Notes on constructions of knots with the same trace

Keiji Tagami
(Received January 26, 2021)
(Revised September 15, 2021)

Abstract

The m-trace of a knot is the 4 -manifold obtained from \mathbf{B}^{4} by attaching a 2-handle along the knot with m-framing. In 2015, Abe, Jong, Luecke and Osoinach introduced a technique to construct infinitely many knots with the same (diffeomorphic) m-trace, which is called the operation $(* m)$. In 2018, Miller and Piccirillo gave pairs of knots with diffeomorphic m-traces by utilizing Gompf and Miyazaki's dualizable pattern. In this paper, we clarify the relation between the two techniques. In particular, we prove that the "twistings" appearing in both techniques are corresponding. In addition, we show that the family of knots admitting the same 4 -surgery given by Teragaito can be explained by the operation $(* m)$.

1. Introduction

For an integer m, the m-trace $X_{K}(m)$ of a knot K is the 4-manifold obtained from \mathbf{B}^{4} by attaching a 2-handle along the knot with m-framing. On techniques to construct knots with the same trace, the following are known.

- Abe, Jong, Luecke and Osoinach [2] introduced a technique to construct infinitely many knots with the same (diffeomorphic) m-trace. The technique is based on "annulus presentation" and called the operation $(* m)^{1}$. The operation is given by a composition of Osoinach's annular twisting technique [9] and twisting m times along a certain curve " γ ". This twisting is denoted by T_{m} in this paper (for detail, see Section 2).
- Miller and Piccirillo [8] constructed a pair of knots with the same m-trace by utilizing dualizable patterns. In particular, such a pair is given by a dualizable pattern and twisting its dual m times along a meridian of the solid torus containing the dual. This twisting is denoted by τ_{m} (for dualizable patterns, see Section 3).
Miller and Piccirillo [8] pointed out that the construction by an annulus presentation can be regarded as that by a dualizable pattern. In fact they

[^0]constructed a dualizable pattern from the annulus presentation. This is the case $m=0$, namely, untwisted case.

In this paper, we extend Miller and Piccirillo's work on a correspondence between annulus presentations and dualizable patterns to twisted cases. In particular, we find that the twisting T_{m} appearing in operation $(* m)$ corresponds to the twisting τ_{m} on the duals of dualizable patterns. As an application, we directly draw the duals to Miller and Piccirillo's dualizable patterns obtained from annulus presentations (Theorem 4.3 and Figure 5). In addition, we explain the family of knots admitting the same 4 -surgery given by Teragaito [11] in terms of the operation $(* m)$ (Section 5). We also remark some observations in the final section. Throughout this paper,

- unless specifically mentioned, all knots and links are smooth and unoriented, and all other manifolds are smooth and oriented,
- for an n-component link $L_{1} \cup \cdots \cup L_{n}$, we denote the 3-manifold obtained from \mathbf{S}^{3} by m_{i}-surgery on the knot L_{i} for $i=1, \ldots, n$ by $M_{L_{1} \cup \ldots \cup L_{n}}\left(m_{1}, \ldots, m_{n}\right)$,
- we denote a tubular neighborhood of a knot K in a 3-manifold by $v(K)$, and
- we denote the unknot in \mathbf{S}^{3} by U.

2. Annulus twist, annulus presentation and the operation $(* m)$

2.1. Annulus twist and annulus presentation. Let $A \subset \mathbf{S}^{3}$ be an embedded annulus with ordered boundaries $\partial A=c_{1} \cup c_{2}$. An n-fold annulus twist along A is to apply $\left(1 \mathrm{k}\left(c_{1}, c_{2}\right)+1 / n\right)$-surgery along c_{1} and $\left(1 \mathrm{k}\left(c_{1}, c_{2}\right)-1 / n\right)$-surgery along c_{2}, where $1 \mathrm{k}\left(c_{1}, c_{2}\right)$ is the linking number of c_{1} and c_{2} and we give c_{1} and c_{2} parallel orientations. We see that the resulting manifold obtained by an annulus twist is also \mathbf{S}^{3}.

Let $A \subset \mathbf{S}^{3}$ be an embedded annulus with $\partial A=c_{1} \cup c_{2}$. Take an embedding of a band $b: I \times I \rightarrow \mathbf{S}^{3}$ such that

- $b(I \times I) \cap \partial A=b(\partial I \times I)$,
- $b(I \times I) \cap \operatorname{Int} A$ consists of ribbon singularities, and
- $A \cup b(I \times I)$ is an immersion of an orientable surface,
where $I=[0,1]$. If a $\operatorname{knot} K \subset \mathbf{S}^{3}$ is isotopic to the $\operatorname{knot}(\partial A \backslash b(\partial I \times I)) \cup$ $b(I \times \partial I)$, then we call (A, b) an annulus presentation of K. An annulus presentation (A, b) is special if A is unknotted and $\operatorname{lk}\left(c_{1}, c_{2}\right)= \pm 1$ (that is, A is ± 1-full twisted). Let K be a knot with an annulus presentation (A, b). Let $A^{\prime} \subset A$ be a shrunken annulus with $\partial A^{\prime}=c_{1}^{\prime} \cup c_{2}^{\prime}$ which satisfies the following:
- $\overline{A \backslash A^{\prime}}$ is a disjoint union of two annuli,
- each c_{i}^{\prime} is isotopic to c_{i} in $\overline{A \backslash A^{\prime}}$ for $i=1,2$, and
- $A \backslash\left(\partial A \cup A^{\prime}\right)$ does not intersect $b(I \times I)$.

Then, by $A^{n}(K)$, we denote the knot obtained from K by the n-fold annulus twist along A^{\prime}. For simplicity, we denote $A^{1}(K)$ by $A(K)$ and $A^{0}(K)$ by K.

Remark 2.1. We find many examples of special annulus presentations in $[1,2,4,5,10]$. Remark that in [2, 5], our special annulus presentations are called "annulus presentations", simply. In this paper, for an annulus presentation (A, b), we often draw the attaching regions $A \cap b$ by bold arcs and we omit the band b.

By utilizing Osoinach's work [9, Theorem 2.3], for a knot K with an annulus presentation (A, b), we see that $M_{K}(0)$ and $M_{A^{n}(K)}(0)$ are orientationpreservingly homeomorphic for any $n \in \mathbf{Z}$. In particular, a homeomorphism $\phi_{n}: M_{K}(0) \rightarrow M_{A^{n}(K)}(0)$ is given as in Figure 1, which is explicitly given by Teragaito [11]. We call ϕ_{n} the n-th Osoinach-Teragaito's homeomorphism. Moreover, if (A, b) is special, by applying Abe, Jong, Omae and Takeuchi's result [1, Theorem 2.8] to the knot, we see that the homeomorphism ϕ_{n} extends to an orientation-preserving diffeomorphism $\Phi_{n}: X_{K}(0) \rightarrow X_{A^{n}(K)}(0)$ for any $n \in \mathbf{Z}$.

As a consequence, we obtain the following.
Theorem 2.2. Let $K \subset \mathbf{S}^{3}$ be a knot with an annulus presentation (A, b). Then, there is an orientation-preservingly homeomorphism $\phi_{n}: M_{K}(0) \rightarrow$

Fig. 1. (color online) Osoinach-Teragaito's homeomorphism ϕ_{n}. For simplicity we draw A as a flat annulus although A may be knotted and twisted.

Fig. 2. (color online) The curve $\gamma_{A(K)}$.
$M_{A^{n}(K)}(0)$ for any $n \in \mathbf{Z}$. In particular, ϕ_{n} is given as in Figure 1. Moreover, if (A, b) is special, ϕ_{n} extends to an orientation-preserving diffeomorphism $\Phi_{n}: X_{K}(0) \rightarrow X_{A^{n}(K)}(0)$.
2.2. Operation $(* m)$. Let K be a knot with a special annulus presentation (A, b). Let $\gamma_{A(K)} \subset \mathbf{S}^{3} \backslash v(A(K))$ be a curve depicted in Figure 2. Remark that the definition of $\gamma_{A(K)}$ depends on the twist of A. Denote the knot obtained from $A(K)$ by twisting m times along $\gamma_{A(K)}$ by $T_{m}(A(K))$. In [2, Section 3.1.2], the operation $K \mapsto T_{m}(A(K))$ is called the operation $(* m)$. Then, Abe, Jong, Luecke and Osoinach [2] proved the following theorem.

Theorem 2.3 ([2, Theorem 3.7 and Theorem 3.10]). Let K be a knot with a special annulus presentation (A, b). Then, there is an orientation-preservingly homeomorphism $\psi_{m}: M_{K}(m) \rightarrow M_{T_{m}(A(K))}(m)$ which extends to a diffeomorphism $\Psi_{m}: X_{K}(m) \rightarrow X_{T_{m}(A(K))}(m)$ for any $m \in \mathbf{Z}$.

Concretely, ψ_{m} is given as in Figure 3 for the case A is +1 twisted. For the case A is -1 twisted, we can define ψ_{m} similarly (see also [3, Appendix]).

Remark 2.4. Note that Osoinach-Teragaito's homeomorphism induces a homeomorphism $\phi_{+1}:\left(M_{K}(0), \alpha_{K}\right) \rightarrow\left(M_{A(K)}(0), \gamma_{A(K)}\right)$, where $\alpha_{K} \subset \mathbf{S}^{3} \backslash v(K)$ is a meridian of K and we regard α_{K} and $\gamma_{A(K)}$ as curves in $M_{K}(0)$ and $M_{A(K)}(0)$, respectively (see also the bottom arrow in Figure 3).

3. Relation between annulus presentation and dualizable pattern

3.1. Dualizable pattern. Here, we recall the definition of dualizable patterns, which is firstly given by Gompf and Miyazaki [7] and developed by Miller and Piccirillo [8] (see also [10]).

Let $P: \mathbf{S}^{1} \rightarrow V$ be an oriented knot in a solid torus $V=\mathbf{S}^{1} \times D^{2}$. Suppose that the image $P\left(\mathbf{S}^{1}\right)$ is not null-homologous in V. Such a P is called a

Fig. 3. (color online) The homeomorphism $\psi_{m}: M_{K}(m) \rightarrow M_{T_{m}(A(K))}(m)$ for the case A is +1 twisted.
pattern. By an abuse of notation, we use the notation P for both a map and its image. Define $\lambda_{V}, \mu_{P}, \mu_{V}$ and λ_{P} as follows:

- put $\lambda_{V}=\mathbf{S}^{1} \times\left\{x_{0}\right\} \subset \partial V \subset V$ for some $x_{0} \in \partial D^{2}$ and orient λ_{V} so that P is homologous to $r \lambda_{V}$ in V for some positive $r \in \mathbf{Z}_{>0}$,
- define $\mu_{P} \subset V$ by a meridian of P and orient μ_{P} so that the linking number of P and μ_{P} is 1,
- put $\mu_{V}=\left\{x_{1}\right\} \times \partial D^{2} \subset \partial V \subset V$ for some $x_{1} \in \mathbf{S}^{1}$ and orient μ_{V} so that μ_{V} is homologous to $s \mu_{P}$ in $V \backslash v(P)$ for some positive $s \in \mathbf{Z}_{>0}$,
- define λ_{P} by a longitude of P which is homologous to $t \lambda_{V}$ in $V \backslash v(P)$ for some positive $t \in \mathbf{Z}_{>0}$.
For an oriented knot $K \subset \mathbf{S}^{3}$, let $l_{K}: V \rightarrow \mathbf{S}^{3}$ be an embedding which identifies V with $\overline{v(K)}$ and sends λ_{V} to an oriented curve on $\partial \overline{v(K)}$ which is null-homologous in $\mathbf{S}^{3} \backslash v(K)$ and isotopic to K in \mathbf{S}^{3}. Then $l_{K} \circ P: \mathbf{S}^{1} \rightarrow \mathbf{S}^{3}$ represents an oriented knot. The knot is called the satellite of K with pattern P and denoted by $P(K)$.

A pattern $P: \mathbf{S}^{1} \rightarrow V$ is dualizable if there is a pattern $P^{*}: \mathbf{S}^{1} \rightarrow V^{*}$ and an orientation-preserving homeomorphism $f: V \backslash v(P) \rightarrow V^{*} \backslash v\left(P^{*}\right)$ such that $f\left(\lambda_{V}\right)=\lambda_{P^{*}}, f\left(\lambda_{P}\right)=\lambda_{V^{*}}, f\left(\mu_{V}\right)=-\mu_{P^{*}}$ and $f\left(\mu_{P}\right)=-\mu_{V^{*}}$.

Miller and Piccirillo [8, Proposition 2.5] introduced a convenient technique to determine whether a given pattern is dualizable as follows (see also [7, Section 2]). Define $\Gamma: \mathbf{S}^{1} \times D^{2} \rightarrow \mathbf{S}^{1} \times \mathbf{S}^{2}$ by $\Gamma(t, d)=(t, \gamma(d))$, where $\gamma: D^{2} \rightarrow \mathbf{S}^{2}$ is an arbitrary orientation preserving embedding. For any curve $c: \mathbf{S}^{1} \rightarrow \mathbf{S}^{1} \times D^{2}$, define $\hat{c}=\Gamma \circ c: \mathbf{S}^{1} \rightarrow \mathbf{S}^{1} \times \mathbf{S}^{2}$. Then, we obtain the following proposition.

Proposition 3.1 ([8, Proposition 2.5]). A pattern P in a solid torus V is dualizable if and only if \hat{P} is isotopic to $\widehat{\lambda_{V}}$ in $\mathbf{S}^{1} \times \mathbf{S}^{2}$.

Related to knot traces, the following are known. Let $P \subset V$ be a pattern. Let $\tau_{m}: V \rightarrow V$ be a homeomorphism given by twisting m times along a meridian of V. It is known that if P is dualizable then $\tau_{m}(P)$ is also dualizable and its dual is given by $\tau_{-m}\left(P^{*}\right)$, where P^{*} is the dual to P (see [8, Theorem 3.6] and [10, Remark 4.6]). Moreover, we obtain the following.

Theorem 3.2 ([8, Theorem 3.6] and [10, Remark 4.6]). Let P be a dualizable pattern and P^{*} be its dual. Then, we have $X_{P(U)}(m) \cong X_{\tau_{m}\left(P^{*}\right)(U)}(m)$ for any $m \in \mathbf{Z}$.

Remark 3.3. For a dualizable pattern $P \subset V$, we see that $M_{P(U) \cup \mu_{V}}(0,0)$ $\cong \mathbf{S}^{3}$. Conversely, for a knot k in \mathbf{S}^{3}, if there exists an unknot c such that $M_{k \cup c}(0,0) \cong \mathbf{S}^{3}$, we see that $k \subset \mathbf{S}^{3} \backslash v(c)$ is a dualizable pattern after giving some orientation to k (for detail, see [6] and [10, Remarks 3.3 and 4.6]).
3.2. From special annulus presentations to dualizable patterns. In this section, we recall Miller and Piccirillo's construction ([8, Section 5]) of dualizable patterns from a special annulus presentation (see also [10]).

Let $K \subset \mathbf{S}^{3}$ be a knot with a special annulus presentation (A, b). In Figure 4, the left knots represent K, and each right knot represents $A^{ \pm 1}(K)$ for the corresponding left K. Then, for each case, take curves $\beta_{K}^{ \pm} \subset \mathbf{S}^{3} \backslash v(K)$ as in Figure 4.

Let P_{+}(resp. P_{-}) be the pattern given by $K \subset V_{+}=\mathbf{S}^{3} \backslash v\left(\beta_{K}^{+}\right)$(resp. $\left.K \subset V_{-}=\mathbf{S}^{3} \backslash v\left(\beta_{K}^{-}\right)\right)$, where we give a parameter of $V_{ \pm}$so that $P_{ \pm}(U)=K$. Moreover, we give an orientation of $P_{ \pm}$arbitrarily. Then, we can check that $P_{ \pm}$are dualizable patterns (for example, slide K along the 0 -framing of $\beta_{K}^{ \pm}$in $M_{\beta_{K}^{ \pm}}(0) \cong \mathbf{S}^{1} \times \mathbf{S}^{2}$ and apply Proposition 3.1). These dualizable patterns satisfy the following.

Proposition 3.4 (e.g. [8, Proposition 5.3] and [10, Proposition 3.9]). Let K be a knot with a special annulus presentation $(A, b) . \quad$ Let P_{+}and P_{-}be the dualizable patterns as above. Then we have $P_{ \pm}(U)=K$ and $P_{ \pm}^{*}(U)=A^{ \pm 1}(K)$. Here, $P_{ \pm}^{*}\left(=\left(P_{ \pm}\right)^{*}\right)$ denotes the dual of $P_{ \pm}$for each sign.

Fig. 4. (color online) From a special annulus presentation (A, b) of a knot K to dualizable patterns P_{+}and P_{-}given by $K \subset \mathbf{S}^{3} \backslash v\left(\beta_{K}^{ \pm}\right)=V_{ \pm}$.

Remark 3.5. The homeomorphisms given in Figure 1 induce homeomorphisms

$$
\phi_{ \pm 1}:\left(M_{K}(0), \beta_{K}^{ \pm}\right) \rightarrow\left(M_{A^{ \pm 1}(K)}(0), \alpha_{A^{ \pm 1}(K)}\right),
$$

where $\alpha_{A^{ \pm 1}(K)} \subset \mathbf{S}^{3} \backslash v\left(A^{ \pm 1}(K)\right)$ is a meridian of $A^{ \pm 1}(K)$. Here we regard $\beta_{K}^{ \pm}$and $\alpha_{A^{ \pm 1}(K)}$ as curves in $M_{K}(0)$ and $M_{A^{ \pm 1}(K)}(0)$, respectively, under the identifications

$$
\begin{aligned}
\mathbf{S}^{3} \backslash v(K) & \cong M_{K}(0) \backslash v\left(L_{K}\right), \\
\mathbf{S}^{3} \backslash v\left(A^{ \pm 1}(K)\right) & \cong M_{A^{ \pm 1}(K)}(0) \backslash v\left(L_{A^{ \pm 1}(K)}\right),
\end{aligned}
$$

respectively, where L_{K} and $L_{A^{ \pm 1}(K)}$ are the corresponding surgery duals.

4. Operation $(* m)$ and dualizable pattern

By Theorems 2.3 and 3.2, for a knot K with a special annulus presentation (A, b), we have

$$
X_{\tau_{m}\left(P_{+}^{*}\right)(U)}(m) \cong X_{P_{+}(U)}(m)=X_{K}(m) \cong X_{T_{m}(A(K))}(m),
$$

where P_{+}is the dualizable pattern obtained from K as in Section 3.2. Hence, it is a natural question whether $\tau_{m}\left(P_{+}^{*}\right)(U)$ is isotopic to $T_{m}(A(K))$ or not. Proposition 3.4 implies that the answer is "yes" if $m=0$. The following theorem gives the affirmative answer to this question for any $m \in \mathbf{Z}$.

Theorem 4.1. Let K be a knot with a special annulus presentation (A, b). Let P_{+}be the dualizable pattern obtained from K as in Section 3.2. Then, we obtain $\tau_{m}\left(P_{+}^{*}\right)(U)=T_{m}(A(K))$ for any $m \in \mathbf{Z}$.

Miller and Piccirillo [8, Proposition 5.3] proved Theorem 4.1 for $m=0$. We can prove Theorem 4.1 by extending Miller and Piccirillo's proof as follows.

Proof. Let $L_{T_{m}(A(K))}^{(m)} \subset M_{T_{m}(A(K))}(m)$ be the surgery dual to $T_{m}(A(K))$. Let $\alpha_{T_{m}(A(K))} \subset \mathbf{S}^{3} \backslash v\left(T_{m}(A(K))\right)$ be a meridian of $T_{m}(A(K))$. Then, we can regard $\alpha_{T_{m}(A(K))}$ as a curve in $M_{T_{m}(A(K))}(m)$ by using the following identification

$$
\begin{equation*}
\mathbf{S}^{3} \backslash v\left(T_{m}(A(K))\right)=M_{T_{m}(A(K))}(m) \backslash v\left(L_{T_{m}(A(K))}^{(m)}\right) . \tag{1}
\end{equation*}
$$

Since $\alpha_{T_{m}(A(K))}$ is isotopic to $L_{T_{m}(A(K))}^{(m)}$ in $M_{T_{m}(A(K))}(m)$, we have

$$
\begin{equation*}
M_{T_{m}(A(K))}(m) \backslash v\left(L_{T_{m}(A(K))}^{(m)}\right) \cong M_{T_{m}(A(K))}(m) \backslash v\left(\alpha_{T_{m}(A(K))}\right) . \tag{2}
\end{equation*}
$$

Let $\beta_{K}^{+} \subset \mathbf{S}^{3} \backslash v(K)$ be the curve given in Section 3.2 (see also Figure 4). We can also regard β_{K}^{+}as a curve in $M_{K}(m)$ under the identification $\mathbf{S}^{3} \backslash v(K) \cong$ $M_{K}(m) \backslash v\left(L_{K}^{(m)}\right)$, where $L_{K}^{(m)}$ is the surgery dual to K. Then, we can check that $\psi_{m}\left(\beta_{K}^{+}\right)=\alpha_{T_{m}(A(K))}$, where $\psi_{m}: M_{K}(m) \rightarrow M_{T_{m}(A(K))}(m)$ is given in Figure 3. Hence, we obtain

$$
\begin{align*}
M_{T_{m}(A(K))}(m) \backslash v\left(\alpha_{T_{m}(A(K))}\right) & \cong M_{K}(m) \backslash v\left(\beta_{K}^{+}\right) \\
& \cong M_{K \cup \alpha_{K}}(0,-1 / m) \backslash v\left(\beta_{K}^{+}\right) \\
& \cong \mathbf{S}^{3} \backslash v\left(K \cup \alpha_{K} \cup \beta_{K}^{+}\right) \cup \bigsqcup_{i=0,1}\left(S_{i}^{1} \times D_{i}^{2}\right), \tag{3}
\end{align*}
$$

where the last (small) union is given by identifying ∂D_{0}^{2} with 0 -framing of K and ∂D_{1}^{2} with $-1 / m$-framing of α_{K}.

Recall that the solid torus V_{+}containing P_{+}is given by $V_{+}=\mathbf{S}^{3} \backslash v\left(\beta_{K}^{+}\right)$. Since, the 0 -framing of K is viewed as $\lambda_{P_{+}}$and α_{K} is viewed as $\mu_{P_{+}}$in V_{+}, we have

$$
\begin{align*}
& \mathbf{S}^{3} \backslash v\left(K \cup \alpha_{K} \cup \beta_{K}^{+}\right) \cup \bigsqcup_{i=0,1}\left(S_{i}^{1} \times D_{i}^{2}\right) \\
& \quad \cong\left(\left(V_{+} \backslash v\left(P_{+}\right)\right) \backslash v\left(\mu_{P_{+}}\right)\right) \cup \bigsqcup_{i=0,1}\left(S_{i}^{1} \times D_{i}^{2}\right), \tag{4}
\end{align*}
$$

where the last (small) union is given by identifying ∂D_{0}^{2} with $\lambda_{P_{+}}$and ∂D_{1}^{2} with $-1 / m$-framing of $\mu_{P_{+}}$. By the dualizability of P_{+}, we obtain

$$
\begin{align*}
& \left(\left(V_{+} \backslash v\left(P_{+}\right)\right) \backslash v\left(\mu_{P_{+}}\right)\right) \cup \bigsqcup_{i=0,1}\left(S_{i}^{1} \times D_{i}^{2}\right) \\
& \quad \cong\left(\left(V_{+}^{*} \backslash v\left(P_{+}^{*}\right)\right) \backslash v\left(\mu_{V_{+}^{*}}\right)\right) \cup \bigsqcup_{i=0,1}\left(S_{i}^{1} \times D_{i}^{2}\right) \\
& \quad \cong\left(V_{+}^{*} \backslash v\left(\tau_{m}\left(P_{+}^{*}\right)\right)\right) \cup\left(S_{0}^{1} \times D_{0}^{2}\right) \\
& \quad \cong \mathbf{S}^{3} \backslash v\left(\tau_{m}\left(P_{+}^{*}\right)(U)\right) \tag{5}
\end{align*}
$$

where the last union is given by identifying ∂D_{0}^{2} with $\lambda_{V_{+}^{*}}$. By (1)-(5) and the Knot Complement Theorem, we obtain $\tau_{m}\left(P_{+}^{*}\right)(U)=T_{m}(A(K))$.

Remark 4.2. Let K be a knot with a special annulus presentation (A, b). Let \bar{K} be the mirror image of K and (\bar{A}, \bar{b}) be the special annulus presentation of \bar{K} obtained from (A, b) by taking mirror image. Let $\gamma_{A^{-1}(K)} \subset$ $\mathbf{S}^{3} \backslash v\left(A^{-1}(K)\right)$ be the mirror image of $\gamma_{\bar{A}(\bar{K})} \subset \mathbf{S}^{3} \backslash v(\bar{A}(\bar{K}))$ (see also Figure 5). Denote the knot obtained from $A^{-1}(K)$ by twisting m times along $\gamma_{A^{-1}(K)}$ by $T_{m}\left(A^{-1}(K)\right)$. Then, by the similar discussion to Theorem 4.1, we see that $\tau_{m}\left(P_{-}^{*}\right)(U)=T_{m}\left(A^{-1}(K)\right)$ for any $m \in \mathbf{Z}$.

We see that $A(K) \subset \mathbf{S}^{3} \backslash v\left(\gamma_{A(K)}\right)=V_{+}^{\prime}$ also gives a dualizable pattern, where the parameter of $V_{+}^{\prime} \cong \mathbf{S}^{1} \times D^{2}$ is given by the standard way. Denote it by P_{+}^{\prime}. It is easy to see that $\tau_{m}\left(P_{+}^{\prime}\right)(U)=T_{m}(A(K))=\tau_{m}\left(P_{+}^{*}\right)(U)$ for any $m \in \mathbf{Z}$. So we can consider the question which asks whether P_{+}^{\prime} is equal to P_{+}^{*} as a pattern. We can give the affirmative answer to the question as follows.

Theorem 4.3. Let K be a knot with a special annulus presentation (A, b). Let $P_{+}^{\prime} \subset V_{+}^{\prime}$ be the dualizable pattern as above, and let $P_{+}^{*} \subset V_{+}^{*}$ be the dualizable pattern obtained from K as in Section 3.2. Then, for any $m \in \mathbf{Z}$, there is an orientation-preserving homeomorphism $h: V_{+}^{\prime} \rightarrow V_{+}^{*}$ such that

- $h\left(\tau_{m}\left(P_{+}^{\prime}\right)\right)=\tau_{m}\left(P_{+}^{*}\right)$, and
- $h\left(\lambda_{V_{+}^{\prime}}\right)=\lambda_{V_{+}^{*}}$ and $h\left(\mu_{V_{+}^{\prime}}\right)=\mu_{V_{+}^{*}}$.

Namely, $P_{+}^{\prime}=P_{+}^{*}$ as patterns.
Proof. By the definition of the operation $(* m)$, we see that

$$
\begin{align*}
& M_{T_{m}(A(K))}(m) \backslash v\left(\alpha_{T_{m}(A(K))}\right) \\
& \quad \cong M_{A(K) \cup \gamma_{A(K)}}(0,-1 / m) \backslash v\left(\alpha_{A(K)}\right) \\
& \quad \cong \mathbf{S}^{3} \backslash v\left(A(K) \cup \gamma_{A(K)} \cup \alpha_{A(K)}\right) \cup \bigsqcup_{i=0,1}\left(S_{i}^{1} \times D_{i}^{2}\right), \tag{6}
\end{align*}
$$

where the last (small) union is given by identifying ∂D_{0}^{2} with 0 -framing of $A(K)$ and ∂D_{1}^{2} with $-1 / m$-framing of $\gamma_{(A(K))}$. Since $\alpha_{A(K)}$ is isotopic to the surgery dual to $A(K)$, we have

$$
\begin{align*}
\mathbf{S}^{3} \backslash v & \left(A(K) \cup \gamma_{A(K)} \cup \alpha_{A(K)}\right) \cup \bigsqcup_{i=0,1}\left(S_{i}^{1} \times D_{i}^{2}\right) \\
& \cong \mathbf{S}^{3} \backslash v\left(A(K) \cup \gamma_{A(K)}\right) \cup\left(S_{1}^{1} \times D_{1}^{2}\right) \\
& =\left(V_{+}^{\prime} \backslash v\left(\tau_{m}\left(P_{+}^{\prime}\right)\right)\right) \cup\left(S_{2}^{1} \times D_{2}^{2}\right), \tag{7}
\end{align*}
$$

where the last union is given by identifying ∂D_{2}^{2} with $\lambda_{V_{+}^{\prime}}$. By considering the composition of (7), (6), (3), (4) and (5), we obtain an orientation-preserving homeomorphism

$$
\bar{h}:\left(V_{+}^{\prime} \backslash v\left(\tau_{m}\left(P_{+}^{\prime}\right)\right)\right) \cup\left(S_{2}^{1} \times D_{2}^{2}\right) \rightarrow\left(V_{+}^{*} \backslash v\left(\tau_{m}\left(P_{+}^{*}\right)\right)\right) \cup\left(S_{0}^{1} \times D_{0}^{2}\right)
$$

Then, we can check that

- $\bar{h}\left(\lambda_{\tau_{m}\left(P_{+}^{\prime}\right)}\right)=\lambda_{\tau_{m}\left(P_{+}^{*}\right)}$,
- $\bar{h}\left(\lambda_{V_{+}^{\prime}}\right)=\lambda_{V_{+}^{*}}$ and $\bar{h}\left(\mu_{V_{+}^{\prime}}\right)=\mu_{V_{+}^{*}}$, and
- $\bar{h}\left(S_{2}^{1^{+}} \times D_{2}^{2}\right)=S_{0}^{1} \times D_{0}^{2}$.

Hence, \bar{h} induces a desired homeomorphism.
Remark 4.4. Similarly, we can define P_{-}^{\prime} as $A^{-1}(K) \subset \mathbf{S}^{3} \backslash v\left(\gamma_{A^{-1}(K)}\right)=V_{-}^{\prime}$ (see also Remark 4.2). By the same discussion as the proof of Theorem 4.3, we see that there is an orientation-preserving homeomorphism $h: V_{-}^{\prime} \rightarrow V_{-}^{*}$ which satisfies $h\left(\tau_{m}\left(P_{-}^{\prime}\right)\right)=\tau_{m}\left(P_{-}^{*}\right), h\left(\lambda_{V_{-}^{\prime}}\right)=\lambda_{V_{-}^{*}}$ and $h\left(\mu_{V_{-}^{\prime}}\right)=\mu_{V_{-}^{*}}$.

Remark 4.5. We see that Theorem 4.3 induces Theorem 4.1 since $\tau_{m}\left(P_{+}^{*}\right)(U)=\tau_{m}\left(P_{+}^{\prime}\right)(U)$ by Theorem 4.3 and $\tau_{m}\left(P_{+}^{\prime}\right)(U)=T_{m}(A(K))$ by the definition of P_{+}^{\prime}.

By Theorem 4.3 and Remark 4.4, we can draw the duals $P_{ \pm}^{*}$ to $P_{ \pm}$as in Figure 5, where $P_{ \pm}$are the dualizable patterns obtained from a knot K with a special annulus presentation (A, b) as in Section 3.2.

5. Flipped annulus twist and operation $(* m)$ with $m= \pm 4$

In [11], Teragaito gave the first example of a Seifert fibered manifold which is represented by the same integral surgery on infinitely many hyperbolic knots. In the work, Teragaito used a presentation of 942 , which is almost the same as a special annulus presentation but does not satisfy the last condition: $A \cup b$ is an immersion of an orientable surface. In fact, in the examples, the surface is non-orientable, see (the final figure in) Figure 6. Teragaito explained that, for a knot with such a presentation, we obtain a family of knots admitting the

Fig. 5. (color online) The dualizable patterns $P_{ \pm} \subset V_{ \pm}=\mathbf{S}^{3} \backslash v\left(\beta_{K}^{ \pm}\right)$and $P_{ \pm}^{*} \subset V_{ \pm}^{*}=\mathbf{S}^{3} \backslash v\left(\gamma_{A^{ \pm 1}(K)}\right)$.
same 4 -surgery (not 0 -surgery) by annulus twists along (a shrunken annulus of) the annulus. It has been known that such knots have the same 4-trace (see [1, Theorem 2.8]).

In this section, we prove that the above phenomenon can be explained in terms of the operation $(* m)$ with $m=4$.
5.1. Flipped annulus twist. Let $A \subset \mathbf{S}^{3}$ be an embedded annulus with ordered boundary $\partial A=c_{1} \cup c_{2}$. We suppose that A is unknottend and $\operatorname{lk}\left(c_{1}, c_{2}\right)= \pm 1$, where we give c_{1} and c_{2} parallel orientations. Then, an n-fold fipped annulus twist along A is to apply $\left(-1 \mathrm{k}\left(c_{1}, c_{2}\right)+1 / n\right)$-surgery along c_{1} and $\left(-1 \mathrm{k}\left(c_{1}, c_{2}\right)-\right.$ $1 / n$)-surgery along c_{2} (compare with Section 2.1).

Let K be a knot with a special annulus presentation (A, b). Then, by $A_{f}^{n}(K)$, we denote the knot obtained from K by the n-fold flipped annulus twist along A^{\prime}, where A^{\prime} is a shrunken annulus given in Section 2.1. For simplicity, we also denote $A_{f}^{1}(K)$ by $A_{f}(K)$. We also see $A_{f}^{n}(K)$ as follows: After "flipping" c_{1} (or c_{2}) as in Figure 6, we find another annulus A_{f}. Then, by using [3, Lemma 7.15], we see that $A_{f}^{n}(K)$ is obtained from K by applying the n-fold annulus twist along A_{f}^{\prime}, where A_{f}^{\prime} is a shrunken annulus of A_{f}. Remark that $\left(A_{f}, b\right)$ is not an annulus presentation any more since $A_{f} \cup b$ is an immersion of a non-orientable surface.

Fig. 6. (color online) An annulus presentation of 9_{42} (left). After "flipping" c_{1}, we find a new annulus A_{f}.
5.2. Relation to the operation $(* m)$ with $m= \pm 4$. Teragaito [11, Proposition 2.1] proved that there is an orientation-preserving homeomorphism $M_{K}(r) \rightarrow$ $M_{A_{f}^{n}(K)}(r)$, where $r=-4 \operatorname{lk}\left(c_{1}, c_{2}\right) \in\{ \pm 4\}$. Denote this homeomorphism by

$$
\phi_{n}^{f}: M_{K}(r) \rightarrow M_{A_{f}^{n}(K)}(r) .
$$

For a sketch of the proof, see Figure 7. Then, we notice that

$$
\begin{equation*}
\phi_{ \pm 1}^{f}\left(\beta_{K}^{\mp}\right)=\alpha_{A_{f}^{ \pm 1}(K)}, \tag{8}
\end{equation*}
$$

Fig. 7. (color online). The homeomorphism $\phi_{n}^{f}: M_{K}(r) \rightarrow M_{A_{f}^{n}(K)}(r)$, where $\varepsilon \in\{ \pm 1\}$ and $r=-4 \varepsilon$. The box with ε represents ε-full-twist. For convenience, we draw an orientation of the knot (not c_{1} and c_{2}).
where $\alpha_{A_{f}^{ \pm 1}(K)}$ is a meridian of $A_{f}^{ \pm 1}(K)$ and we regard $\beta_{K}^{ \pm}$and $\alpha_{A_{f}^{ \pm 1}(K)}$ as curves in $M_{K}(r)$ and $M_{A_{f}^{n}(K)}(r)$, respectively (by using the same discussion in Remark 3.5). We have seen that $M_{T_{r}(A(K))}(r) \cong M_{K}(r) \cong M_{A_{f}^{-1}(K)}(r)$. Moreover, we can prove that

$$
\begin{equation*}
T_{r}\left(A^{\mp 1}(K)\right)=A_{f}^{ \pm 1}(K) \tag{9}
\end{equation*}
$$

In fact, by replacing ψ_{m} with $\phi_{ \pm 1}^{f}$ and β_{K}^{+}with β_{K}^{\mp} in the proof of Theorem 4.1, we see that $\mathbf{S}^{3} \backslash v\left(A_{f}^{ \pm 1}(K)\right) \cong \mathbf{S}^{3} \backslash v\left(\tau_{r}\left(P_{\mp}^{*}\right)(U)\right) \cong \mathbf{S}^{3} \backslash v\left(T_{r}\left(A^{\mp 1}(K)\right)\right)$. By the Knot Complement Theorem, we obtain Equation (9). As a consequence, we obtain the following.

Theorem 5.1. Let K be a knot with a special annulus presentation (A, b) with $\partial A=c_{1} \cup c_{2}$. Then we obtain

$$
T_{r}\left(A^{\mp 1}(K)\right)=A_{f}^{ \pm 1}(K),
$$

where $r=-4 \operatorname{lk}\left(c_{1}, c_{2}\right)$, and we give c_{1} and c_{2} parallel orientations.
Remark 5.2. In private communication, Tetsuya Abe commented that $T_{4}\left(A\left(9_{42}\right)\right)$ and $A_{f}^{-1}\left(9_{42}\right)$ may be equivalent because of computational calculations. Theorem 5.1 is inspired by the comment.

6. Discussions

6.1. Naturality. Let K be a knot with a special annulus presentation (A, b). Then, we obtain a dualizable pattern P_{+}as in Section 3.2. Put $\check{K}=A(K)$ and give the natural annulus presentation (\check{A}, \breve{b}) of \check{K} from (A, b). Then we obtain another dualizable pattern \check{P}_{-}from \check{K} as in Section 3.2. We see that these patterns satisfy $P_{+}(U)=K, P_{+}^{*}(U)=A(K), \check{P}_{-}(U)=A(K)$ and $\check{P}_{-}^{*}(U)=K$. More strongly, Theorem 4.3 and Figure 5 imply that $P_{+}=\check{P}_{-}^{*}$ and $P_{+}^{*}=\check{P}_{-}$.

Let $S A P$ be the set of special annulus presentations and $D P$ be the set of unoriented patterns which are dualizable after giving some orientation. Then, by the above discussion, we obtain the following commutative diagram:

where

- $A^{ \pm 1}: S A P \rightarrow S A P$ is the map induced by ± 1-fold annulus twist,
- $\pm: S A P \rightarrow D P$ is given by $(A, b) \mapsto P_{ \pm}$as in Section 3.2, and
- *: $D P \rightarrow D P$ is given by $P \mapsto P^{*}$.
6.2. Generalization. For more general setting, we obtain the following result by the proof of Theorem 4.1. Remark that, in Theorem 6.1 below, we regard curves β and $\alpha_{K_{2}}$ as curves in $M_{K_{1}}(m)$ and $M_{K_{2}}(m)$, respectively, under the identification $\mathbf{S}^{3} \backslash v\left(K_{i}\right)=M_{K_{i}}(m) \backslash v\left(L_{K_{i}}\right)$, where $L_{K_{i}}$ is the surgery dual.

Theorem 6.1. Let K_{1} and K_{2} be knots in \mathbf{S}^{3}. Let $\beta \subset \mathbf{S}^{3} \backslash v\left(K_{1}\right)$ be an unknot. Let $\alpha_{K_{2}} \subset \mathbf{S}^{3} \backslash v\left(K_{2}\right)$ be a meridian of K_{2}. Suppose that $P=$ $K_{1} \subset \mathbf{S}^{3} \backslash v(\beta)$ gives a dualizable pattern. Then, if there is an orientationpreserving homeomorphism $\phi: M_{K_{1}}(m) \rightarrow M_{K_{2}}(m)$ such that $\phi(\beta)=\alpha_{K_{2}}$, we have $\tau_{m}\left(P^{*}\right)(U)=K_{2}$. Moreover ϕ extends to a diffeomorphism $\Phi: X_{K_{1}}(m)$ $\rightarrow X_{K_{2}}(m)$.

The last claim follows from the same discussion as Theorem 3.2.
Question 6.2. Let $\phi: M_{K_{1}}(m) \rightarrow M_{K_{2}}(m)$ be an orientation-preserving homeomorphism. Then, when is there an unknot $\beta \subset \mathbf{S}^{3} \backslash v\left(K_{1}\right)$ which satisfies the condition of Theorem 6.1? Moreover, if exists, is such β unique up to isotopy in $\mathbf{S}^{3} \backslash v\left(K_{1}\right)$?

Acknowledgements

The author would like to thank Tetsuya Abe for helpful discussion. The author was supported by JSPS KAKENHI Grant number JP18K13416. The author thanks the referee for his/her careful reading and helpful comments.

References

[1] T. Abe, I. Jong, Y. Omae, and M. Takeuchi, Annulus twist and diffeomorphic 4-manifolds, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 2, 219-235. MR 3091516
[2] T. Abe, I. D. Jong, J. Luecke, and J. Osoinach, Infinitely many knots admitting the same integer surgery and a four-dimensional extension, Int. Math. Res. Not. IMRN (2015), no. 22, 11667-11693. MR 3456699
[3] T. Abe and K. Tagami, Knot with infinitely many non-characterizing slopes, to appear in Kodai. Math. J., arXiv:2003.07163.
[4] T. Abe and K. Tagami, Fibered knots with the same 0 -surgery and the slice-ribbon conjecture, Math. Res. Lett. 23 (2016), no. 2, 303-323. MR 3512887
[5] T. Abe and M. Tange, A construction of slice knots via annulus twists, Michigan Math. J. 65 (2016), no. 3, 573-597. MR 3542767
[6] K. Baker and K. Motegi, Noncharacterizing slopes for hyperbolic knots, Algebr. Geom. Topol. 18 (2018), no. 3, 1461-1480. MR 3784010
[7] R. E. Gompf and K. Miyazaki, Some well-disguised ribbon knots, Topology Appl. 64 (1995), no. 2, 117-131. MR 1340864
[8] A. N. Miller and L. Piccirillo, Knot traces and concordance, J. Topol. 11 (2018), no. 1, 201-220. MR 3784230
[9] J. Osoinach, Manifolds obtained by surgery on an infinite number of knots in S^{3}, Topology 45 (2006), no. 4, 725-733. MR 2236375
[10] K. Tagami, On annulus presentations, dualizable patterns and RGB-diagrams, arXiv:2010.13283.
[11] M. Teragaito, A Seifert fibered manifold with infinitely many knot-surgery descriptions, Int. Math. Res. Not. IMRN (2007), no. 9, Art. ID rnm 028, 16. MR 2347296

Keiji Tagami
Department of Fisheries Distribution and Management
National Fisheries University
Shimonoseki, Yamaguchi 759-6595 Japan
E-mail: tagami@fish-u.ac.jp

[^0]: 2020 Mathematics Subject Classification. 57K10.
 Key words and phrases. knot, m-trace, annulus presentation, annulus twist, dualizable pattern.
 ${ }^{1}$ In [2, Section 3.1.2], a notation $(* n)$ is used instead of $(* m)$.

