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ABSTRACT. It is known that a connected and simply-connected Lie group admits only
one left-invariant Riemannian metric up to scaling and isometry if and only if it is
isomorphic to the Euclidean space, the Lie group of the real hyperbolic space, or the
direct product of the three dimensional Heisenberg group and the Euclidean space
of dimension n — 3. In this paper, we give a classification of left-invariant pseudo-
Riemannian metrics of an arbitrary signature for the third Lie groups with n >4
up to scaling and automorphisms. This completes the classifications of left-invariant
pseudo-Riemannian metrics for the above three Lie groups up to scaling and auto-
morphisms.

1. Introduction

In differential geometry, it is one of the central and fundamental problems
to determine whether a given differentiable manifold admits some distinguished
geometric structures or not. Such structures can be, for example, Einstein or
Ricci soliton metrics (cf. [4, 26]) for the setting of Riemannian or pseudo-
Riemannian manifolds, and Kaihler-Einstein metrics for Kéihler manifolds.
When one deals with these problems, it would be natural and useful to add
some other properties, such as homogeneity.

We focus on the problem whether a given Lie group admits distinguished
left-invariant metrics or not, both for the Riemannian and pseudo-Riemannian
cases. Left-invariant metrics on Lie groups have supplied many examples
of distinguished metrics, and have been studied actively. For example, we
refer to [1, 5, 15, 17, 20, 21, 22, 27] and references therein. In particular, we
mention that the Alekseevskii’s conjecture has been recently proved in [2],
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which had been an open problem on homogeneous Einstein manifolds with
negative scalar curvature. However, even if we consider the Riemannian cases,
the present state is far from the complete.

If one can classify left-invariant metrics on a given Lie group, then it
would be useful to determine the existence and non-existence of distinguished
metrics. Regarding left-invariant Riemannian metrics, Lauret ([16]) classified
connected and simply-connected Lie groups which admit only one left-invariant
Riemannian metric up to scaling and isometry. Such a Lie group is isomor-
phic to one of

R”, Gryr (n>2), HyxR"> (n>3), (1)

where Gry» is so-called the Lie group of the real hyperbolic space IRH”
(the solvable part of the Iwasawa decomposition of the identity component
SO%n,1) of SO(n, 1), and acts simply-transitively on RH"), and Hj is the
three dimensional Heisenberg group. It is well-known that their unique
metrics are flat on IR”, negative constant sectional curvature on Gryg+ and
Ricci soliton on Hz x IR"73, respectively. For other studies on classifications
of left-invariant Riemannian metrics, we refer to [10, 11, 14, 20] and references
therein.

We are interested in the classifications of left-invariant pseudo-Riemannian
metrics on Lie groups. In the three-dimensional cases, left-invariant Lorent-
zian metrics have been studied in [6, 24, 25]. For higher dimensional cases, it
seems to be natural that we first consider the above three Lie groups, R", Gry»
and H; x R"3. For any signature, it is obvious that IR” admits only one
left-invariant pseudo-Riemannian metric up to scaling and isometry, which is
flat. For any non-Riemannian signature on Gryg- (n > 2), there exist exactly
three left-invariant pseudo-Riemannian metrics up to scaling and isometry, all
of them have constant sectional curvatures ([12]). For the case of Hj, there
exist exactly three left-invariant Lorentzian metrics up to scaling and isometry
([24, 25]), and only one of them is flat and the other two are Ricci solitons but
not Einstein ([21, 22, 25]).

In this paper, we consider left-invariant pseudo-Riemannian metrics on
Hs; x R" with n >4, and classify them up to scaling and automorphisms
defined as follows.

DermNiTION 1. Let ¢g; and ¢, be left-invariant pseudo-Riemannian metrics
on a Lie group G. Then, (G,g1) and (G,g,) are said to be equivalent up to
scaling and automorphisms if there exist ¢ > 0 and a Lie group automorphism
¢ : G — G such that for any ¢ € G and x,y e T,G, they satisfy

g1(x, ), = €g2(dey(x),d (1)) ya)»
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where T,G is the tangent space to G at a, and dg, is the differential map of ¢
at a.

By Definition 1, if (G,g,) and (G,g;) are equivalent up to scaling and
automorphisms, then they are isometric up to scaling. Note that the converse
is not necessarily true (see Remark 3). In the preceding study [13], it has
been shown that there exist exactly six left-invariant Lorentzian metrics on
H; x R"* with n >4 up to scaling and automorphisms. The main result of
this paper is a classification of left-invariant pseudo-Riemannian metrics of an
arbitrary signature on Hz x IR"~3 with n > 4 up to scaling and automorphisms.

THEOREM 1. Let p,qeZs, with p+q =>4 Then the number of left-
invariant pseudo-Riemannian metrics of signature (p,q) on Hz X RPHI-3 up to
scaling and automorphisms is as follows:

(1) 21 if p,q=3.

(2) 15if p=3and q=2.

(3) 6if p=3and q=1.

@) 10 p=g=2

Note that, for any p,q € Z~( and a Lie group G, one has the correspon-
dence

{ a left-invariant metric } 1:1 { a left-invariant metric }

of signature (p,q) on G of signature (¢, p) on G

Therefore Theorem 1 gives a classification for every signature. Recall that
H; x R"* admits only one left-invariant Riemannian metric for »n > 3, and
exactly three left-invariant Lorentzian metrics for n =3. Combining these
results with Theorem 1, one has the next table of the number of left-invariant
Riemannian and pseudo-Riemannian metrics of signature (p,q) on Hs x R"3

Table 1. The number of left-invariant metrics on Hz x R"™> up to scaling and automorphisms

Sdofi] 234
0 1|1
1 30616
2 30101515
3 1615|212
4 1]6]15]21 |21
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Note that our theorem completes the classifications of all left-invariant metrics
up to scaling and automorphisms on Lie groups in (1).

In the proof of Theorem 1, the key idea is a group action on a flag
manifold. In fact, the equivalence classes of left-invariant pseudo-Riemannian
metrics of signature (p,q) on Hj; x R"> up to scaling and automorphisms
correspond to the orbits of the group action of the parabolic subgroup of the
block decomposition (1,7 —3,2)

O *x -+ *|* x
e GL(n,R) (2)
O *x -+ *|* x
0|0 -+ 0% =
010 -+ O0lx =

on GL(n,IR)/O(p,q), which is a pseudo-Riemannian symmetric space. More-
over, this action corresponds to the action of O(p, ¢) on the flag manifold given
by the above parabolic subgroup. With respect to the latter action, it has been
already known that the number of the orbits is finite in [28]. Determining the
orbit space of the latter action, we classified left-invariant pseudo-Riemannian
metrics of signature (p,q) on Hz x R"~3 up to scaling and automorphisms. In
[13], the classification of left-invariant Lorentzian metrics on this Lie group has
been obtained by matrices calculations. However if one tries to classify left-
invariant non-Lorentzian metrics on it by the same method, the procedure will
be very complicated, since the method depends on the signature. In this paper,
we classify left-invariant pseudo-Riemannian metrics by a method which does
not depend on the signature.

We mention the curvature properties of left-invariant pseudo-Riemannian
metrics on H; x R"® with n>4. Recall that there exist exactly six left-
invariant Lorentzian metrics up to scaling and automorphisms ([13]). In this
case, curvatures are completely calculated, and only one of them is flat and the
other five are Ricci solitons but not Einstein ([13]). For the non-Lorentzian
cases, the author has partially calculated curvatures (see Remark 3), which will
be in the forthcoming paper.

2. Preliminaries

In this section, we recall general theories on inner products on vector
spaces, which are not necessarily nondegenerate, and left-invariant pseudo-
Riemannian metrics on Lie groups.
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2.1. Vector spaces with inner products. In this subsection, we recall some
terminologies on vector spaces with inner products used throughout this paper,
and set notations.

First of all, let us recall the signature of an inner product. Let V' be an
n-dimensional real vector space, and {,)> be an inner product on it, which is
not necessarily nondegenerate. Fix a basis {v,...,v,} of V, and identify
V' =~ R". Then there exists a real symmetric matrix A such that for any
x,yelV,

(x,y) = "xAy.

Since A4 is a real symmetric matrix, every eigenvalue of 4 is a real number.
Note that 0 can be its eigenvalue since <, ) is not necessarily nondegenerate.
Then the triplet of the numbers of positive, negative and zero eigenvalues of A
counted with multiplicities is called the signature of {,)» on V', and we denote
it by

sign(V,(,)):(p,q,r) (paQ5rEZZO)'

In the cases of r =0, that is, when {,) is nondegenerate on V', we may write
sign(V,{,>) = (p,q). If we do not need to specify <,>, we denote it by
sign V' for simplicity. We use this notation for a subspace W of V as well,
that is, we denote the signature of {,>|, ., on W by

sign(W, D) = (5,8, u) (s,t,u€Zsy).

In this case, we write sign(W,{,») or sign W for simplicity.

Next we recall the radical. The radical rad(V,<,)») of V with respect to
{, > is a subspace of V' such that its vector is orthogonal to every vector of V/,
that is,

rad(V,<{,>) ={veV|¥weV, {v,w) =0}

Similarly, we may write rad V' for simplicity. For a subspace W of V, we
simply denote the radical of W with respect to {, )|, by rad(W,{,>) or
rad W.

2.2. The spaces of left-invariant pseudo-Riemannian metrics on Lie groups. In
this subsection, we recall the notion of the spaces of left-invariant pseudo-
Riemannian metrics on Lie groups. This has been introduced in [12]. We
refer to [14] for the Riemannian case. In the following arguments, let G be a
real Lie group of dimension n, and g be the corresponding Lie algebra. We fix
a basis {e,...,e,} of g, and identify g =~ IR" as vector spaces.

Let p,qeZ-,. Recall that a pseudo-Riemannian metric has signature
(p,q) if so is the induced inner product on each tangent space. We are
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interested in a classification of left-invariant pseudo-Riemannian metrics on G.
For this purpose, we denote the space of left-invariant pseudo-Riemannian
metrics by

M), (G) := {a left-invariant metric of signature (p,q) on G}.

We then consider the counterpart in the Lie algebra g of G, and denote it
by

M, (g) :={<{,) :an inner product of signature (p,q) on g}.

It is well-known that there exists a one-to-one correspondence between
M, (G) and M, ,(g). Recall that we identify g =R". Then GL(n, R)
acts transitively on 9, ,(g) by

g.{x, > =<g"'x,97'y>  (Vge GL(n,R), Vx, y € g).

From now on, we explain the equivalence relation on inner products,
which corresponds to the equivalence relation on 9%, ,(G) given by Defini-
tion 1. Let us consider the automorphism group of g,

Aut(g) := {p € GL(n,R) | Vx, y € g, ¢([x, ¥]) = [p(x), p(»)]},
and also put R* := R\{0}. We study the group action by
R* Aut(g) := {cp € GL(n,R) |c e R*, ¢ € Aut(g)}.

This is a subgroup of GL(n,R), and thus it naturally acts on 9, ,(g). We
denote the orbit through <{,) by IR* Aut(g).<{, ).

DEerFINITION 2. Let {, >, <, > € M, 4(g). Then, (g,<{,>) and (g, <, )
are said to be equivalent up to scaling and automorphisms if they satisfy

o1 e R Aut(g).€, ).

This notion is an equivalence relation on 9, , (g). If a given Lie group
G is connected and simply-connected, then one knows Aut(G) = Aut(g), and
therefore the classification of inner products on g by the action of R* Aut(g) is
equivalent to the classification of left-invariant pseudo-Riemannian metrics on
G up to scaling and automorphisms. Hence it is natural to study the following
orbit space:

R* Aut(g)\M.¢) () := {R* Aut(g).(, > [ <, > € My, 4)(9)}-

This can be regarded as the moduli space of left-invariant pseudo-Riemannian
metrics on G of signature (p,q).
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Finally in this subsection, we give a remark on a classification of left-
invariant pseudo-Riemannian metrics on G up to scaling and isometry, which is
defined as follows.

DeFINITION 3. Let g1,92 € M, 4)(G). Then, (G,g:1) and (G, g>) are said
to be isometric up to scaling and denoted by g; ~¢ g» if there exist ¢ > 0 and
a diffeomorphism ¢ : G — G such that for any ¢ € G and x, y e T,G,

91(x, )y = g2(dp,(x), dp,(1)) pa)-

One can define an equivalence relation ~; on M, ,(g) corresponding to
~g, that is, there exists a one-to-one correspondence

1:1
g‘n(p,q)(G)/NG — gﬁ(p.q)(g)/w&'('

By Definition 1, if two left-invariant metrics are equivalent up to scaling and
automorphisms, then they are isometric up to scaling. Thus there exists a
surjection

IR* AUt(g)\gﬁ(p.q)(g) - gﬁ(p,q)(g)/Ng'

In this paper, as mentioned above, we focus on the classification of inner
products by the action of IR* Aut(g). In order to obtain the classification up
to ~g or ~;, we need to distinguish elements in R* Aut(g)\M, ,(g), which
can be equivalent in the sense of ~g.

3. An outline of the proof of the main theorem

In this section, we describe an outline of the proof of Theorem 1, which
can be divided into some parts. In the first subsection, we consider the orbit-
decomposition with respect to the action of an indefinite orthogonal group on
a flag manifold. In the second subsection, we describe possible signatures on
particular vector subspaces. We explain the statements of them without giving
proofs, and we prove Theorem 1 in the last subsection.

Let I; be the unit matrix of order k, and put

1
Ip-q:( ? —Iq)’

where p,qe€Z-;. We consider the standard inner product {,», such that
sign(IR”*7 <, >) = (p,q), that is, it is defined by

R DTREREY A (Vx, y e RPTY),

3.1. An orbit-decomposition of a flag manifold. In this subsection, we describe
the orbit-decomposition with respect to the action of the indefinite orthogonal
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group O(p,q) on the flag manifold
Fkl,kz = {(qu; Vk2)| Vkl C sz C IRP+q, dim Vk,- =k; (i = 172)},
where ki,ky e {1,...,p+q} with k1 < k,. Note that O(p, ¢) acts on Fy, r, by

g~(Vk17 sz) = (ngHngZ)'

For flags in Fy, x,, an equivalent condition to be contained in the same O(p, q)-
orbit is given in terms of the signatures as follows.

ProposITION 1. For any (Viy, Via)s (Wi, Wiy) € Fi, iy the following condi-
tions are equivalent.
(1) There exists g€ O(p,q) such that (Vi,, Vi,) = g.-(Wik,s Wk,).
(2) Al of the following hold.
(i) sign( Vies <5 »0) = sign( Wiy, <, 20)-
(ii) sign( Vie s < »0) = sign( Wi, <, 20)-
(iii)  dim(Vk, Nrad(Vi,, <, Yo)) = dim(Wy, Nrad(Wi,, <, >g))-

We will give the proof of this proposition in Section 4. From this prop-
osition, each O(p, q)-orbit through (V,, Vi,) € Fi, k, is characterized only by
the three data

sign Vi, sign Vy,, dim(V, Nrad V4,).

REMARK 1. For a reductive affine symmetric space (G,H,o) and its asso-
ciated affine symmetric space (G,H',00), Matsuki ([18, 19]) showed the corre-
spondence between the double cosets, that is, one has

H\G/P <L H\G/P,

where P is a parabolic subgroup of G. This correspondence is called the
Matsuki duality (correspondence). We consider R* Aut(g) for g := by @ R">
with n > 4, which is given in the form of (2). Therefore in the case of this paper,
we put

G :=GL(n,R), H :=0(p,q), P :=R* Aut(g). (3)

Then one has H' = GL(p,R) x GL(q,R), and hence we have the setting of the
Matsuki duality.

On the other hand, one can also determine the orbit space of the action of
H' on G/P=F, ,_ in the setting (3). For this purpose, we put

U*t :=span{ey,...,¢,}, U™ :=span{ey.1,...,€q},

where {ei,... ey} is the standard basis of R, and consider the following
data for any (Vi,V,_2) € Fi p_2:
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¢t i=dim(V, ,NnU"), ¢ =dim(V, o,NnU"), Ai=n—-2—ct—c",

dt:=dim(V,nU"), d :=dm(VinU"), d°:=1-d"—-d,
d* = dim((V,2NUT)® (V2N U7))N1Y).

Then every orbit of H' on G/P = F\ ,_, is determined by the above seven data.
This fact is essentially the same as Proposition 1 in the case of ki =1 and
kz =n-2

3.2. Possible signatures on some subspaces. Recall that the O(p,q)-orbit
through (V%,, Vi,) € Fi, .k, is characterized by the three data. In this subsec-
tion, we here describe all possible three data for the case k; =1 and k, =
p+q—2. The next proposition describes all possible sign V. 4—>.

PROPOSITION 2. Let A be the set of all possible signatures of codimension-
two subspaces of Rt with respect to <, that is,

A= {sign(V,{, %) |V C R’ dim V = p+¢q — 2}.
Then one has
_27 aoa _17 _1707 ) _2707
A:{@ 4,0) (r—-1g ): (p:q ) }ﬁ@mﬁ
(p_zvq_Ll)? (p_17q_2v1)7 (p_zvq_zaz)

The proof will be given in Section 4.
Fix a subspace V of R?™ with dim ¥ > 2. Take an arbitrary one dimen-

sional subspace W of V. Then one has
sign W € {(1,0,0),(0,1,0), (0,0, 1)}.

According to Proposition 1, when sign W =(0,0,1), we need to know
dim(W Nrad V). Hence we define the new notion

. _ [sign(W, () if Wnrad(V, <, ) = {0},
signy (W, <, ) = { (0,0,1) if W Crad(V,<, ).

null

It is obvious that one has
SignV We {(la Oa O)a (07 15 0)> (07 07 1)’ (0707 1)null}'
The next proposition describes all possible sign, W.

PROPOSITION 3. Fix a subspace V of RP™ with sign(V,<, ) = (s, t,u)
and s,t,u € Z-o. Let B be the set of all possible signatures of one-dimensional
subspaces of V' with respect to {,),, that is,

B:= {SignV(W7<a>0) | W C Va dlm W= 1}
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Then one has
* (1,0,0) e B if and only if s > 1,
(0,1,0) € B if and only if t > 1,

* (0,0,1)e B if and only if s,t > 1,
(0,0,1),,1 € B if and only if u> 1.

L]
nul

Also for this proposition, the proof will be given in Section 4.

3.3. The proof of the main theorem. In this subsection, we prove Theorem 1
by applying Propositions 1, 2, and 3. Let G:= H; x R"™® with n >4 and

g:=b; ®R" > :=span{ey,...,e,|[e, 1, = e1},
where b; = span{ej,e,_1,e,} is the three dimensional Heisenberg Lie algebra.

ProOF (of Theorem 1). Let p,qeZ,; with p+¢g>4. The desired
classification is given by the orbits of the action of R* Aut(g) on M, ,(g).
Recall that one has an identification

M4 (8) = GL(n,R)/O(p,q)

as homogeneous spaces, where n = p+¢. Hence, we can identify the orbit
space R™ Aut(g)\M, ,(g) with the double coset space, that is, one has

R* Aut(g)\M(,,¢(g) = R* Aut(g)\GL(n,R)/O(p, q)-

On the other hand, from a general theory, there is a one-to-one corre-
spondence

R* Aut(g)\GL(1,R)/O(p, q) = O(p,q)\GL(1, R)/R* Aut(g).

Moreover the matrix expression of R* Aut(g) with respect to the basis {ey,...,
e, of g coincides with the form of (2) (cf. [14]). Therefore GL(n,R)/
IR* Aut(g) can be identified with the flag manifold F; ,;,—>. From the above
arguments, R* Aut(g)\9%, 4 (g) corresponds to O(p,q)\Fi pi4—2. Therefore
we have only to classify flags in Fi,.4—> by the action of O(p,q). By
Proposition 1, one knows that each O(p,q)-orbit through (Vi,V,42)€
Fi py4—2 is characterized only by

sign V7, sign Vg2, dim(V; Nrad Vi q-2).

In the following arguments, we assume p >g¢. Then the condition
p+q =4 yields that p > 2. From Proposition 2, one has

(p727q70)7 (pfl,Q7l,O), (pvquao)a

N (Zs)’.
(p—2,g—1,1), (p—1,g-2,1), <p—2,q—2,2>} (Z20)

sign V140 € {
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We complete Table 2 for each sign V,,,» one by one. Note that
p =2, qg=1.

First, let us consider the case of sign V14,2 = (p —2,¢,0). In this case, by
Proposition 3,

* if p>3, then sign, V1 =(1,0,0),(0,1,0),(0,0,1),

o if p=2, then sign, V1 =(0,1,0).

We here summarize all possible sign;,  V; for the other sign V),i4>. In the
case of sign V,,, 2= (p—1,4—1,0),

¢ if ¢>2, then sign, . Vi=(1,0,0

e if g=1, then sign, V1 =(1,0,0)
In the case of sign V.4, = (p,q —2,0), we have ¢ >2 and

e if ¢ >3, then sign,,wi2 71 = (1,0,0),(0,1,0), (0,0, 1),

* if ¢=2, then sign, V1 =(1,0,0).

In the case of sign V,iy0=(p—2,9—1,1),
e if p>3 and ¢=>2, then signVWF2 7 =(1,0,0),(0,1,0),(0,0,1),
(0’ 0’ l)nuH’
* if p>3 and ¢=1, then sign, Vi =(1,0,0),(0,0,1)
e if p=¢g=2, then signVWF2 V1 =(0,1,0),(0,0,1), -
In the case of sign V142 =(p—1,4—2,1), we have ¢ >2 and
e if ¢ >3, then signVWi2 = (1,0,0),(0,1,0),(0,0,1),(0,0,1)
* if ¢=2, then sign, V1 =(1,0,0),(0,0,1),,.
In the case of sign V142 =(p—2,9—2,2), we have ¢ >2 and
e if p>3 and ¢ >3, then signymi2 7 =(1,0,0),(0,1,0),(0,0,1),
(07 07 1)nu117

e if p>3 and ¢ =2, then signVWF2 V1 =(1,0,0),(0,0,1)

* if p=¢=2, then sign, V1 =(0,0,1),,.

Hence one can obtain the pairs of sign V,,,—» and signVWf2 V1 in
Table 2. Only for the case of p,q >3, we explicitly describe 21 pairs of
the signatures, and for the other cases we mark each slot in the table with
the check mark “v” if its corresponding equivalence class appears. At the
bottom row, we write the number of equivalence classes. This table proves
Theorem 1. ]

0,0),(0,1,0),(0,0,1),
0,0).
);

null>

null>

null>

For p,qeZ-, with p+¢q >4, every O(p,q)-orbit in Fy ., > is charac-
terized by sign(V,.4-2,<, ) and sigan+qiz(V1,<,>0) as in Table 2. We
explain what this table represents in terms of inner products on g. Here
we denote the center and the derived ideal of g by Z(g) and [g, g], respectively.

Then one has

Z(g) = span{ey,...,epq2}, l9, 6] = span{e; }.
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Table 2. The number of equivalence classes

p.q=3 p=3,q=2| p=3,q=1|| p=q=2
sign Vg2 signVHH Vi

1 || (»=2,4,0) (1,0,0) v v
2 (0,1,0) v v v
(3) (0,0,1) v v
(4) (1771,[]71,0) (1*0‘0) v v v
(5) (0,1,0) v v
(6) (0,0,1) v v
(7) (p,q—2,0) (1,0,0) v v
8) (0,1,0)
) (0,0,1)
(10) (p—2,9—1,1) | (1,0,0) v v
(11) (0,1,0) v v
(12) (0,0,1) v
(13) (0,0, 1)null v v v
(14) (p—1,9—2,1) | (1,0,0) v v
(15) (0,1,0)
(16) (0,0,1)
(17) (0707 1)nu]l v v
(18) (p—2,9-2,2) | (1,0,0) v
(19) (0,1,0)
(20) (0,0,1)
(21) (0707 1)null v v

21 15 6 10

In terms of g, Table 2 represents the pairs of signatures of {,»e M, ,(g)
restricted to Z(g) and [g,g], that is, every R Aut(g)-orbit in M, ,(g) is
characterized by

sign(Z(g), <, ), signgg([s,g],<,>)

as in Table 2.

REMARK 2. For left-invariant Lorentzian metrics on G, the degenerations
of R* Aut(g)-orbits have been studied in [13]. For any distinct orbits Oy and
O,, recall that Oy is said to degenerate to O, if Oy C O holds, where O is the
closure of 1. In the Lorentzian case, there exists only one closed R* Aut(g)-
orbit, which corresponds to (13) in Table 2 and is characterized as the unique
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equivalence class of flat metrics up to scaling and automorphisms.  Furthermore,
inner products in this closed orbit are degenerate on Z(g) and [g,g] as (13) in
Table 2. The author has verified that similar phenomena occur also in the non-
Lorentzian cases, that is,

* the R* Aut(g)-orbit corresponding to (21) is the unique closed orbit,

* the metric corresponding to (21) is flat,

* inner products in this closed orbit are degenerate on Z(g) and [g,q] as

(21) in Table 2.

Note that a closed orbit always exists. It would be a natural problem to con-
sider whether the above three correspondences hold for any Lie group or not.
In fact, some papers study the relations between the curvature properties and the
signatures of the restrictions to particular ideals ([3, 9]).

REMARK 3. For a fixed signature, we here mention that the left-invariant
pseudo-Riemannian metrics on G corresponding to (13), (17), (20) and (21) in
Table 2 are all isometric to each other. The curvatures of the above metrics
can be calculated directly.  According to it, they are all flat. In [8), it is proved
that every left-invariant pseudo-Riemannian metric on a two-step nilpotent Lie
group is geodesically complete. Hence G endowed with one of the above four
flat metrics is a simply-connected space form, where a space form is a complete
and connected pseudo-Riemannian manifold with constant curvature. It is well-
known that simply-connected space forms are isometric if and only if they have
the same dimension, signature and constant curvature (cf. [23]). Therefore, our
claim holds.

Recall that the metrics corresponding to (17), (20) and (21) occur only in
the non-Lorentzian cases. Thus in the non-Lorentzian cases, there exist left-
invariant pseudo-Riemannian metrics on G which are distinct up to automor-
phisms but isometric.

4. The proofs of Propositions 1, 2 and 3

In this section, we prove the propositions which we used for proving the
main theorem in Section 3. Throughout this section, let V' be a real vector
space of finite dimension. We denote by {, ) an inner product on V', which is
not necessarily nondegenerate.

4.1. Auxiliary lemmas and propositions on vector spaces. In this subsection,
we show some auxiliary lemmas and propositions, which we use in Subsections
4.2 and 4.3.

First of all, we define a particular basis for a given vector space, which is
an analogue to an orthonormal basis in the positive definite case. In order to
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do that, we introduce the next notation g given by

1 (ie{l,...,p}),
g:=1{ —1 (ie{p+1,....p+q}),
0 (ie{p+q+1,....p+q+r}),

where p,q,r € Zy.

DEFINITION 4. A set {v1,..., 0444} Of linearly independent vectors of V’
is called a (p,q,r)-system with respect to {,) if it satisfies

<l)i7l)j‘>:8,‘5,‘j (Vi,je{l,...,p+q+r}),

where 0 is the Kronecker’s delta. In addition, if {vi,..., 0,444} is a basis
of V, then it is called a (p,q,r)-basis of V.

A vector space of finite dimension with a positive definite inner product
has an orthonormal basis. A similar statement holds for the nondegenerate
cases (cf. [7]). More generally, there exists a (p,q,r)-basis of V if sign V' =

(p,q,7).

PropPOSITION 4. Let (p,q,r) :=sign(V,<,>). Then V has a (p,q,r)-basis
with respect to ).

ProOor. We identify V =~ R?*7*" as vector spaces. Let {er,...,epiqir}
be the standard basis of V', and we put

I,
by = -1, )
O,

where O, is the zero matrix of order r. Let A be the Gram matrix of {, ) with
respect to {ei,...,ep1q1-}. Then by Sylvester’s law of inertia, there exists g €
GL(p+¢q+r,R) such that ‘gdg =1, ,,. Here we put

v = ge; (ie{l,...,p+q+r}).
One obtains a (p,q,r)-basis {vi,..., 0,141} of V with respect to {, ). O

Next we consider the decomposition of a light-like vector v ¢ rad V' into
space-like and time-like vectors. Recall that a vector ve V is called

e space-like if {v,v) >0 or v=0,

e time-like if {v,v) <0,

o light-like if (v,v) =0 and v # 0.
Let U be a nondegenerate subspace of V' with respect to {, ), and define the
light-cone of U by

Go(U, (,0) == A{ue U[<u,uy = 0}\{0}.
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Moreover we put
O(U,<{,>)={f:U—U|f is a linear isometry with respect to <, >}.
Then it is well-known that Cy(U,<,>) is an O(U, {, »)-homogeneous space.

LeEmMMA 1. Let v be a light-like vector in V with v¢rad V. Then there
exists a (1,1,0)-system {v*, 0"} of V such that v=vt+0v".

Proor. Since v ¢ rad V, there exists a subspace U of V' such that
V=U®radV, veU.

Then there exist p,q € Z>; such that sign U = (p, q) with respect to {, ), since
ve U is light-like. Hence U contains et and ¢~ such that

<e+,€+>:1, <eiaei>:_17 <e+7ei>:0'

Thus one has et +e” € Co(U,{,»). Since Co(U,{,») is an O(U, <, »)-
homogeneous space, there exists f € O(U,{,») such that

v=fle"+e7)=f(e")+ fle).
By putting v* := f(et) and v~ := f(e”), we complete the proof. O

Next we consider an expansion of a given (0,0, k)-system. Note that, for
a subspace W of V, one has V=W @ W' if {(,) is nondegenerate on W.
Moreover if sign V = (p,q,r) and sign W = (s,1,0), then we have sign W+ =

(p—S,C]—l,V).

ProposITION 5. Let (p,q,0):=sign(V,<{,>) and {wy,...,wi} be its
(0,0,k)-system with k € Zsy. Then there exists a (p,q,0)-basis {xi,...,xp,
Vis-oy Ygt of V such that

Wi =X;+ pi (ie{l,....,k}).
Proor. We put
Wi = span{ws, ..., wi}".
First of all we prove
wy ¢ rad W7. 4)
Since V' is nondegenerate, we have
span{wy, ..., wi} = (span{wy, ..., wi} )" = Wit

If wy erad W, then

wy € Wit = span{wy,...,w}.
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However, this is a contradiction since wy,...,w; are linearly independent.
Hence w; ¢ rad W).

Note that w; is a light-like vector and w; € W;. According to (4) and
Lemma 1, there exists a (1,1,0)-system {xj, y;} of ¥ such that

{thl}CW], wp = X1+ 1.
Similarly to the above argument, we put
W, := span{x, y1, ws3,.. .,wk}l.

Note that wy € W,. Then one can show w, ¢ rad W, since V' is nondegenerate
again. Thus by Lemma 1, there exists a (1,1,0)-system {x, o} of ¥ such
that

{x2, ;2} C W», wy = X2 + ).

Therefore {x1,x2, y1, 2} is a (2,2,0)-system of V. Repeating this process,
we obtain a (k,k,0)-system {xi,...,Xk, y1,..., yx} of V. Therefore we put

W .= span{xl,...,xk7y1,...,yk},

and one has V' = W @ W'. Since V and W are nondegenerate, so is W,
and its signature is given by

sign W+ = (p—k,q — k,0).
Thus by Proposition 4, there exists a (p — k,q — k,0)-basis

{xk+17"'axp7yk+17"'7yq}

of W*. Hence V has the desired (p,q,0)-basis, which completes the proof.
O

By Proposition 5, one can construct a (p,q,r)-basis of V' from a given
(s, t,u)-basis of its subspace.

PrROPOSITION 6. Let (p,q,r) :=sign(V,<,>) and W be a subspace of V
such that

sign(W, ., ) = (s, t,u), dim(W Nnrad(V,<,>)) =k.
Fix an (s,t,u)-basis
{X1, ey Xy Y1y ooy Vis Zhy ey Zu} (Zuks1y---szu€rad V)
of W. Then V has a (p,q,r)-basis

{alv'"7apaﬁl""7ﬁq7yl7'"ayr}
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such that
X =0 (ie{l,...,s}),
yi=p; ((e{l,....1}),
Zi = Ogyi + P (ie{l,...,u—k}),
Zykri = V; (ie{l,....k}).
Proor. First of all, we put

Wi = Span{xl,“';xsv y17"'7yt}7
Wy :=span{zy,...,zu—k},
W := Span{z, k41, - -, Zu}-

By the assumption, it satisfies (W* @ Wy)Nrad V' = {0}. Therefore there
exists a subspace U of V' such that

V=U®rad V, wtre w,cU.
Note that U is nondegenerate. Here we define
(W) :={ue U|Vwe W*, {u,w) =0}.

Since W= is a nondegenerate subspace of U, one has U= W*@® (W),
Hence we have
V=U®@radV =W*@® (W*,;®rad V.
Remember that W, C (Wi)(l, and Wy Crad V. We will construct bases of
W*, (W), and rad V, respectively.
Regarding the basis {xi,...,xs, y1,..., y.} of W=, we put

w=x; (ie{l,...,s}), pi=yi (e{l,... t}). (5

Next we construct a (p —s,¢q — t,0)-basis of (W*);. Recall that U and
W+ are nondegenerate. Hence (Wi)b is nondegenerate, and its signature is
given by

sign(W*); = (p — 5,9 — 1,0).

Since {zi,...,z,—x} is a (0,0,u — k)-system of W, by Proposition 5, there
exists a (p —s,q —t,0)-basis {og1,..., %, By, -5 B} of (W#)5 such that

Zi:“s+[+ﬂt+i (ie{17"'vu_k})' (6)
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Finally we construct a (0,0,r)-basis of rad V. Since {z, ki1,...,24} 18
a basis of Wy and Wpyy C rad V, there exists a basis {y,...,7,} of rad V
such that

Vi = Zu—kti (ie{l,...,k}). (7)
From (5), (6) and (7), one obtains the desired (p,q,r)-basis of V/, which
completes the proof. O

4.2. The proof of Proposition 1. In this subsection, we prove Proposition 1.
First of all, we show that one can extend a given linear isometry between
subspaces to the entire nondegenerate space.

ProrosITION 7. Let V be a nondegenerate space, and W, and W,
be subspaces of V with sign(W,,{,>) =sign(W>,<{,>). Then for any linear
isometry f : W, — W,, there exists a linear isometry f V=V such that
f |Wl =/

ProoF. Let (s,t,u) :=sign W| =sign W,. Take an arbitrary linear iso-
metry f: W) — W,. Here we fix an (s,1,u)-basis

{X1, e s Xy Voo s Vis Zhy e o5 Zu}
of Wi. Since f: W, — W, is a linear isometry,
/)y S ), S S () f(20),- 0 f(2)}
is an (s, t,u)-basis of W,. Note that
dim(W; Nrad V) =dim(W>Nrad V) =0,

since V is nondegenerate. Then from Proposition 6, there exist two (p,q,0)-
bases

{ala"'7ap7ﬂl7"'aﬁq}7 {ai7"'7a1/))ﬁi)"‘7ﬁ(/1}
of V such that

Xi = 0, f(xi):a; (ie{lv-“as})a (8)
yi:ﬁia f(yl):ﬂz/ (ie{lv"'vt})v (9)
Zi = Ogri + P S(z) = OC;H +ﬂll+i ((e{l,...,u}). (10)

Here we define f: ¥ — V by mapping the former basis to the latter, that
1s,

f(‘xl) :Ocz/ (le{la’p})v J;(ﬂz) :ﬁzl (le{la7q})
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One can easily check that f : V' — V is a linear isometry such that f lw, = f
from (8), (9) and (10). O
The next lemma follows from basic linear algebra.

LEMMA 2. Let W be a subspace of V, and [ : V — V be a linear isometry
with respect to {,». Then one has f(rad(W,{,>)) =rad(f(W),{,)).

Next we show an equivalent condition for the classification of subspaces
by linear isometries.

PROPOSITION 8. For any two subspaces U and W of V, the following two
conditions are equivalent.
(1)  There exists a linear isometry f : V — V with respect to <, ) such that
U=f(w).
(2) Both of the following hold.
(i) sign(U,<,>) = sign(W,<,)).
(il) dim(Unrad(V,{,))) =dim(W Nnrad(V,{, ))).

Proor. First we assume (1), and show (2). Let (s,¢,u) :=sign W with
respect to {, ). Then by Proposition 4, there exists an (s, t,u)-basis

{x17'"axSayh'"7yt7zla"-7zu}
of W. Since f|, : W — U is a linear isometry,

/) S ), S S () f(20),- 0 S (2)}

is an (s,t,u)-basis of U. Hence one has sign U = sign W, which proves (i).
Regarding the assertion (ii), by Lemma 2 we have

rad V =rad f(V) = f(rad V),
thus one has
Unrad V=f(W)nf(rad V)= f(WnNrad V).

This completes the proof of (ii).
Next let us assume (2), and we show (1). Put

(p,q,r) :=sign V, (s,t,u) :=sign U = sign W.

We fix (s,1,u)-bases of W and U which satisfy the assumption of Proposition 6.
Then they can be extended to (p,q,r)-bases

{ala"'aap7ﬂla"'aﬂqayla"'7yl‘}7

{aiv"'7051/;7ﬁ{a"'aﬂ;ayiv"'7y;{}
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of V' in the way of Proposition 6. Let f: VV — V be the linear isometry which
maps the former basis to the latter. Then we have U = f(W), which com-
pletes the proof. O

Finally we prove Proposition 1 by using Propositions 7 and 8.

Proor (of Proposition 1). Take arbitrary (Vi,, Vi,), (Wi, Wk,) € Fx, k,-
First of all, we assume (1). Then there exists g € O(p,q) such that

(Vkﬂ sz) = g'(Wkw sz) = (ngngkz)~

Under this assumption, we show (2), that is, we prove the following:

(i) sign( Vi, <, »0) = sign( Wi, <, 20)-

(i) sign(Vio, < Do) = sign(Wi,, <, o).

(i) dim(Vk, Nrad(Vi,, <, Yo)) = dim( Wy, Nrad(Wi,, <, >g))-
The assertions (i) and (i) follow from Proposition 8, and (iii) holds from
Lemma 2.

Next we assume (2) and show (1). Since sign Vi, =sign W, and
rad R?*? = {0}, from Proposition 8, there exists a linear isometry f :IR?*™¢
— IR”™ such that

sz = f( sz)'

We then find a linear isometry mapping f(Wy,) to Vi,. From the assumption
(ii), one has

sign Vi, = sign Wy, = sign f(Wy,). (11)
Moreover by Vi, = f(Wy,), we have
F(Wi) 1 f(rad Wi) = (W) Nrad f(We,) = f(W,) Nrad Vi,
Hence by the assumption (iii), we obtain
dim(V, Nrad Vy,) = dim(Wy, Nrad Wy,) = dim(f(Wy,) Nrad Vi,).  (12)

Therefore by (11), (12) and Proposition 8, there exists a linear isometry
h: Vi, = Vi, such that

Vi = h(f( Wkl))'
From Proposition 7, there exists a linear isometry h: RP — RP*9 such that
h Vi, = h.

Hence from the above argument, we have

Vkl :(hof)(Wkl)v szz(hof)(sz)'
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Since ho f:RP* — RP*7 is a linear isometry with respect to <)o, this
completes the proof. O

4.3. The proofs of Propositions 2 and 3. In this subsection, we prove
Propositions 2 and 3. First, we prove Proposition 2. Recall that A4 is the
set of all possible signatures sign(V,{,»,) of codimension-two subspaces V
of R”*Y,

ProOF (of Proposition 2). First of all, we show that

AC{(pzaan)a (p717q7170)7 (pvquvo)v
(p_27q_171)7 (p_17q_2vl)a (p_zvq_zaz)

Take an arbitrary subspace V' of R?™ with dim V' = p +¢ — 2, and we put
sign V = (s,t,u), where s,t,u € Zso. Then we have

}m (20, (13)

sS+t+u=p+q-—2. (14)
Since <, ), is nondegenerate on IR”™Y, one has by Proposition 6 that
s+u<p, t+u<g. (15)
By (14) and (15), we obtain
0<u<?2. (16)

In order to calculate sign V', we have only to enumerate all possible integers
s, t,u € Ly satistying the conditions (14), (15) and (16).
Let us fix u=0. By (14) and (15), we have

s+t=p+q-2, 0<s<p 0<t<g.
According to these conditions, we have

(5,0)e{(p—2,9),(p—1,g—1),(p,q — 2)} N (Z=0)".

For other two cases of u, one can summarize as follows:

e ifu=1, then (s,))e{(p—2,g—1),(p—1,4—2)} N (Zs0)*,

o if u=2, then (s,1) e {(p—2,9—2)} N (Zso)".
Therefore by the above arguments, we obtain (13).

One can prove the converse inclusion by constructing subspaces } with the
prescribed signatures. In fact, by Proposition 4, there exists a (p,q,0)-basis
{xX1,...,Xp, Y1, .., ¥g} of R”™ with respect to <,»,. Hence, a subspace

Vo= Span{xla'"7xp—2ay]7"'7yq—27xp—] +J’q—laxp+J’q}
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satisfies sign V' = (p — 2,¢ —2,2). We can similarly construct subspaces V' for
the other five triplets, which completes the proof. O

Finally, we prove Proposition 3. Recall that B is the set of all possible
signatures sign, (W,<,>,) of one-dimensional subspaces W of V.

Proor (of Proposition 3). Since sign V' = (s,t,u), by Proposition 4, there
exists an (s, ¢, u)-basis

{Xb--~ax37J’17-~-,J/t721;---7Zu}

of V. Take an arbitrary ve V. In terms of this basis, it can be expressed
as

v:iaixi+ibjyj+ickzk, (17)
i=1 =1 k=1

where ay,...,asby,...,b,c1,...,c, € R, Then one has

s 1
v, )0 = Zaiz — ijz_ (18)
i1 =

Therefore it is easy to verify the first assertion, that is, (1,0,0) € B if and only
if 7 has a non-zero space-like vector, which is equivalent to s> 1 by (17)
and (18). We can similarly show the second and the fourth assertions. Re-
garding the third assertion, (0,0,1) € B if and only if 7 has a light-like vector
vé¢rad V, which is equivalent to s,7>1 by (18). This completes the proof.

O
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