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and the product maps
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ABSTRACT. Suppose that a smooth map (f,g,4) : R" — IR, where 1 > 3, has a stable
singularity at the origin. We characterize the stability of the function f : IR” — R and
the map (f,g): R" — R? at the origin in terms of the discriminant set of (f,g, /).

1. Introduction

We consider the relationships among singularities of multiple functions and
the product maps, with the following notation. Let n be an integer such that
n>3, and M be a smooth n-dimensional manifold, and f,g,h: M — R be
smooth functions. By the product maps, we mean the maps (f,¢g) : M — R?,
x> (f(x),9(x)) and (f,g.h) : M — R, x> (f(x),(x), h(x)). Letn:R> —
R and I7:R3— RR? denote the projections such that f =zo (f,g,h) and
(f,9)=1IIo(f,g,h). Let pbe an interior point in M, and U be a sufficiently
small neighborhood of p in M. Let d and D denote the discriminant sets of
(f,9)|ly and (f,g,h)|,, respectively.

In the case of two functions, we already know characterizations of stable
singularities as follows. Johnson [3, Section 6] gave those in the case where
n =3, and the author [8] did in the general case.

Fact 1. If p is a regular point of (f,g), then p is a regular point of f.

PROPOSITION 2. If p is a fold point of (f,g), then we have the following.

o pis a regular point of f if and only if (f,g)(p) is a regular point
of ml,

* pis a fold point of f if and only if (f,g)(p) is a fold point of =|,.

They also had the corresponding characterization in the case where p is a cusp
point of (f,g), though we omit it here. It is in terms of singularity of |, as
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well, but not in the usual sense, as d is not a smooth manifold in that case.
See [8] for the details.

In the case of three functions, we give characterizations of stable singu-
larities as follows.

Fact 3. If p is a regular point of (f,g,h), then p is a regular point of f
and (f,9)-

ProrosITION 4. If p is a fold point of (f,g,h), then we have the
following.
* p is a regular point of f if and only if (f,g,h)(p) is a regular point
of 7|p.
* pis a fold point of f if and only if (f,g,h)(p) is a fold point of =|p,.
* pis a regular point of (f,g) if and only if (f,g,h)(p) is a regular point

of I,

* p s a fold point of (f,g) if and only if (f,g,h)(p) is a fold point of
.

* pis a cusp point of (f,g) if and only if (f,g,h)(p) is a cusp point of
Vs

We also have the corresponding characterizations in the cases where p is a cusp
point or a swallow-tail point of (f,g, %), though we omit them here. They are
in terms of singularity of z|, or I7|, as well, and the normal curvature of D,
but not in the usual sense, as D is not a smooth manifold in those cases. See
Subsection 2.2 for the details.

Those characterizations may be compared to various works in differential
geometry of singular surfaces. In the cusp and swallow-tail cases, D is a cer-
tain kind of singular surface (see Subsection 2.1). We can think of singularity
of n|, or II|, as contact between D and a family of planes or lines, respec-
tively, in R®. Such contacts were studied by Oset Sinha and Tari [7], and
Francisco [1].

We hope that the above local theory can be applied to some global theory.
Suppose that M is a closed manifold, and f, g are Morse functions. Johnson
[3] and the author [9] gave upper bounds for the minimal number of birth-death
singularities over all generic homotopies connecting f and g. To do so, they
read off the behavior of certain homotopies connecting f and g, from the dis-
criminant set of (f,g), by using Proposition 2 and its variation. This suggests
that such a local theory is useful for a global theory. Still, we could much
improve the upper bounds, if we could simplify the singularities of (f,g) by
isotopies of both or one of f and g, say, an isotopy {g,: M — R}, , ; such
that g =g and g = h. To do so, we might read off the behavior of the homo-
topy {(f,9:) : M — ]Rz},E[Q » from the discriminant set of (f',g,h), by using
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Proposition 4 and its variations. In that way, or any other way, we hope that
the present results also have applications.

2. Preliminaries and results

In this section, we give preliminary definitions and facts, state the main
results of this paper, and review general methods which we use in our proofs.

2.1. Definitions and facts. We use the following notation. Let m and n be
positive integers, let X and Y be C* manifolds of dimensions m and n, respec-
tively, and let f: X — Y be a C* map. Let p be an interior point in X, and
suppose that f(p) is an interior point in Y. Let U be a sufficiently small
neighborhood of p in X.

Some basic notions concerning singularity are defined as follows. The
point p is said to be a regular point of f if there are local coordinate systems
of X and Y with respect to which p =0 and

f<x,,X2,...,xm>:{<>ﬂ»xb--.,xn> (m > n)

(X1, %2, -, Xm,0,...,0) (m < n),

and a singular point otherwise. The set of singular points of f is called the
singular set of f, and its image by f is called the discriminant set of f.
Some notions concerning fold singularity are defined as follows. Suppose
that m > n. The point p is said to be a fold point of f if there are local
coordinate systems of X and Y with respect to which p =0 and

2 2 2 2
f(xl7x2a~~~7xm) = (x17x27”'7xn*17_xn = T X +xn+/1+ +xm)7

where A is an integer such that 0 < A<m—n+1. A fold point in the case
where n =1 is a so-called Morse critical point. The minimum of {A,m —n —
A+ 1} does not depend on the choice of coordinate systems, and is called the
absolute index of the fold point p. After coordinate transformations if nec-
essary, we can arrange the above local form so that A attains the absolute
index. Suppose that n =3 and p is a fold point of f. Then, we can see that
the singular set of f|, consists only of fold points, and its discriminant set is a
regular surface.

Some notions concerning cusp singularity are defined as follows. Suppose
that m > n > 2. The point p is said to be a cusp point of f if there are local
coordinate systems of X and Y with respect to which p =0 and

3 2
f(x1>x27"'7xm) = (x17x2>--~axn717xn + X1x, _xn+1 - e _xn+,1

2 2
+ xn+/l+l +oeee xm)’
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where /1 is an integer such that 0 <1 <m —n. The minimum of {1, m —n— 1}
does not depend on the choice of coordinate systems, and is called the absolute
index of the cusp point p. After coordinate transformations if necessary, we
can arrange the above local form so that A attains the absolute index. Suppose
that n =3 and p is a cusp point of f. Then, we can see that the singular set
of f|, consists only of fold points and cusp points, and its discriminant set,
denoted by D, is a singular surface as in the left of Figure 1. (See the second
paragraph in Section 3 for more details.) The images of the cusp points form
the cuspidal edge, which is a regular arc, denoted by E. There exists a C*
disk in Y with the same limiting tangent plane in Ty(,) Y as each component of
D\E, which we call a tangent disk of D at f(p).

Some notions concerning swallow-tail singularity are defined as follows.
Suppose that m > n =3. The point p is said to be a swallow-tail point of f
if there are local coordinate systems of X and Y with respect to which p =0
and

. 4 2 2 2
S(X1, X2, Xm) = (X1, X2, X5 4+ X1X3 + X2X3 — Xj — - — X3

T )

where 4 is an integer such that 0 < A <m — 3. The minimum of {4,m — 1 — 3}
does not depend on the choice of coordinate systems, and is called the absolute
index of the swallow-tail point p. After coordinate transformations if neces-
sary, we can arrange the above local form so that A attains the absolute index.
Suppose that p is a swallow-tail point of f. Then, we can see that the singular
set of f|, consists only of fold points, cusp points and the swallow-tail point
p, and its discriminant set, denoted by D, is a singular surface as in the right
of Figure 1. (See the second paragraph in Section 4 for more details.) The
images of the cusp points form the twin cuspidal edges, which together with

tangent arc

{

<~ tangent disk

[

Fig. 1. The local structures of the discriminant set at the images of a cusp point and a swallow-tail
point.
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f(p) form the cusped arc, denoted by E. There exists a C* disk in Y with
the same limiting tangent plane in 7y, Y as each component of D\E, which
we call a tangent disk of D at f(p). There also exists a C* arc in D with the
same limiting tangent line in Ty, Y as each component of E\{f(p)}, which
we call a tangent arc of E at f(p) in D.

We remark that fold, cusp and swallow-tail singularities are stable.
For descriptions of stability, see [2] for example. Stable singular points of
f are classified into fold points if » =1, into fold points and cusp points
if m>n=2, and into fold points, cusp points and swallow-tail points if
m>n=3.

The notion of limiting normal curvature for certain kinds of singular
surfaces is defined as follows. This is due to Martins—Saji—Umehara—Yamada
[4]. Typical examples of the kinds of singular surfaces are the discriminant
sets in the above paragraphs, provided that the target manifold Y is Rieman-
nian. Suppose that m =2, n = 3, and let g be a Riemannian metric of Y, and
V denote the Levi-Civita connection. Suppose that f has a unit normal vector
field, that is to say, a C* map v: U — TY such that v(x) is a unit vector in
Ty Y perpendicular to (df) (7.U) for xe U. Suppose also that there is a
coordinate system (x;,x;) of U with respect to which p =0 and

0 0
(df), (a—xl) #0 and (df), (8_)62> =0.
Then, the limiting normal curvature of f(U) at f(p) is
9 ( (wa)(a/(am» (df) (—) )p, V(p)> |
o((@), () @), (%))

This is an invariant of the singular surface f(U) and the metric g, up to sign
corresponding to the two possibilities for v.

2.2. Main results. We work in the following setting, slightly different from
that in Introduction for generality and convenience. Let m be an integer such
that m > 3, and X be an m-dimensional C* manifold. Let Y; and Y, 3 be
Riemannian manifolds of dimensions 1 and 2, respectively, and Y denote the
product Riemannian manifold Y; x Y,3. Let fi: X — Yy and fo3: X — Y23
be C* maps, and f denote the product map (fi,/f23): X — Y, x— (fi(x),
f2,3(x)). Letn:Y — Yy and IT : Y — Y, 3 denote the projections. Let p be
an interior point in X, and suppose that fj(p) and f; 3(p) are interior points
in ¥, and Y3, respectively, and let ¢ = f(p). Let U be a sufficiently small
neighborhood of p in X, and let D denote the discriminant set of f|,. Let E
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denote the subset of D consisting of the images of singular points of f|, other
than fold points. We note the following immediate fact.

Fact 5. If p is a regular point of f, then p is a regular point of fi and

Jas.

The following three propositions are the main results of this paper.

PROPOSITION 6. Suppose that p is a fold point of f of absolute index A
Then we have the following.

p is a regular point of fi if and only if q is a regular point of =lp.
p is a fold point of fi if and only if q is a fold point of n|,. Moreover,
the absolute index of the fold point p of fi is equal to either min{l + p,
m—2A—u} or min{A—pu+2,m— A+ pu—2}, where u is the absolute
index of the fold point q of =l

p is a regular point of frs if and only if q is a regular point of
11|,

p is a fold point of f>3 if and only if q is a fold point of II|;,. More-
over, the absolute index of the fold point p of f»3 is equal to either i or
min{A+ 1,m — A —2}.

p is a cusp point of fr 3 if and only if q is a cusp point of II|,. More-
over, the absolute index of the cusp point p of fr3 is equal to .

PrROPOSITION 7.  Suppose that p is a cusp point of [ of absolute index 2.
Let D be a tangent disk of D at q. Then we have the following.

p is a regular point of fi if and only if q is a regular point of n|s.
p is a fold point of fi if and only if q is a singular point of n|; and a fold
point of w|p.  Moreover, the absolute index of the fold point p of fi is
equal to either min{l+ 1,m—A—1} or min{A+2,m — 1 —2}.

p is a regular point of fo3 if and only if q is a regular point of
I3

p is a fold point of f> 3 if and only if q is a singular point of Il|5 and a
regular point of Il|;. Moreover, the absolute index of the fold point p
of fo3 is equal to min{A+1,m— 21 —2}.

p is a cusp point of fos if and only if q is a singular point of II|g,
and the limiting normal curvature of D at q is non-zero. Moreover,
the absolute index of the cusp point p of fa3 is equal to either A or
min{i + 1,m — A —3}.

ProposITION 8.  Suppose that p is a swallow-tail point of f of absolute
index A. Let D be a tangent disk of D at q, and E be a tangent arc of E at q

in D.

Then we have the following.
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* p is a regular point of fi if and only if q is a regular point
of m|p.

* p s a fold point of f\ if and only if q is a singular point of |, and the
limiting normal curvature of D at q is non-zero. Moreover, the absolute
index of the fold point p of fi is equal to either min{A+ 1,m — 21— 1}
or min{A+2,m— 1 —2}.

* p is a regular point of fr3 if and only if q is a regular point
Of H|l§'

* pis a fold point of f> 3 if and only if q is a singular point of 1|5 and a
regular point of II|z.  Moreover, the absolute index of the fold point p
of fo3 is equal to min{A+1,m— A —2}.

* pis not a cusp point of fi 3.

Proposition 6 can be interpreted as Proposition 4. We remark that some of
the assertions about the indices can be refined by considering stable singu-
larities together with normal vectors on the discriminant sets, which is left to
the reader.

2.3. Methods. We use the following notation. Let m and n be positive
integers, let X and Y be C* manifolds of dimensions m and n, respectively,
and let f: X — Y be a C* map. Let p be an interior point in X, and sup-
pose that f(p) is an interior point in Y.

It is standard to use Jacobian matrix for distinguishing between regular
and singular points of maps. The point p is a regular point of f if and only
if (df),: T,X — Ty, Y has maximal rank. Rather this is usually regarded as
the definition. If f has a local form:

f(x17x2? e 7xm) = (.fi(xlvxZ?' . 7xm)7.](2('x17x27' b 7xm)a ce 7fn(x17x27" . 7xl‘)1))7

then (df)p is represented by, and hence identified with, the Jacobian matrix

(2e) (o)~ (&)
0x ) 0x> » 0Xp, )
(7o) (5) ()
0x . 0x> A 0xXp, A
@f;} 0f';1 0J;}1

<6x1 )p <8x2>p (5xm>p

It is also standard to use Hessian matrix for recognizing stable singularities
of functions. Suppose that n =1 and p is a singular point of f. For a local
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coordinate system (xj,x,...,X;) of X at p, let (HXI,XZV,,,_X.”,f)p denote the

Hessian matrix
>f o o
ox? 0x10x2 0X10Xm
P P p

o*f o >°f
0x20x1 0x3 0X20Xm,
» P »

( ! > ( ¢! > <a2f>

0%, 0x) 00X, 0x2 ox2,
» P »

It is a symmetric matrix, and hence has real eigenvalues. Let x4 denote the
number of negative eigenvalues. By Morse theory (see [5]), p is a fold point
of f if and only if (Hy, x,, . x,f), has maximal rank. Moreover, its absolute
index is equal to min{u,m — u}.

We use the following criteria for recognizing stable singularities of surface-
valued maps. Saji [6] gave general criteria for recognizing so-called Morin sin-
gularities, and the following are those in the special cases. Suppose that m >
n=2 and p is a singular point of f. Let U be a sufficiently small neigh-
borhood of p in X, and let S denote the singular set of f|,. Suppose that
/ has a local form:  f(x) = (fi(x), f2(x)) for x € U such that (dfi), # 0 and
(df2), =0. This implies that ker(df), has dimension m — 1. Let 175,73, ..., 1,
be C* vector fields on U such that ker(df), = {(11),, (13),:- -, (),>, and let
Hy,. s, fz)p denote the matrix

(772’72f2)p (’72’73f2)p T (’7277mf2)p
(’73’72fi)p (’73’73f2)p e (’7377mf2)p
(ﬂm’hfz)p (ﬂm’hfz)p e (nmﬂmfz)p

In fact, (ym/2), = (nmf2), for i,je{2,3,....m} That is to say,
(Hy,.ns....n,/2), is a symmetric matrix, and hence has real ecigenvalues. Let
/4 denote the number of negative eigenvalues. We regard (H,, .. .. fz)p as
representing a linear transformation of ker(df )p with respect to the basis

((12)s 13)ps - -+, (1)), to treat ker(Hy, y, ..y, /2), as a subspace of ker(df),.

THEOREM 1 (Saji). The point p is a fold point of f if and only if
ker(Hy, 4,,..5,/2), = {0}.  Moreover, its absolute index is equal to min{4,
m—A—1}
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THEOREM 2 (Saji). The point p is a cusp point of f if there exists a C*
vector field 6 on U such that

* 0, #0 and 0, e ker(df), for se S,

° ker(an.n3,...,ﬂ,,,f2)p = <Hp>:

s (d(0f)), #0 and (000f>), # 0.
Moreover, its absolute index is equal to min{A,m — . —2}.  Conversely, p is not
a cusp point of f if either ker(H,, . ., fz)p is not 1-dimensional, or there exists
a C* vector field 0 on U such that

* 0, #0 and 0;€ker(df), for se S,

° ker(Hlyz,lh,m,qu‘Z)[, = <0p>,

s (d(0f2)), =0 or (000f>),=0.

3. Proof in cusp case

In this section, we give a proof of Proposition 7. We take this first
because it is more straightforward than those of Propositions 6 and 8.

We begin with the following local forms of the relevant maps. Since p
is a cusp point of f of absolute index A, there exist local coordinate systems

(x1,Xx2,...,%y,) and (u,v,w) of X and Y, respectively, with respect to which
p=0 and
S(x1,x0, .0 xm) = (xl,xg,xg’ + X1X3 —xf — ---—xf+3 +x,%+4 +--~+x,2n).

Since ¢ is a regular point of # and I7, there exist a local coordinate y; of
Y1, and a local coordinate system (2, y3) of Y>3, which give the local coor-
dinate system (y1, y2, y3) of Y, with respect to which ¢ = 0 and =n(yy, y2, y3) =
y1 and II(y1, y2,y3) = (y2,¥3). Let fa, f3 denote the functions on U such
that

Sr3(x1, X2,y xm) = (X1, X2,y Xm)s S3(X1, X2, -0, X))
with respect to (1, y3). Then f also has the local form:
S, x2, oy xm) = (1001, X2, oy Xm), So(Xn, X2, ooy X)), S3(X1, X2, -0y X))
with respect to (yi, y2, y3). Note that there is a coordinate transformation:
(u,v,w) — (y1(u,v,w), y2(u,v,w), y3(u,v,w)).

Let S denote the singular set of f|,. From the first local form of f, we can
see that S has the local form:

{(_xgax27x3707"'70) |x27x3 € R}
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Fig. 2. The discriminant set D and the coordinate system (u,v,w).

with respect to (x1,x2,...,X,). We can regard (x»,x3) as a local coordinate
system of S at p, and then f|¢ has the local form:

fls(x2,33) = (=x3, X2, =2x3)

with respect to (u,v,w). This shows that D is such a singular surface
as described in Subsection 2.1, and is related with (u,v,w) as in Figure
2. The wuv-plane is a tangent disk of D at f(p), as well as the given
one D. The v-axis coincides with the cuspidal edge E, and hence 7] z
and IT|; have the local forms: 7|;(v) = y1(0,v,0) and IT|g(v) = (32(0,v,0),
y3(0,v, 0))

We calculate partial derivatives as follows. By the chain rule, for
example,

Oh oudfi | v i ow

0x;  Ox3 0u  Ox3 0v | Oxz Ow

o 0 6y1 0 ayl
B (6x3 x1> ou t <6x3 x2> ov

1
+{63(x§’+x1x3—x4—-~- XXl —i—x,zn)}%
1
= (3x2 b
(x3+xl)6w’
?*f 0 2 V1
ax%—a)%{(3)(3+.x1)a}

B { X3 (333 +x1)} ow + (v +x) 0x3 Ow
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ay] 6 5)/1
—6Xga (3x§—i—x1){(3x3+x1)a } .
o 2 2 0%y
—6x3(3_w+(3)(:3 +X1) W

By similar calculations, for each ke {1,2,3} and i,je{l1,2,...,m},

a3 Uyk .
“Yk —1
Ou 3 ow (7 )
Y .
“Yk _y
o ov (i )
k_ Yk
6’_x,~_ (3x3—i—x1)W (i=23)
Yk .
—2x; = <i<)
2x15w (4<i<i+3)
Yk .
i A L <1<
2xi o (A+4<i<m),
0’y %y 26 Yk
2 .
ou? T X 3 ou (’)w+ 3 ow2 (J )
52)’1( 6 Vi
-2
) oudv ' dvow (/=2
Cle _ ) on 2 0y Py,
5x15x] o %4» (3x3 + X1 )a a +X3(3x3 +x1) awz (.] == 3)
azJ/k 62yk
—2%j e A<i<i+3
Y oudw 3 502 4<j<i+3)
azyk 62yk
2x; 2x3X == It+d4<j<
xj@uﬁer *3 ) ow? (A+4<j<m),
52yk
=2
o002 (Jj )
Vic .
02, (3x3 + x1) 2= (/=3)
0x20x; - Ok i
' <j<
! vow (4=j=</i+3)
52)%
i At+d<j<
Y Sodw A+4<j<m)
Vi 2 252yk .
) 636 +(3X3+ 1)W (‘]73)
0 k aZyk .
S, =9 —2x;(3x3 + x1) =5 P (4<j<i+3)

(Z+4<j<m),

63
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ayk 262,]}/( . .
D2 14 4<i=j<]
ow T oow? (4<i=j<i+3)
A ~2
Ok 20 Vi N
Pho ) anthige  Grdsizism
ax,@xj 62yk . . N . .
4x,x_,»m d<i<j<i+3ori+4d4<i<j<m)
Py . )
O f Ok ) vk L)
—— =6—4+ 18x3(3 — T
o] o + 18x3(3x5 + x1) 2 + (3x3 +x1) 53

Since p =0 and f(p) =g¢, for each ke {1,2,3} and i,je€{1,2,...,m} such
that i < j,

oxiox; | ) [ o
? (61}2 (i=j=2)
q

o[k A<ic i<
<6w>q 4=i=j=<i+3)

2<%> (l+4<i=j<m)
q

0 (otherwise),

(@) — 6(%)
6x§‘ g ow p
3.1. Function case. We first focus on the function f;.

We consider whether p is a regular or singular point of f;. By the results
of partial derivatives,
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o of of
o), () ()
X1 » 0X2 » Xm »
u q v q

As for the function 7|5, since the disk D is tangent to the wv-plane

Hence, p is a regular point of f; if and only if ¢ is a regular point of 7|z,
which is the case if and only if

0 0
(%)750 or <3}l) # 0.
u/, v /,
Supposing that p is a singular point of fj, we consider what type it is.
By the above result, ¢ is a singular point of z|;, and

()~
ou p ov p

By the regularity of the coordinate transformation: (u,v,w)— (y1, y2, ¥3),
0
<ﬂ> 20
ow p
By the results of partial derivatives, the Hessian matrix (Hy, x, . x, f1)p is equal
to
oy 0%y a1 0
ou? Oudv ow J,
q q
2 2
N 0N
— 0 0 0
<0uav> ( ov? >
q q

(d(n

=]

(ﬁ) 0 0 0 0 ,
ow p
0
0 0 0 2 <ﬂ> I 0
ow p
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where I, denotes the n x n identity submatrix for neIN. It shows that

(Hy,,x,....x,. /1), has maximal rank if and only if
azyl
- 0.
( ov? 7
q
As for the function z|;, by the local form,

d(n = =0,
(), ( )

2
(H (), = (2—2) .

Hence, p is a fold point of f; if and only if ¢ is a fold point of 7.
number of negative eigenvalues of (Hy, x,, . x, /1), 18

)
ov

The

oy %y
A+1 (W)q>0,<av2 >0
q
2
242 MY o (21) 2o
6wq 0v?
q
2
m—s—2 [ (21 <o, (22) S0
(3wq o0v?
q
m—i—1 (22 <o n <0
ow ), ~ 7\ ov?
q

Hence, if p is a fold point of fi, its absolute index is equal to either min{A + 1,
m—2—1} or min{A+2,m—1-2}.

3.2. Surface-valued map case. We now focus on the map f 3.
We consider whether p is a regular or singular point of f; 3.
form and the results of partial derivatives,

By the local

()

(

af2
ax m P

<6_X1) 4 (a_xz>p (ax m >p
ayz 0y2
(@), @) 0o
A, (&), 0o
u), \dv),
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As for the map 7|5, since D is tangent to the wv-plane at g,
2\ (2
) ou p ov p
G, &)
ou g v p

Hence, p is a regular point of f; 3 if and only if ¢ is a regular point of I7|p,
which is the case if and only if

EL@), -GG
uq U‘{ U‘I Mq

Supposing that p is a singular point of f; 3, we consider what type it is, in
the rest of this section. By the above result, ¢ is a singular point of I7|3, and

(%), (), (2 (%), -0
ou p ov p ov p ou p

We have the following two subcases.

(d(M|p

3.2.1. Generic subcase. We first deal with the subcase where ¢ is a regular
point of I7|;. Since

and the coordinates y, and y; are symmetric so far, we may suppose that

0
<ﬁ) 20
ov p

without loss of generality. By the regularity of the coordinate transformation:
(u,0,w) = (y1, 32, 33),

GIERGICER
v q w q w q v q

Let A denote the left-hand side of this inequality. N
We modify the local form of f; 3 as follows. Let f3 be the function on U

defined as
> (0 a3
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Noting that the coefficient of f3 is non-zero, we obtain the local form:

ﬁ,3<xl7x27 et ,Xm) = (fZ(x],xL et 7xl71)7f:7)(xlax27 st 7xl71))'

We have arranged that

@ = i\ () _ (3 (o = B3<i<m)
axip v ), \0xi), ov ), \0xi), - -7
to satisfy the conditions that (df), # 0 and (dﬁ)p =0.

We calculate some derivatives with respect to appropriate vector fields as
follows. Let #,,#5,...,1, be the C* vector fields on U defined as

_(2\ 9 () O
=\ ,0%2 ov qaxl’
0

”f:a_xi (3 <i<m).

We have arranged that (1,),, (73),,,- - - (n,), are linearly independent, and
(2 (92 o\ (9
(122), = <6u >q (5x2>p (60 s \0X1/,
_ (D2 (D2 (D2 (D2 _,
_Guqﬁvq 6uq5uq_’

i, =(2) =0 G=ism.
/p
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= () (5), - (), )
(’72}(3)1’_<6u p 0x> A ov p 0x1 »
() (%) () (2) o
-~ \ou p ov v 6u

(n:f3), = (Sf)p 0 (B<i<m),

to satisfy the condition that ker(dfs3), = (1), (13),:- -, (),>- We have
that, for example,

) (D2 0 () 0| 0 5y2 3%
n2n3ﬁ_{<6u 102 <au>q6x1}6)C3 f3 qu
5)’2 5y2 Of () &

6x26X3 ov qﬁxl 0X3
52 ay3 Oh () (3 28
,0%20x3 v ), \ dv J,0x10x3 ’
2\ (2 o°fs Oyz 0’3
sy = (% )( )(axzax3 EACT
P p
(@) (2 P\ () () (2%
Ju p 0x70x3 ov p ov p 0x10x3
? P
a2\ (s 2\ (3 (0
o) \aw) "\a ) \@o ) \aw
V/q q q q q

- (ayz)A;eo
ov p

By similar calculations, we obtain that the matrix

(Wz’?zﬁ)p (’72’73%),; T (’7277mJ§)p
(3maf3), (msmsf3), - (m3muf3),
It f3)y s f3), o (i f3),

denoted by (H,, ..., f;)p, is equal to
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il 0y
(ﬂz’?zﬁ)p _<%)4A 0 0
—(%) A 0 0 0
ov p
0 0 —2AI, 0
0 0 0 241, ; ;

We apply Theorem 1 to f53. The above form of the matrix shows that
ker(H,,z,%_,7,7mJ’3)p = {0}. Tt follows that p~is a fold point of f 3. The num-
ber of negative eigenvalues of (an,m,m,qus)p is

A+1 (4>0)
{m—x—z (4<0).

It follows that the absolute index of the fold point p of f;3 is equal to
min{A+1,m—1—2}.

3.2.2. Exceptional subcase. We now deal with the subcase where ¢ is a sin-
gular point of I7|;. Since (d({1[g)), =0,

GROR
w) \ow)
v q q

By the regularity of the coordinate transformation: (u,v,w)— (y1, y2, ¥3),

<%> # 0, and either (%) #0 or <%) # 0.
ov p ou p ou p

Since y, and y; are symmetric so far, we may suppose that

(%) £0
ou p

without loss of generality. Again by the regularity of the coordinate trans-

formation,
<%> (%) _ (%) <%> £ 0.
6uq awq awq 6uq
Let B denote the left-hand side of this inequality.
We modify the local form of f; 3 as follows. Let f3 be the function on U

defined as
~_ (00 3\
f= (E)ﬁ - (E)qu'
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Noting that the coefficient of f3 is non-zero, we obtain the local form:

So3(xr,x2, .  xm) = (f2(x1, X2, .-, Xm), (X1, X2, -, X))

We have arranged that

% — % % — % % =0 (3 <i< m)
0x; g ou J,\0xi ), ou J,\0xi), - 7
to satisfy the conditions that (df2), # 0 and (dﬁ)p =0.

We calculate some derivatives with respect to appropriate vector fields as
follows. Let #y,%,,...,1,, be the C* vector fields on U defined as

_9
nl_axla
_9
77276)(:2’
_ 0 _dh 9
]7375)61 5)63 (3x3 axl’
0
L= 4<i<m).
=0 (4<i<m)

Noting that
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we have that the vectors (), (1), -, (), are linearly independent. We
have arranged that
of 02
= (2) = (2) #0
! q

(153), = (jfz) - (%) ~o,

b b

6x1 aX3 5)63 6x1

(mfz),,:@f) =0 (4<i<m).
p

Note that (df2), and (df3), are linearly dependent, since p is a singular point of
f2,3. It follows that (1,/3), = 0 as well as (7,/2), = 0 for each i € {2,3,...,m},
to satisfy the condition that ker(dfs ), = <{(12),, (13),,-- -, (n,),>. Note also
that (77, /2), # 0 for any point s sufﬁmently close to p, and that (df;), and
(df3), are linearly dependent for any singular point s of f;3. It follows that
(13f3), =0 as well as (3f2), =0 for any singular point s of f> 3 sufficiently
close to p, to satisty the condition that (y;), € ker(dfs,3),. We have that, for

example,
o 0 | (o s
mnfs = FINr {( ou )qf3 - (E)qﬁ}
u qﬁx% Ju qax% 7
_ o\ (0°ys 3\ (@2
(mam2f3), = <6u) (@UZ> - (_u o)’
q K 4
Fo 0 (R0 ok ON[(am) o (s
minsfz = 6x1 <6x1 0x3 0Ox3 0x1>{<5u>f (0u)q-f2}

2 (2 (e B2

ox1 \ ou J, Oxy Ox3  Ox3 0x|

axl 6X3 (3X3 5)(1

<5y2) <@%+fz h o Oh 5fzéﬁ>

E q 5}(12 aX3 a—xl 6x16x3 B 5)(15)(3 a—xl B 6—)6'; 6x1

(’71773f~3)p = (@ayz) B #0,
q
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>~ (0 0 dh 0N(dh 0 dh O 2 a3
mofi= (2 o e aa) (e e 22 {(a—)f - (a_)f}
_ <6f2 o o 0 )(6}12) <6f2 ofs o 6f3)

oxy Ox; 0x3 0x1) \ du ),

5)61 aX3 GX3 6x1 6x1 8X3 (9X3 6x1

:<@>%< of o o 3f Phafs o )

u qﬁxl 0x10x3 0x3 ﬁ_xl 6—x§ B 6—x§ ﬁ_xl B a_m 0x10x3

_(@)@(a% o Ph Fh o % 6/’3)

ou q6X3 6x1 0x3 | 0x) 0x10x3 0x10x3 0x1  0x3 axl

and (’73’73/};) =0. By similar calculations, we obtain that the matrix
(Hy,. s, f3) is equal to

(mmfs), 0 0 0
0 0 0 0

0 0 -2BI, 0
0 0 0 2Bl ;3

By similar but more complicated calculations,

2
]7 5)’2 L 52f2 %+ of2 ’ 63f2 %
31313 /3 = 6u ox1 \ 0x10x3 | ox3 Ox1) 0x10x3 0x3

(@3)2 ’fh Of +(5f2>363f3_ (%)253/’2 ofs

0x1 5)(15)(3 6)(,‘% 6x1 0x§ 5)(1 6x§’ 5)(1

<5fz) s 3(5/’2>25f2 Ofs 0h Eh 3

ax1) ox3 dx10xy T \0x1) 0x3 Ox ax3 Oxy axZ OxP 0x3

0x1 0x3 0x?0x3 0x3 0xy Ox3 0x? 0x3 0x1 0x3 0x10x3 0x

0k O O 0 +3%(5fz>2 Of  0h LIS U

0x1 Oxy 0x2 Ox2 T 0x; \0x3) OxPdx3  0x3 0x2 0x2 Oxy

o 5 0% o\ f ofs o [ f afs
()2 o (e (e

Zafz ofh h o 3 02 5ﬁ3f25f3+2%% >fh oy

6)63 5)(12 6x16x3 6X3 573613@7)63_57)63 6x16x3 5)61
C(BY Do (Y PR Ch (YOS
0x3) 0x2dx; O 0x3) 0x10x3 ox7  \0x3) ox; [’

0y
(’73’73’73f3 6<L> B #0.

u
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We apply Theorems 1 and 2 to f 3. The above form of the matrix shows
that ker(H,h’,h_,,wmng)p # {0}. It follows that p is not a fold point of /3.
Note that ker(Hy, 4,5, /3), is 1-dimensional if and _only if (ma115 f3) #0. If
so, then ker(H,, ;... ﬂ,,,f;)p = {(n3),»- Since (n;n; f3)  #0, we can see that
(d(n3/3)), # 0. From this and the result that (;73773;73f3) # 0, it follows that
p is a cusp point of f; 3 if and only if (7,7, f3)p # 0. The number of negative
cigenvalues of (Hy, , ..y, /3), is

A (B >0, (’72’72ﬁ)p > 0)
A+1 (B> 0, (n12/3), < 0)

4=3 (B<O, (’72’72f3)p > 0)
m—A—2 (B<O, (772772f3,)p<0).

It follows that, if p is a cusp point of f; 3, its absolute index is equal to either
min{A,m — A —2} or min{A+ 1,m — A —3}. Note that min{A,m -1 -2} =1
since A <m—/A—3.

We consider when the limiting normal curvature of D at ¢ vanishes.
Recall that

fls(xa,x3) = (=33, x2, =2x3)
with respect to (u,v,w). Note that
Sls(x2,x3) = (fils(x2,%3), fol (X2, X3), S35 (2, x3))

with respect to (yi, y2, y3), and

fk|S(x23x3) = yk(_xgaxb —2X§))

for each k€ {1,2,3}. By the chain rule, for example,

ofils) _ [ @, 1 d 3 0 5o _ oy
ox, éxz( x) 6u+ éxz 01)+ ﬁxz( 23) ow v’

() (2)

By similar calculations,

O\ 0lfily) & v 0
((fls))(ax2> S
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O\ _N~(k\ 0 _ () @
d — | = ) — = == ) — 0
( (flS))l) (axz) kz_:l( av )qayk (av ayl 7

@1, (5) =0

Let g denote the Riemannian metric of Y, and V denote the Levi-Civita con-
nection. Let g;; denote the function

g (i i)
6yi ’ 6y]

on Y, and I k be the Christoffel’s symbol, that is to say,

3 '\

9/0} . Z ljayk

By the product structure, we have that g; ; =0 and I ," ;=0 unless either i =
j=k=1orijke{23} It follows that

d
Via(ris) @) (d(fls) (ox2>

3
=Vs2 (anseoeron Z p
e

<V(d(.f}g))(0/(EXz))(d (1s)) <ofc2>)p

It is well-known that D is a so-called frontal, that is to say, f|¢ has a unit
normal vector field v: U — TY. Recall that the uv-plane is a tangent disk of
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D at g, and note that the v-axis is parallel to the yj-axis in 7,Y. It follows
that v(g) is obtained by normalizing

+ {gz,s(q) (anuz)q +93.3(q) (%”) } ai
+ {gz,z(CI) (?;2)(1 +92.3(q) <5y3> }ai

By substituting them, the limiting normal curvature
g ((Vwm )@/ (@x)) (d(f Is))( ))p,V(p))

o((@(r15D), (:5) - @10, (%))
is equal to

2
Flo2(0)02(0) - (02007 (52) @jﬁ)q (%) @—yz)

multiplied by a certain non-zero constant. By the regularity of the metric, it
is non-zero if and only if (17,7,/3), # 0. Combining this with the result in the
previous paragraph, we complete our proof of Proposition 7. O

4. Proof in swallow-tail case

In this section, we give a proof of Proposition 8. We take this here
because it is similar to that in the previous section.

We begin with the following local forms of the relevant maps. There exist
local coordinate systems (xj,x2,...,X,) and (u,v,w) of X and Y, respectively,
with respect to which p =0 and

, 4 2 2
S(X1,X2, ., Xm) = (X1, X2, X5 4+ X1X3 + X2X3 — Xj — - — X3
2 2

Tyt ).

There also exist a local coordinate y; of Y, and a local coordinate system
(y2,y3) of Yo3 with respect to which ¢ =0 and =n(y, y2,¥3) =1 and
I(y1, y2,y3) = (¥2,y3). Let f, f3 denote the functions on U such that

](2,3(x1ax25"-axm) = (f‘Z(xl,xzw--7xm),f£§(xl,x2,---7xm))
with respect to ()2, y3), and

Sx1,x0, o xm) = (10, X2, 005 Xm), [2(X1, X2, oy X)), S3(X1, X2, -0y X))
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Fig. 3. The discriminant set D and the coordinate system (u,v,w).

with respect to (yi, y2, y3). Note that there is a coordinate transformation:
(u,v,w) — (y1(u,v,w), y2(u,v,w), y3(u, v, w)).

Let S denote the singular set of f|,. We can see that S has the local form:
{(x1, —4x§ — 2x1x3,x3,0,...,0) | x1,x3 e R}

with respect to (x1,x2,...,X,). We can regard (x;,x3) as a local coordinate
system of S at p, and then f|¢ has the local form:

Sfls(x1,x3) = (xl,—4x§ — 2x1Xx3, —3)631 — xlxg)

with respect to (u,v,w). This shows that D is such a singular surface as
described in Subsection 2.1, and is related with (u,v,w) as in Figure 3. The
uv-plane is a tangent disk of D at f(p), as well as D. The u-axis is a tangent
arc of E at f(p) in D, as well as E.

We calculate partial derivatives similarly to those in Section 3. Then we
obtain that, for each k€ {1,2,3} and i,je {1,2,...,m},

TR =1
%—H@% (i=2)
ZL;[: (4x§’+2x1x3+xz)% (i=3)
—2xi%‘ 4<i<i+3)
2x,~%‘ (L+d<i<m),
s _[Geinadat U=

ox10x; | 0%k vk L0 30 .
Judv “ Juow HRE Jvow HRE ow? (7
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Yk

2
xg@v

(4X3 + 2x1x3 + XZ) —

0? .
P —l—x32(4x33 4+ 2x1x3 —&-xz)myg (j=3)

0x10x; 62yk ) ézyk
—2X] W — 2X3XJW

O*yi 0%k

B TN

0 2)%

62

0
ayk (4x3 + 2x1x3 + XZ)

2,
0" fr 2

0x20x;

2xj ——

aJ/k 5)%

Wk 20 .
(12x§ +2x1)w+ (4x33 +2x1x3 + X2) s (j=3)

0 ZJ’k
ow?
0 2J/k
ow?

Byix, | "o+ 2xx £ x) 4<j<it3)

2x;(4x3 + 2x1x3 + x2) (A+4<j<m),

_Zayk 4x 262J’k

A2
-— Atd<i=j<
Xi A (A+4<i=j<m)

4xixjm A<i<j<i+3ori+4<i<j<m)

_4)@)9.m (A<i<i+3<j<m),

0 zyk

ow?

= 24, DK 31252 4 230 ) (4 + 231 + x0) LK
6x3 Sow

+ (4x3 + 2x1x +x)3a3i

3 B T

Since p =0 and f(p) =g¢, for each ke {1,2,3} and i, je{1,2,...,m} such
that i < j,
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0x;0x; i (ayk>

q

—2<%> (4<i=j<i+3)
q

2<%> (A+4<i=j<m)
q

0 (otherwise),

ox;3
p

4.1. Function case. We first focus on the function f.

We consider whether p is a regular or singular point of f;. The same
argument as in Subsection 3.1 shows that p is a regular point of f if and only
if ¢ is a regular point of n|;, which is the case if and only if

<@> £0  or <%) £0.
ou p v /,

Supposing that p is a singular point of f}, we consider what type it is.
By the above result, ¢ is a singular point of 7|;, and

(2)-(2)-
ou p ov p

By the regularity of the coordinate transformation: (u,v,w)— (y1, y2, y3),

(%> # 0, and either (@) #0 or <%> # 0.
ow p ou p ou p
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The Hessian matrix (Hy, v, x,/1), is equal to
2
0 y1 6
0 0
2
N 5)’1 0 0
6u(3v 02 ('iw

0 (Q 0 0 0 )
w
0 0 <%> . 0
ow
q
0 0 0 0 (‘iy 1) |
ow

which has maximal rank if and only if

62y1
(22) 40
q

Hence, p is a fold point of f] if and only if this inequality holds. The number
of negative eigenvalues of (Hy, v, . x, fl)p is

A+1

2
i+ (@) >0, <a—y2‘> <0
w/, ou .

m—A—2

62
m—i—1 (2 <o (22 <o
w ), ou?
q

Hence, if p is a fold point of fi, its absolute index is equal to either min{4 + 1,
m—A—1} or min{A+2,m—1—2}.

We consider when the limiting normal curvature of D at g vanishes. Note
that

Sls(x1,x3) = (fils(x1,x3), fols(x1, X3), f3]s(x1,x3))
with respect to (yi, y2, y3), and

Jiels (1, x3) = yr(xy, —4x§ — 2x1X3, —3x§‘ - xlxg)
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for each k € {1,2,3}. By calculations similar to those in Subsubsection 3.2.2,

0\ (v Oyk L0k 0
(d(ﬂS))(a_xl) —Z(@_z’%% x3 5W> e

k=1

(o) = (5 ) () #0
@1, () =0,
)

<V(d(/s) Yo/ @exy (d (f|s))( ¢ >p

6)61
B LN RN dy; 3 62y< P
- Z ZZ(E){/ (a_ul) i / qayk Z <5“2]>q0_y,-’

=1

where V' denotes the Levi-Civita connection for the product metric of Y, and
I lk] is the Christoffel’s symbol. It is well-known that f|¢ has a unit normal
vector field v. Since the y;ys;-plane is a tangent disk of D at ¢, the vector v(g)
is parallel to the yj-axis in 7,Y. It follows that the limiting normal curvature

is equal to
J 2)’ 1
ou?
q

multiplied by a certain non-zero constant. Combining this with the result in
the previous paragraph, we complete our proof of Proposition § in the function
case.

4.2. Surface-valued map case. We now focus on the map f 3.

We consider whether p is a regular or singular point of f; 3. The same
argument as in Subsection 3.2 shows that p is a regular point of f;3 if and
only if ¢ is a regular point of I7|;, which is the case if and only if

v\ (0y3 2\ (r3
<6u>q(av>q <av au 70

Supposing that p is a singular point of f; 3, we consider what type it is, in
the rest of this section. By the above result, ¢ is a singular point of I7|z, and

2\ (3 a2\ (0r3 _0
ou)\av) \ov)\ou)
U/q q q q

We have the following two subcases.
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4.2.1. Generic subcase. We first deal with the subcase where ¢ is a regular
point of II|z. Since the arc E is tangent to the u-axis at ¢,

i)
6uq

(dg)), = (%>

ou

Since (d(g|g)), # 0 and the coordinates y, and y; are symmetric so far, we
may suppose that
0
<ﬂ> £0
du J,

without loss of generality. By the regularity of the coordinate transformation:
(u,U, W) — (J’I,)/27y3),

2\ [y 2\ [0y 0
) \ow) " \aw ) \ou) 77
U/q q q q
Let B denote the left-hand side of this inequality. N
We modify the local form of f; 3 as follows. Let f3 be the function on U

defined as
=~ [(0n ay3
Si= <0u)qf3 B (au)qu'

Noting that the coefficient of f3 is non-zero, we obtain the local form:

fé,3(x17x27 st 7xm) = (f2(x1,x27 et 7xm)7f‘3(xlax27 st axm))‘

()
(2)-C)E) -@)E) - oeren

to satisfy the conditions that (df2), # 0 and (df;)p =0.
We calculate some derivatives with respect to appropriate vector fields as
follows. Let #,,#3,...,7, be the C* vector fields on U defined as

_ (2 9 () O
=\ u ,0%2 ov qﬁxl’
_9
ni_axi

We have arranged that

(3 <i<m).
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We have arranged that (7,),,(%3),,---,(,), are linearly independent, and

(n:/2), = (n:/3), = 0 for i e {2,3,...m}, to satisfy the condition that ker(dfs3),
= (1), (13)ps -+ (),>- We have that, for example,

AR AP
}72’73f3_{<0u>q&xz <6U>q6x1}6X3{<0u qf3 Ou qu
(VP () () P
ou qﬁxzﬁm ov p ou q8x18x3
(o) () P (02 () O
ou ), \ du J,0x20xs ov ), \ u qﬁxlﬁ)Q’

7y (2
(’72”3]5)p - (61/{ )qB # 0.

By similar calculations, we obtain that the matrix (H,, ,, ., ﬁ)p is equal to

il 2
—~ | B 0 0
(’72’72f3)p ( u )q
<ay2) B 0 0 0
ou p
0 0 —2BI,; 0
0 0 0 2Bl,_;_3

We apply Theorem 1 to f>3. The above form of the matrix shows that
ker(H,h,,,}_m,,?mfg)p = {0}. Tt follows that p is a fold point of /5 3. The number
of negative eigenvalues of (Hy, y,. .y, /3), 18

A+1 (B > 0)
{m—i—Z (B <0).

It follows that the absolute index of the fold point p of f;3 is equal to
min{A+1,m — A —2}.

4.2.2. Exceptional subcase. We now deal with the subcase where ¢ is a sin-
gular point of I7[z. Since (d(/1|g)), =0,

<5yz> _<5y3> —0
ou p ou p

By the regularity of the coordinate transformation: (u,v,w)— (y1, y2, y3),

<%> #0 or <63}3) # 0.
ov p a ),
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Since y, and ys; are symmetric so far, we may suppose that

<%> £0
v J,
without loss of generality. N
We modify the local form of f; 3 as follows. Let f3 be the function on U

defined as
= _ (0 0ys
f3= <0v)f (51) S
Noting that the coefficient of f3 is non-zero, we obtain the local form:

S 3(x1, %2, ., X)) = (fz(x1,xz,...,xm),f;(xl,xz,...,xm)).

(2)-(2)
(5)-)E) ) oeren

to satisfy the conditions that (df2), # 0 and (dfg)p =
We calculate some derivatives with respect to appropriate vector fields as
follows. Let #,,%5,...,1,, be the C* vector fields on U defined as

We have arranged that

0
m= 6X2,
_0
= aXI )
9% 9 o 9
3= éxz 5)(3 (’)x3 5)(2
0= 6%1 (4 <i<m).
Noting that
A\ _ (2
0x2/, ov ), ’
we have that the vectors (), (1), - -, (1,,), are linearly independent. We

have arranged that (77, /2), # 0 and (7,/2), =0 for i€ {2,3,...m}, and n; /> =
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0. By a similar argument to that in Subsubsection 3.2.2, they satisfy the con-

ditions that ker(df2,3), = {(12),: (13),5 - - -, () ,,» and (n3); € ker(df2 3); for any
singular point s of f; 3 sufficiently close to p. We have that, for example,

~ (oh 0 aN(oh @ o AN[(m\ . (v
M3 = (axz axs  0x3 0x2) (@)Q oxs  ox; 0xa) | \dw qf3 v qu

:<@)@<azfz CE N W 0 N a%)

0v ),0x2 \ 0x20x3 0x3 ~ 0x2 0x3  0x3 O0xy  0Ox3 Ox20x3

- <%>% <02f2 o ok Ph O Ph A o @)
q

ov | 0x3 6_x§ 0x3 | 0xy 0x20x3 0x20x3 Ox2  0x3 0x3

and (7373 ]73)p =0. By similar calculations, the second column of the matrix
(Hy, 0., ﬁ)p turns out to vanish. By similar but more complicated calcula-
tions, we obtain that (n37375/3), = 0. N

We apply Theorems 1 and 2 to fo3. Since ker(Hy, ...y, /3), # {0},
it follows that p is not a fold point of f3. If ker(an,m,-.-.,n,,,fS)p is
I-dimensional, then ker(Hy, ...y, f3), = <(13),»- Since (n31313/3), = 0, it fol-
lows that p is not a cusp point of f; ;. O

5. Proof in fold case

In this section, we give a proof of Proposition 6.

We begin with the following local forms of the relevant maps. There exist
local coordinate systems (xj,x2,...,X,) and (u,v,w) of X and Y, respectively,
with respect to which p =0 and

f(xlaXZ)-"7xm) = (xl,x27—x§—~~-—X%+Z+X;%+3+"-+X31).

There also exist a local coordinate y; of Y;, and a local coordinate system
(y2,3) of Y3 with respect to which ¢ =0 and =z(yi, )2, y3) = y1 and
II(y1, y2,y3) = (y2,¥3). Let fo, f3 denote the functions on U such that

Sr3(x1, X2,y xm) = (X1, X2, -y Xm)s S3(X1, X2, -0, X))
with respect to ()7, y3), and
SO, x2, oy xm) = (100, X2, oy Xm), (X1, X2, ooy X)), S3(X1, X2, -0y X))
with respect to (yi, y2, y3). Note that there is a coordinate transformation:

(u’ U7 W) = (y] (u7 U? 14})7 yz(”? U? 11/)7 y3(u’v7 ‘V))'
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Let S denote the singular set of f|,. We can see that S coincides with the
X1xz-plane, and f|g is an embedding, and its image D coincides with the
uv-plane. Hence, 7|, and IT|, have the local forms: 7|, (u,v) = y1(u,v,0) and
HlD(u7 U) = (yz(l@ v, 0)7 y3(u, v, 0))

We calculate partial derivatives similarly to those in Section 3. Then we
obtain that, for each ke {1,2,3} and i,je {1,2,...,m} such that i < j,

(%-)p: (%)I (i=2)

fi \
6xi8xj )
—2<ay"> B<i=j<i+2)
q

2<%> (l+3<i=j<m)
q

0 (otherwise).

5.1. Function case. We first focus on the function f;.
We consider whether p is a regular or singular point of f;. By the local
forms and the results of partial derivatives,

(), = ((%)q ()0 ,0) 7
(), = ((%) (%))

Hence, p is a regular point of f; if and only if ¢ is a regular point of x|,
which is the case if and only if

<@> #0 or <@) # 0.
ou p a ),
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Supposing that p is a singular point of f;, we consider what type it is.
By the above result, ¢ is a singular point of z|,, and

<5y1> _<5y1> —0
ou p ov p

By the regularity of the coordinate transformation: (u,v,w)— (y1, y2, y3),

(%) £0.
ow p

The Hessian matrix (Hy v, x, /1), is equal to

and the Hessian matrix (Hy,o(n|p)), is equal to
*n o’
ou? Oudv
q q
Oy Oy
Oudv ov?
q q

These show that (Hy, y,..x, /1), has maximal rank if and only if (Hy,.(%[p)),
does. Hence, p is a fold point of f; if and only if ¢ is a fold point of 7|,.
The number of negative eigenvalues of (Hy, x,,..x,/f1), i

" (2 o)
m—2-2)+n ((%) <0),

where i is the number of negative eigenvalues of (H,,.(7|p)),. Suppose that
g is a fold point of 7|, and let u denote its absolute index. Note that u =
min{fx,2 — i}, and hence f is equal to either 4 or 2 —u. The number of
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negative eigenvalues of (Hy, x, .. x,/f1), is, therefore, equal to

A4 u <

Thus, the absolute index of the fold point p of f; is equal to either min{1 + g,
m—JA—u} or min{A—pu+2,m—A+pu—2}.

5.2. Surface-valued map case. We now focus on the map f 3.

We consider whether p is a regular or singular point of f> 3. By the local
forms and the results of partial derivatives,

0y2 0y
d ) (au)q ((%)q 0O --- 0
(df23), = (éys) <%> |
ou ; ov q
(5)/2) (%)
ou), \0v),
(d(n|D))q = oy3 03
(6u>q (%)j

Hence, p is a regular point of f; 3 if and only if ¢ is a regular point of 17|,
which is the case if and only if

0 0 0 0
<£> (ﬂ) _ (ﬂ) <£> 40,
du J,\ v ), v ), \ ou ),
Supposing that p is a singular point of f> 3, we consider what type it is,
in the rest of this section. By the above result, ¢ is a singular point of 7],

and
2\ (03 a2\ (dy3\ _ 0
ou)\ov) \ow)\ou)
u q q q q
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By the regularity of the coordinate transformation: (u,v,w) — (y1, y2, ¥3),
W2\ (02
ou p v p
w3\ (s
ou p ov p
By the symmetries of y, and y3;, and of u and v, we may suppose that
0
<ayz> £0
U/q
without loss of generality. Again by the regularity,
0 0 0 0
<£> (ﬁ) _ (ﬂ) <£> £ 0.
6uq awq awq 6uq

Let B denote the left-hand side of this inequality. N
We modify the local form of f; 3 as follows. Let f3 be the function on U

defined as
= (0 0ys
f3= <6u)qf3 B <0u)qf2’
to give f>3 the local form:

f‘273(X1,X2, e 7xm) == (fZ(xlaxL e 7xl71)7ﬁ(xl;x27 e ;xm))-

We have arranged the conditions that (df2), # 0 and (df_;)p =0.
We calculate some derivatives with respect to appropriate vector fields as
follows. Let #y,%,,...,,, be the C* vector fields on U defined as

_9
m ox;
_dh 0 0
& _6x1 axZ 5)62 axl’
0
L= | < .
=G0 (B<i<m)

We have arranged that (1,),,(%2),,---,(n,), are linearly independent, and
(mf2), #0 and (1,/2), =0 for i€{2,3,...m}, and 7,/ =0. By a similar
argument to that in Subsubsection 3.2.2, they satisfy the conditions that
ker(df2,3), = {(12),, (13)ps - -, (),> and (i), € ker(dfz3), for any singular
point s of f;3; sufficiently close to p. By calculations similar to those in
the previous sections, we obtain that the matrix (H,, ,, .. f;)p is equal to
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(’72’72%);; 0 0
0 —2BI, 0
0 0 2Bl ;>

We apply Theorems 1 and 2 to f, 3. The above forrn of the matrix shows
that ker(H ,72,,73M,7mf3) = {0} if and only if (;72;72]‘3) It follows that p is
a fold point of f; 3 if and only if (nziyzfg) # 0. Note that ker(Hy, 4,,..5,/3),
is 1-dimensional if and only if (1,7,/3), =0. If so, then ker(Hy, 4, .4, /3), =
{(112),>. It follows that p is a cusp point of f5 3 if and only if (7,7,/3), =0
and (d(iy2f3)) # 0 and (;72172;72]‘3) # 0. Here, the condition that (d(nzﬁ))p #
0 holds if and only if (171172]”3) # 0, since (7; ;72f3) =0 for ie{2,3,...,m}.
The number of negative eigenvalues of (Hy, ;. .. f3) is

i (B> 0, (n123), = 0)
A+1 (B> 0, (n12/3), < 0)
m—,—-2 (B<O, (Uzﬂzﬁ)p >0)
m—J.—-1 (B<O, (ﬂz’?zﬁ)p <0).

It follows that, if p is a fold point of f; 3, its absolute index is equal to either
min{A,m — A —1} or min{A+ 1,m — 21 —2}, and that, if p is a cusp point
of f53, its absolute index is equal to min{A,m — 1 —2}. Note that min{4,
m—2A—1}=min{Ai,m—A1—-2} =41 since A<m—1-2.

We also apply Theorems 1 and 2 to the restriction of f, 3 to the singular
set S of f. Since S coincides with the x;x;-plane, we have the local forms:
f2 3|S(x17x2) (f2|S(x17x2) f3|S(x17x2)) and fZ‘S(xlaXZ) = fZ(xlaXZ’O’ .- '70)
and f3|S(x1,x2) fg(xl,xz,O, ..,0). We can see that (d(f2s)), #0, and
(d( f3|S)) =0. Since #, is the sum of only derivations with respect to Xx
and x; multiplied by functions, and hence #,#, and #,%,7, are also, we may
regard them as defined on S. Then we have that ker(d(/2,3s)), = <(m),>,
and that (,), € ker(d(f,3] S)) for any singular point s of f2.3]¢ sufficiently
close to p, and that (H ,72(f3|S)) (772;72(f3|5)) . It follows that p is a fold
point of f,3|¢ if and only if (172772(f3\5)) #0. Note that ker(H,,(f3[s)), =
{(m),» if (;72;72(f3\5)) =0. It follows that p is a cusp point of f; 3| if and
only if (7372(f3ls)), = 0 and (d(n>(3l5))), # 0 and (s (fily)), # 0. Here,
the condition that (d (r]z(f;|s)))p # 0 holds if and only if (’71']2(]§|s))p # 0, since
(’72’72(f3|s))p =0. _

We compare the results of the aboxe two paragraphs.~ Note that (;72172 f3) )
= (mm(fls)), and (mn2/3), = (mna(fls)), and (mmony f3), = (mny(fls)) -
It follows that p is a fold point (resp. cusp point) of f5 3 if and only if p is
a fold point (resp. cusp point) of f;3|g. Since f|g is an embedding from S to
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D, the point p is a fold point (resp. cusp point) of f; 3|¢ if and only if ¢ is a
fold point (resp. cusp point) of I7],,. Thus, we conclude that p is a fold point
(resp. cusp point) of f, 3 if and only if ¢ is a fold point (resp. cusp point) of
1), O
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