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ABSTRACT. In this paper, we investigate the Dirichlet type 3 distribution. First, some
main properties are elaborated and illustrated. Next, we set forward a representation
which allows to compute many functionals in a closed form, making the Dirichlet type
3 distribution an exactly soluble model. Furthermore, we consider the Gibbs version
of the Dirichlet type 3 distribution including selection. By using the representation
mentioned above, we obtain the moment function of the geometrical average of the
random variables according to the new distribution; special types of Bell polynomials
are shown to be involved. Finally, we provide a concrete example to illustrate the
performance of the Dirichlet type 3 distribution.

1. Introduction

The Dirichlet type 1 distribution or simply the Dirichlet distribution is a
basic multivariate continuous distribution in probability and statistics. It arises
naturally in a large variety of disciplines such as biology, physics, data sciences,
etc. Owing to its easiness of interpretation and interesting mathematical
properties, the Dirichlet distribution has been popular and widely studied.
The Dirichlet type 3 distribution is becoming an area of interest for research,
but has not received the same attention over the popularity of the Dirichlet
distribution.

Furthermore, in multiple disciplines, data consist of parts of a whole (i.e.
vectors of proportions) and thus are subject to constant-sum and non-negative
constraints. These datasets called compositional datasets are widespread in
economics, medicine, geology, psychology and environmetrics in particular.
Among the most well-known simplex distributions, we mention the Dirichlet.
Despite its numerous mathematical and statistical properties, it is unsuitable
for modelling most compositional data because of the poor dependence struc-
ture it implies. Indeed, in many respects, it can be considered as the standard
reference for modelling the strongest independence relations compatible with
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compositional data (see for example [1], [19] and [21]). Since the Dirichlet
type 3 distribution has the same simplex of the Dirichlet distribution, it
may have the same application interest and will be used to model composi-
tional data. Next, the Dirichlet distribution is commonly used as prior
distribution in Bayesian statistics, and is in fact the conjugate prior of the
multinomial distribution. Similarly, we shall demonstrate in the next section
that the Dirichlet type 3 distribution is the conjugate prior of the multinomial
distribution.

In this work, we are basically interested in the Dirichlet type 3 distribu-
tion (see [2], [9] and [10]) with positive parameters 0, := (0y,...,0,) and 0,1,
which is a multivariate generalization of the beta type 3 distribution. In the
following, we consider that the random vector S, := (S,...,S,) is distributed
according to Dirichlet type 3 distribution, denoted by D?(6,;0,1).

This paper is organized as follows: in Section 2, we display some main
properties of the Dirichlet type 3 distribution; in particular, we find the residual
allocation model (RAM) of D?}(0,;0,.1) (in Theorem 1) similar to the one
given by Devroye [4] for the Dirichlet distribution. Next, we prove the
stability under scaling property of Dirichlet type 3 distribution and we deter-
mine the scaling property of Dirichlet distribution from the Dirichlet type
3 distribution. Furthermore, we derive a formula which allows to compute
many functionals in a closed form (Theorem 3), making D;(0,;0,.1) an exactly
solvable distribution. To illustrate this formula, we exhibit some of its
applications and we determine the characteristic function of the Dirichlet
type 3 distribution which appears to be new. We also emphasize that a
similar formula for many functionals of the Dirichlet distribution is given in the
real case (see [12]) and in the matrix case (see [6]). In Section 3, the Gibbs
version of the Dirichlet type 3 distribution including selection is subsequently
examined in further details. We highlight the following main points: In
Theorem 4, we compute the partition function of this Gibbs measure. Using
this along with the representation of many spacings functionals of Dirichlet
type 3 distribution in terms of simpler functionals of independent gamma
random variables, we are able to provide in Theorem 5 the geometrical average
of the new vector S, , := (Sis,...,5,6). Special types of Bell polynomials
are shown to be involved. In the last section, an analysis of real dataset
using different measures is presented to illustrate the use of Dirichlet type 3
distribution.

Because of their frequent uses, we recall the definitions of the gamma, the
beta type 1 and the beta type 3 distributions:

e If X is a random variable distributed according to the gamma distri-
bution, with shape parameter 6 > 0 and scale parameter 1 (say X 4 79), then
its density function is given by fy(x) = (I (6))_le‘xx9‘1, x > 0 and its moment
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function is E[X 9] = I"(0 + q)/I'(0) =: (0),, ¢ > —0 where I'(-) denotes the Euler
gamma function.

e If a random variable 4 has the beta type 1 distribution with parameters
o,f >0 (say 4 £ ﬂl(oc,ﬁ)), then its density function is

I'(a+p)
I'(e)I(B)
so that its moment function is E[47] = (a), /(o + f),

e If a random variable B has the beta type 3 distribution with parameters
o,f >0 (say B < ﬁ3(oc,/3)), then its density function is
RACET))
I()I'(p)

so that its moment function is

X1 = x)P 0<x<l,

Sa(x) =

fa(x) =2 A=) 14+ 0<x <,

E[BY _2_/}(“)7 F . 1
[ ]_(a+ﬂ)q2 1(ﬁ7“+ﬁ7a+ﬁ+qa§>a

where ,F; is the Gauss hypergeometric function given as

2Fi(a,b;c;z) = Z (a);(b); 2/

Jj=0 (C)j 7

The integral representation of the Gauss hypergeometric function is expressed
as ([15, Eq. 3.6(1))),

¢ ! :
2Fi(a,b;c;z) = F(a)rf((c)—a)L P I R R e 8 (1)

where Re(c) > Re(a) > 0, |arg(l —z)| < 7.

2. Definition and main properties of the Dirichlet type 3 distribution

2.1. The Dirichlet type 3 distribution. Let Xi,..., X, ; be n+ 1 independent

random variables with respective gamma distributions yy,,...,7,, ,, and define
S — ( Xl Xn )
" 22:1 A/m + 2X1+1 T Z,lel Xm + 2Xn+1 )

Then, it is known that (see [2]) S, := (S1,...,Sy) is distributed according to the
Dirichlet type 3 distribution D,f(ﬂn;ﬁ,,ﬂ) with parameters 6, and 0,,; on

n
An:{0<sm< 1,m:1,...,n,Zs,,,< 1},
m=1
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that is,

S, < u(ds,) = fs,..s,(51,- .-, Hdsm
Here, fs,,. s,(s1,...,5,) is the joint density function written as
S0 8, (815 Sn) 22251710”7“2;“16 )

Hn+1 F( m)

\ R S als
X (H sﬁn—l) (1 - ZS’”> (1 + Zsm> . (2
m=1 m=1 m=

Alternatively, it is easy to show that the law of S, := (Sj,...,S,) can be
characterized by its joint moment function (g, > —0,,, m=1,...,n)

lH Sqm} 20 L (0,
m (ZZfll On )Z:z:lq”"

n+1
1
X 2 F < n+lazomaz +Qn1)+0n+1;§>- (3)

m= m=1

We write S, 4 Dﬁ(ﬂn;ﬂnﬂ) if S, has the Dirichlet type 3 distribution with
parameters 6, and 0, as stated above. For more details of the Dirichlet type
3 distribution, consult for example [2] and [10].

In Bayesian probability theory, if the posterior distribution is in the same
probability distribution family as the prior probability distribution, the prior
and posterior are then called conjugate distributions, and the prior is called a
conjugate prior for the likelihood function. In our case if

X1+ +x,+k
. n’k sy Sy pr—y .. m b
(X1, X, kst Sn) ( Xlyenoy Xny ko )s < Zs)

and

n+1 n
D(Sty.ooy8y) = C<91, . .,0,,,0n+1,29m> (H S&J)
m=1

m=1

" Os1—1 p = O
X (1 — ZS”’> (1 + Zsm>
m=1 m=1
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- 220 ‘H"IF(Z"H Om) <H a,,,_1>

Hn+1 I—v(
On 1 0 31O
( z) (1 +zsm) ,
m m=1
where 0 <s, <1, m=1,...,n, >, s, <1, and
n+1
. Hl F( m) n+1
- m=
[C(0r, ..., 0n, Ops1, )] :W <20m,0< mzoma >7

then,

POty .oy Sulxt, ooy X0, k)

n+1
= C<81 + X1,y O 4 X, Opst +k729m>
m=1

n+l
" " Onir+h—1 " =Y Om
Om+xm—1
X Hsm ¥ l—g Sm l—|—E S .
m=1 m=1 m=1

Thus, the Dirichlet type 3 distribution is conjugate prior for the multinomial
distribution (see [17] for a more general case, when dealing with the multi-
variate Gauss hypergeometric distribution).

It follows from Eq. (2) that §:=3"_,S,, £ B Oy Oni1) (see [2]).
Note that the marginal distribution of S, is not a beta type 3 distribution and
it is easy to notice that its density function is written as (with 0 < s, < 1)
270n+11—v(zn+1 0 )

m=1

ro)r " e, —o, )

m=1

n+l n+l
X2F1<n+1720ma201 )

m

n+l _ _
S5, (sm) = (1 = ) 2o !

Moreover, Eq. (3) allows to obtain some statistical insight into the geomet-
rical average of the variables S,; m=1,...,n. Indeed, putting ¢, = q/n;
m=1,...,n, the moment function (¢/n > —0,, m=1,...,n) of [[,_, SH™ s
expressed by

n y 4 2~ Ous1 H;’l l( )q/n ntl ntl
E (H Sm ) ] = (ZVH»] 0 ) < ’l+1720’”720’n +q’ >
m=1

m=1
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Departing from this, we infer a result concerning the geometrical average
of the S,; m=1,....n

LEmMMaA 1. Suppose that S, 4 Dg(ﬂn;QnH) and that Y, := (Y1,...,Y,) isa
random vector distributed according to Dirichlet distribution, denoted by D,(0,).
Let S:=5 ) _| Sm 4 53(2,7, 1 Om, 0n1) be a random variable independent of
Hm 1 Y"l/n' Then’

Ilyﬂglﬁyymg
m= m=1

Proor. Firstly, suppose that Y, := (Y7,..., Y,) is distributed according to
Dirichlet distribution D,(8,), with 8, := (6,,...,0,). Then, its joint moment
function is given by

[1=1(Om),,
Zm 10 )Z:leqm

[ H Y

Putting ¢, = q/n; m=1,...,n, we have

1) (0,
1/n _ilm q/
KHY )1 (i On)y

! 2” H”“(Z 1 Om)
Sl/n m= q
<H ) ] (Zn+l (9 )

m=1

Then,

n+1 n+1 n q
X2F1< n+1729nﬁz€m+q, ) l(H Yn]/n>‘|
m=1

Next, the moment function of S 4 [)’3(22’1:1 O, 0,41) is given by

. 2= OIIH(Zm 10171 n+1 n+1
BISY =2 et 2 O D O raiy)
m=1

Departing from this, we obtain
" q
=E &W)L

n q
Yl/n
(1)

and we are done. Ol

E
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2.2. The RAM structure of the Dirichlet type 3 distribution. The objective of
this section is to present a fundamental property of the Dirichlet type 3 distri-
bution S, 4 D;(ﬂn;ﬁnﬂ). The idea is to give the residual allocation model
(RAM) representation of a random vector which can be defined as follows in
a general setting (see [20]):

DEFINITION 1. A random vector (W1,..., W,) with values on (0,1)" such
that 32" | W,, = W has a RAM representation if and only if there exist n — 1
independent (0, 1)-valued random variables By, ..., B, 1 mutually independent
with W, such that W, = W - B; and

Such a model is also called a stick-breaking model and is used in non-
parametric Bayesian statistics (see for instance [13]).

Concerning this, we have the following result:

THEOREM 1. Let Ay,...,A,—1 be (n—1) independent random variables
with distribution Ay < B*(Op, S50 0, — S0 0), m=1,....n—1. Let By :=
24,,/(1 4+ A4,,);, m=1,...,n—1, and sS4 ﬁ3(z,';:1 O, 0ni1) be a random vari-
able independent of (By,...,B,_1). With Hg;l(l — By) :=1, define

Sw:=S8-B, [[0-By), m=1,....n—1, (4)

Then, Sy < D3(0,;0,11).

Proor. First, using the independence property,

o[l

m=1

n—1
[T EBE (1 — By X9y | E[SZo160],
m=1

Additionally, it is easy to infer that if A, < (0, 30,0, — 2", 0,), m =
1,...,n, then B, iﬁl(()m,z;;l Or—> 2,01, m=1,....n (see for instance
[2]). From this, we can check that
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-1
( m)q“ (Zl 10/ Zlnil 01)
(Zl:l 0 — Zﬁl )

Qo 0 =325 00+ 3 @)
F(Zlnzl 6] - m 161 + Zl m q/)

On the other side, the moment function of S reads

E(B;’[/lm(l _ Bm)z;;mﬂq/) —

E[§Te ] = 2 TS0 O (s (O + )
F(El’;:] Hm)r(zg'/:l (0m + qm) + 0n+1)

n+1
1
ST U 378 SURPRET AR |
=1

Therefore, we obtain

m| F(Z;:I(Om + Qm))

o 2*0%1]“(2:1“1 0.)I" (ZZ::I(QM +4m))
F(Z;:l Hm)r(zmzl(em + Qm) + 0n+1)

n+1
1
X 2F1< n+1720maz O +Qm) +0n+1;§>~

m= m=1

E qu,,,] L(Eet On) T (0,

This confirms that S, 4 D3(0,;0,11). O

REMARK 1. The variables S - (1 — By) can be interpreted as residual frac-
tions in a stick-breaking scheme: start with a stick of length S < 1. Choose a
point on the stick according to distribution ByS, ‘break’ the stick into two pieces,
discard the piece of length B\S and rescale the remaining half to have length
S.  Repeating this procedure m times, and (4) is the fraction broken off at step m
relative to the original stick length. Note also that this formula is similar to the
RAM structure obtained for the Dirichlet distribution and appears as an exercise
(without proof) in the book of Devroye [4] on page 585.

2.3. The gamma distribution, Dirichlet type 3 distribution and Dirichlet distri-
bution. In this section, our central focus is upon the scaling property of the
Dirichlet type 3 distribution along with the one of the Dirichlet distribution.

2.3.1. Scaling property of the Dirichlet type 3 distribution. Let Xi,..., X,
be n+1 independent gamma random variables with respective gamma
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distributions y,,...,7, . For x>0, we define
X X,
S, (x) = ( ] 1(x) N o (X) >,
Zmzl A/m + 2A/,1+1 Zm:l A/m + 2Xn+l
where X, (x) =xX,,;; m=1,...,n. In this case, the distribution of S,(x):=

(Sm(x);m=1,...,n) is expressed by (with 0 < >0 | s, < X)

N n+1
2510 r( ) em)
m=1 <H S@,”1>

IS0, 50(0) (ST, -+ -5 80) = o

x V] I'(6w)
m=1
Oni1—1 _Z:;ll Om
X <X — Zsm> (X + Zsm> . (5)

m=

n

Let X :=>""! X,, be the sum of (n+1) independent and identically

m=1
distributed gamma random variables y; .

ProposiTION 1. (i) Let

S (1)-—( X X, )
! o ZZ:1Xm+2Xn+17“"22,:11\’,7,—#2)("“ '

Then, S,(1) and X are independent, and it holds that S,(1) 4 D3(0,;0,11).
(i) The scaling property is given by xS, £ Su(x), m=1,...,n.

Proor. (i) Using the independence of X,,, the joint density function of
X1,..., X1 1s expressed by
St
‘ X, (6)

155 T On) s ™

Making the transformation s, = x,,/(X,s1 +X); m=1,...,n, with X=
S x,, and the Jacobian

(2x)"
(1 + 221:1 Sm)n+l ’

in Eq. (6), the joint density function of Si,...,S,,X is given by

n
e_ff)”CZ:::ll(} m X 50’"
n+l I—v m

H ( m m=1

n 971+1 -1 n 72:;11 Hm
X (1 — Zsm> (1 + ZS’”> .
m=1 m=1

J(X],...,X,,_H —>S1,...,S,,,)~C) =
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Consequently,

S,(1) =( X X, )
! an:l Xm + 2A/I’I-H ’ ’ Z:lnzl Xm + 2Xn+]

and X are independent. The first statement follows.
(i) It follows that

xS,,,ixSm(l) = Sim(x); m=1,...,n O

2.3.2. Scaling property of Dirichlet distribution from the Dirichlet type 3
distribution. 1In this section, we address the following question raised in the
previous section: what is the scaling property of the Dirichlet distribution using
the Dirichlet type 3 distribution? Note that we can find the same result if we
use the gamma distribution.

It is known that the Dirichlet distribution Y, := (Yy,...,Y,) 4 D,(0,),
can be generated by Y, = X,,/%, where 4 := 3 | X,, is the sum of n inde-
pendent gamma (6,,) distributed random variables. From this, its joint density
function is written as

1 m
Sy vV, v0) = H gt o) O) Hym'" O ym=1)

m=

We will define Y, 4 D,(0,) on £, and Y, 4 D,_1(6,-1;6,) on A, | where

En—{(yl;-“ayn Zym—l}

m

n—1
Ay = {(yl,...,ynl) e(0,1)"": Zym < 1}.
m=1

It should be noticed that if Yy = (¥}, Y1) L Dy 1(0,_1:0,) and Y, =
1—3"L Y, then Y, = (Y1,...,Y,) < D,(6,).

More generally, we consider Y,(x):= (X1(x)/%,...,X,(x)/Z), where
Xu(x) =xX; m=1,...,n and x>0. Then, the distribution of Y,(x):=
(Yu(x); m=1,...,n) is found to be

(3t Om) Ty ™!
A N S | (I S s v R RS R

m=1

Furthermore, we obtain the following result:

ProrosiTION 2. (i) With S‘:ZZ:I S, let S, iD,f(l%’,l;O,,Jrl) be the
Dirichlet type 3 distribution. Consider the Dirichlet distribution Y, £
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D, 1(0,-1;0,). Then, it can also be defined conditionally as
S Su1 | =
Yn1_<1,...,"—~1’S:s>, 0<s<l.
S S
(i) The scaling property of the Dirichlet distribution is given by
xY, 4 Yulx), m=1,....n—1.

Proor. (i) Recall that the Dirichlet distribution Y,_; 4 D,_1(0,-1;0,) is
defined by

fY],“.,Ynfl (yl, ) ynfl)

0,—1
F (3 =1 0m) 1 01 n—1
” ymm 1 - Ym R ’ .
Hm lr (H ’; Qo ym<l)

Additionally, making the transformation s, = y,-§ m=1,...,n—1 with
§=73,_15m and the Jacobian

S n—1
J(S1y ey Sn = Viyeooy Yn1,8) =8§

in Eq. (2), the joint density function of Yi,..., Yn_l,S is expressed by

" +1
22"7 'OMF(Z:; 1 Hm) SZ”’ 10”171(1 . S)6n+171(1 +S)7Z:;119m

H):l1+11 r(e )

n—1 0,—1
On—1
<H Ym ) <1 - Z:l ym> 5(2:1 ll}m<1>

Therefore, Y,_1 = (5] /S' .,S,_1/S) and S are 1ndependent Consequently,

the density of (S,/S,...,S,_ I/S) conditioned to S =s is written as
- n—1
=S 1 I‘” Om—
fsl/é,...,s,l,,/s*(slv-~-»Sn—l)— e o 1L s
m 1

0,—1
(1 - ZS’”) Ogrt e,y

m

and so we conclude that

Yn 1_<S1"”’Sn~1
S
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(i) For x> 0, we define

T8

Y, (x) = (x—Sl XS“).
In this case, the distribution of Y,_i(x):= (Yu(x);m=1,...,n—1) is given

by
le(x),..., Y,,,l(x)(yla SRR ynfl)

n n—1 — n—1 0,—1
— F(Zm:l 0’77) . Hm:l y1(1)1m 1()6 — Zm:l ,Vm) .S .
[1:_, T(0,) S o Im<x)”

m=1

One can check that

S S ~
(x~1 ,...,x o] xS:xs> éYn,l(x).
S
Thus, we obtain the scaling property xY,, 4 Yu(x), m=1,...,n— 1. O

24. A constructive formula for computing with Dirichlet type 3. The core
result of this paper is displayed in this section. Our main objective is to
elaborate a formula which allows to compute many functionals of Dirichlet
type 3 distributions in terms of simpler functionals of independent gamma
random variables. At this stage of analysis, we need the following definition:

DeriNITION 2. Let s, := (s1,...,8,) € R" and f:R" —» R. If f(xs,) =
xf(s,) for x >0, then f is said to be homogeneous of degree d.

In addition, the following result which allows to compute many functionals
of Dirichlet distributions in terms of simpler functionals of independent gamma
random variables should be required (see [12]).

THEOREM 2. Consider the Dirichlet distribution Y, 4 D,(0,). Let
f:R" = IR be any Borel-measurable function for which

|| BTt te < oo
0
Then, with X,(y) = (Xn(y);m=1,...,n

=( , n independent random variables
defined by X,u(y) = (1/y)Xpm, y>0, m=

d
..y, where X, ~ y, , we have

)s
1,.

1

0

rfUWAmvﬂﬂHf”w=F< m)rﬂ@mummm»<&

m=1

Consequently, one has
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THEOREM 3. Consider the Dirichlet type 3 distribution S, 4 D3(0,;0,11).
(1) With 0 <s <1, let X,(y/(1=3)) = (Xn(y/(1=8);m=1,...,n), be n in-
dependent random variables defined as above in Theorem 2. Then, for p >0
and a Borel-measurable function f :R" — R satisfying

[

X s9"+"1(1 - s)z'jlzlﬁ’”_1 (1 - 2> ds < o0,

one has

270 (3 On)
pL i (6,1)

o [ (x(2)

n+1
m=1 Om

, -2
x s (1 = g) Zom O (1 - %) dsdy, ©)

E(/(Sx(p)))

where L denotes any path in the complex t-plane originating at — oo encircling in
the positive direction all finite singularities of the integrand and returning to —co.

(i) If f is homogeneous of degree d, and if E(|f(X,)|) < oo, then, with
X, = (X,..., X),

2_er+1

n+1 n+l 1
E(fS) = ———F | 01, S 0> 0 +di= |E(F(X,). (10
(/(Sw) S 1( 1}; n; + 2) (f(Xn)). (10)

Proor. (i) Firstly, using the scaling property pS,, 4 m(p), m=1,...,n,
one can check that S,(p) = (Si(p), ..., Su(p)) given pS:= 3| Su(p) = x has
the same distribution as Y,(x). Indeed, the density of S,(p) conditioned to
pS = x is expressed as

pS':x _ fpS A (Sla cee 7Sn)
fsl(ﬂ)w-,sn(l’) (Sh T ,Sn) - | fS(x) ' 5(231—151112)‘)' (1 1)
p

It is easy to see that the density of pS is given by

. 2Ll (S g,
fpS‘ (x) _ - (mel )P
T3 =1 On) T (Oni1)

n+1

X xz:’:leomfl(p _ x)gwr]*l(p +x)72m:19’"’ 0 <x< D
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Along with Eq. (2), we deduce that Eq. (11) can be written as

5 LS 00) TTy st
pS=x _ m=1"m m=1"m . .
fSl(p)’MS”(p) (Sl, Y sn) B H:rlzzl F(Hm) Xzfnzlﬁm—l 5<2m:|3m:)0’

which coincides with Eq. (7). Therefore, we obtain Y, (x) £ (Su(p)| pS = x)
for 0 < x < p.
Hence, with f as in the statement of Theorem 3, we find

E(f(Ya(x))) = E(f(Sa(p) | pS = x)).

Multiplying both sides of this identity by the density of pS and integrating with
respect to dx yield

_ 22 (55 O)p

E(f (S, 7 =
) = ST 0, G
» (P . x) On1—1 (p + X) 72:1111]10'7’
X E Y, (x " dx.
J, B o =P
After the change of variable x = pu, we get
X0 (3 )
E s, _ ; m=1Ym
(f( ([7))) F(Zm:l 0,11)F(9n+1)
1 . 1—u Oni1—1 1 +u _Z:’:;lle’”
X J E(f(Yn(P”)))( ) 7(2”( 0 71)) du.
0 u m=1"m

Multiplying both sides of this identity by pZ,’;:le—le—py and integrating them
with respect to dp yield

B ) 2800 (S )
E(f(Su(p))) pLo10n=te=?? dp = z =T
JO ( ( ( ))) F(Zm:l 0111)F(6"+1)
1 n+
XJ uzn’qzl()mfl(l _u)l‘),mfl(l _’_u)*zmzlﬁm
0

8 J " E(S (Y, (pu)) pEes e dpd. (12)
0

Furthermore, from Theorem 2 and after a change of variable x = up, Eq. (8)
becomes

| Bt ap

()=o)
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Substituting this identity into Eq. (12) gives

Jo E(f(sn(p)))pz’;:lewle*ﬂy dp

2T (T )y T
F(0n+l)

1 n+l1
X J E(f <Xn (%) ) ) uz:x:19’11,1 (1 — 1/[) Opi1—1 (1 + u) —Zm:l(?,”du.
0

Making the change of variable s =1 —ue (0,1), we obtain

[ B pmoter ap

= Z_HHHF(Z;ill Hm)y_z”; 1O
F(9n+1)

‘ y 011 $1 et 4 Sy 2
< E(r(x(i25)) )ta -t (1-5) T s

It is clear that [" E(f(S.(p))) pLu-iPn=1e=P¥ dp is the Laplace transform in the
variable p of E(f(S.(p))) pZuafa=1 By inverting this Laplace transform, the
result follows.

(ii) Recall that S, (p) 4 pSm and X, (y/(1 —5)) = ((1 —s)/y)Xsu. Using
the fact that f is homogeneous of degree d, Eq. (9) becomes

- 1
X»)) 270 (s O LJ Py~ (Lo Ontd)
F(9n+1)pd+zmzl()m*1 2mi ),

E(f(Sw) = E(/(

1 n Ky _Z;‘;IIH’"
X J 1] — s)‘”zmzl bm=1 (1 - > dsdy.
0 2
Finally, using Eq. (1) and the fact that
1 B pkfl
— | eyvk gy = 1
zniLe yhdy R (13)
we get the desired result. O

There are some direct applications of Theorem 3.

1. The importance of the statement (i) of Theorem 3 can be detected
when used to compute the characteristic function of the Dirichlet type 3 distri-
bution which is an important statistical quantity that was not given until today
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unlike the one given for the Dirichlet distribution and for the Dirichlet inverse
distribution (or Dirichlet type 2 distribution).

Let f(S1,...,S,) = [1\_, e™Sn = eZnawSn. Then, E(f(S,...,S,)) is the
characteristic function of the Dirichlet type 3 distribution. Using the indepen-

dence of X, (y); m=1,...,n, we obtain
E(ﬁ eith,y,(y/(ls))> _ f[ E(eit,,,((lfs)/y)Xm) _ f[ (1 it (1 — S))_9m
=1 =l =l y

Applying the statement (i) of Theorem 3, we observe that

! - Y Oper—1 S O—1 s\ ZnciOm
[ B(r(0(5)) ot o=t (1) 7 e

is equal to

1 n —Om _Znil Om
1 - n m=1
J I | <1 - itm( S)> st (1 - s)z’”:‘e”’*l (1 —s> ds
y 2

0 =1

Sy ()
k120, ky =0 m=1 Kom! y

1 N 72::;1]0”1
% J sO=1(] — S)Zm 1 Ot ) =1 (1 _ f) ds
0

-y ( (O, (r_)’) L(00) T (i (O + Kin)
>0, ky >0 \m=I ke y F(Z:::l Om + D et Km)

m=1

n+1 n+1 n 1
XZFI 9n+1a20m;zgm+ km;i .
m=1 m=1
Therefore,

E( @ PYttmSm )

B 2—9,171 n (Hm)km ” . F(Z;’I:I(@m + km))
Y -1 Z H ko1 (itm) il g
pem k1 >0,....k, >0 m: (E

m=1 m=1 m)z:x:lkm

m=1

n+1 n+1 n
1 1 "
X 2F1 <6n+1 ) Z 0111; Z em + Z km; 2) : TMJ epyyiz"‘zlwmij"’) dy
m=1 m=1 L

Using Eq. (13) and putting p =1, the above expression can be rewritten
as
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o Vem
E(eiZ::1:1’rnSnz) — 2797&1 Z . (gm)km (lt )
- 1
k1 >0,....k, >0m=1 km! (Z;’jl 0 )Zm K

n+l n+1
X 2Fl < n+1720m729m + anu )

m=

2. From part (ii) of Theorem 3, any homogeneous functional of Dirichlet
type 3 distribution can be directly computed from the simpler one of inde-
pendent gamma variables, each with parameter 0,, leading to considerable
simplification.

* Considering the function f(Si,...,S,) = [I,.—; S%, we obtain that f is
homogeneous of degree d =) _ gn. Application of (ii) to this functional
provides Eq. (3).

* If we consider the function f(Si,...,Sy) = (O_,—; Sm)?, we observe that
f is homogeneous of degree d = ¢. Applying part (ii) of Theorem 3 to this
particular case provides

q 2= Onst (Zm 0 ) n+1 n+1
o)) el )

m

demonstrating that 3" | S, < B (32", O, Ons1).-
e Consider the random variables

S = Sy, /ZS;, m=1,....k <n.

They constitute a partition of the unit interval. This is the Dirichlet distribu-
tion and

(S'm;m: 1,,]{) i Dk<01,...,9k, Z Hm>,

m=k+1
(Sm;m =1,...,k) and ZSm are independent.
m=1

To prove this, we observe that f(Sy,...,S,) == (30, S,)® [1%_, S is homo-
geneous with degree ¢y, resulting in

E(f(Sla7Sn)) :ni Ons1, Hma Hm-i-%, )
(S O,

m=1 m=

(e ]

m=
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2 Ony1 0, n+1 n+1
_ (et )qo (HhZHWZG +qo,2>

+1
(2171:1 em)qo m

1 On),,
(1 Oyt g,

because X, := X, IDIED. (3 Xm 4 9, M=1,...,k are independent of
ZZ:I Xm and (va;m = 1, RPN ,k) Dk(01, .. Ok, Zm —k+1 0,").

* The distribution of the partition functlon Son_ | SE is sometimes of
interest. In particular, its mean value E(}])_; Sy), as well as its full moment
function E((>)_,S%)”) with A€ N, is worth being considered. For general
partitions, these quantities are hardly computable. Nevertheless, when con-
sidering the Dirichlet type 3 distribution, significant simplifications are expected

since the spacing functional

n A
f(S1,....8,) = (Z&:;) :
m=1

which corresponds to quasi-arithmetic or Kolmogorov—Nagumo mean for
o= 1/4, is homogeneous of degree d = a4 and so,

o (3

2*0n+1 n+1 n+1 n 4
= g2 O 2 O D O HM > X
(Zm lgm) m= —
Since
" )
o A
o(Sx) ) © (T
m=1 Mooy 2y =0 ml
Z )m*)
we have

n * 2~ Ons1 n+1 n+1
E <2S51> :m < n+1720m720m+05)72>

m=1

n

Z Hm 1 m H(HM)M”T. (14)

Myeres =0

no
Y=
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3. The Gibbs version of the Dirichlet type 3 distribution including selection

In this section, we shall consider that S, = (Sy,...,S,) is distributed
according to the Dirichlet type 3 distribution in the symmetric case (i.e.,

when 6, =--- =6, =0,;1 =6) on the simplex 4,, that is to say,
2707 ((n + 1)0) o\
d n
S, ~ u(ds) =———————=1|1- Sm
Hs) = gy ( ;;>

m=1

" —(n+1)0
X (1 + Zsm> . H(sf:,_l ds).
m=1

Let 0 e R be a “selection” parameter. For o > 1, consider the Dirichlet
type 3 distribution for S, ; := (Si,4,...,Sn) on the simplex A, with selection,
namely,

e_o'¢z(sn)

7.0 (

Sn,rr i ﬂg(dsn) = dsn)7 (15)

where ¢,(s,) :=> " _;s* and

m=1"m

Zn(6) i= E(e ")) = L e " lmnp(ds,),  with Z,(0) =1

is the partition function of the Gibbs measure y, with y; = u. Moreover, for
all non negative measurable function / on the simplex A,, one can check that

B (180) = | Hsn,(ds) = E(e SIS, ),

Ay n 0')

The function ¢,(s,) := >, _,s% o >0 that appears in this part is of great
interest in the population genetics, and it is called population homozygosity
(the case o =2 is mostly considered). For more details, see for example [5],
[7], 18], [11] and [14].

Let us now investigate some properties of the Dirichlet type 3 distribution
with selection model as defined by Eq. (15). We see that

d - efay‘i(sll)
s ($0) =
du Z,(0)

is the Radon-Nykodym derivative (or likelihood ratio) for the measure under
selection with respect to the measure under neutrality.
Next, the log-likelihood ratio under selection

H(Sn,0) = —log du,/du(Sy,0)
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reads
%(Sn,a) = a¢a(sn,a) - Fn(O'),

where F,(o) := —log Z,(o) is pressure. In addition, the Shannon entropy
of Dirichlet type 3 distribution including selection E,(#5(S, ,)) is expressed
by

Eo(#5(Sn0)) = 0Eo(4,(Sn.0)) — Fa(0) = F,(a) — Fu(0).
Now, if we take the log-likelihood ratio under the neutral model (¢ = 0)
e}YO'(SI’I) = _log d:ua'/d:u(sn)7
then we get

PROPOSITION 3. The expectation of #5(S,) is given by

270(0)" 1
E(A,(Sy) = — o g (0, (n+ 1)0: (n + 1)0 + oz~ | — Fy(a).
(H5(80) = (o5 (0.4 DB 05 10+ 3:5) — o)
PrOOF. We have
E(#5(S,)) = oF (Z S;) ~ F(0)
m=1
Using Eq. (14) for 6, = 6,1 = 0 and for 1 =1, the result follows. O

The Bell polynomials (see [3], pages 144-147, Tome 1) in the variables
(x1,x2,...) are defined by

A 2
B;J(X],Xg,...) = Zlinxl{li’

[T 1ait i

where the summation runs over the integers a; >0, i=1,...,4 satisfying
S ia; =2 and Y1 a =1
We now would like to compute the partition function Z,(a).

THEOREM 4. Let (0),, :=(0),,(0)s,,.--,(0),,,.... Then, it follows that

- (—0)* 27"B,.1((0),.)
Zﬂ(a) =1+ ;(n)l /Zzl Al ((}’l j‘ll)g)m

X 3F (e, (n+1)0; (n+ 1)0 + oa;é),

where B, ;((0),,) is a Bell polynomial in the variable (0)

oe*
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Proor. By expanding the exponential function, we find that

Zy(a) = E(e rzmlm—l+; v ((Z}?))

Since (3"_,8%)" is homogeneous with degree d = o, we use Eq. (14) (with
0 = 0,11 = 0), to obtain

((Z )) —2,111'11()(90)))2& (0, (n+1)0; (n+ 1)0+oc)»;;)’

where

n

Pﬂ n : Z ; H (0)oc),,,,

My 20 | =1

I
is a potential polynomial. One can check that
,1
1+ Z o7 =1+ Z P/l n 7 TR
ix1 ix1 Al

which identifies P, ,((0),,) to a potential polynomial in the variables

(0)a-'
As a consequence of the Faa di Bruno formula (see [3], page 152), with

monomials x; to be taken with x; = (0),,, we have

2
P;( Z ) Bii(
Thus,

(—0)* 279B;,((0),.)
> A ((n+1)0),,

X 2 F (07 (n+1)0; (n+1)0+a,1;;>. O

Finally, we shed light on the moment function E,[(]], Snl/ 2)Y] of the

geometrical average of S, := (Si4,...,8.,). One gets

m=1

Trsorew 5. Let (0-+ /n),. = (0 q/n),, (04 a/n)s - (04 4/
The moment function of [[,_, S,L/, o is expressed by
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(=)

270((0)(]/;1)"
Zy(o)((n+1)0),

1
2 F (9, (71 + 1)9; (n + 1)9+ C];E)

Z o)* I'((n+1)0+q)

+ T+ 1)0+2i+9)

~

21 A=l
1

where Z,(0) is given in Theorem 4.

ProOF. We need to compute

] s

Since the denominator is under control, it remains to examine the numerator
E(e%S)T"_, S¥"). The function f(S1,...,S,) = (X0, S#) T ., S¥" is
homogeneous of degree d = ol + ¢ and the statement (ii) of the Theorem 3 for
O = 0,1 = 0 gives

n
E e_‘7¢a<(sn> S}Z/n)
[

27()
=E S4/n
<H ) Y5 m (1 + 1)0),,,,

ix>1

A
><2F1<6,(n+1)9 (n+1)0+ ol + g; > ((Z ) Hx;g/"),
m=1

where (X,; m=1,...,n) are independent random variables with X, 4 Yo-
Thus,
n .
S| fle) =y (e
m=1 Myeees Ay 20 L dm= 14 m=1

Yot =

v7'§>onm l)”m',li[ Womtq/n

i

= ((0)y)n)" - Pra((0+q/n),,),
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where

Pol@ta/m) = Y P [ O+a/n),,.

n |
M yerey 2n =0 Hm:1 lm' m=1
=2

and (0+q/n),, :=0+q/n),, (0+q/n),,,...,[0+q/n),,,....
Now, one can check that

(1 +) 0+ q/n)mﬂ/z!> =14 Pia((0+q/n),,)t" /A,
A>1 Ax>1

identifying P, ,((0 +¢/n),,) to a potential polynomial in the variables

(0 + Q/n)a(o'
Finally, we get

n
E( e 0[] S}fl/n)
< m=1

27((0),,)"
~ ((n+1)0)

1
2 F) ((9, (I’l + 1)9, (I’l + 1)9+ q,z)

q

(=0)* I'((n+1)0+q)
+;(")’; A T+ 1)0+%+q)

x 2 F) (9, (n+1)0; (n+1)0+ ad+ g; %) - B;((0+ 61/”)“.)] -

Normalizing by Z,(¢) whose expression is provided by Theorem 4, yields the
desired result. O

4. Real data application

To corroborate the performance of the Dirichlet type 3 distribution, we
present a concrete example. In many cases, biologists are interested in explor-
ing proportions because of practical difficulties in measuring actual numbers.
We consider the data of blood serum proportions (pre-albumin, albumin and
glubulin) in 3-week-old white Pekin ducklings. We use 23 sets of data, such
that each set corresponds to a different diet. The measurements of the blood
serum proportions are displayed in [16].

Let X, be a random variable whose value is proportional to the particular
type of blood serum level. Then, S,, = X,/ (Zle X; + 2X3) corresponds to the
proportions. Besides, we suppose that X,, can be thought of as being inde-
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Table 1. Estimated values and variance-covariance matrix of the estimated parameters.

Estimated values of 6y, 0, and 05.

0 0, 05

3.6112 | 23.2517 | 12.6186

Variance-covariance matrix of the estimated parameters.

91 02 93

6, | 0.5796

0, | 3.2148 | 24.3069

03 | 1.7131 | 12.4250 | 7.1480

pendent of each other and 212:1 X;+2X;5. Therefore, the vector S, = (S, S2)
would follow the Dirichlet type 3 distribution with parameters 6, 6, and 6.
These unknown parameters are estimated by using the maximum likelihood
method, and by implementing Fisher scoring method (see [18] and [22]). The
estimated values of parameters and their corresponding variance-covariance
matrix are outlined in Table 1.
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