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Abstract. We discuss orthogonal Chebyshev-Frolov lattices, their generating matrices

and their use in Frolov cubature formula. We give a detailed account on coordinate-

permuted systems that lead to fast computation and enumeration of such lattices.

In particular, we explain the recurrences identified in (K. Suzuki and T. Yoshiki,

Hiroshima Math. J., 49(1):139–159, 2019) via a plain constructive approach exhibiting

a new hierarchical basis of polynomials. Dual Chebyshev-Frolov lattices and their

generating matrices are also studied. Lattices enumeration in axis-parallel boxes is

discussed.

1. Introduction

Numerical integration in multi-dimension is a highly active research topic.

In a variety of scientific and engineering contexts, the objective is to approx-

imate integrals on general domains W � Rd that cannot be handled analyti-

cally. For many applications, the geometries of W and the occurrence of

singularities are the major sources of di‰culty. That said, the approxima-

tion of integrals involving smooth integrands over regular domains is still a

challenging task, especially in high dimensions. For instance, integrals of the

form

Qd ½ f � :¼
ð
½0;1� d

f ðxÞdx; ð1Þ

with the proper assumptions on f , arising in innumerable areas such as physics,

data mining, finance, parametrized PDE, uncertainty quantification, etc. Sparse

Grids, Monte-Carlo (MC) and Quasi Monte-Carlo (QMC) methods, see e.g. [1,

2, 3, 4] and references their-in, account for a major part of numerical integra-

tion procedures tailored to high dimensions.
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Ideally, one aims in computing an e‰cient and stable numerical approx-

imation Qd;N ½ f � to the above integral, which have reliable error guarantees for

classical smoothness manifolds. For instance, through the worst-case error

eðN;KÞ :¼ sup
k f kKa1

jQd ½ f � � Qd;N ½ f �j; ð2Þ

where K is a given smoothness manifold of d-variate functions. The integer

N reflects a numerical budget, in general dominated by the number of queries

of function f .

We are interested in a specific family of lattice rules called Frolov cuba-

tures. In a nutshell, given M a fixed non singular d � d matrix and N A N a

scaling facor, we consider MN ¼ ðN detðMÞÞ�1=d
M (it satisfies detðMNÞ ¼ 1=N)

and the associated d-dimensional lattice MNZd ¼ fMNk : k A Zdg. Matrix MN

is called a generating matrix for the lattice. Any other generating matrix is

necessarily equal to MNS with S uni-modular, i.e. in SLdðZÞ :¼ fS A Zd�d :

detðSÞ ¼G1g. We consider the cubature

Qd;N ½ f � :¼
1

N

X
x AMNZ d

f ðxÞ: ð3Þ

The function f is assumed to be supported on a bounded domain W, thus only

finitely many summands contribute to the sum, i.e. quadrature nodes picked

on the grid MNZd \W. The quadrature weights are all equal to 1=N, yet the

quadrature is not a Quasi-Monte Carlo method since in general Qd;N ½1W�0 1.

We note however that Qd;N ½1W� ! volðWÞ as N ! y.

The description of Frolov quadrature is fairly straightforward. Further-

more, the convergence analysis in the sense of (2) is rather standard, especially

through techniques of harmonic analysis, see e.g. [5, 6, 7, 8, 9, 10, 11,

12]. Frolov [5] established that under the mere admissibility condition

NmðMÞ :¼ inf
x AMZ d

x00

jP d
i¼1xij > 0; ð4Þ

there holds an optimal asymptotic worst-case behavior of (2) with respect to

functions with Lp-bounded mixed derivative of order r A N supported in ½0; 1�d .
We refer to the tutorial paper [10] for a detailed proof. We also refer to [8] for

a survey on this optimality result in many classical function spaces on the cube.

The inspection of all the aforementioned references confirms that the perfor-

mance of the quadrature is strongly tied and can be quantified through quan-

tities that are intrinsic to the lattice MNZd (or equally MZd ). In particular,

through invariants (invariance with respect to generating matrices) pertaining to

its geometry. For instance NmðMÞ, jdetðMÞj, inffkMSky : S A SLdðZÞg, and
other invariants.
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The notion of lattice admissibility is central to Frolov cubatures. Another

notion of utmost importance is that of duality. The dual of a lattice G � Rd

denoted G? is defined by G? ¼ fx A Rd : x>y A Z Ey A Gg. A matrix V is a

generating matrix for G if and only if V? :¼ ðV�1Þ> is a generating matrix for

G?. The importance of duality resides mainly on two facts. On the one hand,

it supplies a new optimal cubature, as admissibility of G implies that of G?

(and vice versa), see e.g. [12]. On the other hand, the standard approach to

studying the stability and accuracy of the quadrature associated with G through

harmonic analysis requires a well understanding of geometric properties of the

dual.

There exists a generic procedure to building admissible lattices in any

dimension d. If P� is a polynomial of degree d such that (i) P� has leading

coe‰cient 1, (ii) P� has integer coe‰cients, (iii) P� is irreducible over Q½X �,
and (iv) P� has d distinct real roots x1; . . . ; xd , then the Vandermonde matrix

V ¼ ðx j�1
i Þ1ai; jad generates an admissible lattice, with

NmðVÞ ¼ 1; NmðV?Þ ¼ jdetðVÞj�2: ð5Þ

We recall that jdetðVÞj2 ¼
Q

k0l jxk � xl j. For this special lattice, the nodes

are the vectors ðPðx1Þ; . . . ;PðxdÞÞ> for P varying in Zd�1½X � (polynomials in

Z½X � of degree at most d � 1). It is worthwhile to point out that given S a

d � d unimodular matrix, VS ¼ ðLjðxiÞÞ1ai; jad where L1; . . . ;Ld is the family

of polynomials in Zd�1½X � whose transition matrix from the canonical basis

f1;X ; . . . ;X d�1g is S. As S varies in SLdðZÞ, fL1; . . . ;Ldg can be any basis

of Zd�1½X � (linear combinations with respect to Z). In particular, for L1; . . . ;

Ld any polynomial sequence of Zd�1½X � (Lj has degree j � 1 and leading coe‰-

cient 1) the matrix ðLjðxiÞÞ1ai; jad is a generating matrix for VZd . Depend-

ing on a desired and within reach structure (orthogonality, recurrences, fast

computation, etc) on the generating matrix, one can plug in the appropriate

basis.

The algebraic construction is extremely useful since it systematically pro-

vides the invariants Nmð�Þ and jdetð�Þj for the lattice G ¼ VZd and its dual

G? ¼ V?Zd . The estimation of Nmð�Þ for an arbitrary matrix do not seem

straightforward. Frolov [5] have used polynomials P�ðxÞ :¼ �1þ
Qd

j¼1ðx�
2j þ 1Þ in his construction. Constructions based on Chebyshev polynomials

were considered in [6, 7, 11, 12, 13, 14] giving rise to the so called Chebyshev-

Frolov lattices, i.e. fðPðx1Þ; . . . ;PðxdÞÞ> : P A Zd�1½X �g where x1; . . . ; xd are

roots of specified irreducible factors of Chebyshev polynomials, e.g. [13] for

more details.

In this paper, we study orthogonal Chebyshev-Frolov lattices. In § 2, we

recall succinctly definitions and properties. In § 3, we investigate their gen-

erating matrices. We show in particular that using the appropriate reordering
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of rows and columns of the so-called Chebyshev-Vandermonde matrices, one is

able to identify recurrences that are favorable to fast generation and enumer-

ation of these lattices. We identify the polynomial sequence of Z½X � which

allows to derive the recurrences derived in [14] thus providing an explicit

constructive approach. In § 4, we discuss the fast enumeration procedure of

[14].

2. Chebyshev-Frolov lattices

We let ðTjÞjb0 be Chebyshev polynomials of the first kind, defined by

TjðcosðyÞÞ ¼ cosð jyÞ. We then let ð ~TTjÞjb0 be the scaled Chebyshev polyno-

mials whose leading coe‰cients are 1. They are given by ~TTjðxÞ ¼ 2Tjðx=2Þ for
jb 1, which are Chebyshev polynomials rescaled to ½�2; 2�. These polyno-

mials have integer coe‰cients and simple real roots. Moreover, the irreduci-

bility is well understood. A Chebyshev polynomial Tk (hence ~TTk) is irreducible

if and only if k is a power of 2. The algebraic construction can thus be

invoked. We denote the roots of Chebyshev polynomials T2 n and ~TT2n for

nb 0 by

Xn ¼ fxn;0; . . . ; xn;2 n�1g; xn; i ¼ cosðyn; iÞ
~XXn ¼ f~xxn;0; . . . ; ~xxn;2 n�1g; ~xxn; i ¼ 2 cosðyn; iÞ

; yn; i :¼
2i þ 1

2� 2n
p: ð6Þ

The roots of the scaled polynomials ~TT2 n lie in ½�2; 2�. The Vandermonde

matrices ðð~xxn; iÞ jÞ0ai; ja2 n�1 generate admissible Frolov lattices in dimensions

d ¼ 2n. We note the use of 0-indexing of matrices rows and columns. For

the sake of notational clarity, 0-indexing is used throughout the paper.

For a fixed integer n, d ¼ 2n and abscissas Xn, ~XXn as before, we denote

by Vn and ~VVn the associated Chebyshev-Vandermonde matrices (with respect

to the families T and ~TT), i.e. Vn :¼ ðTjðxn; iÞÞ0ai; jad�1,
~VVn :¼ ð ~TTjð~xxn; iÞÞ0ai; jad�1.

Since the polynomials ~TTj have degrees j, integer coe‰cients and leading co-

e‰cients 1, the transition matrix from the canonical basis f1;X ; . . . ;X d�1g into

f1; ~TT1; . . . ; ~TTd�1g is lower triangular with unit diagonal hence in SLd . As a

consequence, the matrix ~VVn is a generating matrix for the identified admissible

lattice in dimension 2n.

For the sake of clarity, we drop the subscript n in the notation of xn; i, ~xxn; i,

yn; i and ~yyn; i. The matrices Vn and ~VVn are given by

1 T1ðx0Þ � � � Td�1ðx0Þ
1 T1ðx1Þ � � � Td�1ðx1Þ
..
. ..

. . .
. ..

.

1 T1ðxd�1Þ � � � Td�1ðxd�1Þ

0
BBBB@

1
CCCCA¼

1 cosðy0Þ � � � cosððd � 1Þy0Þ
1 cosðy1Þ � � � cosððd � 1Þy1Þ
..
. ..

. . .
. ..

.

1 cosðyd�1Þ � � � cosððd � 1Þyd�1Þ

0
BBBB@

1
CCCCA;

238 Moulay Abdellah Chkifa



and

1 ~TT1ð~xx0Þ � � � ~TTd�1ð~xx0Þ
1 ~TT1ð~xx1Þ � � � ~TTd�1ð~xx1Þ
..
. ..

. . .
. ..

.

1 ~TT1ð~xxd�1Þ � � � ~TTd�1ð~xxd�1Þ

0
BBBB@

1
CCCCA¼

1 2 cosðy0Þ � � � 2 cosððd � 1Þy0Þ
1 2 cosðy1Þ � � � 2 cosððd � 1Þy1Þ
..
. ..

. . .
. ..

.

1 2 cosðyd�1Þ � � � 2 cosððd � 1Þyd�1Þ

0
BBBB@

1
CCCCA;

respectively. The matrix Vn has entries in ½�1; 1� while the matrix ~VVn

has entries in ½�2; 2�. We note that ~VVn ¼ Vn diag½1; 2; . . . ; 2� and it can be

checked that ~VV>
n Vn ¼ dI2n . Lattice ~GGn :¼ ~VVnZ is orthogonal and ~VV>

n
~VVn ¼

diag½d; 2d; . . . ; 2d �. The associated dual lattice ~GG?
n is generated by ~VV?

n ¼ Vn=d

and is therefore given by ~GG?
n ¼ Gn=d with Gn :¼ VnZ. We will use the naming

convention introduced in [12] and refer to ~GGn as Chebyshev-Frolov lattices (CF-

lattices for short). When necessary, we will refer to Gn as dual CF-lattices. In

light of what precedes and invoking the conclusions of the algebraic construc-

tion, the invariants of lattices ~GGn and Gn are given by

jdetð ~VVnÞj ¼ ð
ffiffiffiffiffiffi
2d

p
Þd=

ffiffiffi
2

p

jdetðVnÞj ¼
ffiffiffi
2

p
ð
ffiffiffiffiffiffiffiffi
d=2

p
Þd

;
Nmð ~VVnÞ ¼ 1

NmðVnÞ ¼ 2=2d
; ð7Þ

while clearly the infimum of k ~VVnSky and kVnSky over S A SLdðZÞ are smaller

than 1 and 2 respectively.

Enumeration of CF-lattices in hypercubes has already been addressed, see

e.g. [11, 12, 13, 14]. For example, given a function f supported in the hyper-

cube W ¼ ½�1=2; 1=2�d , one is interested in enumerating the quadrature nodes

contributing to (3) with MN ¼ ðN detð ~VVnÞÞ�1=d ~VVn. The previous amounts to

enumerating ~VVnk with k A Zd such that

�l1a ~VVnka l1; l :¼
ffiffiffi
d

2

r
Nffiffiffi
2

p
� �1=d

; ð8Þ

where 1 ¼ ð1; . . . ; 1Þ> A Rd and a is coordinate-wise comparaison. By simply

using k ¼ ~VV�1
n

~VVnk ¼ V>
n

~VVnk=d, one derives kkky a k ~VVnkky. This shows that

k belongs to f�blc; . . . ;þblcgd . The previous isotropic grid has cardinality

ð2blc þ 1Þd which is of order ð
ffiffiffiffiffiffi
2d

p
ÞdðN=

ffiffiffi
2

p
Þ. For small dimensions d (e.g.

d ¼ 21; 22; 23) and small scaling factors N, one can simply enumerate all the

integer vectors k in the grid and verifies if �l1a ~VVnka l1. This plain pro-

cedure is also disposed to parallelization by enumerating independently the

components of a partition of the grid. In spite of this, it is unpractical for

higher dimensions, for instance ð
ffiffiffiffiffiffi
2d

p
Þd becomes very large (ð

ffiffiffiffiffiffi
2d

p
Þd ¼ 832 >

1028 for d ¼ 32).
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In [11, 12], an enumeration procedure based on orthogonality of CF-

lattices was introduced. Since k ~VVnkk22 ¼ dðk2
1 þ 2k2

2 þ � � � þ 2k2
d Þ for k ¼ ðk1;

k2; . . . ; kdÞ and ½�l; l�d � fx A Rd : kxk2 a
ffiffiffi
d

p
lg, then ~VVnk A ½�l; l�d implies

that ðk2
1 þ 2k2

2 þ � � � þ 2k2
d Þa l2. The previous encodes integers in Zd located

within an ellipse and which can be enumerated using a nested loop. We refer

to [11, 12] for more details on this strategy and its performance.

In the recent paper [14], an optimal enumeration procedure is described,

with optimality in the sense only the desired integers k are touched during

the procedure. It is based on generating matrices An that are more suitable

for enumeration. Moreover, the procedure is more general since it covers

enumeration of ~VVnZd in any axis-parallel box ½b; c� :¼ fz A R2 n

: ba za cg for

b; c A R2 n

. This procedure will be discussed in § 4.

Remark 1. Enumeration of dual CF-lattices VnZ is computationally equiv-

alent to that of CF-lattices ~VVnZ. Strategies discussed above can be examined for

matrices Vn. Otherwise, one can use 2VnZd ¼ ~VVnY with Y ¼ diag½2; 1; . . . ; 1�Zd

and adapt the strategies accordingly. More precisely,

baVnka c () 2ba ~VVn
~kka 2c; ð9Þ

where k; ~kk A Zd are related by ~kk1 ¼ 2k1, ~kk2 ¼ k2; . . . ; ~kkd ¼ kd. Enumerating

nodes Vnk ðk A ZdÞ in ½b; c� amounts to enumerating nodes ~VVn
~kk ð~kk A YÞ in ½2b; 2c�

then normalizing by 2. An illustration of this stratagem is given in § 4.

3. New coordinates-permuted systems

3.1. Two specific families of permutations. We let ðInÞnb0 and ðJnÞnb0 be the

‘‘ordered’’ sets of indices, defined recursively by: I0 ¼ J0 ¼ f0g, and

Inþ1 ¼ In5f2nþ1 � 1�Ing
Jnþ1 ¼ 2Jn5f2Jn þ 1g

; nb 0; ð10Þ

where 2nþ1 � 1�In :¼ f2nþ1 � 1� i : i A Ing, 2Jn :¼ f2j : j A Jng, 2Jn þ 1 :¼
f2j þ 1 : j A Jng and 5 is the concatenation operation. For instance,

I1 ¼ f0; 1g; I2 ¼ f0; 1; 3; 2g; I3 ¼ f0; 1; 3; 2; 7; 6; 4; 5g
J1 ¼ f0; 1g; J2 ¼ f0; 2; 1; 3g; J3 ¼ f0; 4; 2; 6; 1; 5; 3; 7g ; . . . : ð11Þ

The nested sets of indices I0 � I1 � � � � and J0 � J1 � � � � , reflect two specific

ways of re-ordering the nested sets of indices f0; . . . ; 2n � 1g, nb 0. In partic-

ular, in every Jn the first 2n�1 numbers are the even numbers ordered according

to decreasing ‘‘largest’’ dividing power of 2, the ordering of the odd numbers is

accordingly implied.

The sets In and Jn can be described by permutations over f0; 1; . . . ;
2n � 1g. We denote p

ðjÞ
n and p

ð�Þ
n such permutations, i.e. In ¼ fpðjÞ

n ðiÞ : i ¼
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0; . . . ; 2n � 1g and Jn ¼ fpð�Þ
n ð jÞ : j ¼ 0; . . . ; 2n � 1g. The recursions (10) can

be readily reflected in these permutations. Indeed,
� p

ðjÞ
0 is the identity permutation over f0g, then having p

ðjÞ
n computed,

p
ðjÞ
nþ1ðiÞ ¼ p

ðjÞ
n ðiÞ

p
ðjÞ
nþ1ð2n þ iÞ ¼ 2nþ1 � 1� p

ðjÞ
n ðiÞ

; i ¼ 0; . . . ; 2n � 1: ð12Þ

� p
ð�Þ
0 is the identity permutation over f0g, then having p

ð�Þ
n computed,

p
ð�Þ
nþ1ð jÞ ¼ 2p

ð�Þ
n ð jÞ

p
ð�Þ
nþ1ð2n þ jÞ ¼ 2p

ð�Þ
n ð jÞ þ 1

; j ¼ 0; . . . ; 2n � 1: ð13Þ

Remark 2. The permutations p
ðjÞ
n are the restriction of s : N ! N a fixed

permutation of N. This permutation can be described using a ‘‘bit-flip’’ pro-

cedure; sð0Þ ¼ 0, sð1Þ ¼ 1 then for 2n a k < 2nþ1 and sðk � 2nÞ ¼
Pn�1

j¼0 ej2
j ,

sðkÞ ¼ 2nþ1 � 1� sðk � 2nÞ ¼ 2n þ
Pn�1

j¼0 ð1� ejÞ2 j . As for the permutations

p
ð�Þ
n , they can be produced using the ‘‘bit-reversal’’ Vander-Corput sequence

ðckÞkb0. This sequence takes value in ½0; 1½ and is defined by c0 ¼ 0 and

ck ¼ 1

2

Xn�1

j¼0

aj2
�j ; k ¼

Xn�1

j¼0

aj2
j: ð14Þ

One can verify that k 7! 2nck define a permutation over f0; . . . ; 2n � 1g which

satisfies the same recursion as p
ð�Þ
n , hence pnðkÞ ¼ 2nck for k A f0; . . . ; 2n � 1g.

From this identification, we observe that p
ð�Þ
n have order 2, i.e.

pð�Þ
n � pð�Þ

n ð jÞ ¼ j; nb 0; j ¼ 0; . . . ; 2n � 1: ð15Þ

We let P
ðjÞ
n ;P

ð�Þ
n A f0; 1g2

n�2 n

be the permutation matrices associated with

p
ðjÞ
n , p

ð�Þ
n (i.e. P

ð�Þ
n ¼ ðd

i;p
ð�Þ
n ð jÞÞ0ai; jad�1 and P

ðjÞ
n ¼ ðd

i;p
ðjÞ
n ð jÞÞ0ai; jad�1). Based

on (12) and (13), one can derive recursions for these matrices. Such recursions

will not be relevant in our analysis. We note however in light of (15) that P
ð�Þ
n

are symmetric and

Pð�Þ
n � Pð�Þ

n ¼ I2 n ; nb 0; ð16Þ

where I2n is the 2n � 2n identity matrix. Also, note that P
ð�Þ
0 ¼ I1, P

ð�Þ
1 ¼ I2.

For later use, we introduce the 2n � 2n matrices Qn defined by: Q0 ¼ ð1Þ,
Q1 ¼

�
1 0
1 1

�
, otherwise for nb 1

Qn ¼ Pð�Þ
n J2 nPð�Þ

n ; J2 n :¼

1

1 1

j j
1 1

0
BBB@

1
CCCA A f0; 1g2

n�2 n

: ð17Þ
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Matrices Qn have at most two units along every row or column and clearly

Qn A SL2 nðZÞ. The inverse matrices Q�1
n ¼ P

ð�Þ
n J�1

2 n P
ð�Þ
n have their entries in

f�1; 0; 1g but are relatively full (having ð2n þ 1Þ2n=2 non-zero entries). We

note in view of (16) that for any nb 0

Qn ¼ I2 n þ ðd
p
ð�Þ
n ðiÞ;pð�Þ

n ð jÞþ1
Þ0ai; ja2 n�1: ð18Þ

Building on this, we are able to derive a recurrence for Qn.

Lemma 1. There holds Q0 ¼ ð1Þ and for nb 0,

Qnþ1 � I2nþ1 ¼ 0 Qn � I2 n

I2 n 0

� �
: ð19Þ

Proof. We use the shorthands pm ¼ p
ð�Þ
m for simplicity. In view of

(13), pnþ1ð2n þ jÞ ¼ pnþ1ð jÞ þ 1 for any 0a ja 2n � 1, hence the lower block

I2n in (19). For 2n a ja 2nþ1 � 1, one has pnþ1ð jÞ ¼ 2pnð j � 2nÞ þ 1 hence

pnþ1ð jÞ þ 1 ¼ 2ðpnð j � 2nÞ þ 1Þ which is equal to pnþ1ðiÞ where 0a ia 2n � 1

is such that pnð j � 2nÞ þ 1 ¼ pnðiÞ. This implies the upper block Qn � I2 n .

r

We introduce the 2n � 2n matrices ~QQn defined by: ~QQ0 ¼ ð2Þ, ~QQ1 ¼
�
2 0
1 1

�
,

otherwise for nb 1

~QQn ¼ Pð�Þ
n

~JJ n
2P

ð�Þ
n

~JJ2 n :¼

2

1 1

j j
1 1

0
BBB@

1
CCCA A f0; 1; 2g2

n�2 n

: ð20Þ

Since the first row and column of P
ð�Þ
n consist in ð1; 0; . . .Þ for any nb 1, then

P
ð�Þ
n and ~II2n :¼ diag½2; 1; . . . ; 1� commute and ~QQn ¼ ~II2 nQn for any nb 1. Com-

pared to Qn only the unit at position ði; jÞ ¼ ð0; 0Þ is di¤erent and it is equal to

2 ð ~QQn ¼ Qn þ E0;0Þ.

Remark 3. In view of (19), matrices ~QQn � ~II2 n ¼ Qn � I2n ¼: Rn satisfy the

recursion R0 ¼ ð0Þ and Rnþ1 ¼
�

0 Rn

I2n 0

�
for nb 0. The action of Rn is rather

straightforward, in view of (15) and (18), for x ¼ ðx0; . . . ; x2 n�1Þ, y ¼ Rnx is

given by y0 ¼ 0 and yi ¼ xj with j ¼ p
ð�Þ
n ðpð�Þ

n ðiÞ � 1Þ otherwise.

The families of permutations p
ðjÞ
n and p

ð�Þ
n will be used for permuting rows

and columns of generating matrices. Matrices Qn and ~QQn are transition

matrices associated with Chebyshev bases.

3.2. Coordinate-permuted Chebyshev abscissas. The roots of Chebyshev poly-

nomials T2 n and ~TT2n , introduced in (6), Xn ¼ fxn;0; . . . ; xn;2 n�1g and ~XXn ¼

242 Moulay Abdellah Chkifa



f~xxn;0; . . . ; ~xxn;2 n�1g are formulated using a standard order. Subsequently, we

consider the order implied by In, Xn ¼ fxn; igi AIn
and ~XXn ¼ f~xxn; igi AIn

. We

recall that Inþ1 ¼ In5I 0
n with I 0

n ¼ 2nþ1 � 1�In, see (10). This shows that

Xnþ1 ¼ Xþ
nþ15�Xþ

nþ1 and ~XXnþ1 ¼ ~XXþ
nþ15� ~XXþ

nþ1 with Xþ
nþ1 ¼ fxnþ1; igi AIn

and
~XXþ
nþ1 ¼ f~xxnþ1; igi AIn

comprising only roots that are > 0. We condense the main

interest in introducing permuted roots on the following: for k ¼ 0; . . . ; 2n � 1,

i ¼ p
ðjÞ
nþ1ðkÞ A In and i 0 ¼ p

ðjÞ
nþ1ð2n þ kÞ ¼ 2nþ1 � 1� i A I 0

n ,

xnþ1; i 0 ¼ �xnþ1; i

T2ðxnþ1; i 0 Þ ¼ T2ðxnþ1; iÞ ¼ xn; i
: ð21Þ

We recall that T2ðxÞ ¼ cosð2yÞ ¼ 2x2 � 1 for x ¼ cosðyÞ. The same holds with

abscissas ~xxn; i up to changing T2 by ~TT2 ð ~TT2ðxÞ ¼ x2 � 2Þ.
We denote by Dn the 2n � 2n diagonal matrices

Dn :¼ diag½ð~xxnþ1; iÞi AIn
� ¼ 2� diag½ðxnþ1; iÞi AIn

�: ð22Þ

For example D0 ¼ ð
ffiffiffi
2

p
Þ and D1 ¼ diag½2 cosðp=8Þ; 2 cosð3p=8Þ�. The numbers

on the diagonal belong to �0; 2½. Since

~TT2nþ1ðxÞ ¼ ðx� ~xxnþ1;0Þ . . . ðx� ~xxnþ1;2 nþ1�1Þ;

substituting by x ¼ 0 ¼ 2 cosðp=2Þ implies detðDnÞ ¼
ffiffiffi
2

p
for any nb 0.

We let L0; . . . ;L2 nþ1�1 be an arbitrary family of polynomials such that

every Lk has the same parity as k (as functions, L2j are even while L2jþ1 are

odd). We then let a0; . . . ; a2 n�1, b0; . . . ; b2 n�1 and g0; . . . ; g2 n�1 be the families

defined by L2jðxÞ ¼ ajðyÞ, L2jþ1ðxÞ ¼ 2xbjðyÞ and 2xL2jþ1ðxÞ ¼ gjðyÞ with y ¼
T2ðxÞ ¼ 2x2 � 1. We introduce the matrices

VL :¼ ðLjðxnþ1; iÞÞi AInþ1

j AJnþ1

; ð23Þ

Va :¼ ðajðxn; iÞÞi AIn

j AJn

; Vb :¼ ðbjðxn; iÞÞi AIn

j AJn

; Vg :¼ ðgjðxn; iÞÞi AIn

j AJn

: ð24Þ

Lemma 2. There holds

VL ¼
Va DnVb

Va �DnVb

� �
¼ Va D�1

n Vg

Va �D�1
n Vg

� �
: ð25Þ

Proof. The recurrences on the sets of indices In and Jn imply a block

representation (with I 0
n :¼ 2nþ1 � 1�In) of the form

Inþ1 VL

8<
:
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{Jnþ1

¼ In

�
X1

zfflfflffl}|fflfflffl{2Jn

I 0
n

�
X2

Y1

Y2

zfflfflfflffl}|fflfflfflffl{2Jnþ1

:
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For i A In arbitrary, we have i ¼ p
ðjÞ
nþ1ðkÞ for some 0a k < 2n, then we

introduce i 0 :¼ p
ðjÞ
nþ1ð2n þ kÞ A I 0

n . By (21), there holds xnþ1; i ¼ �xnþ1; i 0 and

T2ðxnþ1; iÞ ¼ T2ðxnþ1; i 0 Þ ¼ xn; i. On the one hand, polynomials Lk have the

same parity as k, hence X2 ¼ X1 and Y2 ¼ �Y1. On the other hand, from the

definitions of aj, bj, gj, L2jðxnþ1; iÞ ¼ ajðxn; iÞ, L2jþ1ðxnþ1; iÞ ¼ 2xnþ1; ibjðxn; iÞ and

2xnþ1; iL2jþ1ðxnþ1; iÞ ¼ gjðxn; iÞ. Therefore, X1 ¼ Va and Y1 ¼ DnVb ¼ D�1
n Vg.

The proof is complete. r

Matrices Qn and ~QQn are transition matrices associated with Chebyshev

bases. Indeed, in the new coordinate-permuted system, there holds

ððTj þ Tjþ1Þðxn; iÞÞi AIn

j AJn

¼ ðTjðxn; iÞÞi AIn

j AJn

�Qn: ð26Þ

This can be seen by changing back and forth into 0a ja 2n � 1 and using

that T2nðxn; iÞ ¼ 0 for all i. Similarly, given the family of polynomials defined

by b0 ¼ 1=2 and bj þ bj�1 ¼ Tj for jb 1, one has

ðbjðxn; iÞÞi AIn

j AJn

� ~QQ>
n ¼ ðTjðxn; iÞÞi AIn

j AJn

: ð27Þ

Actually bjðxÞ ¼ VjðxÞ=2 where Vj are Chebyshev polynomials of the third

kind, i.e. VjðxÞ ¼ cosðð2j þ 1Þy=2Þ=cosðy=2Þ for x ¼ cosðyÞ.

3.3. Coordinate-permuted Chebyshev-Frolov lattices. In the present section,

we denote by Vn and ~VVn the 2n � 2n Chebyshev-Vandermonde matrices, for-

mulated in the new coordinate systems, i.e.

Vn :¼ ðTjðxn; iÞÞi AIn

j AJn

; ~VVn :¼ ð ~TTjð~xxn; iÞÞi AIn

j AJn

: ð28Þ

Compared to plain matrices in § 2, rows and columns are permuted according

to p
ðjÞ
n and p

ð�Þ
n respectively, i.e. Vn ¼ ðPðjÞ

n Þ�1
V �

n P
ð�Þ
n and ~VVn ¼ ðPðjÞ

n Þ�1 ~VV �
n P

ð�Þ
n

(� to distinguish plain matrices of § 2). This rearrangement is highly relevant

for deriving simple recurrences for such matrices. We note that ~VVn ¼ V�>
n =2n

still holds for any nb 0 (since permutation matrices are orthogonal). Also,

since Jn ¼ f0; . . .g, the first columns of ~VVn and of Vn are still both equal to

ð1; . . . ; 1Þ> implying that ~VVn ¼ Vn diag½1; 2; . . . ; 2� holds. We derive recurrences

for Vn and recurrences for ~VVn, with the latter being simply implied. We recall

that ~QQn ¼ diag½2; 1; . . . ; 1�Qn for any nb 1.

The verifications V0 ¼ ð1Þ and V1 ¼
�
1

ffiffi
2

p
=2

1 �
ffiffi
2

p
=2

	
are immediate.

Lemma 3. The following recurrences hold: for nb 0,

Vnþ1 ¼
Vn D�1

n VnQn

Vn �D�1
n VnQn

� �
; Vnþ1 ¼

Vn DnVn
~QQ�>
n

Vn �DnVn
~QQ�>
n

 !
: ð29Þ
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Proof. One has T2jðxÞ ¼ Tjð2x2 � 1Þ and 2xT2jþ1ðxÞ ¼ T2jðxÞ þ T2jþ2ðxÞ
¼ ðTj þ Tjþ1Þð2x2 � 1Þ for any j. We may apply Lemma 2 with aj ¼ Tj and

gj ¼ ðTj þ Tjþ1Þ which in view of (26) implies the first recursion. On the other

hand, if b0; . . . ; b2 n�1 are such that T2jþ1ðxÞ ¼ 2xbjð2x2 � 1Þ, then b0 1 1=2

and bj�1 þ bj ¼ Tj for jb 1 (derived using T2j�1ðxÞ þ T2jþ1ðxÞ ¼ 2xT2jðxÞ ¼
2xTjð2x2 � 1Þ). We again apply Lemmas 2 (with these bj) which in view of

(27) implies the second recurrence. The proof is complete. r

The verifications ~VV0 ¼ ð1Þ and ~VV1 ¼
�
1

ffiffi
2

p

1 �
ffiffi
2

p
	

are immediate.

Lemma 4. The following recurrences hold: for nb 0,

~VVnþ1 ¼
~VVn D�1

n
~VVn

~QQn

~VVn �D�1
n

~VVn
~QQn

 !
; ~VVnþ1 ¼

~VVn Dn
~VVnQ

�>
n

~VVn �Dn
~VVnQ

�>
n

� �
: ð30Þ

In summary, the computation of the direct/transpose/inverse actions Vnx,

V>
n x, V�1

n x, V�>
n x and ~VVnx, ~VV>

n x, ~VV�1
n x, ~VV�>

n x, for x A R2 n

can all be com-

puted very e‰ciently. Actually, they are all related and can be implied from

x 7! Vnx. In particular, such actions will mainly involve recursive applications

of matrices Qj which can be done in constant time, see Remark 3. As for Fast

Fourier Transform (FFT), all the above listed actions can be optimized to have

complexity Oðd logðdÞÞ.
It is possible to derive recurrences along the same lines of (29) and (30)

with matrices resulting from plugging in Chebyshev polynomials of second kind

in the Vandermonde systems. These polynomials are defined by UkðcosðyÞÞ ¼
sinððk þ 1ÞyÞ=sinðyÞ (if scaled according to ~UUkðxÞ ¼ Ukðx=2Þ they belong to

Z½X � and have leading coe‰cient 1). However, such recurrences are not ad-

vantageous over the already identified recurrences.

Recurrences (29) and (30) can already be ‘‘laboriously’’ used for fast

enumerations of lattices ~VVnZ and VnZ within axis-parallel boxes. For instance

using the techniques introduced in [14]. In the mentioned paper, the analysis

is carried out on simpler recurrences (where basically Qn is eliminated in

(30)), which we derive shortly. In the next section, we exhibit the polynomial

sequence which when plugged in the Vandermonde systems, yields directly such

recurrences.

We let Sn, ~SSn be the 2n � 2n matrices defined recursively by ~SS0 ¼ S0 ¼ ð1Þ
and for nb 0

Snþ1 ¼
Sn 0

0 Q�1
n Sn

� �
; ~SSnþ1 ¼

~SSn 0

0 Q>
n
~SSn

 !
: ð31Þ

These matrices are unimodular, Sn; ~SSn A SL2 n (in fact ~SSn ¼ S�>
n ) for any nb 0.

Moreover, An :¼ ~VVn
~SSn, Bn :¼ VnSn satisfy A0 ¼ B0 ¼ ð1Þ and for nb 0
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Anþ1 ¼
An DnAn

An �DnAn

� �
; Bnþ1 ¼

Bn D�1
n Bn

Bn �D�1
n Bn

� �
: ð32Þ

The matrix An generate the CF-lattice ~VVnZ2 n

while Bn generate the dual CF-

lattice VnZ2 n

. We note in view of ~VV�>
n ¼ Vn=2

n, that ~AA�>
n ¼ Bn=2

n.

3.4. A new polynomial sequence. We let ð ~HHkÞjb0 be the sequence of poly-

nomials defined by ~HH0 1 1, then

~HHk ¼
Yn
j¼0
aj00

~TT2 j ðxÞ; k ¼
Xn
j¼0

aj2
j ; aj A f0; 1g: ð33Þ

These polynomials have integer coe‰cients, have leading coe‰cients 1 and

every ~HHk has degree exactly k. In particular, the family ~HH0; ~HH1; . . . is a hier-

archical basis for Z½X �. This family can be used in the generation of CF-

lattices. In addition, we observe that every polynomial ~HHk have the same

parity as k. More precisely, in view of ~TT1ðxÞ ¼ x and ~TT2mðxÞ ¼ ~TTmðx2 � 2Þ for
any mb 0, a recurrence holds: ~HH0 1 1,

~HH2kðxÞ ¼ ~HHkðx2 � 2Þ
~HH2kþ1ðxÞ ¼ x ~HHkðx2 � 2Þ

; kb 0: ð34Þ

The polynomial ~HHk considered on the domain ½�2; 2� is uniformly bounded

by 2s1ðkÞ where s1ðkÞ is the number of ones in the binary expansion of k. In

particular sup�2axa2j ~HHkðxÞja ðk þ 1Þ for any kb 0.

We let An be the Vandermonde matrices associated with the introduced

polynomials ~HHk and the Chebyshev abscissas ~xxn; i, on the coordinate-permuted

systems described in the previous section, i.e.

An ¼ ð ~HHjð~xxn; iÞÞi AIn

j AJn

; nb 0: ð35Þ

The verifications A0 ¼ ð1Þ, A1 ¼
�
1

ffiffi
2

p

1 �
ffiffi
2

p
	

are immediate. Then, by a

direct application of (34) and the arguments leading to Lemma 2.

Lemma 5. The following recurrences hold: for nb 0,

Anþ1 ¼
An DnAn

An �DnAn

� �
: ð36Þ

It is immediate to derive similar recurrences for the matrices A�1
n , A�>

n .

Lemma 6. The following recurrence holds, A�>
0 ¼ ð1Þ and for nb 0

A�>
nþ1 ¼

1

2

A�>
n D�1

n A�>
n

A�>
n �D�1

n A�>
n

� �
: ð37Þ
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Recurrences (36) and (37) are similar up the factor 1=2 and the change of

Dn into D�1
n which is also diagonal with D�1

n ¼ diag½ð1=~xxnþ1; iÞi AIn
�. In light of

this observation, we have the following lemma

Lemma 7. Matrices A�>
n satisfy

A�>
n ¼ 1

2n

1

~HHjð~xxn; iÞ

 !
i AIn

j AJn

; nb 0: ð38Þ

Proof. Let Dn be the matrix in the right side of (38). We easily

verify that D0 ¼ A�>
0 and D1 ¼ A�>

1 using ~HH0 1 1, ~HH1 1 x and f~xx1;0; ~xxn;1g ¼
f
ffiffiffi
2

p
;�

ffiffiffi
2

p
g. In general, using (34) and the arguments leading to Lemma 2,

one has for any nb 0, Dnþ1 ¼ 1
2

�
Dn D�1

n Dn

Dn �D�1
n Dn

	
. Matrices Dn satisfy the same

recurrence as A�>
n , thus the equality. r

The identification ðA�>
n Þ>An ¼ I2 n provides the following identities

X2 n�1

i¼0

~HHkð~xxn; iÞ
~HHlð~xxn; iÞ

¼ 2ndk; l ; 0a k; la 2n � 1: ð39Þ

Visibly, these identities can be easily verified for k ¼ l and for k and l of

di¤erent parities. The verification for k and l having the same parity uses the

recursions (21) formulated for ~xxn; i and recursions (34) for ~HHk.

Matrices Bn :¼ 2nA�>
n satisfy B0 ¼ ð1Þ, B1 ¼

�
1 1=

ffiffi
2

p

1 �1=
ffiffi
2

p
	

and

Bnþ1 ¼
Bn D�1

n Bn

Bn �D�1
n Bn

� �
; nb 0: ð40Þ

It goes without saying, matrices An and Bn are as in the previous section, i.e.

An ¼ ~VVn
~SSn, Bn ¼ VnSn. In particular, the matrix ~SSn is the transition matrix

from the basis f ~TTjgj AJn
into the basis f ~HHjgj AJn

. The analysis made so far can

be summarized on the following diagram

~VVn An

?

???y
???y?

Vn=2
n 


!

~SS�>
n

Bn=2
n:







!~SSn

We conclude this section with few practical remarks.

Remark 4. We note in view of (31) that S1 ¼ ~SS1 ¼ I2 and for any nb 1,

the leading two columns/rows of matrices Sn and ~SSn are the Kronecker vectors

e1 and e2 (by induction). Matrices An and Bn are ‘‘almost’’ orthogonal in the
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sense A>
n An and B>

n Bn are block diagonal. The blocks are ð2nÞ (of size 1� 1)

and blocks of size 2 j � 2 j for j ¼ 0; . . . ; n� 1 in this order (by induction).

4. Sequential enumeration of Chebyshev-Frolov lattices

In this section, the notation z ¼ ðz1 z2Þ A R2d stands for z1; z2 A Rd and z

being the vertical concatenation of z1 and z2. For nb 0, d ¼ 2n, we introduce

the functions rn : R
2d ! Rd and fn;cn : R

d �R2d �R2d ! Rd by

rnðzÞ ¼
z1 þ z2

2
;

fnðz; b; cÞ ¼ D�1
n maxðb1 � z;�ðc2 � zÞÞ

cnðz; b; cÞ ¼ D�1
n minðc1 � z;�ðb2 � zÞÞ

; ð41Þ

where z ¼ ðz1 z2Þ in the definition of rn while b ¼ ðb1 b2Þ, c ¼ ðc1 c2Þ in the

definitions of fn and cn and max and min are meant coordinate-wise. One

has

Lemma 8. For x ¼ ðx1 x2Þ, b ¼ ðb1 b2Þ, c ¼ ðc1 c2Þ A R2d ,

baAnþ1xa c () b 0
aAnx1 a c 0

b 00
aAnx2 a c 00

; ð42Þ

where b 0 ¼ rnðbÞ, c 0 ¼ rnðcÞ, b 00 ¼ fnðAnx1; b; cÞ and c 00 ¼ cnðAnx1; b; cÞ.

Proof. Since y ¼ Anþ1x ¼ ðyþ y�Þ with yG ¼ Anx1 GDnAnx2 A Rd ,

ba ya c ()
b1 þ b2 a yþ þ y� a c1 þ c2

b1 a yþ a c1; b2 a y� a c2
:

We then use the definitions of rn, fn, cn and Dn > 0 entry-wise. r

Enumeration of lattices AmZ2m

in axis-parallel boxes is well disposed to

recursion. For instance, by introducing Pnðb; cÞ :¼ fk A Z2 n

: baAnka cg,

x A Pnþ1ðb; cÞ () x1 A Pnðb 0; c 0Þ; x2 A Pnðb 00; c 00Þ: ð43Þ

The dependence of b 00 and c 00 in x1 can be alleviated by considering the

recursion

x A Pnþ1ðb; cÞ ()
x1 A Pnðb 0; c 0Þ; x2 A Pnðb 00; c 00Þ

b1 a y1 þDn y2 a c1

b2 a y1 �Dn y2 a c2

; ð44Þ

where now b 00 ¼ D�1
n

b1�c2
2 , c 00 ¼ D�1

n
c1�b2

2 and yi ¼ Anxi, i ¼ 1; 2. This is

easily checked as the above proof. The enumeration in d ¼ 1 is imme-

diate since P0ðb; cÞ ¼ fdbe; . . . ; bccg for b; c A R. In view of the above, there
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holds Pmðb; cÞ � P�
mðb; cÞ, the latter being the tensor-product grid (in Z2m

)

defined recursively by P�
0 ðb; cÞ ¼ fdbe; . . . ; bccg and P�

nþ1ðb; cÞ ¼ P�
n ðb 0; c 0Þn

P�
n ðb 00; c 00Þ. However, such grids can still be relatively sizable.

For more insights on the previous, we expound the analysis for ‘‘dilated’’

symmetric hypercubes, i.e. enumerating PnðvÞ :¼ fk A Z2 n

: �vaAnkaþvg.
To this end, we introduce the new functions r�n : R2d ! Rd by

r�n ðzÞ ¼
z1 � z2

2
: ð45Þ

Using that 2 maxðx; yÞ ¼ ðxþ yÞ þ jx� yj and 2 minðx; yÞ ¼ ðxþ yÞ � jx� yj
for any x; y A R, we derive the following convenient formulas,

Dnfnðz;�v; vÞ ¼ �rnðvÞ þ jzþ r�n ðvÞj
Dncnðz;�v; vÞ ¼ þrnðvÞ � jz� r�n ðvÞj

A Rd ; ð46Þ

where j � j is meant coordinate-wise. The boxes ½fnðz;�v; vÞ;cnðz;�v; vÞ� are

uniformly contained within ½�v 00;þv 00� with v 00 :¼ D�1
n v 0 and v 0 :¼ rnðvÞ. For a

vector v ¼ ðv1 v2Þ A R2d , the recursion (44) is reformulated as

x A Pnþ1ðvÞ ()
x1 A Pnðv 0Þ; x2 A Pnðv 00Þ
�v1 a y1 þDn y2 a v1

�v2 a y1 �Dn y2 a v2

: ð47Þ

In the particular settings v ¼ a1 A R2d which are of interest, there holds

rnða1Þ ¼ a1 A Rd and r�n ða1Þ ¼ 0 A Rd . Formulas (46) become

Dnfnðz;�a1;þa1Þ ¼ �ða1� jzjÞ
Dncnðz;�a1;þa1Þ ¼ þða1� jzjÞ A R2 n

: ð48Þ

The boxes ½fnðz;�a1; a1Þ;cnðz;�a1; a1Þ� are symmetric with respect to 0 and

are uniformly contained within ½fnð0;�a1; a1Þ;cnð0;�a1; a1Þ�. The idea here

is that the section fx2 : ð0 x2Þ A Pnþ1ða1Þg ¼ PnðaD�1
n 1Þ contains all the other

sections fx2 : ðx1 x2Þ A Pnþ1ða1Þg. If one enumerates k in PnðaD�1
n 1Þ and

have associated Ank, then by simple lookup one can enumerate any other such

section.

Despite the potential simplifications on recursive enumerations, in practice

numerical overheads (memory usage, table lookup, etc) may slow down these

procedures. A better alternative, developed in [14], consists in breaking down

the enumeration process into a nested loop. As a matter of fact, inspection of

Lemma 8 shows that the condition on xi the i
th coordinate of x will only depend

on the preceding coordinates x0; . . . ; xi�1. We describe in a nutshell this enu-

meration procedure.

249Orthogonal Chebyshev-Frolov lattices



For z ¼ ðz0; . . . ; z2 n�1Þ> A R2 n

, we introduce the ‘‘slicing’’ notation

zm;p ¼ ðz2mp; . . . ; z2mðpþ1Þ�1Þ> A R2m

;
0ama n

0a p < 2n�m
: ð49Þ

We note that z0;p ¼ zp for any p and zn;0 ¼ z. Also, zm;p ¼ ðzm�1;2p zm�1;2pþ1Þ.
Given x; b; c A R2 n

fixed, we introduce the sets of vectors in R2 n

:

X ¼ fxð0Þ; . . . ; xðnÞg; B ¼ fbð0Þ; . . . ; bðnÞg; C ¼ fcð0Þ; . . . ; cðnÞg: ð50Þ

� xð0Þ ¼ x, xð1Þ is the concatenation of A1x1;p for 0a p < 2n�1, xð2Þ is the

concatenation of A2x2;p for 0a p < 2n�2, etc. In other words, x
ðmÞ
m;p ¼ Amxm;p

for m ¼ 0; . . . ; n and p ¼ 0; . . . ; 2n�m � 1. We note that xðnÞ ¼ Anx.
� bðnÞ ¼ b, cðnÞ ¼ c, then for m ¼ n� 1; . . . ; 0, the vectors bðmÞ and cðmÞ

are computed by backward recursion according to

b
ðmÞ
m;2q ¼ rmðb

ðmþ1Þ
mþ1;qÞ

c
ðmÞ
m;2q ¼ rmðc

ðmþ1Þ
mþ1;qÞ

;
b
ðmÞ
m;2qþ1 ¼ fmðx

ðmÞ
m;2q; b

ðmþ1Þ
mþ1;q; c

ðmþ1Þ
mþ1;qÞ

c
ðmÞ
m;2qþ1 ¼ cmðx

ðmÞ
m;2q; b

ðmþ1Þ
mþ1;q; c

ðmþ1Þ
mþ1;qÞ

; ð51Þ

for 0a q < 2n�ðmþ1Þ. Applying backward induction with Lemma 8, one

shows

Lemma 9. There holds bðnÞ a xðnÞ a cðnÞ () � � � () bð0Þ a xð0Þ a cð0Þ.

We are mainly interested in bð0Þ ¼ ðbð0Þ0 ; . . . ; b
ð0Þ
2 n�1Þ, cð0Þ ¼ ðcð0Þ0 ; . . . ; c

ð0Þ
2 n�1Þ.

The identities in (51) yield the following: first, b
ð0Þ
0 ¼ r0 � � � � � rn�1ðbÞ and

c
ð0Þ
0 ¼ r0 � � � � � rn�1ðcÞ are simply the arithmetic means of b and c respec-

tively, i.e. b
ð0Þ
0 ¼ ðb0 þ � � � þ b2 n�1Þ=2n and c

ð0Þ
0 ¼ ðc0 þ � � � þ c2 n�1Þ=2n. Then,

for j ¼ 2rp with p ¼ 2qþ 1 odd, the numbers b
ð0Þ
j and c

ð0Þ
j are computed via

b
ð0Þ
j ¼ r0 � � � � � rr�1ðbðrÞr;pÞ and c

ð0Þ
j ¼ r0 � � � � � rr�1ðc

ðrÞ
r;pÞ, with

bðrÞr;p ¼ frðx
ðrÞ
r;2q; b

ðrþ1Þ
rþ1;q; c

ðrþ1Þ
rþ1;qÞ; cðrÞr;p ¼ frðx

ðrÞ
r;2q; b

ðrþ1Þ
rþ1;q; c

ðrþ1Þ
rþ1;qÞ: ð52Þ

Computing x
ðrÞ
r;2q ¼ ðxðrÞ

j�2 r ; . . . ; x
ðrÞ
j�1Þ only requires xr;2q ¼ ðxj�2 r ; . . . ; xj�1Þ since

x
ðrÞ
r;2q ¼ Arxr;2q. One can show by induction on (51) that computing bðmÞ

m;p and

c
ðmÞ
m;p only requires b, c and x0; . . . ; x2mp�1. Thus, computing b

ðrþ1Þ
rþ1;q and c

ðrþ1Þ
rþ1;q

only require x0; . . . ; xj�2 r�1. The set of inequalities baAnxa c reduces to 2n

simultaneous inequalities b
ð0Þ
j a xj a c

ð0Þ
j for 0a ja 2n � 1 with b

ð0Þ
0 and c

ð0Þ
0

independent on x, otherwise b
ð0Þ
j and c

ð0Þ
j depend on x0; . . . ; xj�1.

For integers mb 1, we denote by tm the linear applications defined over

R2m

by tmðzÞ ¼ ðz1 þDm�1z2 z1 �Dm�1z2Þ for z ¼ ðz1 z2Þ. We have in par-

ticular Amz ¼ tmððAm�1z1 Am�1z2ÞÞ. Also, using introduced notation, x
ðmÞ
m;p ¼

tmðxðm�1Þ
m�1;2pÞ for any m ¼ 1; . . . ; n and any p ¼ 0; . . . ; 2n�m � 1.

250 Moulay Abdellah Chkifa



An implementation of the main enumeration algorithm in [14] can

now be outlined. It consist on an outer loop ‘‘loop 0’’ and 2n-nested inner

loops (innermost loop is indexed 2n) as follows; we first compute b
ð0Þ
0 , c

ð0Þ
0 ,

then
� Loop 0: we iterate x0 in fdbð0Þ0 e; . . . ; bcð0Þ0 cg.
� . . .
� Loop j: we have known x0; . . . ; xj�1 and write j ¼ 2rp with p odd

number. Then we perform the following

– ‘‘Forward’’ pass: we update x
ðmÞ
m;pm ¼ Amxm;pm for m ¼ 0; . . . ; r and

pm ¼ i=2m � 1 (using applications tm).

– ‘‘Backward’’ pass: we update bðrÞr;p and c
ðrÞ
r;p (using (52)), then update

b
ðmÞ
m;2 r�mp and c

ðmÞ
m;2 r�mp for m ¼ r� 1; . . . ; 0 (using applications rm).

– we iterate xj in fdbð0Þj e; . . . ; bcð0Þj cg and go to iteration j þ 1.
� . . .
� Loop 2n: we have known x0; . . . ; x2n�1. We update x

ðmÞ
m;pm ¼ Amxm;pm

for m ¼ 0; . . . ; n and pm ¼ 2n�m � 1. We store the node xðnÞ (xðnÞ ¼
Anx

ð0Þ A ½b; c� with xð0Þ ¼ ðx0; . . . ; x2 n�1Þ).
Although not structurally relevant, we may think of X as a 2n � ðnþ 1Þ

matrix, X ¼ ½xð0Þj . . . jxðnÞ� (and the same for B and C ). In the inner loops

numbered j ¼ 1; . . . ; 2n � 1, the forward pass propagates changes in a

2r � ðrþ 1Þ sub-matrix of X (rows numbered 2 rðp� 1Þ; . . . ; 2rp� 1 and col-

umns numbered 0; . . . ; r) while the backward pass propagates change in sub-

matrices of B and C associated with the same rows and columns.

The detailed implementation of the algorithm is given in [14]. We note

in particular that nested loops can be implemented as recursive functions.

The algorithm is optimal, in the sense exactly the nodes belonging to Pnðb; cÞ
are touched in the course of the enumeration. Since action x 7! Anx has

complexity Oðd logðdÞÞ, it is safe to say the algorithm has complexity

Oðd logðdÞaðPnðb; cÞÞ. We must also draw attention on the optimality in

memory usage. One only alters the fixed ‘‘data-structures’’ encoding X , B, C

during the execution of the algorithm.

Enumerations of dual CF-lattices VnZ2 n

in axis-parallel boxes is equally

disposed to sequential enumeration. Indeed, the discussed algorithm can be

applied with matrices Bn. The sole di¤erence is changing Dm by D�1
m in the

functions fm, cm and tm. Otherwise, we can simply use the same algorithm.

Indeed, in view of Remark 1, enumerating Vnk in ½b; c� amounts to enumerating
~VVn
~kk ð~kk A YÞ in ½2b; 2c� then normalizing by 2, where Y ¼ diag½2; 1; . . . ; 1�Zd .

Since ~VVn ¼ AnS
>
n and the leading column/row of Sn is ð1; 0; . . . ; 0Þ> A R2n

, then

S>
n Y ¼ Y and ~VVnY ¼ AnY for any nb 1. One can simply implement the

discussed algorithm for 2b and 2c with two minor modifications (i) in loop 0,

one iterates over even integers (ii) in loop 2n, one stores nodes xðnÞ=2.
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5. Conclusion

We have discussed CF-lattices and dual CF-lattices. Given the families of

permutations p
ðjÞ
n , p

ð�Þ
n as in (12) and (13), the Chebyshev abscissas ~xxn; i as in (6)

and the polynomials ~HHj as in (34), we have shown that matrices

An ¼ ðaðnÞi; j Þ0ai; ja2 n�1; Bn ¼ ð1=aðnÞi; j Þ0ai; ja2 n�1; ð53Þ

with a
ðnÞ
i; j :¼ ~HH

p
ð�Þ
n ð jÞð~xxn;pðjÞ

n ðiÞÞ generate CF-lattices ~VVnZdð¼ AnZdÞ and dual CF-

lattices VnZdð¼ BnZdÞ. Sequential enumeration of these lattices in axis-

parallel boxes is computationally optimal. The analysis is founded on a ge-

neric algebraic construction, however it also motivates its bypassing for the

benefit of direct construction of generating matrices via recurrence.
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