. This is
independent of the choice of the p-modular system up to identification.

One of the fundamental results in modular representations is stated as
follows [NT, Chapter 3, Theorem 6.5]:

THeOREM 5.21. #IBr,(G) is equal to the number of p-regular conjugacy
classes.

Now we consider representations of SL,(IF,) over fields of characteristic
p. Fix a p-modular system (K,R,F) for SL;(IF,). Since the exponent of
SLy(IF,) is

{p-f;‘ (p#2),
20 -1 (p=2),

F contains (]Fq)qd =1IF,.. An element 4 € SLy(IF,) is p-singular if and only
if 4 is conjugate to N, .. Therefore the number of p-regular conjugacy classes

1S

Therefore the following holds:
ProposiTION 5.22. #(IBr,(SL,(IF,)) = ¢.

Next we find out ¢ irreducible representations. Recall that ¢ = p/. Let
o:x+— x? e Gal(FF,/IF,) (note that ¢ generates Gal(IF,/IF,)). Now for i=
0,....,f —1,let y;: SLy(F,) — GLy(F); A+~ d'(A4) (o acts on each entry in A).
Then y; is a 2-dimensional irreducible representation. Let V; =~ F? be the
representation space of y;. Then the action of SLy(IF,) on V; extends to an
action on the symmetric algebra S(7;). Recall that for an n-dimensional vector
space V, S(V) is isomorphic to the polynomial ring in n variables. In this

b
identification, for a polynomial # and 4 = <a >, the action of SL,(IF,) on
. . c d
S(V;) is written as follows:

Ah(X:, Y;) = h(c'(a)X; +¢'(c) Y;, 6" (b)X; + a'(d) Y7)

where X;, Y; denotes the standard basis for V;. Then the subspace Vi1 =
S(V;), of homogeneous polynomials of degree k for k>0 is a (k+ 1)-



56 Kosuke UEMATSU

dimensional subrepresentation of S(¥;). We denote this representation by
Ziks1- Clearly y; is the trivial representation and y; , = y;.

With these notations, the following holds [Hum, Chapter 2.7 and
2.11]:

ProposITION 5.23 (Steinberg Tensor Product Theorem for SL,(IF,)). Let
rief{l,....,p} for i=0,...,f—1. Then

prow..,r/,l = X0,r, - ®Xf—1,r/,1
give distinct irreducible representations of SL(IF,).

Steinberg tensor product theorem gives distinct irreducible representations
of groups of Lie type. The proposition is the special case for SL,(IF,) that is
of type 4.

Next we give a concrete description of the group As(Q).

PROPOSITION 5.24. Let g # 2,3,4,9 and Q be a conjugacy class in SLy(IF,)
that generates the whole group (ie. Q is a non-central comjugacy class of
SLy(IF,)). Let h:As(Q) — SLy(IF,) be the group homomorphism induced
by adjunction from the inclusion map Q — Conj(SLy(IF,)). Then As(Q) =
SLy(IF,) X Z by the map g — (h(g),deg(g)).

Proor. Note that Inn(Q) = PSL,(IF,) by Example 1.3 and Inn(Q) is
simple by Proposition 5.10. Recall that Zy(Q) is a quotient group of
M(PSLy(IF,)) by Proposition 1.10 and that Inng(Q) = Asy(Q)/Zo(Q). By
assumption and Theorem 5.13, M(PSL,(IF,)) is Z/2Z if ¢ is odd, otherwise 0.
Therefore the order of Asy(Q) is at most 2(§PSL,(IF,)) if ¢ is odd, §PSL,(IF,)
otherwise, ie. at most #(SLy(IF,)) for both cases. Take Pe Q. Since
Inny(Q) = Inn(Q), there exists x € Asy(Q) such that x.4 = gp.4 for any 4 € Q.
Then x~!gp is in the center of As(Q) by Proposition 1.6. This shows that
As(Q) = Aso(Q) x (x~'gpy. Since & is surjective and SL,(IF,) is perfect by
Proposition 5.10, Asy(Q) is mapped onto SL,(IF,) by 4. (Again note that
the commutator subgroup is mapped onto the commutator subgroup by a
surjective group homomorphism). By comparing the orders, we see that
ASO(Q) = SLQ(IF(])

Let QO be a conjugacy class in SLy(IF,) that generates the whole group
where ¢ #2,3,4,9. By Proposition 5.16, this is equivalent to saying that
q #2,3,4,9 and Q is a non-central conjugacy class. Then 7;(Q, P) for Pe Q
is the stabilizer of P in Asy(Q), hence is isomorphic to the centralizer of P in
SLy(IF,). By proof of Proposition 5.14, it is Abelian. Therefore there are
(t71(Q, P))" irreducible covering modules (recall that n’ denotes the prime-to-p
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part of n). Since As(Q) = SL,(IF,) x Z, every irreducible representation of
As(Q) is of the form y 1“* for o« e F* and y e IBr,(SL,(IF,)) by Proposition
4.4. We write the same symbol y for the corresponding modular represen-
tation.

Let tz(z) =, and tr(y) ={,. Then (. (resp. {,) is a (¢ —1)-st (resp.
(g + 1)-st) root of unity. Now the eigenvalues of y;, (D.r) (resp. x;, (T;))
are

(o) ¢p're=3) | ep'r(oretd) ep'r(oret)
pir(ri—=1) #pir(r;—3) pir(=ri+3) #pir(—ri+1)
(resp. (70D ¢p'ied) | eph(ntd) eplriorih)y

Now a module that is not induced from As(Q)-modules is obtained as
My 19 for x € IBr,(SLy(IF,)) and an eigenvalue o of y(P) for some
P e Q (note that o is an eigenvalue of y(P) for any P e Q since Q is a con-
jugacy class of SL,(IF,)).

As an example, we classify all 1-dimensional Q-modules.

PROPOSITION 5.25.  Let Q be a non-central conjugacy class in SLy(IF,) for
q#2,3,49. Then any l-dimensional Q-module is isomorphic to one of the
following:
(1) irreducible covering modules,
@ M2py.y 4% for a# 1,
(3) M2y T‘d’“fl) where o€ F* is an eigenvalue of y; ,(P) for P e Q for
a p-regular conjugacy class Q (As stated above, o is an eigenvalue of
%iaP) for any P.),

4) A2y 192D \where Q is a p-singular conjugacy class (ie. Q is a
class of N..) and +1 is the eigenvalue of P € Q,

(5) A2y, 19=1 \where Q is a conjugacy class of order 4. (Note that
this occurs if p # 2. Then since either ¢ — 1 or ¢ + 1 is divisible by 4,
there exists an element of order 4.)

For the cases (4), (5), the module is defined over IF,. For the case (3), the
module is defined over IF, if and only if Q is the class of D,. If Q is the class

of T,, the module is defined over ]Ff}d = ]qu.

Proor. First note that if Q is a p-regular conjugacy class and y is a
representation of Asy(Q) = SLy(IF,), then x(P) is diagonalizable for any P e Q
and .#2(y 1'%*) is 1-dimensional for some o if and only if:

x(P) has 2 distinct eigenvalues with multiplicities
dim y — 1 and 1 respectively. (%)

Note that « is taken to be the inverse of the former eigenvalue.
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As above, every irreducible covering module is 1-dimensional.

On the other hand, a non-covering 1-dimensional module is irreducible,
and hence by Theorem 3.5, it is isomorphic to .#2(M) for some non-
trivial irreducible As(Q)-module M. Let y € IBr,(SLy(IF,)) be its restiction
to Asy(Q) = SLy(FF,). If dimy =1, y =p,_ , and this case corresponds to
the case (2).

If dimy =2, y=y,, for some i. If Q is a p-regular conjugacy class,
every element Pe Q has a common pair of eigenvalues in F. Therefore
M2(Yin 1 id’"‘fl) is a l-dimensional Q-module if o is an eigenvalue of y; ,(P).
If Q is a p-singular conjugacy class, every element P € Q has an eigenvalue +1
with multiplicity 2. Since y; ,(P) # L, #2(y; » 114+l s 1-dimensional.

For the case dim y > 3, by the following two lemmas we see that .#2(y)
is 1-dimensional if and only if Q and y are as in (5).

LEMMA 5.26. Let Q be a p-regular class. Let R be the set of f-tuples of
integers from 1 to p indexed by 0,...,f —1. For r=(r;) € R, denote p, =
pl’o,...,rf,l'

(1) Let r € R satisfy that just one of r; is > 3 and the others are 1. Then

for P e Q, the condition (xx) is satisfied for y = p, if and only if P is
of order 4 and r; = 3.

(2) Let s=(s;)eR and ae{l,...,p}. Choose an index iy such that
si, =1 and let r = (r;) € R where ri=s; if i #iy and ri, =a. If p;
does not satisfy the condition (xx) for any P e Q, neither does p,.

(3) Let re R satisfy that at least 2 of r;’s are > 2. Then p, does not
satisfy the condition (xx) for any P e Q.

Proor. (1) We may assume that the index 7/ is 0. If Q is a p-regular
class, as stated before the proposition, for an eigenvalue (e F of P, the
eigenvalues of p,(P) are {07! ¢3¢0t =0t Since ¢? # 1, two neigh-
boring eigenvalues cannot be equal. Thus if (xx) is satisfied, then we have
r=3and (> =2 Therefore we see that the condition (x*) is satisfied if and
only if o =3 and { is a fourth root of unity.

(2) First note that for any P € Q, p, satisfy the negation of condition ()
if and only if at least one of the following conditions is satisfied:

* p,(P) has at least 3 distinct eigenvalues,

* the multiplicity of every eigenvalue of p (P) is at least 2.

Note that p, corresponds to p; ® x;, .. Since every eigenvalue of p; ® y;, .(P)
is of the form Ju where 4 (resp. u) is an eigenvalue of py(P) (resp. y;, .(P)), if p;
satisfies one of the conditions above, the same condition is satisfied for p,.

(3) By (1),(2), it is enough to show that the assertion for the case just 2
of r; are 2 or 3 and the others are 1. Then p, =y, , ® x; , where i, j € {0,...,
f—1} and a,be{2,3}. We proceed by dividing into 3 cases:
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(i) Ifa=b=2 let 2, A" (resp. u, u~") be the elgenvalues of Xi2(P)
(resp. x;,(P)). Then p,(P) has the eigenvalues Au, Au~', 27", A7 u~. To
prevent p,(P) from having 3 distinct eigenvalues, 2 of the 4 values must be
equal. Since the order of P is not 2, 1 # 47! and u# u'. Therefore both
Jp=2""u" and Au~' = 27"y must hold. Then iu, iu'e{+1} since these
are equal to their inverses. Since u # u~!, these are distinct. Therefore p,(P)
has 2 eigenvalues with multiplicities 2,2 respectively.

(i) If a=2 and b = 3, note that Q must be a conjugacy class of order 4
and the eigenvalue of y;; are —I, —1, 1. Since Pe Q is of order 4, the
eigenvalues of y; , are 4th roots /, 27" of unity. Therefore A~' = —J. There-
fore p,(P) has eigenvalues A, —1 with multiplicities 3,3 respectively.

(i) If a=b=3, p,(P) has eigenvalues —1,1 with multiplicities 4,5
respectively.

LemMA 5.27. Let Q be a p-singular class with eigenvalue ¢ and R the set
defined in the previous lemma. Then for Pe Q and r = (r;) € R, p,(P) has the

unique eigenvalue ¢V, The codimension of the eigenspace is 1 if and only if
dim(p,) = 2.
1
Proor. The first statement is clear. Let P = e( 0 T) € Q0. Then
1 oi(a) o'(a)> --- ol(a)"™!
0 1 26a) - (n—1)a'(a)"?
ZiaP)=e"0o o I : :
0 0 0 . (n—1)d'(a)
0 0 0 0 1

for the basis X', X/"2Y, ..., X;Y" 2, Y"!. Since n<p and a #0, the
codimension of the eigenspace of y;,(P), which is equal to the rank of
%in(P)—&"'I, is n—1. Therefore it is equal to 1 if and only if n = 2.

To complete the proof, let r=(r;) € R. Then p, =y, @ ® xy_1,.,
is a space spanned by X‘OY(”’ D=9 . ®Xsf 1 f<"11 D=1 where 0 < 5 <
ri— 1. Assume that r, and rj are >2 for dlstmct i, j. Then we write
Zi=X @ @Y @ X and Z =X @8 Y 00
Xfr'i]"‘. Then  p,(P)(Z )—aZA neh) xom 1@ @ (Y +a( X))@ ®
Xfrfl'fl and p,(P)(Z) =&Y @ - @ (Vi o/(a) X)) ' ® - ®X" o
Since 2<r,r<p, it is clear that p.(P)(Z 1) — el 1Z and p,(P )(Z)—
azk(’k*l)Zj are linearly independent. This shows that the rank of
p,(P) —eX=VJ is at least 2. Therefore the number of indices i such that
r; >2 1is at most 1.
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For the case (5) of Proposition 5.25, a similar case occurs in charac-
teristic 0. Let G = SL,(C) and Q be the subquandle of order 4 matrices in
Conj(G). Note that Q is the set of matrices with eigenvalues i, —ie C*.
Similarly to the positive characteristic case, extending the representation G =
SL>(C) — GL(C?) to the representation on S(C?), we have a 3-dimensional
representation

4 b a? ab b2
13 : SLy(€C) — GL(C?); A:(C d)H 2ac ad+bc 2bd
c? cd d?

Then for Pe Q, y;(P) has eigenvalues —1, —1, 1. Now the map P —
—x53(P) is a quandle homomorphism and this gives a group homomorphism
¢ : As(Q) — GL(C?). Then .#2(p)= [Hpeo(l — gp)C® is a I-dimensional
quandle module.
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