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Abstract. We study modules over quandles and classify irreducible quandle modules.

The main result of this paper states that there is a correspondence between irreducible

modules over a quandle Q and irreducible modules over certain groups: more specif-

ically, irreducible modules over the fundamental group of Q and nontrivial irreducible

modules over the associated group AsðQÞ. As an application, we classify irreducible

modules over generalized dihedral quandles, the quandles obtained from generalized

dihedral groups, and connected quandles in SL2ðFqÞ where Fq denotes the finite field

of q ¼ p f elements.

Introduction

A quandle is an algebraic system given by an operation . that generalizes

the conjugation operation of groups, and quandles play an important role

in knot theory. The notion of a quandle was first introduced by Joyce and

Matveev in 1980s ([Joy], [Mat], see Definition 1.1). Just as in the cases of

other algebraic objects such as groups and rings, it is expected that the quandle

modules are important in studying quandles. The notion of a general quandle

module was given by Andruskiewitsch and Graña [AG] and Jackson [Jac]

(Definition 1.12). As an example of application of modules, homology of

quandle modules is defined and some important homological invariants of

quandle modules are found.

As suggested above, every group can be regarded as a quandle by the

conjugation operation. For a group G and g; h A G, the operation g . h ¼
ghg�1 defines a quandle denoted by ConjðGÞ, which is called the conjugation

quandle of G. In the converse direction, a quandle Q naturally induces a

group AsðQÞ called the associated group (Definition 1.4). These assignments

give rise to functors Conj : Grp! Qd and As : Qd! Grp where Grp and Qd

denote the categories of groups and quandles respectively, and these functors

are adjoint to each other. A module over AsðQÞ naturally defines a module
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over Q. Such a module will be called a module induced from an AsðQÞ-
module. However, there also exist quandle modules that are not induced

from AsðQÞ-modules. This makes the classification of quandle modules more

interesting.

In this paper, we study the problem of classifying irreducible modules over

connected quandles. For a quandle Q, there is another group InnðQÞ called
the inner automorphism group that is generated by left multiplication actions

on Q. A quandle Q is said to be connected if the action of InnðQÞ on Q is

transitive. Given a quandle module M, we first look at the inner automor-

phism group InnðMÞ of M regarded as a quandle. Then we can construct

another quandle module IðMÞ over Q from InnðMÞ, which is induced from

an AsðQÞ-module, and a homomorphism iM : M! IðMÞ of quandle modules

over Q. In particular, if M is an irreducible quandle module, iM is either

injective or zero. The main result of this paper is the following:
� An irreducible module M such that iM is zero corresponds to an

irreducible module over a group p1ðQ; qÞ, which is called the funda-

mental group of Q at q A Q. (Theorem 3.4)
� Otherwise, M corresponds to an irreducible AsðQÞ-module in a certain

way. (Theorem 3.5)

As applications of the theorems, we classify irreducible modules over two series

of finite quandles. The first one is the generalized dihedral quandle, the

quandle of reflections in a generalized dihedral group. It can be also regarded

as an Alexander quandle on an Abelian group. We classify the irreducible

modules over dihedral quandles with coe‰cients in fields of characteristic

0. The second one is the connected quandle Q in the special linear group

SL2ðFqÞ over a finite field Fq of q ¼ p f elements. We classify the irreducible

modules over Q with coe‰cients in certain fields of characteristic charðFqÞ ¼ p

by applying Brauer theory on modular representations of finite groups.

This paper is organized as follows. In the first section, we recall the

definitions of quandles, associated groups of quandles, and quandle modules

and state some related results. The second section states some facts on quandle

modules and their inner automorphism groups. We see that the inner auto-

morphism group of a quandle module M has an Abelian normal subgroup

TðMÞ with an action of AsðQÞ in Proposition 2.5. We also define the quandle

module IðMÞ and the homomorphism iM for a quandle module M in

Proposition 2.9.

In the third section, we prove the main theorems on irreducible quandle

modules over a connected quandle Q. Note that Theorems 3.4 and 3.5 cor-

repond to the cases iM ¼ 0 and iM 0 0 respectively.

In the fourth section, we explain how to make the list of irreducible

modules over AsðQÞ for connected quandles Q. When Q is finite, AsðQÞ is
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written in the form of the semidirect product NzZ for some finite group

N (Proposition 3.1, Corollary 1.11). We see how an irreducible module

over AsðQÞ is obtained from an irreducible module over N in Proposition

4.4.

The last section gives explicit descriptions of irreducible modules over

generalized dihedral quandles and connected quandles in SL2ðFqÞ.
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1. Preliminaries

1.1. Quandles. In this section, we explain the definitions and some basic facts

on quandles and quandle modules. For recent development in related subjects,

see [Nos1] and [Aki].

Definition 1.1. Let Q be a set and . : Q�Q! Q be a binary operator.

Then the pair ðQ; .Þ is called a quandle (of left action) if the following

properties are satisfied:

(1) (Idempotency) For any q A Q, q . q ¼ q.

(2) (Left invertibility) For any p A Q, the map sp : Q! Q; q 7! p . q is

a bijection. Denote by p .�1 q the element s�1p ðqÞ.
(3) (Left self-distributivity) For any p; q; r A Q, p . ðq . rÞ ¼ ðp . qÞ .

ðp . rÞ.
Let ðQ; .Þ and ðQ 0; .0Þ be quandles. Then a map f : Q! Q 0 is called a

homomorphism of quandles if f ðp . qÞ ¼ f ðpÞ .0 f ðqÞ. We denote the cate-

gory of quandles by Qd.

By (2) and (3) of the definition, the map sp for p A Q is an automorphism

of the quandle Q.

Definition 1.2. Let Q be a quandle.

(1) The group InnðQÞ generated by sp for p A Q is called the inner

automorphism group of Q.

(2) An orbit of q A Q under the action of InnðQÞ is called a connected

component of Q. We denote the set of connected components by

CðQÞ.
(3) A quandle Q is said to be connected (or transitive) if the action of

InnðQÞ on Q is transitive. It is equivalent to saying that ]CðQÞ ¼ 1.
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Example 1.3. Let G be a group. By defining g . h ¼ ghg�1, G has a

quandle structure. This quandle is called the conjugation quandle of G and is

denoted by ConjðGÞ. A group homomorphism is also a quandle homomor-

phism under this operation, hence Conj is a functor from the category Grp

of the groups to Qd. In this case InnðConjðGÞÞ is isomorphic to the inner

automorphism group InnðGÞ ¼ G=ZðGÞ of the group G where ZðGÞ denotes

the center of the group G.

A union Q of some conjugacy classes in G forms a subquandle of ConjðGÞ.
Let H be the subgroup of G generated by elements in Q. Then an inner

automorphism of Q as a quandle is regarded as an inner action of some h A H

as a group. Since Q generates H, h acts trivially on Q if and only if h A ZðHÞ.
Therefore InnðQÞGH=ZðHÞ ¼ InnðHÞ.

Definition 1.4. Let Q be a quandle. Then the group given by the group

presentation

AsðQÞ ¼ hgq ðq A QÞ j gp.q ¼ gpgqg
�1
p ðp; q A QÞi

is called the associated group of Q. A quandle homomorphism f : Q! Q 0

induces a group homomorphism Asð f Þ : AsðQÞ ! AsðQ 0Þ; gq 7! gf ðqÞ. There-

fore As is a functor from Qd to Grp.

Proposition 1.5 ([FR, Proposition 2.1]). The functor As : Qd! Grp is a

left adjoint of Conj : Grp! Qd.

From the definitions above, we have the following elementary facts.

Proposition & Definition 1.6. Let Q be a quandle.

(1) The map pQ : AsðQÞ ! InnðQÞ; gq 7! sq gives a well-defined surjec-

tive group homomorphism and defines an action of AsðQÞ on Q. For

x A AsðQÞ and q A Q, denote by x:q the action defined above (i.e.

x:q ¼ pQðxÞðqÞ).
(2) For x A AsðQÞ and q A Q, xgqx

�1 ¼ gx:q.

(3) Let ZðQÞ be the kernel of pQ. Then ZðQÞ is a central subgroup of

AsðQÞ.
(4) The map deg : AsðQÞ !0

c ACðQÞ Zec; gq 7! e½q� where ½q� is the con-

nected component containing q defines a well-defined surjective group

homomorphism. Denote by As0ðQÞ the commutator subgroup of

AsðQÞ. Then As0ðQÞ ¼ kerðdegÞ. In particular the Abelianization

AsðQÞab of AsðQÞ is isomorphic to Zl]CðQÞ.

(5) Q is connected if and only if As0ðQÞ acts transitively on Q.

Proof. (1)–(4) are proved in [Nos2]. For (5), see [Eis, Remark 2.25].
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Definition 1.7. Denote by Inn0ðQÞ the image of As0ðQÞ by pQ and by

Z0ðQÞ the kernel of pQjAs0ðQÞ : As0ðQÞ ! Inn0ðQÞ.

It is clear that Z0ðQÞ ¼ As0ðQÞ \ ZðQÞ.
To summarize, we have the following short exact sequences of groups:

1! ZðQÞ ! AsðQÞ ! InnðQÞ ! 1; ð�1Þ

1! Z0ðQÞ ! As0ðQÞ ! Inn0ðQÞ ! 1; ð�2Þ

1! As0ðQÞ ! AsðQÞ ! AsðQÞab ! 1: ð�3Þ

To calculate Z0ðQÞ, the following formula for group homologies is useful.

Theorem 1.8 (Five term exact sequence of group homology). Let

1! N ! G ! H ! 1 be an exact sequence of groups and A a G-module.

Then there exists a natural exact sequence

H2ðG;AÞ ! H2ðH;ANÞ ! H1ðN;AÞH ! H1ðG;AÞ ! H1ðH;ANÞ ! 0:

Here

AG ¼ ZnZ½G� AGA=hð1� gÞ:a j a A A; g A Gi

where Z is regarded as a G-module by the trivial action.

Definition 1.9. For a group G and the trivial G-module Z, the group

H2ðG;ZÞ is called the Schur multiplier of G and is denoted by MðGÞ.

In [Kar], the definition of MðGÞ is given by the second cohomology group

H 2ðG;C�Þ where G acts on C� trivially. By [Kar, Theorem 2.7.3], if G is

finite, H2ðG;ZÞ is isomorphic to H 2ðG;C�Þ.
From five term exact sequence, we have the following result:

Proposition 1.10 ([Nos1, Lemma 3.9]). Let Q be a quandle. Then there

is a natural surjective homomorphism

MðInnðQÞÞ ¼ H2ðInnðQÞ;ZÞ ! Z0ðQÞ:

In particular if Q is a finite quandle, Z0ðQÞ is a finite Abelian group.

From the exact sequence ð�2Þ, we also have the following. See also

[Eis, Remark 1.13].

Corollary 1.11. If Q is finite, As0ðQÞ is also a finite group.

1.2. Quandle modules. Now we recall the notion of quandle modules. We

adopt the definition given by Jackson in [Jac]. Later we also refer to the

definition given by Andruskiewitsch and Graña in [AG] before Jackson.
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Definition 1.12. Let Q be a quandle. For each p A Q, let an Abelian

group Ap be given. Let A ¼
‘

p AQ Ap (the disjoint union as a set). For

p; q A Q, let hp;q : Aq ! Ap.q be an isomorphism of groups and tp;q : Ap !
Ap.q a homomorphism of groups. Then A together with parameters fhp;qg,
ftp;qg is called a quandle module over Q (or simply a Q-module) if the following

properties hold:

(1) hp;q.rhq; r ¼ hp.q;p.rhp; r.

(2) hp;q.rtq; r ¼ tp.q;p.rhp;q.

(3) tp;q.r ¼ hp.q;p.rtp; r þ tp.q;p.rtp;q.

(4) hq;q þ tq;q ¼ idAq
.

An element a A Ap �A will be denoted by ða; pÞ. The group Ap is called the

fiber of A at p.

Note that if Q is connected, the fibers are isomorphic to each other.

Any quandle module A has a quandle structure.

Proposition 1.13 ([Jac, Proposition 2.1]). For ða; pÞ; ðb; qÞ A A, define

ða; pÞ . ðb; qÞ ¼ ðhp;qbþ tp;qa; p . qÞ. Then A is a quandle.

Remark 1.14. There are some other definitions of quandle modules.

One of the definitions is as ‘‘Abelian group objects’’ in the category of

quandles over a given quandle.

Let Q be a quandle and p : A! Q, p 0 : A 0 ! Q be quandle homomor-

phisms. Then the fiber product of A and A 0 over Q is the quandle

A�Q A 0 ¼ fða; a 0Þ A A�A 0 ðas a setÞ j pðaÞ ¼ p 0ða 0Þg

with binary operator ða; a 0Þ . ðb; b 0Þ ¼ ða . b; a 0 . b 0Þ.
It is easy to see that the fiber product of quandles is the category-

theoretical fiber product in Qd. Let X , Y , Z be quandles and pX : X ! Z and

pY : Y ! Z be given. Then recall that for given fX : W ! X and fY : W !
Y with pX � fX ¼ pY � fY , there exists uniquely f : W ! X �Z Y such that the

following diagram is commutative:

W

X �Z Y ���!
pY

Y???ypX

???ypY

X Z:�����!pX

����������������!

�������������!

:::::::::::::::>

fY

b! f

fX

We denote the map f by fX �Z fY .
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Let Q be a quandle and p : A! Q a quandle homomorphism. Then A

is called a quandle module over Q if it is endowed with quandle homomor-

phisms a : A�Q A!A, z : Q!A, and i : A!A such that the following

diagrams are commutative:

ðA�Q AÞ �Q A A�Q A

A�Q ðA�Q AÞ ����������������!p1�Qða�p2Þ
A�Q A ����������������!a

A

������������!ða�p1Þ�Q p2���������! �������!@
a

A Q�Q A ������!ðz�p1Þ�Q p2
A�Q A

@

???y
???ya

A�Q Q ������!p1�Qðz�p2Þ
A�Q A A

��������!@

��������!a

��������������������������!¼

A�Q A

A ������������!z�p
A

A�Q A

A�Q A ��������!p2�Q p1
A�Q A

A ;

 �����  ���
��

 ���
��  �����

 ���
��

 ���
��i�Qid a

id�Qi a

a
a

where the map pi : A�Q A!A is the i-th projection. These four dia-

grams correspond respectively to associativity, existence of identity, existence

of inverse, and commutativity. This definition turns out to be equivalent to

Definition 1.12 [Jac, Theorem 2.6].

Another definition is as ‘‘modules over the algebra associated with the

quandle’’ defined by Andruskiewitsch and Graña [AG]. Let F be the unital

free associative Z-algebra generated by hp;q, h�1p;q, tp;q for p; q A Q and I the

two-sided ideal generated by the following elements:

(1) hp;q.rhq; r � hp.q;p.rhp; r,

(2) hp;q.rtq; r � tp.q;p.rhp;q,

(3) tp;q.r � hp.q;p.rtp; r � tp.q;p.rtp;q,

(4) hq;q þ tq;q � 1,

(5) hp;qh
�1
p;q � 1, h�1p;qhp;q � 1.

We define an algebra ZðQÞ ¼ F=I . Then a module over Q is defined as a

module A over ZðQÞ in [AG]. If Q is connected, a quandle module can be

identified with a module over ZðQÞ.

In this paper we will mainly be concerned with irreducible modules.
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Definition 1.15. A nonzero quandle module M is said to be irreducible

(or simple) if there is no non-trivial quandle submodule of M.

Definition 1.16. Let ðA; h�;�; t�;�Þ and ðA 0; h 0�;�; t
0
�;�Þ be Q-modules.

Then a family of group homomorphisms ffq : Aq ! A 0qgq AQ is called a homo-

morphism of Q-modules if the following diagrams are commutative:

Aq A 0q???yhp; q

???yh 0p; q

Ap.q ���!fp.q
A 0p.q;

Ap A 0p???ytp; q

???yt 0p; q

Ap.q ���!fp.q
A 0p.q:

�����!fq �����!fp

The Q-modules ðA; h�;�; t�;�Þ and ðA 0; h 0�;�; t
0
�;�Þ are said to be isomorphic if

there exists a homomorphism ffq : Aq ! A 0qgq AQ of Q-module such that each

fq is an isomorphism.

Notation 1.17. Let G be a group. Then denote by Z½G� the group

algebra of G. For a commutative ring R, denote by R½G� the group algebra

over R. We sometimes denote them simply by ZG, RG.

The following proposition states that an AsðQÞ-module induces a

Q-module.

Proposition 1.18. Let M be a Z½AsðQÞ�-module. Then the disjoint

union M ¼
‘

q AQ M is a Q-module by hp;q ¼ gq, tp;q ¼ 1� gp.q. Denote this

Q-module by MQðMÞ.

In terms of modules over rings, this corresponds to the pullback by

the ring homomorphism ZðQÞ ! Z½AsðQÞ�; hp;q 7! gq, tp;q 7! 1� gp.q. A

homomorphism f : M ! N of Z½AsðQÞ�-modules naturally induces a homo-

morphism MQðMÞ !MQðNÞ; Mq C m 7! f ðmÞ A Nq where Mq, Nq are the

fibers at q.

Definition 1.19. A Q-module M is said to be induced from an AsðQÞ-
module if M is isomorphic to MQðMÞ for some Z½AsðQÞ�-module M.

Now we extend the definitions above to modules over a commutative ring

R. If the ring R is obvious from the context, we omit writing R.

Definition 1.20. Let R be a commutative ring.

(1) A Q-module M is called an RQ-module if Mq is an R-module for

q A Q and parameters h�;� and t�;� are R-homomorphisms.

(2) An RQ-homomorphism of RQ-modules is a family of

R-homomorphisms ffqg such that the diagrams in Definition 1.16
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are commutative. Two RQ-modules are said to be R-isomorphic if

they are isomorphic through R-isomorphisms ffqgq AQ and M is said

to be R-simple if M is simple as an RQ-module.

(3) An RQ-module M is said to be induced from an AsðQÞ-module if M is

R-isomorphic to MQðMÞ for some R½AsðQÞ�-module M.

(4) If R is a field and Q is connected, the dimension dimR Mq for q A Q

is called the dimension of the module M. (Note that the dimension is

well-defined since fibers are isomorphic.)

2. AsðQÞ-modules associated to a quandle module

Definition 2.1. For a Q-module M ¼
‘

q AQ Mq, let MðMÞ ¼0
q AQ Mq.

Now we show that MðMÞ has a structure of AsðQÞ-module.

Proposition 2.2. Let M ¼
‘

q AQ Mq be a Q-module.

(1) For p A Q, define a homomorphism fp : MðMÞ !MðMÞ as follows:

fpðmqÞ ¼ hp;qmq A Mp.q ðmq A MqÞ:

Then r : AsðQÞ ! AutðMðMÞÞ; gp 7! fp gives a structure of AsðQÞ-
module on MðMÞ.

(2) If M and M 0 are isomorphic, MðMÞGMðM 0Þ as AsðQÞ-modules.

Proof. The first statement is immediately from Definition 1.12 (1). If M

and M 0 are isomorphic through ffq : Mq !M 0
qgq AQ, MðMÞGMðM 0Þ through

MðMÞ �Mq C mq 7! fqðmqÞ A M 0
q �MðM 0Þ.

Definition 2.3. The group TlðMÞ ¼ ff : M!M; mq 7! mq þ bq for

some bq A Mqg with composition of maps is called the group of translations.

Clearly TlðMÞ is Abelian and is isomorphic to
Q

q AQ Mq. It is also an

AsðQÞ-module by

gp:fbqgq ¼ fhp;p.�1qbp.�1qgq:

We again denote by TlðMÞ the AsðQÞ-module defined as above. Note that

this extends the AsðQÞ-action on MðMÞ. In particular if Q is finite, we can

identify TlðMÞ with MðMÞ.
Now we look at the structure of the group InnðMÞ.

Definition 2.4. For ða; qÞ A M, let ta;q ¼ sða;qÞs
�1
ð0;qÞ. Let TðMÞ be the

subgroup of InnðMÞ generated by ta;q for ða; qÞ A M. Let KðMÞ be the

subgroup generated by sð0;qÞ for q A Q.
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Proposition 2.5. The following hold:

(1) TðMÞ is a subgroup of TlðMÞ. The element ta;p is represented by

ftp;p.�1qagq AQ as an element in TlðMÞ.
(2) TðMÞ is normal in InnðMÞ. The inner action of KðMÞ on TðMÞ

is compatible with the action of AsðQÞ on TlðMÞ through AsðQÞ !
KðMÞ; gq 7! sð0;qÞ.

(3) The map MðMÞ ! TðMÞ; Mq C a 7! ta;q is a homomorphism of

AsðQÞ-modules.

(4) InnðMÞ is isomorphic to the semidirect product TðMÞzKðMÞ.

Proof. (1) Noting that ða; pÞ .�1 ðb; qÞ ¼ ðh�1
p;p.�1qðb� tp;p.�1qaÞ; p .�1 qÞ,

we have

ta;pðb; qÞ ¼ sða;pÞðh�1p;p.�1qb; p .
�1 qÞ

¼ ðhp;p.�1qh�1p;p.�1qbþ tp;p.�1qa; qÞ

¼ ðbþ tp;p.�1qa; qÞ:

Therefore ta;p ¼ ftp;p.�1qagq AQ as an element in TlðMÞ.
(2),(3) For ða; pÞ; ðb; qÞ A M,

sða;pÞtb;qs
�1
ða;pÞ ¼ sða;pÞ.ðb;qÞs

�1
ða;pÞ.ð0;qÞ

¼ sðhp; qbþtp; qa;p.qÞs
�1
ðtp; qa;p.qÞ:

We write X ¼ hp;qbþ tp;qa and Y ¼ tp;qa. Now for ðc; rÞ A M,

sðX ;p.qÞs
�1
ðY ;p.qÞðc; rÞ ¼ sðX ;p.qÞðh�1p.q; ðp.qÞ.�1rðc� tp.q; ðp.qÞ.�1rYÞ; ðp . qÞ .�1 rÞ

¼ ðhp.q; ðp.qÞ.�1rh�1p.q; ðp.qÞ.�1rðc� tp.q; ðp.qÞ.�1rYÞ

þ tp.q; ðp.qÞ.�1rX ; rÞ

¼ ðcþ tp.q; ðp.qÞ.�1rðX � Y Þ; rÞ

¼ ðcþ tp.q; ðp.qÞ.�1rhp;qðbÞ; rÞ

¼ thp; qb;p.qðc; rÞ:

Therefore

sða;pÞtb;qs
�1
ða;pÞ ¼ thp; qb;p.q A TðMÞ: ðEÞ

This shows the normality of TðMÞ. The compatibility in (2) holds since for

p 0 A Q and ta;p A TðMÞ � TlðMÞ,
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gp 0 :ta;p ¼ fhp 0;p 0.�1qtp;p.�1ðp 0.�1qÞagq AQ

¼ ftp 0.p; ðp 0.pÞ.�1qhp 0;pagq AQ

¼ thp 0 ; pa;p 0.p:

Note that the second equality holds from (2) of Definition 1.12, with p, q, r

replaced by p 0; p; p .�1 ðp 0 .�1 qÞ respectively. Since we also have thp 0 ; pa;p 0.p ¼
sð0;p 0Þta;ps

�1
ð0;p 0Þ from ðEÞ, (3) holds.

(4) We have to show that InnðMÞ=TðMÞ is represented by elements

in KðMÞ and that TðMÞ \ KðMÞ ¼ 1. Since sða;pÞ ¼ ta;psð0;pÞ that generates

InnðMÞ, InnðMÞ=TðMÞ is represented by elements in KðMÞ. Let f A TðMÞ \
KðMÞ. The condition f A TðMÞ implies that f ðMqÞ ¼Mq for all q. More-

over f A KðMÞ implies f ððb; qÞÞ ¼ ðhe1
p1;q1
	 	 	 her

pr;qr
b; qÞ for some pi; qi A Q and

ei A fG1g, which is an additive action on each Mq. Since an additive map is a

translation if and only if it is the identity map, f must be the identity.

By (1) of the proposition, the composition of maps in TðMÞ is commu-

tative and corresponds to the pointwise addition in TlðMÞ. Thus we write the

group operation on TðMÞ by þ.

Notation 2.6. For t A TðMÞ and k A KðMÞ, we denote by ðt; kÞ the

element tk in InnðMÞ. Then the product is given by ðt1; k1Þðt2; k2Þ ¼
ðt1 þ k1:t2; k1k2Þ where k:t ¼ ktk�1 is the conjugation of t by k. Similarly

the inverse is given by ðt; kÞ�1 ¼ ð�k�1:t; k�1Þ. We write kq ¼ sð0;qÞ A KðMÞ.

Proposition 2.7. Let M be a Q-module and I 0k ¼ fðt; kÞ j t A TðMÞg for

k A KðMÞ. Then I 0ðMÞ :¼ ConjðInnðMÞÞ ¼
‘

k AKðMÞ I
0
k is a ConjðKðMÞÞ-

module. Moreover I 0ðMÞ is a module induced from an AsðConjðKðMÞÞÞ-
module.

Note that I 0ðMÞ is a module with fiber TðMÞ through TðMÞ C t 7!
ðt; kÞ A I 0k, where each fiber is regarded as an additive group by ðt; kÞ þ ðt 0; kÞ ¼
ðtþ t 0; kÞ.

Proof. For k1; k2 A KðMÞ and t1; t2 A TðMÞ,

ðt1; k1Þ . ðt2; k2Þ ¼ ðt1; k1Þðt2; k2Þðt1; k1Þ�1

¼ ðt1; k1Þðt2; k2Þð�k�11 :t1; k
�1
1 Þ

¼ ðt1 þ k1:t2 � k1k2k
�1
1 :t1; k1k2k

�1
1 Þ

¼ ðk1:t2 þ ð1� k1k2k
�1
1 Þ:t1; k1 . k2Þ:
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Therefore the parameters are given by hk1;k2 ¼ k1, tk1;k2 ¼ 1� k1k2k
�1
1 .

This means that I 0ðMÞ is a ConjðKðMÞÞ-module induced from the

AsðConjðKðMÞÞÞ-module TðMÞ.

In general, for a group G and a G-module M, the semidirect product

MzG as a conjugation quandle is a quandle module over ConjðGÞ induced
from the G-module M through the map AsðConjðGÞÞ ! G derived from the

adjunction of identity map.

Definition 2.8. Let f : Q! Q 0 be a quandle homomorphism and

ðM 0 ¼
‘

q 0 A Q 0 M
0
q 0 ; h

0
�;�; t

0
��Þ be a Q 0-module. Then f �M 0 ¼

‘
q AQ M 0

f ðqÞ is a

Q-module by setting hp;q ¼ h 0f ðpÞ; f ðqÞ and tp;q ¼ t 0f ðpÞ; f ðqÞ. This module is called

the pullback of M 0 by f .

Note that in terms of ring modules, this corresponds to the pullback of

modules by the natural ring homomorphism RðQÞ ! RðQ 0Þ.

Proposition 2.9. (1) Let IðMÞ be the pullback of I 0ðMÞ by Q!
ConjðKðMÞÞ; q 7! kq ¼ sð0;qÞ. Then IðMÞ ¼

‘
q AQ Iq, where Iq ¼ I 0kq ,

is isomorphic to MQðTðMÞÞ. Denote by ðt; qÞ the element ðt; kqÞ A
I 0kq ¼ Iq. Then ðt; qÞ . ðt 0; q 0Þ ¼ ðgq:t 0 þ ð1� gq.q 0 Þ:t; q . q 0Þ. In par-

ticular, IðMÞ is a Q-module induced from the AsðQÞ-module TðMÞ.
(2) The quandle homomorphism

M! ConjðInnðMÞÞ; Mq C ða; qÞ 7! sða;qÞ A I 0kq

induces a module homomorphism iM : M! IðMÞ over Q. This

implies that every quandle module has a homomorphism to a quandle

module induced from the AsðQÞ-module TðMÞ. Note that

sða;qÞ ¼ ta;qsð0;qÞ ¼ ðta;q; kqÞ

and hence the map iM is defined by ða; qÞ 7! ðta;q; qÞ.

Proof. The first statement follows from the construction. To see (2),

let hI
�;� and t I�;� denote the parameters of IðMÞ. Then for p; q A Q and

a A Mq,

iMðhp;qa; p . qÞ ¼ ðthp; qa;p.q; p . qÞ

¼ ðgp:ta;q; p . qÞ

¼ ð0; pÞ . iMða; qÞ

¼ hI
p;qiMða; qÞ:
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Note that the addition on TðMÞ is the composition in AutðMÞ and we have

tIq;piMða; qÞ ¼ ðta;q; qÞ . ð0; pÞ

¼ ðð1� gq.pÞ:ta;q; q . pÞ

¼ ðta;qsð0;q.pÞt�1a;qs
�1
ð0;q.pÞ; q . pÞ

¼ ðsða;qÞs�1ð0;qÞsð0;q.pÞsð0;qÞs�1ða;qÞs�1ð0;q.pÞ; q . pÞ

¼ ðsða;qÞsð0;pÞs�1ða;qÞs�1ð0;q.pÞ; q . pÞ

¼ ðsðtq; pa;q.pÞs�1ð0;q.pÞ; q . pÞ

¼ ðttq; pa;q.p; q . pÞ

¼ iMðtq;pa; q . pÞ:

Therefore (2) holds.

The homomorphism iM is not necessarily injective. For the extreme case,

we make the following definition:

Definition 2.10. A Q-module M is called a covering module if tp;q ¼ 0

for any p; q A Q.

This is equivalent to saying that sðm;pÞ ¼ sð0;pÞ in InnðMÞ for all m A Mp

and that IðMÞ is the zero module.

3. Irreducible modules over connected quandles

Throughout this section, let Q be a connected quandle. We reduce the

classification of irreducible Q-modules to that of irreducible modules over

certain groups. We fix a commutative ring R.

Proposition 3.1. For a connected quandle Q, AsðQÞGAs0ðQÞzZ.

Proof. This is obvious from (4) of Proposition 1.6 (note that an exten-

sion of Z by a group is always a semidirect product).

Let G be a group and H be a subgroup of G. For an RG-module A

and an RH-module B, denote by B "GH ¼ RGnRH B the induced module and

by A #GH the restricted module. Recall that the induction functor is the left

adjoint of the restriction functor.

Definition 3.2 ([Eis, Definition 1.7]). For q A Q, let AsqðQÞ ¼
fx A AsðQÞ j x:q ¼ qg. The group p1ðQ; qÞ ¼ AsqðQÞ \As0ðQÞ is called the

fundamental group of Q at q.
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Proposition 3.3. Let Q be a connected quandle and q A Q.

(1) For a Q-module M ¼
‘

p AQ Mp, MðMÞ is isomorphic to the induced

R½AsðQÞ�-module of the R½AsqðQÞ�-module Mq through

Mq "AsðQÞ
AsqðQÞ C gnm 7! g:m A MðMÞ:

(Note that this map is the adjunction of the AsqðQÞ-homomorphism

Mq ,!MðMÞ.)
(2) AsqðQÞG p1ðQ; qÞ � hgqi.

Proof. For p A Q, fix xp A AsðQÞ such that xp:q ¼ p. Then fxpgp AQ is

a complete system of representatives for the set AsðQÞ=AsqðQÞ of the left

cosets and xp:Mq ¼Mp in MðMÞ. This implies that R½AsðQÞ�nR½AsqðQÞ�Mq G
MðMÞ. The second statement holds since p1ðQ; qÞ is normal in AsqðQÞ and gq
centralizes p1ðQ; qÞ by Proposition 1.6 (2).

Theorem 3.4. Let Q be a connected quandle. Fix q A Q and xp A AsðQÞ
such that xp:q ¼ p and let X ¼ fxpgp AQ. Then x�1p.p 0gpxp 0 A AsqðQÞ. For an

R½p1ðQ; qÞ�-module M, we regard M as a module over AsqðQÞ ¼ p1ðQ; qÞ � hgqi
with gq acting trivially. We write MCq;X ðMÞ ¼

‘
p AQ M and define an oper-

ation . by

ðm; pÞ . ðm 0; p 0Þ ¼ ððx�1p.p 0gpxp 0 Þ:m 0; p . p 0Þ:

Then the following hold:

(1) MCq;X ðMÞ is a covering RQ-module. For another representative Y ¼
fypgp AQ such that yp:q ¼ p, MCq;X ðMÞ and MCq;Y ðMÞ are naturally

isomorphic.

(2) The assignments resq; M 7!Mq for a covering RQ-module M and

MCq;X : M 7!MCq;X ðMÞ give a one-to-one correspondence between

isomorphism classes of covering RQ-modules and isomorphism classes

of R½p1ðQ; qÞ�-modules.

(3) A covering RQ-module M is irreducible if and only if Mq is irreducible

as an R½p1ðQ; qÞ�-module.

Proof. First,

ðx�1p.p 0gpxp 0 Þ:q ¼ ðx�1p.p 0gpÞ:p 0

¼ x�1p.p 0 :ðp . p 0Þ

¼ q

shows that x�1p.p 0gpxp 0 A AsqðQÞ.
(1) Let M be an R½p1ðQ; qÞ�-module and regard it as an R½AsqðQÞ�-

module. Let r : AsqðQÞ ! AutðMÞ be the group homomorphism of the action
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on M. The above definition of . corresponds to setting hp;p 0 ¼ rðx�1p.p 0gpxp 0 Þ
and tp;p 0 ¼ 0. Clearly the conditions (2) and (3) of Definition 1.12 hold since

t�;� ¼ 0. Since hp;p ¼ rðx�1p gpxpÞ ¼ rðgqÞ and gq acts trivially on M, (4) also

holds. For p; p 0; p 00 A Q,

hp.p 0;p.p 00hp;p 00 ¼ rððx�1p.ðp 0.p 00Þgp.p 0xp.p 00 Þðx�1p.p 00gpxp 00 ÞÞ

¼ rðx�1p.ðp 0.p 00Þgp.p 0gpxp 00 Þ

¼ rðx�1p.ðp 0.p 00Þgpgp 0xp 00 Þ

¼ rðx�1p.ðp 0.p 00Þgpxp 0.p 00x
�1
p 0.p 00gp 0xp 00 Þ

¼ hp;p 0.p 00hp 0;p 00 :

Therefore (1) holds and we see that MCq;X ðMÞ is a covering module. Let

Y ¼ fypg be another representative. For p A Q, let ap ¼ x�1p yp. It is clear

that ap A AsqðQÞ. Then

y�1p.p 0gp yp 0 ¼ y�1p.p 0xp.p 0x
�1
p.p 0gpxp 0x

�1
p 0 yp 0

¼ a�1p.p 0x
�1
p.p 0gpxp 0ap:

Therefore MCq;X ðMÞ and MCq;Y ðMÞ are isomorphic through frðapÞgp AQ.
(2) Let M ¼

‘
p AQ Mp be a covering Q-module. Then let

j : MCq;X ðMqÞ !M; ðm; pÞ 7! xp:ðm; qÞ A Mp �M. It is clear that j is

bijective and additive. For ðm; pÞ; ðm 0; p 0Þ A MCq;X ðMqÞ,

jððm; pÞÞ . jððm 0; p 0ÞÞ ¼ ðxp:ðm; qÞÞ . ðxp 0 :ðm 0; qÞÞ

¼ ð0; pÞ . ððxp 0 Þ:ðm 0; qÞÞ

¼ ðgpxp 0 Þ:ðm 0; qÞ

¼ ðxp.p 0x�1p.p 0gpxp 0 Þ:ðm 0; qÞ

¼ xp.p 0 :ððx�1p.p 0gpxp 0 Þ:m 0; qÞ

¼ jððm; pÞ . ðm 0; p 0ÞÞ:

Note that the second equality holds since M is a covering module. Therefore

j is an isomorphism of Q-modules.

Conversely, let M be an R½p1ðQ; qÞ�-module. Regarding M as an AsqðQÞ-
module, we have MðMCq;X ðMÞÞGM "AsðQÞ

AsqðQÞ. Therefore the fiber M 0 ¼
ðMCq;X ðMÞÞq is isomorphic to M.
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(3) Since these mappings give an equivalence of categories between the

category of covering RQ-modules and the category of R½p1ðQ; qÞ�-modules, the

assertion holds.

The word ‘‘covering’’ comes from quandle coverings in [Eis]. A quandle

Q 0 is called a quandle covering of Q if there exists a surjective quandle homo-

morphism p : Q 0 ! Q such that pðpÞ ¼ pðqÞ implies sp ¼ sq A InnðQ 0Þ for

p; q A Q 0. Eisermann showed that there is a one-to-one correspondence be-

tween the set of connected quandle coverings of Q and the set of subgroups of

p1ðQ; qÞ.
Next we classify irreducible modules that are not coverings.

Theorem 3.5. Let Q be a connected quandle.

(1) Let M be an irreducible RQ-module that is not a covering. Then

TðMÞ is an irreducible R½AsðQÞ�-module with nontrivial action. In

particular, M is a submodule of a module induced from an irreducible

AsðQÞ-module.

(2) Let M be an irreducible R½AsðQÞ�-module with nontrivial action. For

q A Q, let Mq ¼ ð1� gqÞM. Then MQðMÞ ¼
‘

q AQ Mq is an irreduc-

ible RQ-module that is not a covering.

(3) Let IrrncðRQÞ denote the set of isomorphism classes of irreducible RQ-

modules that are not a covering module and IrrntðR½AsðQÞ�Þ be the

set of isomorphism classes of non-trivial irreducible R½AsðQÞ�-modules.

Then the assignments M 7! TðMÞ for an irreducible RQ-module M

that is not a covering, and M 7!MQðMÞ for a nontrivial irreducible

R½AsðQÞ�-module, give a one-to-one correspondence between IrrncðRQÞ
and IrrntðR½AsðQÞ�Þ, and they are inverse to each other.

Note that the dimension of the module is not neccesarily preserved under

the correspondence. For an irreducible module M, the dimension is preserved

if and only if M is induced from AsðQÞ-module.

To show the theorem, we give some lemmas.

Lemma 3.6. Let M be an R½AsðQÞ�-module and fMqgq AQ a family of

R-submodules of M. Then M ¼
‘

q AQ Mq forms an RQ-submodule of MQðMÞ
if and only if gp:Mq ¼Mp.q and ð1� gqÞ:Mp �Mq for any p; q A Q.

Proof. Straightforward from the conditions hp;qðMqÞ ¼Mp.q and

tp;qðMpÞ �Mp.q. The second one is applied with q replaced by p .�1 q.

Lemma 3.7. Let M ¼
‘

p AQ Mp be an RQ-module and T 0 an R½AsðQÞ�-
submodule of TðMÞ. Then M 0 ¼

‘
q AQðMq \ i�1M ðT 0ÞÞ is a submodule of M.

(Recall that IðMÞ ¼MQðTðMÞÞ by Proposition 2.9. Therefore M 0 is regarded

as the inverse image of MQðT 0Þ �MQðTðMÞÞ by iM.)
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Proof. This is easy to see since the inverse image of a submodule by a

module homomorphism is a submodule.

Definition 3.8. Let M be an RQ-module. Then a quandle automor-

phism j : M!M is called a central translation if j A TlðMÞ and j centralizes

InnðMÞ (i.e. for all c A InnðMÞ, j � c ¼ c � j).

Lemma 3.9. If M has a non-trivial central translation, M has a nonzero

submodule that is a covering module.

Proof. Let jðða; qÞÞ ¼ ðaþ bq; qÞ be a central translation. Then

jðsð0;pÞðða; qÞÞÞ ¼ sð0;pÞðjðða; qÞÞÞ. The left hand side equals to jðhp;qa; p . qÞ ¼
ðhp;qaþ bp.q; p . qÞ and the right hand side equals to ð0; pÞ . ðaþ bq; qÞ ¼
ðhp;qðaþ bqÞ; p . qÞ ¼ ðhp;qaþ hp;qbq; p . qÞ. This implies that bp.q ¼ hp;qbq
for all p; q A Q and N ¼

‘
q AQ Rbq is closed under hp;q. On the other hand,

ðbq; qÞ ¼ jðð0; qÞÞ implies that sð0;qÞ ¼ jsð0;qÞj
�1 ¼ sðbq;qÞ, i.e. tp;q 1 0 for all

p; q A Q. Therefore N is a submodule of M that is a covering module.

Now we prove Theorem 3.5.

Proof. (1) First note that TðMÞ0 0 since TðMÞ ¼ 0 implies that M is a

covering module. Given M, we have the module homomorphism iM : M!
IðMÞ. Since M is irreducible, iM is injective or zero. Since iM ¼ 0 implies

that M is a covering module, iM is injective. For q A Q, let Tq be the image

of Mq by iM. Then Tq GMq and when regarded as subgroups of TðMÞ,P
q AQ Tq ¼ TðMÞ by definition (see Proposition 2.9 (2)).

Let T 0 be a proper R½AsðQÞ�-submodule of TðMÞ. Then M 0 ¼‘
q AQ Mq \ i�1M ðT 0Þ is a submodule of M by Lemma 3.7. Since M is irre-

ducible, Mq \ i�1M ðT 0ÞGTq \ T 0 is either Mq for all q A Q or zero for all q A Q.

Moreover, since Mq GTq generates TðMÞ as an R½AsðQÞ�-module, we must

have Tq \ T 0 ¼ 0 for all q.

Now for q A Q, by Lemma 3.6, ð1� gqÞ:T 0 � T 0 \ Tq ¼ 0, which means

that ð1� gqÞ:t 0 ¼ 0 for any q A Q. Therefore T 0 is an R½AsðQÞ�-submodule

of TðMÞ with trivial action. Recall that AsðQÞ acts on TðMÞ via conjugation

by KðMÞ. This means that an element t 0 in T 0 is a central translation. By

Lemma 3.9, if T 00 0, M has a covering submodule, which contradicts the

assumption that M is a non-covering irreducible RQ-module. Therefore

T 0 ¼ 0.

(2) By Lemma 3.6, it is straightforward to show that MQðMÞ is an RQ-

submodule of MQðMÞ. Let M 0 ¼
‘

q AQ M 0
q be an RQ-submodule of MQðMÞ.

Then M 0 ¼
P

q AQ M 0
q is an R½AsðQÞ�-submodule of M. Since M is irreduc-

ible, M 0 is either M or 0. If M 0 ¼M, by Lemma 3.6, M 0
q �

P
p AQð1� gqÞM 0

p
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¼ ð1� gqÞ:M 0 ¼ ð1� gqÞ:M ¼Mq. Therefore M 0
q ¼Mq for all q, and hence

M 0 ¼MQðMÞ.
Next we show that MQðMÞ is not a covering module. For ðm; qÞ;

ðn; pÞ A MQðMÞ, tm;qðn; pÞ ¼ ðnþ tq;q.�1pðmÞ; pÞ ¼ ðnþ ð1� gpÞm; pÞ. There-

fore TðMQðMÞÞ is the set of translations fð1� gpÞmgp AQ for m A M. Since

M is irreducible and nontrivial, the mapping m 7! fð1� gpÞmgp AQ is injective.

Moreover, for q A Q,

fð1� gpÞ:ðgq:mÞgp ¼ fðgqð1� gq.�1pÞÞ:mgp

¼ gq:fð1� gpÞ:mgp

implies that this mapping is a homomorphism of AsðQÞ-modules. Therefore

TðMQðMÞÞGM0 0. Therefore MQðMÞ is not a covering module.

(3) Let M be an irreducible RQ-module that is not a covering.

Then in the notation of (1) as we saw above, ð1� gqÞTðMÞ � Tq for all

q A Q. Therefore MQðTðMÞÞ is a submodule of
‘

q AQ Tq. However since

MG
‘

q AQ Tq that is irreducible, they must be equal. This implies that

MGMQðTðMÞÞ.
The converse direction is also true since we have already shown that

TðMQðMÞÞGM for a nontrivial irreducible R½AsðQÞ�-module M in proof

of (2).

4. AsðQÞ-modules

Throughout this section, let Q be a connected quandle. Let F be a field

and F its algebraic closure. For a group G, denote by RepðGÞ the set of

isomorphism classes of finite dimensional F -representations and by IrrðGÞ the
set of isomorphism classes of finite dimensional irreducible F -representations.

An extension E of F is called a decomposition field of G if any irreducible

representation of G is realized over E. Then the arguments in this section are

valid over any decomposition field E.

Recall that AsðQÞGAs0ðQÞzZ by Proposition 3.1.

Definition 4.1. Let N be a group and j A AutðNÞ.
(1) For ðV ; r : N ! AutðVÞÞ A RepðNÞ, the representation ðV ; j�rÞ

defined by j�rðnÞ ¼ rðjðnÞÞ is called the pullback of r. We some-

times denote ðV ; j�rÞ by j�V . We write j�mr ¼ ðj�Þmr and j�ð�mÞr

¼ ððj�1Þ�Þmr for a positive integer m.

(2) Let ðV ; rÞ; ðU ; sÞ A RepðNÞ. Then a linear map f : V ! U is called

a j-morphism if the following diagram is commutative:

44 Kosuke Uematsu



V ����!rðnÞ
V???y f

???y f

U ����!sðjðnÞÞ
U :

This is equivalent to saying that f is an N-homomorphism from V to

j�U .

(3) ðV ; rÞ; ðU ; sÞ A RepðNÞ are said to be j-equivalent if there exists an

integer m such that ðV ; j�mrÞG ðU ; sÞ.
(4) Let ðV ; rÞ A RepðNÞ. Denote by ordjðrÞ (or ordjðVÞ) the minimum

positive integer m such that ðV ; rÞ and ðV ; jmrÞ are isomorphic if such

an m exists, otherwise y. This is called the order of r with respect

to j. Note that if j is of order m in AutðNÞ, ordjðrÞ divides m.

Clearly the following properties hold:

Proposition 4.2. Let N be a group and ðV ; rÞ A RepðNÞ. Then the

following hold:

(1) HV ¼ fj A AutðNÞ jV G j�Vg is a subgroup of AutðNÞ.
(2) For j A AutðNÞ, let Mj ¼ f f : V ! V j f is a j-morphismg. Then

Mj is a subspace of EndF ðVÞ and MjMc �Mjc for j;c A AutðNÞ.
The set Mid is the endomorphism ring of ðr;VÞ.

(3) For j A HV, let M�
j �Mj be the set of invertible (i.e. bijective)

j-morphisms (note that M�
j 0q by the definition of HV). Then for

a fixed f A M�
j , there is a bijection between Mid and Mj through

a$ fa for a A Mid and this bijection induces a bijection between M�
id

and M�
j .

(4) If V is irreducible, every nonzero j-morphism for j A HV is a

linear automorphism. In particular, for j A HV, Mj ¼ f F for some

j-isomorphism f .

Definition 4.3. Let N be a group and j A AutðNÞ. Let G ¼ Nz h f i
where h f iGZ and fnf �1 ¼ jðnÞ for n A N. For ðV ; rÞ A RepðNÞ such that

ordjðrÞ is finite and a A M�
jordjðrÞ , let

V "j;a ¼ 0
ordjðVÞ�1

i¼0
Vi

where Vi ¼ j�iV for each i and

r "j;a ðnÞ : V "j;a ! V "j;a; Vi C vi 7! j�irðnÞðviÞ A Vi;

r "j;a ð f Þ : V "j;a ! V "j;a; Vi C vi 7!
vi A Vi�1 ði0 0Þ
aðv0Þ A VordjðrÞ�1 ði ¼ 0Þ

�
:
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Then r "j;a ð f Þr "j;a ðnÞr "j;a ð f �1Þ ¼ r "j;a ðjðnÞÞ ¼ r "j;a ð fnf �1Þ and this

implies that ðV "j;a; r "j;aÞ A RepðGÞ. The representation ðV "j;a; r "j;aÞ is

called the j-induced representation of ðV ; rÞ by a.

Proposition 4.4. Let N be a finite group, j A AutðNÞ, and G ¼ Nzj Z.
Let ðV ; rÞ A IrrðNÞ and a A M�

jordjðrÞ . Then ðV "j;a; r "j;aÞ is an irreducible

G-representation. Conversely, a finite dimensional irreducible G-representation

is obtained in this way.

Lemma 4.5. Let G be a group and ðW ; sÞ A IrrðGÞ. Then for a positive

integer n, Endð0n

i¼1 WÞ is isomorphic to the matrix algebra MnðFÞ.

Proof. Straightforward from the Schur’s lemma.

Now we prove Proposition 4.4.

Proof. As an N-representation, ðV "j;a; r "j;aÞ #GN is the direct sum of

mutually non-isomorphic irreducible representations. Hence any irreducible

N-subrepresentation of ðV "j;a; r "j;aÞ #GN is equal to one of the summands Vi

in the definition above. By the definition of the action of f , Vi generates

ðV "j;a; r "j;aÞ as a G-representaion. Therefore ðV "j;a; r "j;aÞ is irreducible.

On the other hand, let ðW ; sÞ A IrrðGÞ. Then there exists an irreducible

N-subrepresentation U of ðW ; sÞ #GN . Let W0 ¼
P

U GW 0�W W 0 (W 0 runs

through all N-submodules isomorphic to U). Since W is finite dimensional,

W0 is isomorphic to U r for some integer r as an N-representation. Moreover,

for an irreducible submodule W 0 �W0, sð f ordjðUÞÞðW 0Þ is isomorphic to U ,

thus sð f ordjðUÞÞðW 0Þ �W0. Therefore sð f ordjðUÞÞ is an automorphism of the

N-representation W0. By Lemma 4.5, this is represented by some matrix

A A MrðFÞ. Note that a subspace of MrðF Þ-module F
r
corresponds to a

subrepresentation of W0. Let w be an eigenvector of A and let W 0 be the

subrepresentation of W0 corresponding to the eigenspace Fw. Then W 0 is

irreducible and isomorphic to U , sð f ordjðUÞÞðW 0Þ ¼W 0 and 0ordjðW 0Þ�1
i¼0 j�iW 0

is a nonzero submodule of W . Since W is irreducible, r ¼ 1 and the statement

holds.

5. Examples

In this section, we will describe irreducible modules over some connected

quandles. Let Cn denotes the cyclic group of order n.

5.1. Dihedral quandle.

Definition 5.1. Let A be an Abelian group. Then the generalized

dihedral group of A is the group DA ¼ AzC2 where C2 is generated by t,
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with action tat�1 ¼ a�1 for a A A (we write the group operation on A by

multiplication as the subgroup of DA).

Proposition 5.2. Let A be an Abelian group of odd order. Then

fta j a A Ag forms a connected subquandle of ConjðDAÞ.

Proof. For a; b A A, ðtaÞ . ðtbÞ ¼ ðtaÞðtbÞðtaÞ�1 ¼ tatba�1t�1 ¼ tab�1a

¼ tb�1a2. Since A is of odd order, the map a 7! a2 is an automorphism

of A.

Definition 5.3. Let A be an Abelian group of odd order. Denote by QA

the quandle obtained as in Proposition 5.2.

More generally, for an Abelian group A with group operator þ, the

quandle A with the operation a . b ¼ aþ tðb� aÞ for some t A AutðAÞ is called
an Alexander quandle on A. The dihedral quandles are special cases of

Alexander quandles (the map t is the inversion map a 7! �a).
Since QA generates DA and the center of DA is trivial, the inner auto-

morphism group InnðQAÞ is isomorphic to DA by Example 1.3 and it is easy to

see that Inn0ðQAÞGA. As particular examples, we look at the case A ¼ Cn

and Cn � Cn for an odd number n. To find irreducible modules, we have to

study the structure of AsðQÞ. By Proposition 1.10, there is a natural surjective

homomorphism MðInnðQAÞÞ ¼ H2ðInnðQAÞ;ZÞ ! Z0ðQAÞ. Recall the exact

sequence ð�2Þ : 1! Z0ðQAÞ ! As0ðQAÞ ! Inn0ðQAÞ ! 1.

Now we study the structure of AsðQAÞ. The structure of the associated

group of an Alexander quandle is given in [Cla].

Theorem 5.4 ([Cla, Theorem 1]). Let M be an Abelian group and T be

an automorphism of M. Denote by AðM;TÞ the Alexander quandle on M with

the automorphism T. Suppose that the quandle AðM;TÞ is connected. Let

t : MnM !MnM; xn y 7! ðTyÞn x and SðM;TÞ the cokernel of 1� t.

Then the associated group AsðAðM;TÞÞ is isomorphic to the group F ðM;TÞ ¼
Z�M � SðM;TÞ (as a set) with the operation

ðk; x; aÞðm; y; bÞ ¼ ðk þm;Tmxþ y; aþ b þ ½Tmxn y�Þ

where ½g� in the third component denotes the element g mod ð1� tÞðMnMÞ.
Moreover, the isomorphism is given by AsðAðM;TÞÞ ! FðM;TÞ; gx 7! ð1; x; 0Þ.

In particular, if T is the inversion map of M, the subgroup SðM;TÞ is the
exterior square M5M.

Clauwens also gives a description of the fundamental group of Alexander

quandles.
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Remark 5.5 ([Cla]). Let M and T be as above and let the quandle

AðM;TÞ be connected. Then p1ðAðM;TÞ; 0Þ is isomorphic to SðM;TÞ
through the isomorphism AsðAðM;TÞÞGF ðM;TÞ given in Proposition 5.4.

Definition 5.6. Let n be a positive integer. Then the group

Hen ¼ hS;T ;U jSn;T n;U n; ½T ;S�U�1; ½U ;S�; ½U ;T �i

is called the Heisenberg group of order n3.

In general, for a commutative ring R, the subgroup of the form

1 a b

0 1 c

0 0 1

0
B@

1
CA
������� a; b; c A R

8><
>:

9>=
>;

of GL3ðRÞ is called the Heisenberg group over R. The definition above is the

case where R ¼ Z=nZ.
Applying the results above, we have the following facts:

Proposition 5.7. Let n be an odd number.

(1) Let A ¼ Cn and j A AutðAÞ be the inversion. Then SðA; jÞ ¼ 0 and

AsðQAÞGAzZ with 1 A Z acting by inversion. The fundamental

group p1ðQA; qÞ is trivial for any q A Q.

(2) Let A ¼ Cn � Cn and j A AutðAÞ be the inversion. Then SðA; jÞGCn

and AsðQAÞGHen zZ where 1 A Z acts on Hen by S 7! S�1,

T 7! T�1, U 7! U in the representation above. The fundamental

group p1ðQA; qÞ is SðA; jÞGCn for q A Q.

Proof. (1) As stated above, SðA; jÞ ¼ Cn5Cn ¼ 0 since n is odd.

Moreover, let u ¼ ð1; 0; 0Þ A FðA; jÞ. Then u�1 ¼ ð�1; 0; 0Þ and

uð0; 1; 0Þu�1 ¼ ð1; 0; 0Þð0; 1; 0Þð�1; 0; 0Þ ¼ ð1; 1; 0Þð�1; 0; 0Þ ¼ ð0;�1; 0Þ:

Therefore AsðQAÞGAzZ with 1 A Z acting by inversion. By Remark 5.5,

p1ðQA; qÞ is trivial.

(2) Let A ¼ Cn�Cn ¼ hx1i�hx2i. Then SðA; jÞ ¼ ðCn�CnÞ5ðCn�CnÞ
¼ Cn generated by ½x1 n x2�. Now let s ¼ ð0; x1; 0Þ, t ¼ ð0; x2; 0Þ, u ¼ ð0; 0;
½�2x1 n x2�Þ A F ðA; jÞ. Then for i ¼ 1; 2,

ð0; xi; 0Þð0;�xi; 0Þ ¼ ð0; 0; ½xi n ð�xiÞ�Þ

¼ ð0; 0; 0Þ

since xi n xi 1 0 mod ð1� tÞðAnAÞ. Therefore s�1 ¼ ð0;�x1; 0Þ, t�1 ¼
ð0;�x2; 0Þ. It is clear that su ¼ us, tu ¼ ut. Moreover
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tst�1s�1 ¼ ð0; x2; 0Þð0; x1; 0Þð0;�x2; 0Þð0;�x1; 0Þ

¼ ð0; x1 þ x2; ½x2 n x1�Þð0;�x2; 0Þð0;�x1; 0Þ

¼ ð0; x1; ½x2 n x1 � ðx1 þ x2Þn x2�Þð0;�x1; 0Þ

¼ ð0; 0; ½�2x1 n x2�Þ

¼ u

since x1 n x2 1�x2 n x1 mod ð1� tÞðAnAÞ. Therefore the group generated

by s, t, u is isomorphic to Hen. Moreover, let v ¼ ð1; 0; 0Þ A F ðA; jÞ. Then

v�1 ¼ ð�1; 0; 0Þ and

vsv�1 ¼ ð1; 0; 0Þð0; x1; 0Þð�1; 0; 0Þ ¼ ð1; x1; 0Þð�1; 0; 0Þ ¼ ð0;�x1; 0Þ ¼ s�1;

vtv�1 ¼ ð1; 0; 0Þð0; x2; 0Þð�1; 0; 0Þ ¼ ð1; x2; 0Þð�1; 0; 0Þ ¼ ð0;�x2; 0Þ ¼ t�1;

and

vu ¼ uv:

Therefore AsðQAÞGHen zZ where 1 A Z acts as in the statement. Remark

5.5 implies that p1ðQA; qÞGCn ¼ SðA; jÞ.

Next we classify FQA-modules. Let F be an algebraically closed field

of characteric 0 and consider irreducible F ½AsðQA)]-modules. If A ¼ Cn,

AsðQAÞ ¼ Cn zZ where 1 A Z acts on Cn through the inversion automorphism

j A AutðCnÞ. Let As0ðQAÞ ¼ Cn ¼ hsi and for i A f0; . . . ; n� 1g, let wi;

s 7! z in where zn A F is a fixed primitive n-th root of unity. Then IrrðCnÞ ¼
fwi j i A f0; . . . ; n� 1gg. The j-equivalence classes are fw0g; fw1; wn�1g; . . . ;
fwðn�1Þ=2; wðnþ1Þ=2g. By Proposition 4.4, IrrðAsðQAÞÞ ¼ fw "j;a j w A IrrðCnÞ;
a A F �g.

Fix t A QA. Since p1ðQA; tÞ ¼ 1 by Proposition 5.7, there exists only one

irreducible covering QA-module by Theorem 3.4. Let r ¼ w "j;a A IrrðAsðQAÞÞ
for w A IrrðCnÞ, a A F � and V be the representation space. If w ¼ w0, V is

1-dimensional. If a ¼ 1, r is the trivial AsðQÞ-module. Otherwise, MQðVÞ
is isomorphic to MQðVÞ and is induced from the AsðQÞ-module defined by

AsðQÞ ! F �; gt 7! a.

Let w ¼ wi for i A 1; . . . ; n�12
� �

. Then rðgtÞ can be identified with the

matrix
0 1

a 0

� �
. If a0 1, the matrix has no eigenvector with respect to

eigenvalue 1. Therefore MQðVÞ ¼MQðVÞ that is induced from an AsðQÞ-
modules. If a ¼ 1, the eigenvalues of the matrix are 1 and �1, each with

multiplicity 1. Therefore MQðVÞ is a 1-dimensional Q-module that is not

induced from AsðQÞ-modules.
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Now we give a more concrete description of MQðVÞ for r ¼ w1 "j;1. For

an element ts i A QA � DA where A ¼ hsi ¼ Cn, the representation r is given as

follows:

rðgts iÞ ¼ 0 1

1 0

� �
z in 0

0 z�in

� �
¼ 0 z�in

z in 0

� �
:

Then ð1� gts iÞV is a 1-dimensional subspace with basis vi ¼
1

�z in

� �
. With

this basis,

gts i :vj ¼
0 z�in

z in 0

� �
1

�z j
n

� �
¼ �z j�i

n

z in

� �
¼ �z j�i

n vk;

ð1� gts2i� j Þ:vi ¼
1 �z�ð2i�jÞn

�z2i�jn 1

 !
1

�z in

� �
¼ 1þ z�ði�jÞn

�z2i�jn � z in

 !
¼ ð1þ z j�i

n Þvk

where k12i� j mod n, 0ak < n. These imply that hts i ; ts j ¼ �z j�i
n , tts i ; ts j ¼

1þ z j�i
n .

Next let A ¼ Cp � Cp where p is an odd prime. For the group Hep, the

following holds:

Proposition 5.8. There are p2 þ p� 1 irreducible representations of Hep.

Among them, p2 are 1-dimensional and the others are p-dimensional.

Proof. Let Xi; j ¼ S iT j for i; j A f0; . . . ; p� 1g. Recall that TST�1 ¼
SU and STS�1 ¼ TU�1. Therefore SXi; jS

�1 ¼ Xi; jU
�j and TXi; jT

�1 ¼
Xi; jU

i. Hence the conjugacy classes are represented by Xi; j for i; j A
f0; . . . ; p� 1g except for i ¼ j ¼ 0, and Uk for k A f0; . . . ; p� 1g and there

are p2 þ p� 1 conjugacy classes. Since the number of 1-dimensional represen-

tations is equal to the order of the abelianization, there are p2. Moreover

since the dimension of an irreducible representation divides the order of the

group by [NT, Chapter 3, Theorem 2.4] and p4 > p3, the others must be

p-dimensional. Then 1 	 p2 þ p2 	 ðp� 1Þ ¼ p3.

Specifically, every 1-dimensional irreducible representation is constructed

by lifting an irreducible representation of C 2
p ¼ Heabp . Denote by r

ð1Þ
s; t the

irreducible representation defined by S 7! zsp, T 7! z tp. Every p-dimensional

representation is of the following form for s A f1; . . . ; p� 1g:

S 7!

1

1

. .
.

1

0
BBBB@

1
CCCCA;
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T 7!

1

zsp

z2sp

. .
.

z�sp

0
BBBBBBBB@

1
CCCCCCCCA
;

U 7!

zsp

. .
.

zsp

0
BBB@

1
CCCA:

We denote by r
ðpÞ
s the irreducible representation above. Then its character is

given as follows:

w
r
ð pÞ
s
ðXi; jÞ ¼ 0 if i0 0 or j0 0; w

r
ð pÞ
s
ðUkÞ ¼ pz skp :

Since two representations of a finite group are isomorphic if and only if

their characters coincide, the following holds:

Proposition 5.9. Let j be the automorphism of Hep defined by S 7! S�1,

T 7! T�1, U 7! U. Then a j-equivalence class is one of the following:

(1) frð1Þ0;0g,
(2) frð1Þs; t ; r

ð1Þ
p�s;p�tg for s; t A f0; . . . ; p� 1g except for s ¼ t ¼ 0,

(3) frðpÞs g for s A f1; . . . ; p� 1g.

Let s A IrrðHepÞ, r ¼ s "j;a and V be the representation space of r. The

case dim s ¼ 1 is similar to the case A ¼ Cp. For s ¼ r
ð1Þ
0;0 and a0 1, MQðVÞ

is a module induced from an AsðQÞ-module and for s ¼ r
ð1Þ
s; t and a ¼ 1,

MQðVÞ is a module that is not induced from AsðQÞ-modules. If s is

p-dimensional, ordjðsÞ ¼ 1 and a j-automorphism a is of the form

Pa ¼ a

1

1

. ..

1

0
BBB@

1
CCCA

for a A F �. The matrix Pa has eigenvalues a of multiplicity pþ1
2 and �a of

multiplicity p�1
2 . Therefore if a ¼ 1, MQðVÞ is p�1

2 -dimensional and if a ¼ �1,
MQðVÞ is pþ1

2 -dimensional. Otherwise, MQðVÞ is a module induced from an

AsðQÞ-module. In particular, if p ¼ 3, there is a 1-dimensional module that is

not induced from AsðQÞ-modules.

On the other hand, by Proposition 5.7 p1ðQ; qÞ ¼ hUi ¼ Cp, which implies

that there are p irreducible covering modules.
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5.2. Connected quandles in ConjðSL2ðFqÞÞ. We consider the special linear

group SL2ðFqÞ where Fq denotes the field of q ¼ p f elements for a prime p.

First we state some basic facts on SL2ðFqÞ. A proof for odd p is in [Bon,

Chapter 1] and the case p ¼ 2 is similar.

Proposition 5.10. (1) The order of SL2ðFqÞ is qðq2 � 1Þ.
(2) If qb 4, SL2ðFqÞ is a perfect group, i.e. its commutator subgroup is

the whole group.

(3) Let PSL2ðFqÞ ¼ SL2ðFqÞ=ZðSL2ðFqÞÞ denote the projective special

linear group where ZðGÞ denotes the center of the group G. If p0 2,

ZðSL2ðFqÞÞ ¼ fGI2g where I2 is the identity matrix. If p ¼ 2,

ZðSL2ðFqÞÞ is trivial.

(4) PSL2ðFqÞ is a simple group if qb 4. PSL2ðF3Þ is the alternating

group A4 and SL2ðF2Þ ¼ PSL2ðF2Þ is the symmetric group S3 that

are solvable.

It is also known that SL2ðF4ÞGPSL2ðF5ÞGA5 and PSL2ðF9ÞGA6.

Remark 5.11. Note that the group PSL2ðFqÞ acts faithfully on the pro-

jective space P1ðFqÞ. The isomorphism in (4) of Proposition 5.10 is obtained

from this action. The commutator subgroup of S3 GPSL2ðF2Þ ¼ SL2ðF2Þ is
C3 (generated by 3-cycles). The commutator subgroup of A4 GPSL2ðF3Þ is
C2 � C2 (generated by ð2; 2Þ-cycles). Through the surjective group homomor-

phism p : SL2ðF3Þ ! PSL2ðF3Þ, we have that the commutator subgroup of

SL2ðF3Þ is of order 8 (recall that the commutator subgroup of SL2ðF3Þ is

mapped onto the commutator subgroup of PSL2ðF3Þ by p). In fact, the com-

mutator subgroup is isomorphic to the quaternion group Q8.

On Schur multipliers of special linear groups, the following holds [Kar,

Chapter 7]:

Theorem 5.12. MðSL2ðFqÞÞ ¼
0 ðq0 4; 9Þ;
Z=2Z ðq ¼ 4Þ;
Z=3Z ðq ¼ 9Þ:

8><
>:

Theorem 5.13. MðPSL2ðFqÞÞ ¼

0 ðq is even and q0 4Þ;
Z=2Z ðq ¼ 4; or q is odd and

q0 9Þ;
Z=6Z ðq ¼ 9Þ:

8>>><
>>>:

These theorems were originally proven by Steinberg in 1960s.

Next we look at conjugacy classes of SL2ðFqÞ. For a finite field F ,

denote by F qd the quadratic extension of F . Fix a generator z of the multi-
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plicative group F�q and a primitive ðqþ 1Þ-st root g of unity. Then g A Fqd
q ¼

Fq2 .

Next we describe the conjugacy classes of SL2ðFqÞ. Let Dzr ¼
zr 0

0 z�r

� �
and Tg r ¼

0 �1
1 Trðg rÞ

� �
. If q is odd, let n A F�q nðF�q Þ

2 and

NG;þ ¼G
1 1

0 1

� �
, NG;� ¼G

1 n

0 1

� �
. Then the following facts are known.

Proposition 5.14. For A A SL2ðFqÞ, let nðAÞ be the size of the conjugacy

class containing A.

(1) nðDzrÞ ¼ qðqþ 1Þ for 1a ra
q�3
2 if p is odd, 1a ra

q
2� 1 if p ¼ 2.

(2) nðTg rÞ ¼ qðq� 1Þ for 1a ra
q�1
2 if p is odd, 1a ra

q
2 if p ¼ 2.

(3) nðN�;�Þ is
q2�1
2 if p0 2 and q2 � 1 if p ¼ 2.

Proof. See [Bon, Proposition 1.3.1] for odd q. Similar proof works for

even q.

Proposition 5.15. A A SL2ðFqÞ is conjugate to exactly one of the follow-

ing matrices:

(1) I2,

(2) �I2 if p0 2,

(3) Dzr for 1a ra
q�3
2 if p is odd, 1a ra

q
2� 1 if p ¼ 2 (This occurs

if qb 4.),

(4) Tg r for 1a ra
q�1
2 if p is odd, 1a ra

q
2 if p ¼ 2,

(5) Nþ;þ,

(6) N�;þ if p0 2,

(7) Nþ;� and N�;� where n A F�q is a non-square element, if p0 2.

Proof. See [Bon, Theorem 1.3.3] for odd q. Similar proof works for

even q.

Proposition 5.16. If qb 4, any conjugacy class of SL2ðFqÞ except forGI2
generates the whole group. If q < 4, a conjugacy class C generates SL2ðFqÞ if
and only if C is the conjugacy class of N�;�.

Proof. If qb 4, the group SL2ðFqÞ is simple (if p ¼ 2) or a non-split

central extension of PSL2ðFqÞ that is simple (if p0 2, for the extension is non-

split since SL2ðFqÞ is perfect by Proposition 5.10). Thus any proper normal

subgroup of SL2ðFqÞ is a subgroup of the center. Since every subgroup that

is generated by some conjugacy class is normal in the whole group, the first

statement holds.

If qa 3, we saw in Remark 5.11 that SL2ðFqÞ0 is the 2- (resp. 3-)Sylow

subgroup of SL2ðFqÞ if q ¼ 3 (resp. q ¼ 2). Now the order of Tg is 4 (resp. 3)
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if q ¼ 3 (resp. q ¼ 2) that is a power of 2 (resp. 3). Therefore Tg is con-

tained in SL2ðFqÞ0 and Tg does not normally generate the group SL2ðFqÞ.
On the other hand, if q ¼ 3, the order of Nþ;� (resp. N�;�) is 3 (resp. 6). By

Proposition 5.10, PSL2ðF3ÞGA4 and N�;� is mapped to a 3-cycle. Since a

3-cycle normally generates the group A4 and SL2ðF3Þ is a non-split central

extension (since the order of the Abelianization of SL2ðF3Þ is 3 that is coprime

to 2) of PSL2ðF3Þ, N�;� normally generates the group SL2ðF3Þ. If q ¼ 2, the

order of Nþ;þ is 2. Since SL2ðF2ÞGS3 and a 2-cycle normally generates S3,

Nþ;þ normally generates SL2ðF2Þ.

Corollary 5.17. If qb 4, every non-central conjugacy class forms a con-

nected subquandle of ConjðSL2ðFqÞÞ. If q < 4, only the conjugacy classes of

N�;� are connected subquandles of ConjðSL2ðFqÞÞ.

If q ¼ 2, the conjugation quandle Q generated by Nþ;þ is isomorphic to

the dihedral quandle of A ¼ C3. If q ¼ 3, the quandle generated by N�;� is

isomorphic to a subquandle of ConjðA4Þ generated by ð1; 2; 3Þ.
Next we give definitions and basic facts on modular representations, i.e.

representations of groups over fields of positive characteristics. For details, see

[NT, Chapter 3, § 6].

Definition 5.18. Let p be a prime. For a positive integer n, denote by

n 0 the positive integer satisfying n ¼ pan 0 and gcdðn 0; pÞ ¼ 1.

Definition 5.19. Let R be a complete discrete valuation ring of char-

acteristic 0 with uniformizer p. Let F be the residue field R=pR, p the char-

acteristic of F and K the field of fractions of R. Let G be a finite group.

(1) The triplet ðK ;R;FÞ is called a p-modular system for G if R contains

every expðGÞ-th root of unity where expðGÞ denotes the exponent of

the group G, i.e. the least common multiple of ordðgÞ for g A G.

(2) Let ðK ;R;FÞ be a p-modular system for G and F 0 be the subfield of

F generated by roots of unity. Then the Teichmüller character tR is

defined on ðF 0Þ� as follows:

tR : ðF 0Þ� ! R; a 7! za;

where za is the root of unity in R with za 1 a mod p. Such an

element exists uniquely by Hensel’s lemma.

(3) An element g A G is said to be p-regular if ordðgÞ is coprime to p.

Otherwise, g is said to be p-singular. Denote by G 0p the set of

p-regular elements in G.

Definition 5.20. Let G be a finite group and ðK ;R;F Þ be a p-modular

system for G. Let ðV ; rÞ be a representation of G over F . For g A G 0p, let
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a1; . . . ; ar be the eigenvalues of rðgÞ, where r ¼ dim r (note that eigenvalues are

in F � since F contains enough roots of unity). Then the map jr : G
0
p ! R;

g 7!
Pr

i¼1 tRðaiÞ is called the Brauer character for ðr;VÞ over a characteristic p.

Denote by IBrpðGÞ the set of irreducible Brauer characters over characteristic

p, i.e. Brauer characters induced from irreducible F -representations. This is

independent of the choice of the p-modular system up to identification.

One of the fundamental results in modular representations is stated as

follows [NT, Chapter 3, Theorem 6.5]:

Theorem 5.21. ]IBrpðGÞ is equal to the number of p-regular conjugacy

classes.

Now we consider representations of SL2ðFqÞ over fields of characteristic

p. Fix a p-modular system ðK ;R;F Þ for SL2ðFqÞ. Since the exponent of

SL2ðFqÞ is

p 	 q
2�1
2 ðp0 2Þ;

2ðq2 � 1Þ ðp ¼ 2Þ;

(

F contains ðFqÞqd ¼ Fq2 . An element A A SL2ðFqÞ is p-singular if and only

if A is conjugate to N�;�. Therefore the number of p-regular conjugacy classes

is

2þ q�3
2 þ

q�1
2 ¼ q ðp0 2Þ;

1þ q
2� 1þ q

2 ¼ q ðp ¼ 2Þ:

(

Therefore the following holds:

Proposition 5.22. ]ðIBrpðSL2ðFqÞÞ ¼ q.

Next we find out q irreducible representations. Recall that q ¼ p f . Let

s : x 7! x p A GalðFq=FpÞ (note that s generates GalðFq=FpÞ). Now for i ¼
0; . . . ; f � 1, let wi : SL2ðFqÞ ! GL2ðF Þ; A 7! s iðAÞ (s acts on each entry in A).

Then wi is a 2-dimensional irreducible representation. Let Vi GF 2 be the

representation space of wi. Then the action of SL2ðFqÞ on Vi extends to an

action on the symmetric algebra SðViÞ. Recall that for an n-dimensional vector

space V , SðVÞ is isomorphic to the polynomial ring in n variables. In this

identification, for a polynomial h and A ¼ a b

c d

� �
, the action of SL2ðFqÞ on

SðViÞ is written as follows:

A:hðXi;YiÞ ¼ hðs iðaÞXi þ s iðcÞYi; s
iðbÞXi þ s iðdÞYiÞ

where Xi, Yi denotes the standard basis for Vi. Then the subspace Vi;kþ1 ¼
SðViÞk of homogeneous polynomials of degree k for kb 0 is a ðk þ 1Þ-
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dimensional subrepresentation of SðViÞ. We denote this representation by

wi;kþ1. Clearly wi;1 is the trivial representation and wi;2 ¼ wi.

With these notations, the following holds [Hum, Chapter 2.7 and

2.11]:

Proposition 5.23 (Steinberg Tensor Product Theorem for SL2ðFqÞ). Let

ri A f1; . . . ; pg for i ¼ 0; . . . ; f � 1. Then

rr0;...; rf�1 ¼ w0; r0 n 	 	 	n wf�1; rf�1

give distinct irreducible representations of SL2ðFqÞ.

Steinberg tensor product theorem gives distinct irreducible representations

of groups of Lie type. The proposition is the special case for SL2ðFqÞ that is
of type A1.

Next we give a concrete description of the group AsðQÞ.

Proposition 5.24. Let q0 2; 3; 4; 9 and Q be a conjugacy class in SL2ðFqÞ
that generates the whole group (i.e. Q is a non-central conjugacy class of

SL2ðFqÞ). Let h : AsðQÞ ! SL2ðFqÞ be the group homomorphism induced

by adjunction from the inclusion map Q! ConjðSL2ðFqÞÞ. Then AsðQÞG
SL2ðFqÞ � Z by the map g 7! ðhðgÞ; degðgÞÞ.

Proof. Note that InnðQÞ ¼ PSL2ðFqÞ by Example 1.3 and InnðQÞ is

simple by Proposition 5.10. Recall that Z0ðQÞ is a quotient group of

MðPSL2ðFqÞÞ by Proposition 1.10 and that Inn0ðQÞGAs0ðQÞ=Z0ðQÞ. By

assumption and Theorem 5.13, MðPSL2ðFqÞÞ is Z=2Z if q is odd, otherwise 0.

Therefore the order of As0ðQÞ is at most 2ð]PSL2ðFqÞÞ if q is odd, ]PSL2ðFqÞ
otherwise, i.e. at most ]ðSL2ðFqÞÞ for both cases. Take P A Q. Since

Inn0ðQÞ ¼ InnðQÞ, there exists x A As0ðQÞ such that x:A ¼ gP:A for any A A Q.

Then x�1gP is in the center of AsðQÞ by Proposition 1.6. This shows that

AsðQÞGAs0ðQÞ � hx�1gPi. Since h is surjective and SL2ðFqÞ is perfect by

Proposition 5.10, As0ðQÞ is mapped onto SL2ðFqÞ by h. (Again note that

the commutator subgroup is mapped onto the commutator subgroup by a

surjective group homomorphism). By comparing the orders, we see that

As0ðQÞGSL2ðFqÞ.

Let Q be a conjugacy class in SL2ðFqÞ that generates the whole group

where q0 2; 3; 4; 9. By Proposition 5.16, this is equivalent to saying that

q0 2; 3; 4; 9 and Q is a non-central conjugacy class. Then p1ðQ;PÞ for P A Q

is the stabilizer of P in As0ðQÞ, hence is isomorphic to the centralizer of P in

SL2ðFqÞ. By proof of Proposition 5.14, it is Abelian. Therefore there are

ð]p1ðQ;PÞÞ0 irreducible covering modules (recall that n 0 denotes the prime-to-p
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part of n). Since AsðQÞGSL2ðFqÞ � Z, every irreducible representation of

AsðQÞ is of the form w " id;a for a A F � and w A IBrpðSL2ðFqÞÞ by Proposition

4.4. We write the same symbol w for the corresponding modular represen-

tation.

Let tRðzÞ ¼ zz and tRðgÞ ¼ zg. Then zz (resp. zg) is a ðq� 1Þ-st (resp.

ðqþ 1Þ-st) root of unity. Now the eigenvalues of wi; riðDzrÞ (resp. wi; riðTg rÞ)
are

zp
irðri�1Þ

z ; zp
irðri�3Þ

z ; . . . ; zp
irð�riþ3Þ

z ; zp
irð�riþ1Þ

z

ðresp: zp
irðri�1Þ

g ; zp
irðri�3Þ

g ; . . . ; zp
irð�riþ3Þ

g ; zp
irð�riþ1Þ

g Þ:

Now a module that is not induced from AsðQÞ-modules is obtained as

MQðw " id;a�1Þ for w A IBrpðSL2ðFqÞÞ and an eigenvalue a of wðPÞ for some

P A Q (note that a is an eigenvalue of wðPÞ for any P A Q since Q is a con-

jugacy class of SL2ðFqÞ).
As an example, we classify all 1-dimensional Q-modules.

Proposition 5.25. Let Q be a non-central conjugacy class in SL2ðFqÞ for
q0 2; 3; 4; 9. Then any 1-dimensional Q-module is isomorphic to one of the

following:

(1) irreducible covering modules,

(2) MQðr1;...;1 " id;aÞ for a0 1,

(3) MQðwi;2 " id;a
�1Þ where a A F � is an eigenvalue of wi;2ðPÞ for P A Q for

a p-regular conjugacy class Q (As stated above, a is an eigenvalue of

wi;2ðPÞ for any P.),

(4) MQðwi;2 " id;G1Þ where Q is a p-singular conjugacy class (i.e. Q is a

class of N�;�) and G1 is the eigenvalue of P A Q,

(5) MQðwi;3 " id;�1Þ where Q is a conjugacy class of order 4. (Note that

this occurs if p0 2. Then since either q� 1 or qþ 1 is divisible by 4,

there exists an element of order 4.)

For the cases (4), (5), the module is defined over Fq. For the case (3), the

module is defined over Fq if and only if Q is the class of D�. If Q is the class

of T�, the module is defined over Fqd
q ¼ Fq2 .

Proof. First note that if Q is a p-regular conjugacy class and w is a

representation of As0ðQÞGSL2ðFqÞ, then wðPÞ is diagonalizable for any P A Q

and MQðw " id;aÞ is 1-dimensional for some a if and only if:

wðPÞ has 2 distinct eigenvalues with multiplicities

dim w� 1 and 1 respectively: ð��Þ

Note that a is taken to be the inverse of the former eigenvalue.
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As above, every irreducible covering module is 1-dimensional.

On the other hand, a non-covering 1-dimensional module is irreducible,

and hence by Theorem 3.5, it is isomorphic to MQðMÞ for some non-

trivial irreducible AsðQÞ-module M. Let w A IBrpðSL2ðFqÞÞ be its restiction

to As0ðQÞ ¼ SL2ðFqÞ. If dim w ¼ 1, w ¼ r0;...;0 and this case corresponds to

the case (2).

If dim w ¼ 2, w ¼ wi;2 for some i. If Q is a p-regular conjugacy class,

every element P A Q has a common pair of eigenvalues in F . Therefore

MQðwi;2 " id;a
�1Þ is a 1-dimensional Q-module if a is an eigenvalue of wi;2ðPÞ.

If Q is a p-singular conjugacy class, every element P A Q has an eigenvalue G1

with multiplicity 2. Since wi;2ðPÞ0 I2, MQðwi;2 " id;G1Þ is 1-dimensional.

For the case dim wb 3, by the following two lemmas we see that MQðwÞ
is 1-dimensional if and only if Q and w are as in (5).

Lemma 5.26. Let Q be a p-regular class. Let R be the set of f -tuples of

integers from 1 to p indexed by 0; . . . ; f � 1. For r ¼ ðriÞ A R, denote rr ¼
rr0;...; rf�1 .

(1) Let r A R satisfy that just one of ri isb 3 and the others are 1. Then

for P A Q, the condition ð��Þ is satisfied for w ¼ rr if and only if P is

of order 4 and ri ¼ 3.

(2) Let s ¼ ðsiÞ A R and a A f1; . . . ; pg. Choose an index i0 such that

si0 ¼ 1 and let r ¼ ðriÞ A R where ri ¼ si if i0 i0 and ri0 ¼ a. If rs
does not satisfy the condition ð��Þ for any P A Q, neither does rr.

(3) Let r A R satisfy that at least 2 of ri’s are b 2. Then rr does not

satisfy the condition ð��Þ for any P A Q.

Proof. (1) We may assume that the index i is 0. If Q is a p-regular

class, as stated before the proposition, for an eigenvalue z A F of P, the

eigenvalues of rrðPÞ are zr0�1; z r0�3; . . . ; z�r0þ3; z�r0þ1. Since z2 0 1, two neigh-

boring eigenvalues cannot be equal. Thus if ð��Þ is satisfied, then we have

r ¼ 3 and z2 ¼ z�2. Therefore we see that the condition ð��Þ is satisfied if and

only if r0 ¼ 3 and z is a fourth root of unity.

(2) First note that for any P A Q, rs satisfy the negation of condition ð��Þ
if and only if at least one of the following conditions is satisfied:

� rsðPÞ has at least 3 distinct eigenvalues,
� the multiplicity of every eigenvalue of rsðPÞ is at least 2.

Note that rr corresponds to rs n wi0;a. Since every eigenvalue of rs n wi0;aðPÞ
is of the form lm where l (resp. m) is an eigenvalue of rsðPÞ (resp. wi0;aðPÞ), if rs
satisfies one of the conditions above, the same condition is satisfied for rr.

(3) By (1),(2), it is enough to show that the assertion for the case just 2

of ri are 2 or 3 and the others are 1. Then rr ¼ wi;a n wj;b where i; j A f0; . . . ;
f � 1g and a; b A f2; 3g. We proceed by dividing into 3 cases:
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(i) If a ¼ b ¼ 2, let l, l�1 (resp. m, m�1) be the eigenvalues of wi;2ðPÞ
(resp. wj;2ðPÞ). Then rrðPÞ has the eigenvalues lm, lm�1, l�1m, l�1m�1. To

prevent rrðPÞ from having 3 distinct eigenvalues, 2 of the 4 values must be

equal. Since the order of P is not 2, l0 l�1 and m0 m�1. Therefore both

lm ¼ l�1m�1 and lm�1 ¼ l�1m must hold. Then lm; lm�1 A fG1g since these

are equal to their inverses. Since m0 m�1, these are distinct. Therefore rrðPÞ
has 2 eigenvalues with multiplicities 2; 2 respectively.

(ii) If a ¼ 2 and b ¼ 3, note that Q must be a conjugacy class of order 4

and the eigenvalue of wj;3 are �1, �1, 1. Since P A Q is of order 4, the

eigenvalues of wi;2 are 4th roots l, l�1 of unity. Therefore l�1 ¼ �l. There-

fore rrðPÞ has eigenvalues l, �l with multiplicities 3; 3 respectively.

(iii) If a ¼ b ¼ 3, rrðPÞ has eigenvalues �1; 1 with multiplicities 4; 5

respectively.

Lemma 5.27. Let Q be a p-singular class with eigenvalue e and R the set

defined in the previous lemma. Then for P A Q and r ¼ ðriÞ A R, rrðPÞ has the

unique eigenvalue eTi
ðri�1Þ. The codimension of the eigenspace is 1 if and only if

dimðrrÞ ¼ 2.

Proof. The first statement is clear. Let P ¼ e
1 a

0 1

� �
A Q. Then

wi;nðPÞ ¼ en�1

1 s iðaÞ s iðaÞ2 	 	 	 s iðaÞn�1

0 1 2s iðaÞ 	 	 	 ðn� 1Þs iðaÞn�2

0 0 1 	 	 	 ..
.

0 0 0 . .
.

ðn� 1Þs iðaÞ
0 0 0 0 1

0
BBBBBBB@

1
CCCCCCCA
;

for the basis X n�1
i ;X n�2

i Yi; . . . ;XiY
n�2
i ;Y n�1

i . Since na p and a0 0, the

codimension of the eigenspace of wi;nðPÞ, which is equal to the rank of

wi;nðPÞ � en�1I , is n� 1. Therefore it is equal to 1 if and only if n ¼ 2.

To complete the proof, let r ¼ ðriÞ A R. Then rr ¼ w0; r0 n 	 	 	n wf�1; rf�1
is a space spanned by X s0

0 Y
ðr0�1Þ�s0
0 n 	 	 	nX

sf�1
f�1Y

ðrf�1�1Þ�sf�1
f�1 , where 0a si a

ri � 1. Assume that ri and rj are b 2 for distinct i, j. Then we write

Zi ¼ X r0�1
0 n 	 	 	nY ri�1

i n 	 	 	nX
rf�1�1
f�1 and Zj ¼ X r0�1

0 n 	 	 	nY
rj�1
j n 	 	 	n

X
rf�1�1
f�1 . Then rrðPÞðZiÞ ¼ eTk

ðrk�1ÞX r0�1
0 n 	 	 	n ðYi þ s iðaÞXiÞri�1 n 	 	 	n

X
rf�1�1
f�1 and rrðPÞðZjÞ ¼ eTk

ðrk�1ÞX r0�1
0 n 	 	 	n ðYj þ s jðaÞXjÞrj�1n 	 	 	nX

rf�1�1
f�1 .

Since 2a ri; rj a p, it is clear that rrðPÞðZiÞ � eTk
ðrk�1ÞZi and rrðPÞðZjÞ �

eTkðrk�1ÞZj are linearly independent. This shows that the rank of

rrðPÞ � eTk
ðrk�1ÞI is at least 2. Therefore the number of indices i such that

ri b 2 is at most 1.
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For the case (5) of Proposition 5.25, a similar case occurs in charac-

teristic 0. Let G ¼ SL2ðCÞ and Q be the subquandle of order 4 matrices in

ConjðGÞ. Note that Q is the set of matrices with eigenvalues i;�i A C�.
Similarly to the positive characteristic case, extending the representation G ¼
SL2ðCÞ ,! GLðC2Þ to the representation on SðC2Þ, we have a 3-dimensional

representation

w3 : SL2ðCÞ ! GLðC3Þ; A ¼ a b

c d

� �
7!

a2 ab b2

2ac ad þ bc 2bd

c2 cd d 2

0
B@

1
CA:

Then for P A Q, w3ðPÞ has eigenvalues �1, �1, 1. Now the map P 7!
�w3ðPÞ is a quandle homomorphism and this gives a group homomorphism

j : AsðQÞ ! GLðC3Þ. Then MQðjÞ ¼
‘

P AQð1� gPÞC3 is a 1-dimensional

quandle module.
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