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Abstract. It is known that a connected and simply-connected Lie group admits only

one left-invariant Riemannian metric up to scaling and isometry if and only if it is

isomorphic to the Euclidean space, the Lie group of the real hyperbolic space, or the

direct product of the three dimensional Heisenberg group and the Euclidean space

of dimension n� 3. In this paper, we give a classification of left-invariant pseudo-

Riemannian metrics of an arbitrary signature for the third Lie groups with nb 4

up to scaling and automorphisms. This completes the classifications of left-invariant

pseudo-Riemannian metrics for the above three Lie groups up to scaling and auto-

morphisms.

1. Introduction

In di¤erential geometry, it is one of the central and fundamental problems

to determine whether a given di¤erentiable manifold admits some distinguished

geometric structures or not. Such structures can be, for example, Einstein or

Ricci soliton metrics (cf. [4, 26]) for the setting of Riemannian or pseudo-

Riemannian manifolds, and Kähler-Einstein metrics for Kähler manifolds.

When one deals with these problems, it would be natural and useful to add

some other properties, such as homogeneity.

We focus on the problem whether a given Lie group admits distinguished

left-invariant metrics or not, both for the Riemannian and pseudo-Riemannian

cases. Left-invariant metrics on Lie groups have supplied many examples

of distinguished metrics, and have been studied actively. For example, we

refer to [1, 5, 15, 17, 20, 21, 22, 27] and references therein. In particular, we

mention that the Alekseevskii’s conjecture has been recently proved in [2],
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which had been an open problem on homogeneous Einstein manifolds with

negative scalar curvature. However, even if we consider the Riemannian cases,

the present state is far from the complete.

If one can classify left-invariant metrics on a given Lie group, then it

would be useful to determine the existence and non-existence of distinguished

metrics. Regarding left-invariant Riemannian metrics, Lauret ([16]) classified

connected and simply-connected Lie groups which admit only one left-invariant

Riemannian metric up to scaling and isometry. Such a Lie group is isomor-

phic to one of

Rn; GRHn ðnb 2Þ; H3 �Rn�3 ðnb 3Þ; ð1Þ

where GRHn is so-called the Lie group of the real hyperbolic space RHn

(the solvable part of the Iwasawa decomposition of the identity component

SO0ðn; 1Þ of SOðn; 1Þ, and acts simply-transitively on RHn), and H3 is the

three dimensional Heisenberg group. It is well-known that their unique

metrics are flat on Rn, negative constant sectional curvature on GRH n and

Ricci soliton on H3 �Rn�3, respectively. For other studies on classifications

of left-invariant Riemannian metrics, we refer to [10, 11, 14, 20] and references

therein.

We are interested in the classifications of left-invariant pseudo-Riemannian

metrics on Lie groups. In the three-dimensional cases, left-invariant Lorent-

zian metrics have been studied in [6, 24, 25]. For higher dimensional cases, it

seems to be natural that we first consider the above three Lie groups, Rn, GRH n

and H3 �Rn�3. For any signature, it is obvious that Rn admits only one

left-invariant pseudo-Riemannian metric up to scaling and isometry, which is

flat. For any non-Riemannian signature on GRH n ðnb 2Þ, there exist exactly

three left-invariant pseudo-Riemannian metrics up to scaling and isometry, all

of them have constant sectional curvatures ([12]). For the case of H3, there

exist exactly three left-invariant Lorentzian metrics up to scaling and isometry

([24, 25]), and only one of them is flat and the other two are Ricci solitons but

not Einstein ([21, 22, 25]).

In this paper, we consider left-invariant pseudo-Riemannian metrics on

H3 �Rn�3 with nb 4, and classify them up to scaling and automorphisms

defined as follows.

Definition 1. Let g1 and g2 be left-invariant pseudo-Riemannian metrics

on a Lie group G. Then, ðG; g1Þ and ðG; g2Þ are said to be equivalent up to

scaling and automorphisms if there exist c > 0 and a Lie group automorphism

j : G ! G such that for any a A G and x; y A TaG, they satisfy

g1ðx; yÞa ¼ cg2ðdjaðxÞ; djaðyÞÞjðaÞ;
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where TaG is the tangent space to G at a, and dja is the di¤erential map of j

at a.

By Definition 1, if ðG; g1Þ and ðG; g2Þ are equivalent up to scaling and

automorphisms, then they are isometric up to scaling. Note that the converse

is not necessarily true (see Remark 3). In the preceding study [13], it has

been shown that there exist exactly six left-invariant Lorentzian metrics on

H3 �Rn�3 with nb 4 up to scaling and automorphisms. The main result of

this paper is a classification of left-invariant pseudo-Riemannian metrics of an

arbitrary signature on H3 �Rn�3 with nb 4 up to scaling and automorphisms.

Theorem 1. Let p; q A Zb1 with pþ qb 4. Then the number of left-

invariant pseudo-Riemannian metrics of signature ðp; qÞ on H3 �Rpþq�3 up to

scaling and automorphisms is as follows:

(1) 21 if p; qb 3.

(2) 15 if pb 3 and q ¼ 2.

(3) 6 if pb 3 and q ¼ 1.

(4) 10 if p ¼ q ¼ 2.

Note that, for any p; q A Zb0 and a Lie group G, one has the correspon-

dence

a left-invariant metric

of signature ðp; qÞ on G

� �
 !1:1 a left-invariant metric

of signature ðq; pÞ on G

� �
:

Therefore Theorem 1 gives a classification for every signature. Recall that

H3 �Rn�3 admits only one left-invariant Riemannian metric for nb 3, and

exactly three left-invariant Lorentzian metrics for n ¼ 3. Combining these

results with Theorem 1, one has the next table of the number of left-invariant

Riemannian and pseudo-Riemannian metrics of signature ðp; qÞ on H3 �Rn�3.

Table 1. The number of left-invariant metrics on H3 �Rn�3 up to scaling and automorphisms

q
p 0 1 2 3 4 � � �

0 1 1 � � �

1 3 6 6 � � �

2 3 10 15 15 � � �

3 1 6 15 21 21 � � �

4 1 6 15 21 21 � � �

..

. ..
. ..

. ..
. ..

. ..
. . .

.
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Note that our theorem completes the classifications of all left-invariant metrics

up to scaling and automorphisms on Lie groups in (1).

In the proof of Theorem 1, the key idea is a group action on a flag

manifold. In fact, the equivalence classes of left-invariant pseudo-Riemannian

metrics of signature ðp; qÞ on H3 �Rn�3 up to scaling and automorphisms

correspond to the orbits of the group action of the parabolic subgroup of the

block decomposition ð1; n� 3; 2Þ

� � � � � � � �

0 � � � � � � �
..
. ..

. . .
. ..

. ..
. ..

.

0 � � � � � � �
0 0 � � � 0 � �
0 0 � � � 0 � �

0
BBBBBBBBB@

1
CCCCCCCCCA

A GLðn;RÞ

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

ð2Þ

on GLðn;RÞ=Oðp; qÞ, which is a pseudo-Riemannian symmetric space. More-

over, this action corresponds to the action of Oðp; qÞ on the flag manifold given

by the above parabolic subgroup. With respect to the latter action, it has been

already known that the number of the orbits is finite in [28]. Determining the

orbit space of the latter action, we classified left-invariant pseudo-Riemannian

metrics of signature ðp; qÞ on H3 �Rn�3 up to scaling and automorphisms. In

[13], the classification of left-invariant Lorentzian metrics on this Lie group has

been obtained by matrices calculations. However if one tries to classify left-

invariant non-Lorentzian metrics on it by the same method, the procedure will

be very complicated, since the method depends on the signature. In this paper,

we classify left-invariant pseudo-Riemannian metrics by a method which does

not depend on the signature.

We mention the curvature properties of left-invariant pseudo-Riemannian

metrics on H3 �Rn�3 with nb 4. Recall that there exist exactly six left-

invariant Lorentzian metrics up to scaling and automorphisms ([13]). In this

case, curvatures are completely calculated, and only one of them is flat and the

other five are Ricci solitons but not Einstein ([13]). For the non-Lorentzian

cases, the author has partially calculated curvatures (see Remark 3), which will

be in the forthcoming paper.

2. Preliminaries

In this section, we recall general theories on inner products on vector

spaces, which are not necessarily nondegenerate, and left-invariant pseudo-

Riemannian metrics on Lie groups.
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2.1. Vector spaces with inner products. In this subsection, we recall some

terminologies on vector spaces with inner products used throughout this paper,

and set notations.

First of all, let us recall the signature of an inner product. Let V be an

n-dimensional real vector space, and h ; i be an inner product on it, which is

not necessarily nondegenerate. Fix a basis fv1; . . . ; vng of V , and identify

V GRn. Then there exists a real symmetric matrix A such that for any

x; y A V ,

hx; yi ¼ txAy:

Since A is a real symmetric matrix, every eigenvalue of A is a real number.

Note that 0 can be its eigenvalue since h ; i is not necessarily nondegenerate.

Then the triplet of the numbers of positive, negative and zero eigenvalues of A

counted with multiplicities is called the signature of h ; i on V , and we denote

it by

signðV ; h ; iÞ ¼ ðp; q; rÞ ðp; q; r A Zb0Þ:

In the cases of r ¼ 0, that is, when h ; i is nondegenerate on V , we may write

signðV ; h ; iÞ ¼ ðp; qÞ. If we do not need to specify h ; i, we denote it by

sign V for simplicity. We use this notation for a subspace W of V as well,

that is, we denote the signature of h ; ijW�W on W by

signðW ; h ; ijW�W Þ ¼ ðs; t; uÞ ðs; t; u A Zb0Þ:

In this case, we write signðW ; h ; iÞ or sign W for simplicity.

Next we recall the radical. The radical radðV ; h ; iÞ of V with respect to

h ; i is a subspace of V such that its vector is orthogonal to every vector of V ,

that is,

radðV ; h ; iÞ :¼ fv A V j Ew A V ; hv;wi ¼ 0g:

Similarly, we may write rad V for simplicity. For a subspace W of V , we

simply denote the radical of W with respect to h ; ijW�W by radðW ; h ; iÞ or
rad W .

2.2. The spaces of left-invariant pseudo-Riemannian metrics on Lie groups. In

this subsection, we recall the notion of the spaces of left-invariant pseudo-

Riemannian metrics on Lie groups. This has been introduced in [12]. We

refer to [14] for the Riemannian case. In the following arguments, let G be a

real Lie group of dimension n, and g be the corresponding Lie algebra. We fix

a basis fe1; . . . ; eng of g, and identify gGRn as vector spaces.

Let p; q A Zb1. Recall that a pseudo-Riemannian metric has signature

ðp; qÞ if so is the induced inner product on each tangent space. We are
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interested in a classification of left-invariant pseudo-Riemannian metrics on G.

For this purpose, we denote the space of left-invariant pseudo-Riemannian

metrics by

Mðp;qÞðGÞ :¼ fa left-invariant metric of signature ðp; qÞ on Gg:

We then consider the counterpart in the Lie algebra g of G, and denote it

by

Mðp;qÞðgÞ :¼ fh ; i : an inner product of signature ðp; qÞ on gg:

It is well-known that there exists a one-to-one correspondence between

Mðp;qÞðGÞ and Mðp;qÞðgÞ. Recall that we identify gGRn. Then GLðn;RÞ
acts transitively on Mðp;qÞðgÞ by

g:hx; yi :¼ hg�1x; g�1yi ðEg A GLðn;RÞ; Ex; y A gÞ:

From now on, we explain the equivalence relation on inner products,

which corresponds to the equivalence relation on Mðp;qÞðGÞ given by Defini-

tion 1. Let us consider the automorphism group of g,

AutðgÞ :¼ fj A GLðn;RÞ j Ex; y A g; jð½x; y�Þ ¼ ½jðxÞ; jðyÞ�g;

and also put R� :¼ Rnf0g. We study the group action by

R� AutðgÞ :¼ fcj A GLðn;RÞ j c A R�; j A AutðgÞg:

This is a subgroup of GLðn;RÞ, and thus it naturally acts on Mðp;qÞðgÞ. We

denote the orbit through h ; i by R� AutðgÞ:h ; i.

Definition 2. Let h ; i1; h ; i2 A Mðp;qÞðgÞ. Then, ðg; h ; i1Þ and ðg; h ; i2Þ
are said to be equivalent up to scaling and automorphisms if they satisfy

h ; i1 A R� AutðgÞ:h ; i2:

This notion is an equivalence relation on Mðp;qÞðgÞ. If a given Lie group

G is connected and simply-connected, then one knows AutðGÞGAutðgÞ, and

therefore the classification of inner products on g by the action of R� AutðgÞ is
equivalent to the classification of left-invariant pseudo-Riemannian metrics on

G up to scaling and automorphisms. Hence it is natural to study the following

orbit space:

R� AutðgÞnMðp;qÞðgÞ :¼ fR� AutðgÞ:h ; i j h ; i A Mðp;qÞðgÞg:

This can be regarded as the moduli space of left-invariant pseudo-Riemannian

metrics on G of signature ðp; qÞ.
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Finally in this subsection, we give a remark on a classification of left-

invariant pseudo-Riemannian metrics on G up to scaling and isometry, which is

defined as follows.

Definition 3. Let g1; g2 A Mðp;qÞðGÞ. Then, ðG; g1Þ and ðG; g2Þ are said

to be isometric up to scaling and denoted by g1 @G g2 if there exist c > 0 and

a di¤eomorphism j : G ! G such that for any a A G and x; y A TaG,

g1ðx; yÞa ¼ cg2ðdjaðxÞ; djaðyÞÞjðaÞ:

One can define an equivalence relation @g on Mðp;qÞðgÞ corresponding to

@G, that is, there exists a one-to-one correspondence

Mðp;qÞðGÞ=@G  !
1:1

Mðp;qÞðgÞ=@g:

By Definition 1, if two left-invariant metrics are equivalent up to scaling and

automorphisms, then they are isometric up to scaling. Thus there exists a

surjection

R� AutðgÞnMðp;qÞðgÞ !!Mðp;qÞðgÞ=@g:

In this paper, as mentioned above, we focus on the classification of inner

products by the action of R� AutðgÞ. In order to obtain the classification up

to @G or @g, we need to distinguish elements in R� AutðgÞnMðp;qÞðgÞ, which
can be equivalent in the sense of @g.

3. An outline of the proof of the main theorem

In this section, we describe an outline of the proof of Theorem 1, which

can be divided into some parts. In the first subsection, we consider the orbit-

decomposition with respect to the action of an indefinite orthogonal group on

a flag manifold. In the second subsection, we describe possible signatures on

particular vector subspaces. We explain the statements of them without giving

proofs, and we prove Theorem 1 in the last subsection.

Let Ik be the unit matrix of order k, and put

Ip;q :¼
Ip

�Iq

� �
;

where p; q A Zb1. We consider the standard inner product h ; i0 such that

signðRpþq; h ; i0Þ ¼ ðp; qÞ, that is, it is defined by

hx; yi0 :¼ txIp;qy ðEx; y A RpþqÞ:

3.1. An orbit-decomposition of a flag manifold. In this subsection, we describe

the orbit-decomposition with respect to the action of the indefinite orthogonal
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group Oðp; qÞ on the flag manifold

Fk1;k2 :¼ fðVk1 ;Vk2Þ jVk1 � Vk2 � Rpþq; dim Vki ¼ ki ði ¼ 1; 2Þg;

where k1; k2 A f1; . . . ; pþ qg with k1 < k2. Note that Oðp; qÞ acts on Fk1;k2 by

g:ðVk1 ;Vk2Þ :¼ ðgVk1 ; gVk2Þ:

For flags in Fk1;k2 , an equivalent condition to be contained in the same Oðp; qÞ-
orbit is given in terms of the signatures as follows.

Proposition 1. For any ðVk1 ;Vk2Þ; ðWk1 ;Wk2Þ A Fk1;k2 , the following condi-

tions are equivalent.

(1) There exists g A Oðp; qÞ such that ðVk1 ;Vk2Þ ¼ g:ðWk1 ;Wk2Þ.
(2) All of the following hold.

( i ) signðVk2 ; h ; i0Þ ¼ signðWk2 ; h ; i0Þ.
( ii ) signðVk1 ; h ; i0Þ ¼ signðWk1 ; h ; i0Þ.
(iii) dimðVk1 \ radðVk2 ; h ; i0ÞÞ ¼ dimðWk1 \ radðWk2 ; h ; i0ÞÞ.

We will give the proof of this proposition in Section 4. From this prop-

osition, each Oðp; qÞ-orbit through ðVk1 ;Vk2Þ A Fk1;k2 is characterized only by

the three data

sign Vk1 ; sign Vk2 ; dimðVk1 \ rad Vk2Þ:

Remark 1. For a reductive a‰ne symmetric space ðG;H; sÞ and its asso-

ciated a‰ne symmetric space ðG;H 0; syÞ, Matsuki ([18, 19]) showed the corre-

spondence between the double cosets, that is, one has

HnG=P !1:1 H 0nG=P;

where P is a parabolic subgroup of G. This correspondence is called the

Matsuki duality (correspondence). We consider R� AutðgÞ for g :¼ h3 lRn�3

with nb 4, which is given in the form of (2). Therefore in the case of this paper,

we put

G :¼ GLðn;RÞ; H :¼ Oðp; qÞ; P :¼ R� AutðgÞ: ð3Þ

Then one has H 0 ¼ GLðp;RÞ �GLðq;RÞ, and hence we have the setting of the

Matsuki duality.

On the other hand, one can also determine the orbit space of the action of

H 0 on G=P ¼ F1;n�2 in the setting (3). For this purpose, we put

Uþ :¼ spanfe1; . . . ; epg; U� :¼ spanfepþ1; . . . ; epþqg;

where fe1; . . . ; epþqg is the standard basis of Rpþq, and consider the following

data for any ðV1;Vn�2Þ A F1;n�2:
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cþ :¼ dimðVn�2 \UþÞ; c� :¼ dimðVn�2 \U�Þ; c0 :¼ n� 2� cþ � c�;

dþ :¼ dimðV1 \UþÞ; d� :¼ dimðV1 \U�Þ; d 0 :¼ 1� dþ � d�;

dG :¼ dimðððVn�2 \UþÞl ðVn�2 \U�ÞÞ \ V1Þ:

Then every orbit of H 0 on G=P ¼ F1;n�2 is determined by the above seven data.

This fact is essentially the same as Proposition 1 in the case of k1 ¼ 1 and

k2 ¼ n� 2.

3.2. Possible signatures on some subspaces. Recall that the Oðp; qÞ-orbit
through ðVk1 ;Vk2Þ A Fk1;k2 is characterized by the three data. In this subsec-

tion, we here describe all possible three data for the case k1 ¼ 1 and k2 ¼
pþ q� 2. The next proposition describes all possible sign Vpþq�2.

Proposition 2. Let A be the set of all possible signatures of codimension-

two subspaces of Rpþq with respect to h ; i0, that is,

A :¼ fsignðV ; h ; i0Þ jV � Rpþq; dim V ¼ pþ q� 2g:

Then one has

A ¼ ðp� 2; q; 0Þ; ðp� 1; q� 1; 0Þ; ðp; q� 2; 0Þ;
ðp� 2; q� 1; 1Þ; ðp� 1; q� 2; 1Þ; ðp� 2; q� 2; 2Þ

� �
\ ðZb0Þ3:

The proof will be given in Section 4.

Fix a subspace V of Rpþq with dim V b 2. Take an arbitrary one dimen-

sional subspace W of V . Then one has

sign W A fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þg:

According to Proposition 1, when sign W ¼ ð0; 0; 1Þ, we need to know

dimðW \ rad VÞ. Hence we define the new notion

signV ðW ; h ; i0Þ :¼
signðW ; h ; i0Þ if W \ radðV ; h ; i0Þ ¼ f0g;
ð0; 0; 1Þnull if W � radðV ; h ; i0Þ:

�

It is obvious that one has

signV W A fð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ; ð0; 0; 1Þnullg:

The next proposition describes all possible signV W .

Proposition 3. Fix a subspace V of Rpþq with signðV ; h ; i0Þ ¼ ðs; t; uÞ
and s; t; u A Zb0. Let B be the set of all possible signatures of one-dimensional

subspaces of V with respect to h ; i0, that is,

B :¼ fsignV ðW ; h ; i0Þ jW � V ; dim W ¼ 1g:
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Then one has
� ð1; 0; 0Þ A B if and only if sb 1,
� ð0; 1; 0Þ A B if and only if tb 1,
� ð0; 0; 1Þ A B if and only if s; tb 1,
� ð0; 0; 1Þnull A B if and only if ub 1.

Also for this proposition, the proof will be given in Section 4.

3.3. The proof of the main theorem. In this subsection, we prove Theorem 1

by applying Propositions 1, 2, and 3. Let G :¼ H3 �Rn�3 with nb 4 and

g :¼ h3 lRn�3 :¼ spanfe1; . . . ; en j ½en�1; en� ¼ e1g;

where h3 ¼ spanfe1; en�1; eng is the three dimensional Heisenberg Lie algebra.

Proof (of Theorem 1). Let p; q A Zb1 with pþ qb 4. The desired

classification is given by the orbits of the action of R� AutðgÞ on Mðp;qÞðgÞ.
Recall that one has an identification

Mðp;qÞðgÞ ¼ GLðn;RÞ=Oðp; qÞ

as homogeneous spaces, where n ¼ pþ q. Hence, we can identify the orbit

space R� AutðgÞnMðp;qÞðgÞ with the double coset space, that is, one has

R� AutðgÞnMðp;qÞðgÞ ¼ R� AutðgÞnGLðn;RÞ=Oðp; qÞ:

On the other hand, from a general theory, there is a one-to-one corre-

spondence

R� AutðgÞnGLðn;RÞ=Oðp; qÞ  !1:1 Oðp; qÞnGLðn;RÞ=R� AutðgÞ:

Moreover the matrix expression of R� AutðgÞ with respect to the basis fe1; . . . ;
eng of g coincides with the form of (2) (cf. [14]). Therefore GLðn;RÞ=
R� AutðgÞ can be identified with the flag manifold F1;pþq�2. From the above

arguments, R� AutðgÞnMðp;qÞðgÞ corresponds to Oðp; qÞnF1;pþq�2. Therefore

we have only to classify flags in F1;pþq�2 by the action of Oðp; qÞ. By

Proposition 1, one knows that each Oðp; qÞ-orbit through ðV1;Vpþq�2Þ A
F1;pþq�2 is characterized only by

sign V1; sign Vpþq�2; dimðV1 \ rad Vpþq�2Þ:

In the following arguments, we assume pb q. Then the condition

pþ qb 4 yields that pb 2. From Proposition 2, one has

sign Vpþq�2 A
ðp� 2; q; 0Þ; ðp� 1; q� 1; 0Þ; ðp; q� 2; 0Þ;
ðp� 2; q� 1; 1Þ; ðp� 1; q� 2; 1Þ; ðp� 2; q� 2; 2Þ

� �
\ ðZb0Þ3:
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We complete Table 2 for each sign Vpþq�2 one by one. Note that

pb 2; qb 1:

First, let us consider the case of sign Vpþq�2 ¼ ðp� 2; q; 0Þ. In this case, by

Proposition 3,
� if pb 3, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ,
� if p ¼ 2, then signVpþq�2 V1 ¼ ð0; 1; 0Þ.

We here summarize all possible signVpþq�2 V1 for the other sign Vpþq�2. In the

case of sign Vpþq�2 ¼ ðp� 1; q� 1; 0Þ,
� if qb 2, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ,
� if q ¼ 1, then signVpþq�2 V1 ¼ ð1; 0; 0Þ.

In the case of sign Vpþq�2 ¼ ðp; q� 2; 0Þ, we have qb 2 and
� if qb 3, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ,
� if q ¼ 2, then signVpþq�2 V1 ¼ ð1; 0; 0Þ.

In the case of sign Vpþq�2 ¼ ðp� 2; q� 1; 1Þ,
� if pb 3 and qb 2, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ;
ð0; 0; 1Þnull,

� if pb 3 and q ¼ 1, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 0; 1Þnull,
� if p ¼ q ¼ 2, then signVpþq�2 V1 ¼ ð0; 1; 0Þ; ð0; 0; 1Þnull.

In the case of sign Vpþq�2 ¼ ðp� 1; q� 2; 1Þ, we have qb 2 and
� if qb 3, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ; ð0; 0; 1Þnull,
� if q ¼ 2, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 0; 1Þnull.

In the case of sign Vpþq�2 ¼ ðp� 2; q� 2; 2Þ, we have qb 2 and
� if pb 3 and qb 3, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ;
ð0; 0; 1Þnull,

� if pb 3 and q ¼ 2, then signVpþq�2 V1 ¼ ð1; 0; 0Þ; ð0; 0; 1Þnull,
� if p ¼ q ¼ 2, then signVpþq�2 V1 ¼ ð0; 0; 1Þnull.
Hence one can obtain the pairs of sign Vpþq�2 and signVpþq�2 V1 in

Table 2. Only for the case of p; qb 3, we explicitly describe 21 pairs of

the signatures, and for the other cases we mark each slot in the table with

the check mark ‘‘Z’’ if its corresponding equivalence class appears. At the

bottom row, we write the number of equivalence classes. This table proves

Theorem 1. r

For p; q A Zb1 with pþ qb 4, every Oðp; qÞ-orbit in F1;pþq�2 is charac-

terized by signðVpþq�2; h ; i0Þ and signVpþq�2ðV1; h ; i0Þ as in Table 2. We

explain what this table represents in terms of inner products on g. Here

we denote the center and the derived ideal of g by ZðgÞ and ½g; g�, respectively.
Then one has

ZðgÞ ¼ spanfe1; . . . ; epþq�2g; ½g; g� ¼ spanfe1g:
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In terms of g, Table 2 represents the pairs of signatures of h ; i A Mðp;qÞðgÞ
restricted to ZðgÞ and ½g; g�, that is, every R� AutðgÞ-orbit in Mðp;qÞðgÞ is

characterized by

signðZðgÞ; h ; iÞ; signZðgÞð½g; g�; h ; iÞ

as in Table 2.

Remark 2. For left-invariant Lorentzian metrics on G, the degenerations

of R� AutðgÞ-orbits have been studied in [13]. For any distinct orbits O1 and

O2, recall that O1 is said to degenerate to O2 if O2 � O1 holds, where O1 is the

closure of O1. In the Lorentzian case, there exists only one closed R� AutðgÞ-
orbit, which corresponds to (13) in Table 2 and is characterized as the unique

Table 2. The number of equivalence classes

p; qb 3 pb 3, q ¼ 2 pb 3, q ¼ 1 p ¼ q ¼ 2

sign Vpþq�2 signVpþq�2 V1

ð1Þ
ð2Þ
ð3Þ

ðp� 2; q; 0Þ ð1; 0; 0Þ
ð0; 1; 0Þ
ð0; 0; 1Þ

Z

Z

Z

Z

Z

Z

Z

ð4Þ
ð5Þ
ð6Þ

ðp� 1; q� 1; 0Þ ð1; 0; 0Þ
ð0; 1; 0Þ
ð0; 0; 1Þ

Z

Z

Z

Z Z

Z

Z

ð7Þ
ð8Þ
ð9Þ

ðp; q� 2; 0Þ ð1; 0; 0Þ
ð0; 1; 0Þ
ð0; 0; 1Þ

Z Z

ð10Þ
ð11Þ
ð12Þ
ð13Þ

ðp� 2; q� 1; 1Þ ð1; 0; 0Þ
ð0; 1; 0Þ
ð0; 0; 1Þ
ð0; 0; 1Þnull

Z

Z

Z

Z

Z

Z

Z

Z

ð14Þ
ð15Þ
ð16Þ
ð17Þ

ðp� 1; q� 2; 1Þ ð1; 0; 0Þ
ð0; 1; 0Þ
ð0; 0; 1Þ
ð0; 0; 1Þnull

Z

Z

Z

Z

ð18Þ
ð19Þ
ð20Þ
ð21Þ

ðp� 2; q� 2; 2Þ ð1; 0; 0Þ
ð0; 1; 0Þ
ð0; 0; 1Þ
ð0; 0; 1Þnull

Z

Z Z

21 15 6 10
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equivalence class of flat metrics up to scaling and automorphisms. Furthermore,

inner products in this closed orbit are degenerate on ZðgÞ and ½g; g� as (13) in

Table 2. The author has verified that similar phenomena occur also in the non-

Lorentzian cases, that is,
� the R� AutðgÞ-orbit corresponding to (21) is the unique closed orbit,
� the metric corresponding to (21) is flat,
� inner products in this closed orbit are degenerate on ZðgÞ and ½g; g� as

(21) in Table 2.

Note that a closed orbit always exists. It would be a natural problem to con-

sider whether the above three correspondences hold for any Lie group or not.

In fact, some papers study the relations between the curvature properties and the

signatures of the restrictions to particular ideals ([3, 9]).

Remark 3. For a fixed signature, we here mention that the left-invariant

pseudo-Riemannian metrics on G corresponding to (13), (17), (20) and (21) in

Table 2 are all isometric to each other. The curvatures of the above metrics

can be calculated directly. According to it, they are all flat. In [8], it is proved

that every left-invariant pseudo-Riemannian metric on a two-step nilpotent Lie

group is geodesically complete. Hence G endowed with one of the above four

flat metrics is a simply-connected space form, where a space form is a complete

and connected pseudo-Riemannian manifold with constant curvature. It is well-

known that simply-connected space forms are isometric if and only if they have

the same dimension, signature and constant curvature (cf. [23]). Therefore, our

claim holds.

Recall that the metrics corresponding to (17), (20) and (21) occur only in

the non-Lorentzian cases. Thus in the non-Lorentzian cases, there exist left-

invariant pseudo-Riemannian metrics on G which are distinct up to automor-

phisms but isometric.

4. The proofs of Propositions 1, 2 and 3

In this section, we prove the propositions which we used for proving the

main theorem in Section 3. Throughout this section, let V be a real vector

space of finite dimension. We denote by h ; i an inner product on V , which is

not necessarily nondegenerate.

4.1. Auxiliary lemmas and propositions on vector spaces. In this subsection,

we show some auxiliary lemmas and propositions, which we use in Subsections

4.2 and 4.3.

First of all, we define a particular basis for a given vector space, which is

an analogue to an orthonormal basis in the positive definite case. In order to
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do that, we introduce the next notation ei given by

ei :¼
1 ði A f1; . . . ; pgÞ;
�1 ði A fpþ 1; . . . ; pþ qgÞ;
0 ði A fpþ qþ 1; . . . ; pþ qþ rgÞ;

8><
>:

where p; q; r A Zb0.

Definition 4. A set fv1; . . . ; vpþqþrg of linearly independent vectors of V

is called a ðp; q; rÞ-system with respect to h ; i if it satisfies

hvi; vji ¼ eidij ðEi; j A f1; . . . ; pþ qþ rgÞ;

where dij is the Kronecker’s delta. In addition, if fv1; . . . ; vpþqþrg is a basis

of V , then it is called a ðp; q; rÞ-basis of V .

A vector space of finite dimension with a positive definite inner product

has an orthonormal basis. A similar statement holds for the nondegenerate

cases (cf. [7]). More generally, there exists a ðp; q; rÞ-basis of V if sign V ¼
ðp; q; rÞ.

Proposition 4. Let ðp; q; rÞ :¼ signðV ; h ; iÞ. Then V has a ðp; q; rÞ-basis
with respect to h ; i.

Proof. We identify V GRpþqþr as vector spaces. Let fe1; . . . ; epþqþrg
be the standard basis of V , and we put

Ip;q; r :¼
Ip

�Iq
Or

0
B@

1
CA;

where Or is the zero matrix of order r. Let A be the Gram matrix of h ; i with

respect to fe1; . . . ; epþqþrg. Then by Sylvester’s law of inertia, there exists g A
GLðpþ qþ r;RÞ such that tgAg ¼ Ip;q; r. Here we put

vi :¼ gei ði A f1; . . . ; pþ qþ rgÞ:

One obtains a ðp; q; rÞ-basis fv1; . . . ; vpþqþrg of V with respect to h ; i. r

Next we consider the decomposition of a light-like vector v B rad V into

space-like and time-like vectors. Recall that a vector v A V is called
� space-like if hv; vi > 0 or v ¼ 0,
� time-like if hv; vi < 0,
� light-like if hv; vi ¼ 0 and v0 0.

Let U be a nondegenerate subspace of V with respect to h ; i, and define the

light-cone of U by

C0ðU ; h ; iÞ :¼ fu A U j hu; ui ¼ 0gnf0g:
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Moreover we put

OðU ; h ; iÞ :¼ f f : U ! U j f is a linear isometry with respect to h ; ig:

Then it is well-known that C0ðU ; h ; iÞ is an OðU ; h ; iÞ-homogeneous space.

Lemma 1. Let v be a light-like vector in V with v B rad V. Then there

exists a ð1; 1; 0Þ-system fvþ; v�g of V such that v ¼ vþ þ v�.

Proof. Since v B rad V , there exists a subspace U of V such that

V ¼ U l rad V ; v A U :

Then there exist p; q A Zb1 such that sign U ¼ ðp; qÞ with respect to h ; i, since
v A U is light-like. Hence U contains eþ and e� such that

heþ; eþi ¼ 1; he�; e�i ¼ �1; heþ; e�i ¼ 0:

Thus one has eþ þ e� A C0ðU ; h ; iÞ. Since C0ðU ; h ; iÞ is an OðU ; h ; iÞ-
homogeneous space, there exists f A OðU ; h ; iÞ such that

v ¼ f ðeþ þ e�Þ ¼ f ðeþÞ þ f ðe�Þ:

By putting vþ :¼ f ðeþÞ and v� :¼ f ðe�Þ, we complete the proof. r

Next we consider an expansion of a given ð0; 0; kÞ-system. Note that, for

a subspace W of V , one has V ¼W lW ? if h ; i is nondegenerate on W .

Moreover if sign V ¼ ðp; q; rÞ and sign W ¼ ðs; t; 0Þ, then we have sign W ? ¼
ðp� s; q� t; rÞ.

Proposition 5. Let ðp; q; 0Þ :¼ signðV ; h ; iÞ and fw1; . . . ;wkg be its

ð0; 0; kÞ-system with k A Zb1. Then there exists a ðp; q; 0Þ-basis fx1; . . . ; xp;
y1; . . . ; yqg of V such that

wi ¼ xi þ yi ði A f1; . . . ; kgÞ:

Proof. We put

W1 :¼ spanfw2; . . . ;wkg?:

First of all we prove

w1 B rad W1: ð4Þ

Since V is nondegenerate, we have

spanfw2; . . . ;wkg ¼ ðspanfw2; . . . ;wkg?Þ? ¼W ?
1 :

If w1 A rad W1, then

w1 A W ?
1 ¼ spanfw2; . . . ;wkg:
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However, this is a contradiction since w1; . . . ;wk are linearly independent.

Hence w1 B rad W1.

Note that w1 is a light-like vector and w1 A W1. According to (4) and

Lemma 1, there exists a ð1; 1; 0Þ-system fx1; y1g of V such that

fx1; y1g �W1; w1 ¼ x1 þ y1:

Similarly to the above argument, we put

W2 :¼ spanfx1; y1;w3; . . . ;wkg?:

Note that w2 A W2. Then one can show w2 B rad W2 since V is nondegenerate

again. Thus by Lemma 1, there exists a ð1; 1; 0Þ-system fx2; y2g of V such

that

fx2; y2g �W2; w2 ¼ x2 þ y2:

Therefore fx1; x2; y1; y2g is a ð2; 2; 0Þ-system of V . Repeating this process,

we obtain a ðk; k; 0Þ-system fx1; . . . ; xk; y1; . . . ; ykg of V . Therefore we put

~WW :¼ spanfx1; . . . ; xk; y1; . . . ; ykg;

and one has V ¼ ~WW l ~WW ?. Since V and ~WW are nondegenerate, so is ~WW ?,

and its signature is given by

sign ~WW? ¼ ðp� k; q� k; 0Þ:

Thus by Proposition 4, there exists a ðp� k; q� k; 0Þ-basis

fxkþ1; . . . ; xp; ykþ1; . . . ; yqg

of ~WW?. Hence V has the desired ðp; q; 0Þ-basis, which completes the proof.

r

By Proposition 5, one can construct a ðp; q; rÞ-basis of V from a given

ðs; t; uÞ-basis of its subspace.

Proposition 6. Let ðp; q; rÞ :¼ signðV ; h ; iÞ and W be a subspace of V

such that

signðW ; h ; iÞ ¼ ðs; t; uÞ; dimðW \ radðV ; h ; iÞÞ ¼ k:

Fix an ðs; t; uÞ-basis

fx1; . . . ; xs; y1; . . . ; yt; z1; . . . ; zug ðzu�kþ1; . . . ; zu A rad VÞ

of W. Then V has a ðp; q; rÞ-basis

fa1; . . . ; ap; b1; . . . ; bq; g1; . . . ; grg
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such that

xi ¼ ai ði A f1; . . . ; sgÞ;

yi ¼ bi ði A f1; . . . ; tgÞ;

zi ¼ asþi þ btþi ði A f1; . . . ; u� kgÞ;

zu�kþi ¼ gi ði A f1; . . . ; kgÞ:

Proof. First of all, we put

WG :¼ spanfx1; . . . ; xs; y1; . . . ; ytg;

W0 :¼ spanfz1; . . . ; zu�kg;

Wnull :¼ spanfzu�kþ1; . . . ; zug:

By the assumption, it satisfies ðWGlW0Þ \ rad V ¼ f0g. Therefore there

exists a subspace U of V such that

V ¼ U l rad V ; WGlW0 � U :

Note that U is nondegenerate. Here we define

ðWGÞ?U :¼ fu A U j Ew A WG; hu;wi ¼ 0g:

Since WG is a nondegenerate subspace of U , one has U ¼WGl ðWGÞ?U .
Hence we have

V ¼ U l rad V ¼WGl ðWGÞ?U l rad V :

Remember that W0 � ðWGÞ?U and Wnull � rad V . We will construct bases of

WG, ðWGÞ?U , and rad V , respectively.

Regarding the basis fx1; . . . ; xs; y1; . . . ; ytg of WG, we put

ai :¼ xi ði A f1; . . . ; sgÞ; bi :¼ yi ði A f1; . . . ; tgÞ: ð5Þ

Next we construct a ðp� s; q� t; 0Þ-basis of ðWGÞ?U . Recall that U and

WG are nondegenerate. Hence ðWGÞ?U is nondegenerate, and its signature is

given by

signðWGÞ?U ¼ ðp� s; q� t; 0Þ:

Since fz1; . . . ; zu�kg is a ð0; 0; u� kÞ-system of W0, by Proposition 5, there

exists a ðp� s; q� t; 0Þ-basis fasþ1; . . . ; ap; btþ1; . . . ; bqg of ðWGÞ?U such that

zi ¼ asþi þ btþi ði A f1; . . . ; u� kgÞ: ð6Þ
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Finally we construct a ð0; 0; rÞ-basis of rad V . Since fzu�kþ1; . . . ; zug is

a basis of Wnull and Wnull � rad V , there exists a basis fg1; . . . ; grg of rad V

such that

gi ¼ zu�kþi ði A f1; . . . ; kgÞ: ð7Þ

From (5), (6) and (7), one obtains the desired ðp; q; rÞ-basis of V , which

completes the proof. r

4.2. The proof of Proposition 1. In this subsection, we prove Proposition 1.

First of all, we show that one can extend a given linear isometry between

subspaces to the entire nondegenerate space.

Proposition 7. Let V be a nondegenerate space, and W1 and W2

be subspaces of V with signðW1; h ; iÞ ¼ signðW2; h ; iÞ. Then for any linear

isometry f : W1 !W2, there exists a linear isometry ~ff : V ! V such that
~ff jW1

¼ f .

Proof. Let ðs; t; uÞ :¼ sign W1 ¼ sign W2. Take an arbitrary linear iso-

metry f : W1 !W2. Here we fix an ðs; t; uÞ-basis

fx1; . . . ; xs; y1; . . . ; yt; z1; . . . ; zug

of W1. Since f : W1 !W2 is a linear isometry,

f f ðx1Þ; . . . ; f ðxsÞ; f ðy1Þ; . . . ; f ðytÞ; f ðz1Þ; . . . ; f ðzuÞg

is an ðs; t; uÞ-basis of W2. Note that

dimðW1 \ rad VÞ ¼ dimðW2 \ rad VÞ ¼ 0;

since V is nondegenerate. Then from Proposition 6, there exist two ðp; q; 0Þ-
bases

fa1; . . . ; ap; b1; . . . ; bqg; fa 01; . . . ; a 0p; b
0
1; . . . ; b

0
qg

of V such that

xi ¼ ai; f ðxiÞ ¼ a 0i ði A f1; . . . ; sgÞ; ð8Þ

yi ¼ bi; f ðyiÞ ¼ b 0i ði A f1; . . . ; tgÞ; ð9Þ

zi ¼ asþi þ btþi; f ðziÞ ¼ a 0sþi þ b 0tþi ði A f1; . . . ; ugÞ: ð10Þ

Here we define ~ff : V ! V by mapping the former basis to the latter, that

is,

~ff ðaiÞ :¼ a 0i ði A f1; . . . ; pgÞ; ~ff ðbiÞ :¼ b 0i ði A f1; . . . ; qgÞ:

350 Yuji Kondo



One can easily check that ~ff : V ! V is a linear isometry such that ~ff jW1
¼ f

from (8), (9) and (10). r

The next lemma follows from basic linear algebra.

Lemma 2. Let W be a subspace of V, and f : V ! V be a linear isometry

with respect to h ; i. Then one has f ðradðW ; h ; iÞÞ ¼ radð f ðWÞ; h ; iÞ.

Next we show an equivalent condition for the classification of subspaces

by linear isometries.

Proposition 8. For any two subspaces U and W of V, the following two

conditions are equivalent.

(1) There exists a linear isometry f : V ! V with respect to h ; i such that

U ¼ f ðWÞ.
(2) Both of the following hold.

( i ) signðU ; h ; iÞ ¼ signðW ; h ; iÞ.
(ii) dimðU \ radðV ; h ; iÞÞ ¼ dimðW \ radðV ; h ; iÞÞ.

Proof. First we assume (1), and show (2). Let ðs; t; uÞ :¼ sign W with

respect to h ; i. Then by Proposition 4, there exists an ðs; t; uÞ-basis

fx1; . . . ; xs; y1; . . . ; yt; z1; . . . ; zug

of W . Since f jW : W ! U is a linear isometry,

f f ðx1Þ; . . . ; f ðxsÞ; f ðy1Þ; . . . ; f ðytÞ; f ðz1Þ; . . . ; f ðzuÞg

is an ðs; t; uÞ-basis of U . Hence one has sign U ¼ sign W , which proves (i).

Regarding the assertion (ii), by Lemma 2 we have

rad V ¼ rad f ðVÞ ¼ f ðrad VÞ;

thus one has

U \ rad V ¼ f ðWÞ \ f ðrad VÞ ¼ f ðW \ rad VÞ:

This completes the proof of (ii).

Next let us assume (2), and we show (1). Put

ðp; q; rÞ :¼ sign V ; ðs; t; uÞ :¼ sign U ¼ sign W :

We fix ðs; t; uÞ-bases of W and U which satisfy the assumption of Proposition 6.

Then they can be extended to ðp; q; rÞ-bases

fa1; . . . ; ap; b1; . . . ; bq; g1; . . . ; grg;

fa 01; . . . ; a 0p; b
0
1; . . . ; b

0
q; g
0
1; . . . ; g

0
rg
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of V in the way of Proposition 6. Let f : V ! V be the linear isometry which

maps the former basis to the latter. Then we have U ¼ f ðWÞ, which com-

pletes the proof. r

Finally we prove Proposition 1 by using Propositions 7 and 8.

Proof (of Proposition 1). Take arbitrary ðVk1 ;Vk2Þ; ðWk1 ;Wk2Þ A Fk1;k2 .

First of all, we assume (1). Then there exists g A Oðp; qÞ such that

ðVk1 ;Vk2Þ ¼ g:ðWk1 ;Wk2Þ ¼ ðgWk1 ; gWk2Þ:

Under this assumption, we show (2), that is, we prove the following:

( i ) signðVk2 ; h ; i0Þ ¼ signðWk2 ; h ; i0Þ.
( ii ) signðVk1 ; h ; i0Þ ¼ signðWk1 ; h ; i0Þ.
(iii) dimðVk1 \ radðVk2 ; h ; i0ÞÞ ¼ dimðWk1 \ radðWk2 ; h ; i0ÞÞ.

The assertions (i) and (ii) follow from Proposition 8, and (iii) holds from

Lemma 2.

Next we assume (2) and show (1). Since sign Vk2 ¼ sign Wk2 and

rad Rpþq ¼ f0g, from Proposition 8, there exists a linear isometry f : Rpþq

! Rpþq such that

Vk2 ¼ f ðWk2Þ:

We then find a linear isometry mapping f ðWk1Þ to Vk1 . From the assumption

(ii), one has

sign Vk1 ¼ sign Wk1 ¼ sign f ðWk1Þ: ð11Þ

Moreover by Vk2 ¼ f ðWk2Þ, we have

f ðWk1Þ \ f ðrad Wk2Þ ¼ f ðWk1Þ \ rad f ðWk2Þ ¼ f ðWk1Þ \ rad Vk2 :

Hence by the assumption (iii), we obtain

dimðVk1 \ rad Vk2Þ ¼ dimðWk1 \ rad Wk2Þ ¼ dimð f ðWk1Þ \ rad Vk2Þ: ð12Þ

Therefore by (11), (12) and Proposition 8, there exists a linear isometry

h : Vk2 ! Vk2 such that

Vk1 ¼ hð f ðWk1ÞÞ:

From Proposition 7, there exists a linear isometry ~hh : Rpþq ! Rpþq such that

~hhjVk2
¼ h:

Hence from the above argument, we have

Vk1 ¼ ð~hh � f ÞðWk1Þ; Vk2 ¼ ð~hh � f ÞðWk2Þ:
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Since ~hh � f : Rpþq ! Rpþq is a linear isometry with respect to h ; i0, this

completes the proof. r

4.3. The proofs of Propositions 2 and 3. In this subsection, we prove

Propositions 2 and 3. First, we prove Proposition 2. Recall that A is the

set of all possible signatures signðV ; h ; i0Þ of codimension-two subspaces V

of Rpþq.

Proof (of Proposition 2). First of all, we show that

A � ðp� 2; q; 0Þ; ðp� 1; q� 1; 0Þ; ðp; q� 2; 0Þ;
ðp� 2; q� 1; 1Þ; ðp� 1; q� 2; 1Þ; ðp� 2; q� 2; 2Þ

� �
\ ðZb0Þ3: ð13Þ

Take an arbitrary subspace V of Rpþq with dim V ¼ pþ q� 2, and we put

sign V ¼ ðs; t; uÞ, where s; t; u A Zb0. Then we have

sþ tþ u ¼ pþ q� 2: ð14Þ

Since h ; i0 is nondegenerate on Rpþq, one has by Proposition 6 that

sþ ua p; tþ ua q: ð15Þ

By (14) and (15), we obtain

0a ua 2: ð16Þ

In order to calculate sign V , we have only to enumerate all possible integers

s; t; u A Zb0 satisfying the conditions (14), (15) and (16).

Let us fix u ¼ 0. By (14) and (15), we have

sþ t ¼ pþ q� 2; 0a sa p; 0a ta q:

According to these conditions, we have

ðs; tÞ A fðp� 2; qÞ; ðp� 1; q� 1Þ; ðp; q� 2Þg \ ðZb0Þ2:

For other two cases of u, one can summarize as follows:
� if u ¼ 1, then ðs; tÞ A fðp� 2; q� 1Þ; ðp� 1; q� 2Þg \ ðZb0Þ2,
� if u ¼ 2, then ðs; tÞ A fðp� 2; q� 2Þg \ ðZb0Þ2.

Therefore by the above arguments, we obtain (13).

One can prove the converse inclusion by constructing subspaces V with the

prescribed signatures. In fact, by Proposition 4, there exists a ðp; q; 0Þ-basis
fx1; . . . ; xp; y1; . . . ; yqg of Rpþq with respect to h ; i0. Hence, a subspace

V :¼ spanfx1; . . . ; xp�2; y1; . . . ; yq�2; xp�1 þ yq�1; xp þ yqg
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satisfies sign V ¼ ðp� 2; q� 2; 2Þ. We can similarly construct subspaces V for

the other five triplets, which completes the proof. r

Finally, we prove Proposition 3. Recall that B is the set of all possible

signatures signV ðW ; h ; i0Þ of one-dimensional subspaces W of V .

Proof (of Proposition 3). Since sign V ¼ ðs; t; uÞ, by Proposition 4, there

exists an ðs; t; uÞ-basis

fx1; . . . ; xs; y1; . . . ; yt; z1; . . . ; zug

of V . Take an arbitrary v A V . In terms of this basis, it can be expressed

as

v ¼
Xs

i¼1
aixi þ

Xt

j¼1
bj yj þ

Xu

k¼1
ckzk; ð17Þ

where a1; . . . ; as; b1; . . . ; bt; c1; . . . ; cu A R. Then one has

hv; vi0 ¼
Xs

i¼1
a2i �

Xt

j¼1
b2j : ð18Þ

Therefore it is easy to verify the first assertion, that is, ð1; 0; 0Þ A B if and only

if V has a non-zero space-like vector, which is equivalent to sb 1 by (17)

and (18). We can similarly show the second and the fourth assertions. Re-

garding the third assertion, ð0; 0; 1Þ A B if and only if V has a light-like vector

v B rad V , which is equivalent to s; tb 1 by (18). This completes the proof.

r
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