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Abstract. We give a definition of scattering matrices based on the asymptotic

behaviors of generalized eigenfunctions proving existence of radial limits of the functions

and show that these scattering matrices are equivalent to the ones defined by wave

operator approach in long-range N-body problems including the problems of Coulomb

interaction potentials. Equivalence of stationary and time-dependent definitions of the

generalized Fourier transforms is also shown.

1. Introduction

Scattering matrices play an important role in the study of long-time

asymptotic behaviors of the solutions to Schrödinger equations. Scattering

matrices are defined in two di¤erent ways. In the time-dependent viewpoint,

the scattering matrices are defined using wave operators and the Fourier trans-

forms. On the other hand, in the stationary viewpoint, they are defined using

the asymptotic behaviors of generalized eigenfunctions at infinity. In this

paper we prove that both the definitions are equivalent in long-range N-body

problems. We also give a definition of the generalized Fourier transforms

using the asymptotic behaviors of outgoing solutions to nonhomogeneous equa-

tions. We prove that they are equivalent to the ones using wave operators.

Before we consider the N-body problems, it is instructive to recall the

results for 2-body problems in which only two particles appear. In quantum

mechanics, a state of a particle is represented by an element in a Hilbert space.

The Hilbert space is the set of square-integrable functions. The time evolution

of the state of the particle is described by unitary operators in the Hilbert

space. However, in practice, functions which are not square-integrable are

used as waves representing scattering processes. These functions are not

square-integrable because they do not decay enough as jxj ! y, where x is

the relative position of the particles. They are called generalized eigenfunc-

tions, since they satisfy the Schrödinger equation Hu ¼ lu but they are not
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eigenfunctions of H in the Hilbert space framework, where H :¼ �Dþ VðxÞ is

the Hamiltonian and l A R. Here, D is the Laplacian and V is a real valued

function called a potential. In the scattering process, we are interested in the

angular distribution of the probability to find a scattered particle after particles

collided and when the distance between the particles is large enough. The

function representing the angular distribution is called scattering amplitude.

The scattering amplitude is usually calculated considering the asymptotic be-

haviors of the generalized eigenfunction as jxj ! y. However, the relation

between the long-time asymptotic behavior of the function in the Hilbert space

and the generalized eigenfunction which is not in the Hilbert space is not

obvious.

In fact, even the existence of the generalized eigenfunctions with appro-

priate asymptotic behaviors is not obvious. Let the potential VðxÞ A CyðRnÞ
satisfy

jqgVðxÞj ¼ Oðjxj�m�jgjÞ; ð1Þ

for m > 0 as jxj ! y, where n A N is the space dimension. The generalized

eigenfunction used in the calculation of the scattering amplitude in the two-

body problem with potentials decaying fast enough is a distorted plane wave

ux composed of the plane wave e�ix�x and the scattered wave, where x is the

momentum of the particle. The function ux satisfies the Lippmann-Schwinger

equation ux ¼ e�ix�x � ðH � l� i0Þ�1
Ve�ix�x; where l ¼ jxj2 and ðH � l� i0Þ�1

is the resolvent of the Hamiltonian. However, if the potential VðxÞ does not

decay enough as jxj ! y, the term ðH � l� i0Þ�1
Ve�ix�x is not defined because

Ve�ix�x does not decay enough and it is not in the domain of ðH � l� i0Þ�1.

We can overcome this problem by using a spherical incident wave

v½g� :¼ gðx̂xÞe�iKðxÞjxjð1�nÞ=2; x̂x :¼ x=jxj;

instead of the plane wave e�ix�x, where KðxÞ ¼
ffiffiffi
l

p
jxj þ oðjxjÞ, jxj ! y, is a

solution to the eikonal equation

j‘KðxÞj2 þ VðxÞ ¼ l; l > 0:

Notice that the wave v½g� multiplied by e�ilt moves toward the origin as time

advances, and hence we call it incoming. Using v½g� the generalized eigen-

function

~uul½g� ¼ v½g� � ðH � l� i0Þ�1ðH � lÞv½g�; ð2Þ

is well-defined. This function ~uul½g� would be regarded as the smeared functionð
Sn�1

gðoÞu ffiffilp
o do;
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of the distorted plane waves u ffiffilp
o as above by CyðSn�1Þ-function gðoÞ with

respect to the angle o of the incident wave, and the Schwartz integral kernel

of the map g 7! ~uul½g� would be the distorted plane wave u ffiffilp
o. After con-

structing the generalized eigenfunction we also need to study the asymptotic

behavior of the function. Practically, we need to prove the existence of the

radial limits of the function. It is expected that the scattered wave component

�ðH � l� i0Þ�1ðH � lÞv½g� of ~uul½g� in (2) has an asymptotic behavior as

�ðH � l� i0Þ�1ðH � lÞv½g� ¼ f ðx̂xÞeiKðxÞjxjð1�nÞ=2 þ oðjxjð1�nÞ=2Þ;

as jxj ! y, where f is a function on the sphere Sn�1. The map SðlÞ : g 7! f

is the scattering matrix defined in the stationary way. The Schwartz integral

kernel of the scattering matrix SðlÞ whose singularity due to the incident wave

without being scattered removed would be the scattering amplitude.

Finally, we consider the relation between the scattering matrices defined by

stationary and time-dependent way. For short-range potentials, that is, when

m > 1 in (1), as time t tends to Gy, the asymptotic behaviors of the solutions

e�itHc;c A HacðHÞ to the Schrödinger equation are given by the free evolution

eitDcG for some cG A L2ðRnÞ, where HacðHÞ is the absolutely continuous sub-

space of H. In other words,

ke�itHc� eitDcGk ! 0;

as t !Gy. On the contrary, for any cG A L2ðRnÞ there exists c A HacðHÞ
such that

keitDcG� e�itHck ! 0;

as t !Gy. The wave operators WG : L2ðRnÞ ! L2ðRnÞ are defined by

WGcG :¼ c. The wave operators WG are partial isometries from L2ðRnÞ to

HacðHÞ. The scattering operator S is defined as the map Sc� :¼ cþ. Let F

be the Fourier transform. Then, ŜS :¼ FSF� commutes with any bounded Borel

functions of jxj2, and therefore, there exists ŜSðlÞ A LðL2ðSn�1ÞÞ, a:e: l > 0

such that

ðŜSf Þðl;oÞ ¼ ðŜSðlÞ f ðlÞÞðoÞ; x ¼
ffiffiffi
l

p
o; o A Sn�1;

a:e: l > 0 for any f ðxÞ A L2ðRnÞ (see e.g. Reed-Simon [18]). Here f ðlÞ A
L2ðSn�1Þ is defined by ð f ðlÞÞðoÞ :¼ f ðl;oÞ. The operators ŜSðlÞ are scattering

matrices defined in time-dependent way. Thus the scattering matrices give the

map from the datum as t ! �y to the one as t ! y. The time-dependent

and stationary scattering matrices ŜSðlÞ and SðlÞ are equivalent in the sense

that the following equation holds (see e.g. [18] and Melrose [17]).

ŜSðlÞ ¼ i n�1SðlÞR;

179N-body long-range scattering matrix



where R is the reflection operator, i.e. ðRgÞðoÞ :¼ gð�oÞ. A similar result as

above for long-range (i.e., ma 1) 2-body problems has been proved by Gâtel-

Yafaev [5].

We now turn to N-body problems. When we consider collisions of com-

posite particles such as atoms and molecules, we need to consider many-body

problems in which the Hamiltonian consists of kinetic energy of the particles

and the potentials between pairs of the particles. Even if there are seemingly

only two particles before and after the collision, when at least one of the

particles is a composite particle as in the scattering of an electron by an atom,

rigorous treatment of the scattering needs to deal with the N-body problems.

For there are interactions between particles within the same or di¤erent com-

posite particles. We shall introduce the configuration spaces needed for

N-body problems (see e.g. [3]). Let n, N be natural numbers. We consider

N particles in n-dimensional space with masses mi > 0. Let xi A Rn be the

position of the i-th particle. The tuple ðx1; . . . ; xNÞ of the positions of the

particles is a point in RnN . Since the center of mass of the particles moves

freely, we are interested only in the relative motion of the particles. The rela-

tive positions of the particles are indicated by a point in the center of mass

configuration space

X :¼ x ¼ ðx1; . . . ; xNÞ : xi A Rn;
XN
i¼1

mixi ¼ 0

( )
:

We need to consider the relative positions of the particles within subsets of

N particles and the relative positions of these subsets. For this purpose we

introduce the notion of cluster decomposition. Let C1; . . . ;Ck be nonempty

subsets of f1; 2; . . . ;Ng. Then we call the set a :¼ fC1; . . . ;Ckg a cluster de-

composition if Ci \ Cj ¼ q ði0 jÞ and
Sk

i¼1 Ci ¼ f1; 2; . . . ;Ng. A simple and

important cluster decomposition ðijÞ is defined by

ðijÞ :¼ ffi; jg; f1g; f2g; . . . ; f�iig; . . . ; f�jjg; . . . ; fNgg;

where f�kkg means that fkg is absent. In ðijÞ only i-th and j-th particles form a

cluster. The configuration space X a of the internal coordinates of a is defined

by

X a :¼ x ¼ ðx1; . . . ; xNÞ A X :
X
j AC

mjxj ¼ 0 for all C A a

( )
:

The configuration space Xa of the inter-cluster coordinates of a is defined

by

Xa :¼ fx A X : xi ¼ xj if i; j A C for some C A ag:
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Then Xa is the orthogonal complement of X a in X with respect to the inner

product
PN

i¼1 miðxi � yiÞ. Concerning the cluster decomposition ðijÞ, xi � xj can

be used as a coordinate of X ðijÞ. However, we do not specify particular coor-

dinates in X a and Xa in general, since specific coordinates for a can not be

used as coordinates for all of the other cluster decompositions. Let a and b be

cluster decompositions. We write ba a and call b is finer than a, if for any

D A b there exists C A a such that D � C. As for ðijÞ, it is readily confirmed

that ðijÞa a if i; j A C for some C A a. We denote by P a and Pa the orthog-

onal projections in X onto X a and Xa respectively. We decompose x ¼ xa l
xa A Xa lX a. The operators �Da and �Da denote the Laplacians in Xa and

X a respectively.

An N-body Hamiltonian is an operator of the form

H :¼ �Dþ
X

1ai<jaN

Vijðxi � xjÞ:

Here D is the Laplacian in X and Vij is a real-valued function on Rn which is

in this paper a sum of a compactly supported Laplacian-compact short-range

part and a smooth long-range part (cf. Assumption 1). It should be empha-

sized that physically important Coulomb potential VijðxÞ ¼ 1=jxj satisfies As-

sumption 1. Let H :¼ L2ðXÞ, Ha :¼ L2ðXaÞ and Ha :¼ L2ðX aÞ. Under this

assumption H is a self-adjoint operator on H. We will also need the sub-

system Hamiltonian Ha on Ha defined by

Ha :¼ �Da þ
X
ðijÞaa

Vijðxi � xjÞ:

The set of thresholds is defined by

TðHÞ :¼
[

aab2

sppðHaÞ;

where sppðAÞ is the set of eigenvalues of A. We label the eigenvalues of Ha

counted with multiplicities, by integers m, and we call the pairs a ¼ ða;mÞ
channels. We denote the eigenvalue of the channel a and the corresponding

normalized eigenfunction by Ea and ua respectively. We can identify a channel

a with a tuple ða;Ea; uaÞ as a ¼ ða;Ea; uaÞ.
Time-dependent scattering matrices are defined as follows. In the fol-

lowing we denote channels by a ¼ ða;Ea; uaÞ and b ¼ ðb;Eb; ubÞ. Set w A Ha.

Then there exists cG
a A H such that

ke�iSG
a ðpa; tÞ�iEatðua nwÞ � e�itHcG

a k ! 0; ð3Þ
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as t !Gy, where SG
a ðxa; tÞ is a solution to a Hamilton-Jacobi equation

qSa

qt
ðxa; tÞ ¼ jxaj2 þ ~IIað‘xaSaðxa; tÞÞ;

and pa ¼ �i‘xa . Here, ~IIa is the e¤ective inter-cluster potential (cf. Section 2).

The tensor product ua nw is a wave in the state w with respect to inter-cluster

coordinates and in the bound state ua with respect to internal coordinates.

SG
a is a generating function of the asymptotic displacement by classical trajecto-

ries, i.e. ‘xaS
G
a ðxa; tÞ equals asymptotically the displacement by the trajectory

with the asymptotic momentum xa (cf. [3, Section 2.7]). The unitary operator

e�iSG
a ðpa; tÞ�iEat gives asymptotic time evolution. Note that in momentum space

it is a multiplication by e�iSG
a ðxa; tÞ�iEat whose absolute value is 1, and therefore,

it does not change the distribution of momentum. Thus w has the same distri-

bution of momentum as the asymptotic one of e�itHcG
a which is the subject

of scattering theory. The wave operator WG
a is defined by WG

a w :¼ cG
a . Let

~cc�
a be the component of c�

a such that c�
a ¼ ~cc�

a þ ĉc�
a ,

~cc�
a A Ran W þ

b , ĉc�
a A

ðRan W þ
b Þ?. Then in an opposite manner to (3), there exists wb A Hb such

that

ke�iSþ
b
ðpb; tÞ�iEbtðub nwbÞ � e�itH ~cc�

a k ! 0;

as t ! y which is obvious by ~cc�
a A Ran W þ

b and the definition of W þ
b . The

function wb is given by the equation wb ¼ ðW þ
b Þ�c�

a . The scattering operator

Sba is defined by Sbaw :¼ wb. Let Fa : Ha ! L2ððEa;yÞ;L2ðCaÞÞ be the

Fourier transform which maps functions in Ha to the functions with respect

to polar coordinates, where Ca :¼ Sna�1 \ Xa, na :¼ dim Xa. Then we can

write

ŜSba :¼ FbSbaF
�
a ¼

ðy
maxfEa;Ebg

l ŜSbaðlÞdl;

where ŜSbaðlÞ A LðL2ðCaÞ;L2ðCbÞÞ is the fiber of ŜSba (see e.g. [19]). The oper-

ators ŜSbaðlÞ are called scattering matrices.

The other definition comes from the asymptotic behaviors of generalized

eigenfunctions as in the 2-body problems. In N-body problems there are direc-

tions in which the potential Vijðxi � xjÞ does not decay in the configuration

space X which cause singular behaviors of wave functions in those directions.

Thus we restrict the function g assigning angular distributions of a incident

wave to a function whose support is away from such directions i.e. supp g � C 0
a

:¼ Can
S

bEa Xb. If a is a channel obeying some decay condition (cf. (14)),

for l A Ea :¼ ðEa;yÞnðsppðHÞ \TðHÞÞ and g A Cy
c ðC 0

aÞ there exists a gener-

alized eigenfunction u (corresponding to Pþ
l;a½g� in Section 4) of H such that
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u� uaðxaÞn ðgðx̂xaÞrð1�naÞ=2
a e�iKaðxa;l�EaÞÞ is outgoing in the sense of Section 4,

where ra :¼ jxaj, x̂xa :¼ xa=jxaj and Kaðxa; lÞ is a solution to an eikonal equation

j‘xaKaj2 þ ~IIa ¼ l. Here,

uaðxaÞn ðgðx̂xaÞrð1�naÞ=2
a e�iKaðxa;l�EaÞÞ;

is an incident wave which is spherical with respect to the inter-cluster coor-

dinates and a bound state with respect to the internal coordinates. The out-

going component of u is expected to have the form as

X
b

ubðxbÞn ð fbðx̂xbÞrð1�nbÞ=2
b eiKbðxb;l�EbÞÞ; fb A L2ðCbÞ:

One of the greatest challenges for the stationary definition in the long-range

N-body case would be rigorous justification of this fact and to obtain the data

fb. In the present result we extract fb from the generalized eigenfunction u as

a functional on Cy
c ðC 0

bÞ using an expected equationð
Cb

fbðx̂xbÞhðx̂xbÞdx̂xb

¼ lim
r!y

r�1

ð
Cb

ð
rb<r

r
ð1�nbÞ=2
b hðx̂xbÞe�iKbðrbx̂xb;l�EbÞðpbuÞðrbx̂xbÞdrbdx̂xb; ð4Þ

for any h A Cy
c ðC 0

bÞ, where ðpbuÞðxbÞ :¼
Ð
ubðxbÞuðxb; xbÞdxb. (The right-

hand side corresponds to Qþ
l;bðuÞ ¼ Qþ

l;bðP
þ
l;a½g�Þ in Sections 3 and 4.) Note

that if we substitute ubðxbÞn ð fbðx̂xbÞrð1�nbÞ=2
b eiKbðxb;l�EbÞÞ into u in the right-

hand side, we certainly obtain the left-hand side. Although we do not use

the following fact explicitly in this paper, it deserves attention in order to

understand mechanism extracting fb. The incoming component uaðxaÞn
ðgðx̂xaÞrð1�naÞ=2

a e�iKaðxa;l�EaÞÞ of u does not contribute to the limit in the right-

hand side of (4). For if the incoming component is substituted into u in the

right-hand side, for b0 a the integrand decays somewhat fast and for b ¼ a the

integral oscillates and r�1 ! 0. Thus we can use the generalized eigenfunction

u itself in (4) instead of its outgoing component. The scattering matrix SbaðlÞ
is defined by SbaðlÞg ¼ fb.

In contrast to ŜSbaðlÞ the definition of SbaðlÞ does not need time evolution

at all. The main result of this paper is the following relation between the two

definitions of scattering matrices:

ŜSbaðlÞ ¼ eipðnaþnb�2Þ=4l1=4a l
�1=4
b SbaðlÞRa; l A Ea \ Eb;

where la :¼ l� Ea and Ra is the reflection operator on L2ðCaÞ. To show this

equivalence of ŜSbaðlÞ and SbaðlÞ, an explicit representation of the radial limit
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Qþ
l;bðuÞ is necessary. We obtain such a representation by proving a represen-

tation formula for radial limits in conic regions for long-range decaying poten-

tials (cf. Lemma 1). Actually, the non-trivial existence of the radial limits itself

is proved at the same time. The main idea of the proof is to insert a cut-o¤

function having a linear slope in most part of its support into the representation

by inner products and consider the limit as the support spreads. In order to

obtain the relation between the wave operator and the generalized Fourier trans-

form we use the representation of the asymptotic time evolution of e�iSG
a ðpa; tÞ by

an integral of spherical waves in Ikebe-Isozaki [11] (cf. Theorem 2). In fact,

Theorem 2 is nothing but equivalence of time-dependent and stationary gener-

alized Fourier transforms. For the proof of the relation between the resolvent

of H and the Poisson operator PG
l;a½g� we employ a nontrivial equation obtained

by the uniqueness theorem of outgoing and incoming solutions to nonhomo-

geneous equations of the form ðH � lÞu ¼ f in Isozaki [14] (cf. Lemmas 7 and

4). Although spherical waves and their tensor products with eigenfunctions

would be the simplest outgoing and incoming functions, the property has not

been proved in the previous literature as far as the author knows. The prop-

erty for spherical waves can be proved by pseudodi¤erential techniques only,

but that of the tensor products of eigenfunctions and spherical waves need

other techniques, because the commutator of the potential Vij and a pseudo-

di¤etential operator does not have a good decay property. We replace the

pseudodi¤erential operator by a function of a first order di¤erential operator

B in Gérard-Isozaki-Skibsted [6] having a good commutator estimate with Vij

during the commutator calculus. To localize the pseudodi¤erential operator

onto the subspace Xa we use decay of the eigenfunction. In the proof of

the equivalence, there could exist other possibilities for transforming the time-

dependent scattering matrix to representations using inner products and oper-

ators such as the resolvent, the Poisson operator PG
l;a and QG

l;a, but our method

would be a simple one for the proof of the equivalence of the scattering

matrices.

There are significant di¤erences in di‰culty in proving the results as

above between short-range (i.e. m > 1 in Assumption 1) and long-range (i.e.

1b m > 0) potentials and between 2-body and N-body problems. This is be-

cause the slow decay of potentials causes substantial change to both the time

evolution of wave functions and asymptotic behaviors of generalized eigen-

functions and there are many di‰culties in estimation of decay with respect

to time or distance especially in N-body problems. Isozaki [13] and Hassell

[8] proved similar results for 2-cluster to 3-cluster scattering in 3-body prob-

lems and for the free channel scattering in which all particles are separated

in N-body problems respectively under rather strong decay conditions using

di¤erent methods. Vasy [21] proved a similar result for short-range smooth
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potentials in N-body problems. Yafaev [22] also obtained a stationary

representation for short-range N-body scattering matrices defined by time-

dependent way for any channel. However, even a stationary definition of scat-

tering matrices has not been obtained for long-range potentials in N-body

problems and the relation to the time-dependent scattering matrices has not

been known so far.

The main points of the approaches of the previous and present results are

as follows. Since in [13] generalized eigenfunctions with plane incident waves

are considered, the fast decay of the potentials is needed. For a decay estimate

of inter-cluster potentials in the proof, the three-body structure is essential in

[13]. In [8] the equivalence of the free channel scattering matrices is proved

relating both the stationary and time-dependent scattering matrices for the free

channel to the transition matrix, and also uses generalized eigenfunctions with

plane incident waves in the proof, so that the fast decay of the potentials is

needed. In [22] the stationary representation of the time-dependent scattering

matrices for all channels is obtained proving new resolvent estimates, but to

prove the existence of the radial limits of generalized eigenfunctions necessary

for the stationary definition of scattering matrices, other resolvent estimates as

those obtained for the free channel scattering in [9, Corollary 5.3] are needed.

In [21] this problem is bypassed using a kind of weak radial limits. The

proof of the existence of the limits and a representation of the limits by inner

products in [21] depends on the short-range assumption (cf. Remark 1). In the

proof of the existence of the radial limits, an ordinary di¤erential equation with

respect to ra is used based on the fact that the phase iKa in the asymptotic

behaviors of the generalized eigenfunctions has the form i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l� Ea

p
ra. How-

ever, in long-range problems Ka depends not only on ra but also on angular

coordinates x̂xa. The present result overcomes this problem introducing dif-

ferent weak radial limits (4) and obtaining a representation of the limit for

Hamiltonians with long-range potentials. The limit in (4) is a weak limit as-

sociated with the little-o notation oavðjxj�ðn�1Þ=2Þ in [5] introduced to study

asymptotic behaviors of spherical waves, where eðxÞ A oavðjxj�ðn�1Þ=2Þ if and

only if

lim
r!y

r�1

ð
jxjar

jeðxÞj2dx ¼ 0:

The incident component of the Poisson operator in [21] has a form as P0
a;GðlÞg,

where P0
a;GðlÞ is the Poissson operator for the free Laplacian. On the other

hand, we use the spherical waves directly as incident waves which makes the

structure of the generalized eigenfunction clear and would make the analysis of

the function simple. The method to transform the time-dependent scattering

matrix in the present result depends on the representation of the asymptotic
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time evolution for long-range two-body problems in [11] and the uniqueness

theorem in [14].

Although we use a kind of weak limit in (4) in contrast to a kind of strong

convergence for a short-range decaying potential (see e.g. [17]), i.e. short-range

two-body problems, the stationary definition and the relation to the time depen-

dent definition would still be useful in the study of quantities in scattering

phenomena such as the scattering amplitude in N-body problems. For if we

construct a generalized eigenfunction u or its approximation, the right-hand side

of (4) could be calculated. Moreover, since the relation between weakly defined

quantities are clear now by the present results, only the existence of stronger

limits would remain as a problem in the results as above with other definitions

of the limits.

The content of this paper is as follows. In Section 2 the existence of

radial limits of functions in conic regions is proved. Using the limits we define

radial limits for channels in Section 3. In Section 4 we introduce Poisson

operators and stationary scattering matrices using the radial limits for channels.

In Section 5 we introduce the well-known time-dependent definition of scat-

tering matrices and prove the equivalence of the time-dependent and stationary

scattering matrices. Equivalence of stationary and time-dependent definitions

of the generalized Fourier transforms is also proved. In Appendix A proofs of

outgoing and incoming properties and boundedness of functions and operators

are given.

2. Preliminaries

In this section we prove the existence of radial limits of functions in conic

regions under a certain condition. We assume the potentials Vij obey the

following.

Assumption 1. There exists m A ð0; 1� such that VijðxÞ ¼ V s
ij ðxÞ þ V l

ij ðxÞ,
where

(1) V s
ij ðxÞ is compactly supported and V s

ij is �Dx compact, i.e.

V s
ij ð�Dx þ 1Þ�1

is compact.

(2) V l
ij ðxÞ A CyðRnÞ and for any g A Nn

jqgVijðxÞj ¼ Oðjxj�m�jgjÞ:

Let h A CyðRÞ be a function such that supp h � ð1;yÞ and hðtÞ ¼ 1 for

t > 2. Set Ia :¼
P

ðijÞEa V
l
ij . Removing directions in which Ia does not decay,

we define

~IIa ¼ ~IIaðxaÞ :¼ IaðxaÞ
Y
bEa

hðjP bxaj lnhxai=hxaiÞ;
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which is a generalization of the ‘‘free channel’’ potential in [9, Definition 2.2]

to the general cluster decomposition a. This potential can be regarded as a

one-body potential fulfilling for any m 0 A ð0; mÞ the bounds

jqg~IIaðxaÞj ¼ Oðjxaj�m 0�jgjÞ: ð5Þ

To confirm (5) we note that for xa ¼ ðx1; . . . ; xNÞ A Xa � X and b ¼ ðijÞ we

have

P ðijÞxa ¼ 0; . . . ; 0;
mj

mi þmj

ðxi � xjÞ; 0; . . . ; 0;
mi

mi þmj

ðxj � xiÞ; 0; . . . ; 0
� �

A X ;

where only i-th and j-th components are not 0. Thus by the definition of the

inner product
P

i mixi � yi in X , we have jP ðijÞxaj2 ¼ mimj

miþmj
jxi � xjj2. Since for

ðijÞE a the inequality

jP ðijÞxaj > hxai=lnhxai;

holds on supp hðjP ðijÞxaj lnhxai=hxaiÞ, it follows that jxi � xjj > Chxai=lnhxai,

where C ¼ miþmj

mimj

� �1=2
. Thus we conclude that if ðijÞE a,

jqgV l
ij ðxi � xjÞj ¼ Oðhxai�m�jgjðlnhxaiÞ�m�jgjÞ;

on the support from which we can see that (5) holds.

We let Kað�; lÞ, l > 0 denote the (approximate) solution to the eikonal

equation

j‘xaKaj2 þ ~IIa ¼ l ð6Þ

as taken from [12] and [11]. The function Ka is a Cy-function and there exists

C > 0 such that (6) holds for jxaj > C. Ka satisfies Kaðxa; lÞ ¼
ffiffiffi
l

p
ra þYaðxa; lÞ

and

jqgYaðxa; lÞj ¼ Oðjxaj1�jgj�m 0
Þ; ð7Þ

(the bounds being locally uniform in l).

We drop for the moment the subscript a of xa, ~IIa, Ka etc. and consider the

operator ~HH ¼ �Dþ ~II on L2ðRnÞ identifying Xa ¼ Rn. We need Besov spaces

BðRnÞ and B�ðRnÞ. We set

W0 :¼ fx A Rn : jxj < 1g;

Wj :¼ fx A Rn : 2 j�1 < jxj < 2 jg; ð j A N; jb 1Þ:

Let BðRnÞ be the set of functions u such that

kukBðRnÞ :¼
Xy
j¼0

2 j=2kukL2ðWjÞ < y:
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Then the dual space B�ðRnÞ of BðRnÞ is the set of functions u such that

kukB�ðRnÞ :¼ sup
jb0

2�j=2kukL2ðWjÞ < y:

We can easily see that there exists a constant C > 0 such that

C�1kukB �ðRnÞ a sup
r>1

r�1

ð
jxj<r

juðxÞj2dx
 !1=2

aCkukB �ðRnÞ: ð8Þ

The relation between L2
l ðRnÞ :¼ hxi�lL2ðRnÞ, hxi :¼ ð1þ jxj2Þ1=2, BðRnÞ and

B�ðRnÞ is as follows: for l > 1=2

L2
l ðRnÞ � BðRnÞ � L2

1=2ðRnÞ � L2ðRnÞ � L2
�1=2ðRnÞ � B�ðRnÞ � L2

�lðRnÞ:

For U � Rn the notation FU stands for multiplication by 1U . The following

lemma which guarantees existence of radial limits of a function u satisfying

a certain condition in conic region U is crucial to the stationary definition of

scattering matrices.

Lemma 1. Let U be an open subset of Rn such that U 0 :¼ U \ Sn�1 0q
and U \ fjxjb 1g ¼ fx ¼ cx 0 : c A ½1;yÞ; x 0 A U 0g. Let for any g A Cy

c ðU 0Þ
and l > 0,

vGðxÞ ¼ vGl ½g�ðxÞ :¼ hðrÞgðx̂xÞrð1�nÞ=2eGiKðx;lÞ; r :¼ jxj; x̂x :¼ x=r:

Suppose ~uu A B� \H 2
loc and FUð ~HH � lÞ~uu A B. Then

lim
r!y

r�1

ð
r<r

vGðxÞ~uuðxÞdx

¼G2�1il�1=2ðhvG; ð ~HH � lÞ~uui� hð ~HH � lÞvG; ~uuiÞ; ð9Þ

where hv; ui ¼
Ð
vu dx.

Proof. First, by calculation of the quantity in the middle of (8) inte-

grating with respect to the polar coordinates, we can check vG A B�. To esti-

mate ð ~HH � lÞvG, using j‘K j2 þ ~II ¼ l we compute

ð ~HH � lÞvG ¼Hi½ðDKÞhgrð1�nÞ=2 þ 2ð‘KÞ � ‘ðhgrð1�nÞ=2Þ

H iDðhgrð1�nÞ=2Þ�eGiK ð10Þ

for jxj large enough. Using D ¼ q2

qr2
þ n�1

r
q
qr
þ L

r2
and K ¼

ffiffiffi
l

p
rþ Yðx; lÞ by a

direct calculation the right-hand side is rewritten as

Hi½ðDYÞhgrð1�nÞ=2 þ 2ð‘Y Þ � ‘ðhgrð1�nÞ=2Þ

þ 2
ffiffiffi
l

p
ðqrhÞgrð1�nÞ=2 H iDðhgrð1�nÞ=2Þ�eGiK ;
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where L is the Laplace-Beltrami operator on Sn�1. Since noticing

jqgYðx; lÞj ¼ Oðjxj1�jgj�m 0
Þ;

we have

q2

qr2
þ L

r2

 !
Y

�����
����� ¼ Oðjxj�1�m 0

Þ; j‘Y j ¼ Oðjxj�m 0
Þ;

j‘ðhgrð1�nÞ=2Þj ¼ Oðjxj�ðnþ1Þ=2Þ; jDðhgrð1�nÞ=2Þj ¼ Oðjxj�ðnþ3Þ=2Þ;

and qrh has a compact support, we obtain ð ~HH � lÞvG ¼ Oðjxj�ðnþ1Þ=2�m 0
Þ. Thus

we obtain

ð ~HH � lÞvG A L2
s ðRnÞ; for 1=2 < s < 1=2þ m 0: ð11Þ

In particular ð ~HH � lÞvG A B, whence the right hand side of (9) is well-defined.

For any e A ð0; 1=9Þ choose a decreasing function we A CyðRÞ such that

weðtÞ ¼
1 for ta e;

1þ e� t for 3ea ta 1;

0 for tb 1þ 2e;

8<
:

and w 0
e b�1. Letting we;r ¼ weðr=rÞ, r > 1, we compute the right-hand side

of (9) as

H2�1l�1=2 lim
r!y

hvG; i½ ~HH; wr�1=2;r�~uui

¼Gil�1=2 lim
r!y

r�1 vG;‘ � x

jxj w
0
r�1=2ðj � j=rÞ~uu

� �

¼Hil�1=2 lim
r!y

r�1hqrv
G; w 0

r�1=2ðj � j=rÞ~uui; ð12Þ

where in the first equality we used ‘wr�1=2;r ¼ x
rjxj w

0
r�1=2ðj � j=rÞ and

jhxiDwr�1=2;rj ¼ Oðr�1Þ;
ð
jxj<2r

hxi�1uv dx

�����
����� ¼ Oðlog rÞ; ð13Þ

as r ! y for u; v A B�, and the second equality follows from qr ¼ x
jxj � ‘. We

can calculate qrv
G as

qrv
G ¼ ðqrhÞgrð1�nÞ=2eGiK þ 1� n

2
hgr�ðnþ1Þ=2eGiK G iqrYhgrð1�nÞ=2eGiK

G i
ffiffiffi
l

p
hgrð1�nÞ=2eGiK :
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Using r�1jxj < 2 on supp w 0
r�1=2ðj � j=rÞ and (13), the limits including first three

terms vanish. Thus the right-hand side of (12) is equal to

� lim
r!y

r�1hvG; w 0
r�1=2ðj � j=rÞ~uui:

We can rewrite this expression as

�r�1hvG; w 0
r�1=2ðj � j=rÞ~uui ¼ r�1

ð
3r�1=2<r=r<1

vGðxÞ~uuðxÞdxþ Oðr�1=4Þ

¼ r�1

ð
r=r<1

vGðxÞ~uuðxÞdxþ Oðr�1=4Þ:

Here we used

r�1

ð
a1araa2

jvG~uujdx

a r�1=2

ð
a1araa2

jvGj2dx
� �1=2

r�1

ð
a1araa2

j~uuj2dx
� �1=2

¼ Oðr�1=2ja2 � a1j1=2Þ;

where a1 ¼ 0, a2 ¼ 3r1=2 or a1 ¼ r, a2 ¼ rþ 2r1=2. Whence

� lim
r!y

r�1hvG; w 0
r�1=2ðj � j=rÞ~uui ¼ lim

r!y
r�1

ð
r=r<1

vGðxÞ~uuðxÞdx;

which is the left-hand side of (9) and completes the proof.

Remark 1. A result analogous to this lemma with ~II ¼ 0 (i.e., ~HH ¼ �D)

is the ‘‘boundary pairing’’ in [17, Proposition 13] in which vG is replaced by a

function having both outgoing and incoming components. A localized version of

the boundary pairing in conic regions with ~II ¼ 0 is obtained by [21, Proposi-

tion 3.3]. For short-range potentials j~II j ¼ Oðjxj�mÞ, m > 1 boundary pairing for
~HH ¼ �D is su‰cient, because if ~uu A L2

�1=2�e and ð�Dþ ~II � lÞ~uu A L2
1=2þe, then

ð�D� lÞ~uu A L2
1=2þe holds for e > 0 small enough using ~II ~uu A L2

1=2þe.

3. Radial limits for channels

Consider a channel a ¼ ða;Ea; uaÞ assuming kuakL2ðX aÞ ¼ 1 and

ua A Dðhxai s0Þ for some s0 > 1: ð14Þ

Whence, alternatively stated, ua A L2
s0
ðX aÞ :¼ hxai�s0L2ðX aÞ for some s0 > 1

which holds at least if Ea B TðHÞ (cf. [4]). Let pa A LðH;HaÞ be given by
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ðpavÞðxaÞ :¼ hua; vð�; xaÞi. It is a consequence of (14) that also

pa A LðB�ðXÞ;B�ðXaÞÞ: ð15Þ

The proof of (15) is given in the Appendix A.

Let Ca :¼ Xa \ Sna�1, na :¼ dim Xa and C 0
a :¼ Can

S
bEa Xb. Suppose

u A B�ðXÞ obeys ðH � lÞu A BðXÞ, l > Ea. Then we can define the map

QG
l;aðuÞ : Cy

c ðC 0
aÞ ! C by the following recipe: Let for any g A Cy

c ðC 0
aÞ

ðQG
l;aðuÞÞðgÞ ¼ lim

r!y
r�1

ð
ra<r

vGl;a½g�ðxaÞðpauÞðxaÞdxa; ð16Þ

where

vGl;a½g�ðxaÞ ¼ hðraÞgðx̂xaÞrð1�naÞ=2
a eGiKaðxa;laÞ;

with la ¼ l� Ea. The map ðQG
l;aðuÞÞðgÞ is linear with respect to u and anti-

linear with respect to g. Notice that Lemma 1 applies to ~uu ¼ pau by con-

sidering an open U 0 � Ca with supp g � U 0 � U 0 � C 0
a so that in fact using

Haua ¼ Eaua

ðQG
l;aðuÞÞðgÞ ¼G2�1il�1=2

a ðhvGl;a½g�; ð�Da þ ~IIa � laÞpaui

� hð�Da þ ~IIa � laÞvGl;a½g�; pauiÞ

¼G2�1il�1=2
a ðhJavGl;a½g�; ðH � lÞui� hðH � lÞJavGl;a½g�; uiÞ; ð17Þ

where the outgoing and incoming quasi-modes Jav
G
l;a½g� :¼ ua n vGl;a½g� obey

Jav
G
l;a½g� A L2

�~ssðX Þ; ð18Þ

for any ~ss > 1=2 and

ðH � lÞJavGl;a½g� A L2
s ðX Þ � BðXÞ; ð19Þ

for some s ¼ sðm; aÞ > 1=2, and the right-hand side of (17) is well-defined. (18)

follows from ua A L2ðX aÞ and vGl;a½g� A L2
�~ssðXaÞ for any ~ss > 1=2. (19) is proved

considering each term of

ðH � lÞJavGl;a½g� ¼ ðI sa þ Ia � ~IIaÞJavGl;a½g� þ Jað�Da þ ~IIa � laÞvGl;a½g�

¼ ðI sa þ Ia � ~IIaÞJavGl;a½g� þ Jað ~HHa � laÞvGl;a½g�; ð20Þ

where I sa :¼
P

ðijÞEa V
s
ij and ~HHa :¼ �Da þ ~IIa. The proof is given in the Ap-

pendix A.

By the definition (16) and (15), it is easily seen that there exists C > 0

independent of u and g such that

jðQG
l;aðuÞÞðgÞjaCkukB�ðX ÞkgkL2ðCaÞ: ð21Þ
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Therefore, by Riesz theorem there exists h A L2ðC 0
aÞ ¼ L2ðCaÞ such that

ðQG
l;aðuÞÞðgÞ ¼ hg; hi;

for any g A Cy
c ðC 0

aÞ. We denote this h also by the same notation QG
l;aðuÞ.

With these notations we can write

ðQG
l;aðuÞÞðgÞ ¼ hg;QG

l;aðuÞi: ð22Þ

We defined QG
l;aðuÞ in (16) as antilinear functional to make QG

l;a linear with

respect to u and in order not to make complex conjugate g appear in (22) at the

same time.

Summarizing the results above we have the following theorem.

Theorem 1. For any channel ða;Ea; uaÞ obeying (14) and any u A B�ðX Þ
obeying ðH � lÞu A BðXÞ for some l > Ea there exist week limits

QG
l;aðuÞ ¼ w-L2ðCaÞ-lim

r!y
r�1

ð
ra<r

rðna�1Þ=2
a eHiKaðrax̂xa;laÞðpauÞðrax̂xaÞdra: ð23Þ

A useful example is given by u ¼ RðlG i0Þ f , where f A BðX Þ, RðlG i0Þ
:¼ ðH � lH i0Þ�1 and

l A Ea :¼ ðEa;yÞnðsppðHÞ [TðHÞÞ:

This function u is defined by familiar limiting absorption principle (LAP cf. [1,

Theorem 9.4.19]):

RðlG i0Þ A LðBðXÞ;B�ðX ÞÞ: ð24Þ

Notice that H�1
1=2;1ðX Þ and H1

�1=2;yðXÞ in [1, Theorem 9.4.19] correspond to

h�i‘iBðX Þ and h�i‘i�1B�ðXÞ;

respectively.

As we see in the proof of Lemma 4 2. below, we can show

QG
l;aðRðlH i0Þ f Þ ¼ 0:

On the other hand the function QG
l;aðRðlG i0Þ f Þ is in general nonzero, see

Lemmas 4 2. and 5 below.

4. Poisson operators and geometric scattering matrix

Consider a channel a ¼ ða;Ea; uaÞ obeying (14), and consider the quasi-

modes

Jav
G
l;a½g� :¼ ua n vGl;a½g�; g A Cy

c ðC 0
aÞ:
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The assertions (19) and (24) allow us to define for l A Ea the exact generalized

eigenfunctions in B�ðXÞ,

PH
l;a½g� :¼ Jav

H
l;a½g� � RðlG i0ÞðH � lÞJavHl;a½g�; ð25Þ

�PPH
l;a½g� :¼ Jav

H
l;a½g� � RðlH i0ÞðH � lÞJavHl;a½g�: ð26Þ

Remark 2. Since the function

vGl;a½g�ðxaÞ ¼ hðraÞgðx̂xaÞrð1�naÞ=2
a eGiKaðxa;laÞ;

is a spherical wave, PH
l;a½g� is a generalized eigenfunction with a spherical in-

coming or outgoing wave. It is plausible that PH
l;a½g� is a smeared distorted plane

wave and the Schwartz integral kernel of the map g 7! PH
l;a½g� forms a family of

distorted plane waves. In other words, there would exist a family of generalized

eigenfunction uHffiffiffiffi
la

p
oa
;oa A C 0

a such that uHffiffiffiffi
la

p
oa

� ua n eHiðxa�ð
ffiffiffiffi
la

p
oaÞþYaðxa;laÞÞ is an

outgoing or incoming spherical wave, and the following equation holds.

PH
l;a½g� ¼

ð
C 0

a

gðoaÞuHffiffiffiffilap
oa

doa: ð27Þ

Here eHiðxa�ð
ffiffiffiffi
la

p
oaÞþYaðxa;laÞÞ is the ‘‘plane wave’’. Note that we need Yaðxa; laÞ in

the exponent as a modification from the true plane wave in the scattering by long-

range potentials which holds even in the two-body scattering by a Coulomb poten-

tial (see [20, Section 21]). It would be rather di‰cult to obtain the asymptotic

behavior of uHffiffiffiffi
la

p
oa
, because the radial distribution of the scattered wave is known

to be singular even in the two-body Coulomb problem (see [20, Section 21]).

The equation (27) has been proved by [8, page 3808] for the free channel

scattering in which all particles are separated in the N-body problem with rapidly

decreasing potentials. For a general channel with long-range potentials it is an

open problem to construct uHffiffiffiffi
la

p
oa

and prove (27).

Lemma 4 below is based on the uniqueness of solutions to nonhomoge-

neous equations under outgoing (incoming) condition below. For any k; s A R
we let Rk; s be a class of functions p A CyðRn �RnÞ such that

jqg
xq

g 0

x pðx; xÞjaCgg 0hxi
s�jgjhxi�k;

for any g; g 0 A Nn. We set

Rs :¼
\
k AR

Rk; s:

We define the pseudodi¤erential operator OpðpÞ corresponding to p A Rk; s by

OpðpÞ f :¼ ð2pÞ�n

ð
eiðx�yÞ�xpðy; xÞ f ðyÞdydx;
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for any f A SðRnÞ. We let RþðtÞ (resp., R�ðtÞ) denote the class of functions

p A R0 such that on supp pðx; xÞ

inf
x;x

x̂x � x > t resp:; sup
x;x

x̂x � x < t

 !
:

We call u A L2
�sðRnÞ, s > 1=2 is outgoing (resp., incoming), if there exist 0 <

s 0 < 1=2 and e > 0 such that Opðp�Þu A L2
�s 0 ðRnÞ (resp., OpðpþÞu A L2

�s 0 ðRnÞ)
for any p�ðx; xÞ A R�ðeÞ (resp., pþðx; xÞ A Rþð�eÞ). The physical meaning of

outgoing (resp., incoming) properties would be that as time advances, the wave

moves toward the infinity (resp., the origin). The function vþl ½g� (resp., v�l ½g�)
defined in Lemma 1 should be outgoing (resp., incoming), since multiplied by

e�ilt, l > 0 they are spherical incoming and outgoing waves. We can see the

definition of outgoing and incoming properties as above is suitable by the

following lemma.

Lemma 2. vþl ½g� (resp., v�l ½g�) is outgoing (resp., incoming).

Considering the physical meaning of outgoing and incoming properties as

above, we expect that the tensor product Jav
G
l;a½g� ¼ ua n vGl;a½g� of an eigen-

function and an outgoing or incoming wave also satisfies the condition, which

is indeed true.

Lemma 3. Jav
þ
l;a½g� (resp., Jav

�
l;a½g�) is outgoing (resp., incoming).

We defer the proofs of Lemmas 2 and 3 to the Appendix A.

In the following lemma we make use of the many-body version of Som-

merfeld uniqueness result in [14, Theorem 1.3], that is, uniqueness of the out-

going and incoming solution u A L2
�sðX Þ, s > 1=2 to the equation ðH � lÞu ¼ f ,

f A L2
~ss ðXÞ, ~ss > 1=2.

Lemma 4. For any channel a ¼ ða;Ea; uaÞ obeying (14), l A Ea and g A
Cy

c ðC 0
aÞ

1. �PPH
l;a½g� ¼ 0,

2. g ¼ QH
l;aðP

H
l;a½g�Þ,

3. g ¼ QH
l;aðRðlH i0ÞðH � lÞJavHl;a½g�Þ.

Proof. 1. By the definition (26) of �PPH
l;a½g� we have only to prove

Jav
H
l;a½g� ¼ RðlH i0ÞðH � lÞJavHl;a½g�: ð28Þ

We note that Jav
H
l;a½g� and RðlH i0ÞðH � lÞJavHl;a½g� are solutions to the

equation

ðH � lÞu ¼ ðH � lÞJavHl;a½g�;

194 Sohei Ashida



for u. Thus combining Lemma 3 and the fact that Rðlþ i0Þ f (resp.,

Rðl� i0Þ f ), f A L2
s ðX Þ, s > 1=2 is outgoing (resp., incoming) (cf. [6, Theorem

2.12]), (28) follows from the uniqueness of the outgoing and incoming solution

stated above the lemma.

2. By (17), (26) and 1, we have

ðQG
l;aðRðlH i0Þ f ÞÞðgÞ

¼G2�1il�1=2
a ðhJavGl;a½g�; f i� hðH � lÞJavGl;a½g�;RðlH i0Þ f iÞ

¼G2�1il�1=2
a ðhJavGl;a½g�; f i� hRðlG i0ÞðH � lÞJavGl;a½g�; f iÞ

¼G2�1il�1=2
a h �PPG

l;a½g�; f i

¼ 0:

Thus we can see that

QG
l;aðRðlH i0Þ f Þ ¼ 0;

and therefore, by (25)

QH
l;aðP

H
l;a½g�Þ ¼ QH

l;aðJav
H
l;a½g�Þ:

By (23) we can readily check that the right-hand side is equal to g.

3. By (28) we have

QH
l;aðRðlH i0ÞðH � lÞJavHl;a½g�Þ ¼ QH

l;aðJav
H
l;a½g�Þ:

By (23) the right-hand side is equal to g.

Lemma 5. For any channel a ¼ ða;Ea; uaÞ obeying (14), g A Cy
c ðC 0

aÞ and

any f A BðXÞ,

G2�1il�1=2
a hPG

l;a½g�; f i ¼ hg;QG
l;aðRðlG i0Þ f Þi: ð29Þ

In particular, PG
l;a A LðL2ðCaÞ;B�ðX ÞÞ with a strongly continuous dependence on

l A Ea with respect to weak-� topology.

Proof. Applying (17) to u ¼ RðlG i0Þ f we obtain

hg;QG
l;aðRðlG i0Þ f Þi

¼G2�1il�1=2
a ðhJavGl;a½g�; f i� hðH � lÞJavGl;a½g�;RðlG i0Þ f iÞ

¼G2�1il�1=2
a hPG

l;a½g�; f i; ð30Þ
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which is (29). By (21) and (24) we have

QG
l;aRðlG i0Þ A LðBðXÞ;L2ðCaÞÞ: ð31Þ

(31) and (29) imply

PG
l;a A LðL2ðCaÞ;B�ðX ÞÞ:

The continuous dependence on l follows from the second expression in (30),

(20) and (10) combined with regularity of the function Ka and continuity of the

boundary values of the resolvent (cf. [1, Theorem 9.4.19]).

For two channels a ¼ ða;Ea; uaÞ and b ¼ ðb;Eb; ubÞ with the decay con-

dition (14) fulfilled for ua as well as for ub the geometric scattering matrix, or

rather the component given by considering a as incoming and b as outgoing, is

given by

SbaðlÞg :¼ Qþ
l;bðP�

l;a½g�Þ; l A Ea \ Eb; g A Cy
c ðC 0

aÞ:

Alternatively, this quantity is given also by

SbaðlÞg ¼ �Qþ
l;bðRðlþ i0ÞðH � lÞJav�l;a½g�Þ: ð32Þ

Using (29), (32), (17), ðH � lÞPþ
l;b½g� ¼ 0 and (22) we compute the adjoint

S�
baðlÞg ¼ Q�

l;aðPþ
l;b½g�Þ; l A Ea \ Eb; g A Cy

c ðC 0
bÞ: ð33Þ

Lemma 6. The component SbaðlÞ of the geometric scattering matrix extends

to an operator in LðL2ðCaÞ;L2ðCbÞÞ with weakly continuous dependence on l A
Ea \ Eb.

Proof. The assertion SbaðlÞ A LðL2ðCaÞ;L2ðCbÞÞ follows from Lemma 5

and (21). By (32) (22) and (17) we have

hh;SbaðlÞgi ¼ �2�1il
�1=2
b ðhJbvþl;b½h�; ðH � lÞJav�l;a½g�i

� hðH � lÞJbvþl;b½h�;Rðlþ i0ÞðH � lÞJav�l;a½g�iÞ;

for any g A Cy
c ðC 0

aÞ and h A Cy
c ðC 0

bÞ. Thus the continuity follows from (20),

(10) combined with regularity of Ka and continuity of Rðlþ i0Þ.

5. Time-dependent scattering theory and equivalence to stationary definitions

Let us first remember the standard time-dependent definitions. Let

Saðxa; tÞ be a solution to the Hamilton-Jacobi equation

qSa

qt
ðxa; tÞ ¼ jxaj2 þ ~IIað‘xaSaðxa; tÞÞ; ð34Þ
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defined in terms of the Legendre transform of the function Kað�; lÞ (cf. [11,

Section 6]). More precisely, Sa is defined as follows. There exist xaðxa; tÞ A
CyðX �

a nf0g �R;XaÞ and lðxa; tÞ A CyðX �
a nf0g �R;RÞ satisfying the follow-

ing condition: For any compact set L � X �
a nf0g there exists a positive con-

stant T such that for xa A L and t > T we have

xa ¼ ‘aKaðxaðxa; tÞ; lðxa; tÞÞ; t ¼ qKa

ql
ðxaðxa; tÞ; lðxa; tÞÞ:

We define Sa by

Saðxa; tÞ ¼ xaðxa; tÞ � xa þ lðxa; tÞt� Kaðxaðxa; tÞ; lðxa; tÞÞ:

Then for any compact set L � X �
a nf0g there exists T > 0 such that (34) holds

for xa A L and t > T . For any channel a ¼ ða;Ea; uaÞ obeying (14) we can

easily show the existence of channel wave operators by Cook criterion.

Whence we introduce

WG
a :¼ s-lim

t!Gy
eitHJae

�iðSGa ðpa; tÞþEatÞ;

where pa ¼ �i‘xa and SG
a ðxa;GjtjÞ ¼GSaðGxa; jtjÞ.

We combine the Fourier transformation and unitary transformations of the

change of the variables ðla;oÞ ¼ jxaj2; xa
jxaj

� �
and l ¼ la þ Ea. The combined

transformation is denoted by Fa : Ha ! L2ððEa;yÞ;L2ðCaÞÞ and for w A Ha

explicitly written as

ðFawÞðl;oÞ ¼ ð2pÞ�na=22�1=2ðl� EaÞðna�2Þ=4
ð
e�iðl�EaÞ1=2o�xawðxaÞdxa:

The adjoint operator F �
a of Fa is obtained by combining the inverse trans-

formations, and the transformation F �
a f of f ðl;oÞ is explicitly given by

ðF �
a f ÞðxaÞ ¼ ð2pÞ�na=221=2

ð
eixa�xa jxaj�ðna�2Þ=2

f ðjxaj2 þ Ea; x̂xaÞdxa; ð35Þ

where x̂xa :¼ xa=jxaj. By the intertwining property HWG
a � WG

a ðp2a þ EaÞ and

the fact that p2a þ Ea is diagonalized by the unitary map Fa, we can write

ŜSba :¼ FbðWþ
b Þ�W �

a F �
a ¼

ðy
maxfEa;Ebg

l ŜSbaðlÞdl: ð36Þ

Here the fiber operator ŜSbaðlÞ A LðL2ðCaÞ;L2ðCbÞÞ is defined for a:e: l >

maxfEa;Ebg.
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Similarly the restriction of the maps FaðWG
a Þ� has strong almost every-

where interpretations, at least formally in this case,

FaðWG
a Þ� ¼

ðy
Ea

l ðFaðWG
a Þ�ÞðlÞdl:

When applied to f A BðX Þ � L2ðX Þ, we have the assertion below.

Let Ra denote the reflection operator on L2ðCaÞ, and let

cGa ðlÞ :¼ eGðna�3Þpi=4p�1=2l1=4a ; l > Ea:

For l A Ea let us define stationary generalized Fourier transforms by

Gþ
a ðlÞ :¼ cþa ðlÞQþ

l;aRðlþ i0Þ A LðBðX Þ;L2ðCaÞÞ;

G�
a ðlÞ :¼ c�a ðlÞRaQ

�
l;aRðl� i0Þ A LðBðX Þ;L2ðCaÞÞ:

ð37Þ

Theorem 2. For any channel a ¼ ða;Ea; uaÞ obeying (14) and any f A
BðX Þ � H the restrictions ðFaðWG

a Þ� f Þð�Þ A L2ðCaÞ are weakly continuous in Ea.

In fact for any f A BðX Þ

ðFaðWG
a Þ� f ÞðlÞ ¼ GG

a ðlÞ f ; l A Ea:

Proof. We mimic the proof of [15, Lemma 3.8] using as input [11,

Lemma 6.4]. Only a simplified version of the proof of [15, Lemma 3.8] is

needed. We can assume that f A L2
1ðX Þ, and we will consider the plus case

only. For any given g A Cy
c ðEa � C 0

aÞ � L2ððEa;yÞ;L2ðCaÞÞ we have

hFaðW þ
a Þ�f ; gi ¼ h f ;W þ

a F �
a gi

¼ lim
t!y

h f ; eitHJae
�iðSþ

a ðpa; tÞþEatÞF �
a gi

¼ lim
t!y

f ; eitHJa

ðy
0

e�iðlaþEaÞtð2pibðlaÞÞ�1
vþl;a½gðla þ Ea; �Þ�dla

� �

¼ lim
t!y

f ; eitHJa

ðy
Ea

e�iltð2pibðlaÞÞ�1
vþl;a½gðl; �Þ�dl

� �
; ð38Þ

where bðlaÞ :¼ eðna�3Þpi=4p�1=2l1=4a . The third equality follows substituting the

definition

vþl;a½gðla þ Ea; �Þ�ðxaÞ ¼ hðraÞgðla þ Ea; x̂xaÞrð1�naÞ=2
a eiKaðxa;laÞ;

and a formula

e�iSþ
a ðpa; tÞF �

a g ¼ ð2pÞ�na=221=2
ð
eiðxa�xa�Sþ

a ðxa; tÞÞjxaj�ðna�2Þ=2
gðjxaj2 þ Ea; x̂xaÞdxa;
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obtained by (35) into

kð2pÞ�na=221=2
ð
eiðxa�xa�Sþ

a ðxa; tÞÞjxaj�ðna�2Þ=2fðjxaj2; x̂xaÞdxa

�
ðy
0

e�iðlat�Kaðxa;laÞÞð2pibðlaÞÞ�1
hðraÞr�ðna�1Þ=2

a fðla; x̂xaÞdlak ! 0; ð39Þ

as t ! y, which holds for any f A Cy
c ðRþ � CaÞ. The formula (39) has been

obtained in [11, Lemma 6.4] applying the Fourier transformation to the both

terms, inserting cut-o¤ functions for xa=t and xa into the second term, changing

the variable as xa ¼ tya and applying the stationary phase theorem. The index

ðna � 1Þpi=4 of

ibðlaÞ ¼ eðna�1Þpi=4p�1=2l1=4a ;

comes from the factor eips=4 in the stationary phase theorem, where s is

the signature of the Hessian matrix of ya � xa þ la �
ffiffiffiffiffi
la

p
jyaj at ðya; laÞ ¼

ð2xa; jxaj2Þ. Here, ya � xa þ la �
ffiffiffiffiffi
la

p
jyaj appears as the main term of ðxa � xa þ

lat� Kaðxa; laÞÞ=t after the change of the variable xa ¼ tya.

Inserting e�se to the last expression of (38) we obtain

hFaðWþ
a Þ�f ; gi ¼ lim

t!y
f ; eitHJa

ðy
Ea

e�itlð2pibðlaÞÞ�1
vþl;a½gðl; �Þ�dl

� �

¼ lim
e#0

e

ðy
0

e�et f ; eitHJa

ðy
Ea

e�itlð2pibðlaÞÞ�1
vþl;a½gðl; �Þ�dl

� �
dt

¼ lim
e#0

e

ðy
Ea

f ;

ðy
0

eitðH�lÞ�teJað2pibðlaÞÞ�1
vþl;a½gðl; �Þ�dt

� �
dl:

The second equality follows from Abel’s theorem. Integrating with respect to t

gives

hFaðW þ
a Þ�f ; gi

¼ lim
e#0

ie

ðy
Ea

h f ;Rðl� ieÞJað2pibðlaÞÞ�1
vþl;a½gðl; �Þ�idl

¼ lim
e#0

ðy
Ea

h f ; ð1� Rðl� ieÞðH � lÞÞJað2pibðlaÞÞ�1
vþl;a½gðl; �Þ�idl

¼
ðy
Ea

ð2pibðlaÞÞ�1h f ; ð1� Rðl� i0ÞðH � lÞÞJavþl;a½gðl; �Þ�idl: ð40Þ

On the other hand, by (22) and (17) we have
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hGþ
a ðlÞ f ; gðl; �Þi

¼ cþa ðlÞhQþ
l;aRðlþ i0Þ f ; gðl; �Þi

¼ �cþa ðlÞð2�1il�1=2
a Þðh f ; Javþl;a½gðl; �Þ�i

� hRðlþ i0Þ f ; ðH � lÞJavþl;a½gðl; �Þ�iÞ

¼ �cþa ðlÞð2�1il�1=2
a Þh f ; ð1� Rðl� i0ÞðH � lÞÞJavþl;a½gðl; �Þ�i: ð41Þ

Since ð2pibðlaÞÞ�1 ¼ �cþa ðlÞð2�1il�1=2
a Þ, by (40) and (41) we can check

h f ;W þ
a F �

a gi ¼
ðy
Ea

hGþ
a ðlÞ f ; gðl; �Þidl:

Noticing

h f ;W þ
a F �

a gi ¼
ðy
Ea

hðFaðW þ
a Þ�f Þðl; �Þ; gðl; �Þidl;

we obtain the result.

Under the condition of asymptotic completeness and with (14) fulfilled for

all (open) channels we can write, using Theorem 2,

Gþ
b ðlÞ ¼

X
a

ŜSbaðlÞG�
a ðlÞ:

Applying this formula to f ¼ ðH � lÞJav�l;a½g� leads with Lemma 4 3. and (32)

to the identification of SbaðlÞ and ŜSbaðlÞ. However, we will do the identifica-

tion (stated precisely below) under weaker conditions.

Lemma 7. Let g A Cy
c ðEa � C 0

aÞ, where ða;Ea; uaÞ is any channel obeying

(14). Letting fGl;g :¼ ðH � lÞJavGl;a½gðl; �Þ� the map R C l 7! fGl;g is a continuous

L2
s ðXÞ-valued function for some s > 1=2 andð

PH
l;a½gðl; �Þ�dl ¼Gw-H-lim

e#0

ð
ðRðl� ieÞ � Rðlþ ieÞÞ fHl;g dl: ð42Þ

Proof. I. Thanks to (20), (10) and regularity of the function Ka the

map l 7! fGl;g is checked to be a continuous L2
s ðXÞ-valued function for some

s > 1=2.

II. Write i2�1ðRðl� ieÞ � Rðlþ ieÞÞ ¼ PeðlÞb 0 and note the familiarðy
�y

hj;PeðlÞjidl ¼ pkjk2; j A H;
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which follows from Stone’s formula and
Ð a2
a1

RðlG imÞj dm ! 0 as l !Gy
uniformly with respect to 0 < aj < 1, j ¼ 1; 2. By the support properties of

g, familiar LAP bounds (cf. [1]) and Step I we can see that there exists C > 0

such that
Ðy
�y h fGl;g;PeðlÞ f

G
l;gidlaC supl A supp gk fGl;gkL2

s ðXÞ. Thus by Cauchy-

Schwarz inequality, for any j A H we have

j;

ðy
�y

PeðlÞ fGl;g dl
� �����

����a
ðy
�y

2�1ðhj;PeðlÞjiþ h fGl;g;PeðlÞ f
G
l;giÞdl

a 2�1 pkjk2 þ C sup
l A supp g

k fGl;gkL2
s ðXÞ

 !
:

Since kck ¼ supkjk¼1jhj;cij, we can see that the H-valued function given by

the integral to the right in (42) is bounded in e A ð0; 1Þ.
III. We will consider the minus case only. Taking any f A BðX Þ we

compute, using in the second step Lemma 4 1.,

lim
e!0

ð
h f ; ðRðl� ieÞ � Rðlþ ieÞÞ f �l;gidl

¼
ð
h f ; ðRðl� i0Þ � Rðlþ i0ÞÞ f �

l;gidl

¼
ð
h f ; Jav

�
l;a½gðl; �Þ� � Rðlþ i0Þ f �

l;gidl

¼
ð
h f ;P�

l;a½gðl; �Þ�idl:

Since BðXÞ is dense in H, by Step II we obtain the result.

The following theorem is our main result.

Theorem 3. Let two channels a ¼ ða;Ea; uaÞ and b ¼ ðb;Eb; ubÞ with the

decay condition (14) fulfilled for ua as well as ub be given. Then

ŜSbaðlÞ ¼ eipðnaþnb�2Þ=4l1=4a l
�1=4
b SbaðlÞRa; l A Ea \ Eb: ð43Þ

In particular, the map

Ea \ Eb C l 7! ŜSbaðlÞ A LðL2ðCaÞ;L2ðCbÞÞ;

is weakly continuous.

Proof. Let ga A Cy
c ðEa � C 0

aÞ and gb A Cy
c ðEb � C 0

bÞ. By Lemma 7 we

have ð
Pþ
l 0;b

½gbðl 0; �Þ�dl 0;

ð
P�
l;a½gaðl; �Þ�dl A H:
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We compute using Lemma 7,ð
Pþ
l 0;b

½gbðl 0; �Þ�dl 0;

ð
P�
l;a½gaðl; �Þ�dl

� �

¼ lim
e#0

ð ð
Pþ
l 0;b

½gbðl 0; �Þ�dl 0; ðRðl� ieÞ � Rðlþ ieÞÞ f �l;ga

� �
dl

¼ lim
e#0

ðð
2ie

ðl 0 � lÞ2 þ e2
Pþ
l 0;b

½gbðl 0; �Þ�; f �l;ga

* +
dl 0dl: ð44Þ

In the second step we used

hPþ
l 0;b

½gbðl 0; �Þ�;RðlH ieÞ f i

¼ hPþ
l 0;b

½gbðl 0; �Þ�; ðl 0 � lG ieÞ�1
f i; f A BðXÞ;

which follows from ðH � l 0ÞPþ
l 0;b

½gbðl 0; �Þ� ¼ 0. Changing the variable as l 0 ¼
lþ et we can rewrite the last expression in (44) as

lim
e#0

ðð
2ie

ðl 0 � lÞ2 þ e2
Pþ
l 0;b

½gbðl 0; �Þ�; f �l;ga

* +
dl 0dl

¼ lim
e#0

ððy
�y

2i

t2 þ 1
Pþ
lþet;b½gbðlþ et; �Þ�; f �l;ga

� �
dtdl

¼ lim
C!y

lim
e#0

ððC
�C

2i

t2 þ 1
Pþ
lþet;b½gbðlþ et; �Þ�; f �l;ga

� �
dtdl

¼ lim
C!y

ðC
�C

ð�2iÞ
t2 þ 1

dt

ð
hPþ

l;b½gbðl; �Þ�; f �
l;ga

idl

¼ �2pi

ð
hPþ

l;b½gbðl; �Þ�; f
�
l;ga

idl;

where we used that l 7! Pþ
l;b½gbðl; �Þ� is a continuous L2

�sðXÞ-valued function

for any s > 1=2 (cf. the proof of Lemma 5). By (22), (17), ðH � lÞPþ
l;b½gbðl; �Þ�

¼ 0 and (33) the last expression is equal to

4p

ð
l1=2a hQ�

l;aP
þ
l;b½gbðl; �Þ�; gaðl; �Þidl

¼ 4p

ð
l1=2a hgbðl; �Þ;SbaðlÞgaðl; �Þidl:

Summarizing the calculations above we have
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ð
Pþ
l 0;b

½gbðl 0; �Þ�dl 0;

ð
P�
l;a½gaðl; �Þ�dl

� �

¼ 4p

ð
l1=2a hgbðl; �Þ;SbaðlÞgaðl; �Þidl: ð45Þ

On the other hand, applying Lemma 5, the definition (37) of GG
a ðlÞ and

Theorem 2 we can see that for any f A H the following holds.ð
Pþ
l 0;b

½gbðl 0; �Þ�dl 0; f

� �
¼ hW þ

b F �
b ~ggb; f i; ð46Þ

f ;

ð
P�
l;a½gaðl; �Þ�dl

� �
¼ h f ;W �

a F �
a ~ggai; ð47Þ

where

~ggbðlÞ ¼ ð�2�1il
�1=2
b Þ�1

cþb ðlÞ
�1
gbðlÞ;

~ggaðlÞ ¼ ð2�1il�1=2
a Þ�1

c�a ðlÞ
�1RagaðlÞ:

By (45)–(47) and (36) we obtain (43). The second assertion follows from the

first and Lemma 6.

Corollary 1. Under the condition of asymptotic completeness and with

(14) fulfilled for all channels (at least for all open channels) the map

Ea \ Eb C l 7! ŜSbaðlÞ A LðL2ðCaÞ;L2ðCbÞÞ;

is strongly continuous.

Proof. We mimic [22, Theorem 6.7]. By asymptotic completeness ŜSbaðlÞ
is a component of a unitary operator

ŜSðlÞ : 0
a

L2ðCaÞ ! 0
a

L2ðCaÞ:

The strong continuity of a unitary operator follows from weak continuity.

Thus, ŜSðlÞ is strongly continuous, and therefore, ŜSbaðlÞ is also strongly

continuous.

Remark 3. It is an open problem to show the strong (or weak) continuity

of Corollary 1 for long-range potentials without imposing the decay condition

(14). Note that (14) is not needed for asymptotic completeness for a class of

long-range potentials [2]. For short-range potentials the condition is not needed

for the conclusion of Corollary 1 (see [22]). However, this conclusion is not
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known for example for Schrödinger operators with Coulomb pair-potentials with-

out (implicit) decay assumptions on threshold bound states.

A. Outgoing and incoming properties and the boundedness of functions

and operators

In this appendix we prove (15), (19), Lemmas 2 and 3.

Proof of (15). (15) can be proved under the weaker assumption s0 > 1=2

in (14). kpauk2B�ðXaÞ can be estimated as

kpauk2B�ðXaÞ aC1 sup
r>1

r�1

ð
jxaj<r

jðpauÞðxaÞj2dxa

aC2 sup
r>1

r�1

ð
jxaj<r

ð
X a

hxai�2s0 juðxÞj2dxadxa;

because of khxai s0uak2L2ðX aÞ < y by (14). Now for r > 1, let us take Jr A N
such that 2Jr�1 a r < 2Jr . Then we haveð

jxaj<r

ð
X a

hxai�2s0 juðxÞj2dxadxa

a

ðð
jxj<2 Jrþ1

hxai�2s0 juðxÞj2dxadxa

þ
Xy

j¼Jrþ2

ðð
2 j�1<jxj<2 j

jxaj<r

hxai�2s0 juðxÞj2dxadxa

a

ðð
jxj<2 Jrþ1

juðxÞj2dxadxa

þ
Xy

j¼Jrþ2

ðð
2 j�1<jxj<2 j

jxaj<r

ð1þ ð2 j�1Þ2 � r2Þ�s0 juðxÞj2dxadxa

a
XJrþ1

j¼0

kuk2L2ðWjÞ þ
Xy

j¼Jrþ2

ð1þ ð22ð j�1�JrÞ � 1Þ � 22JrÞ�s0kuk2L2ðWjÞ

a
XJrþ1

j¼0

2 jkuk2B�ðXÞ þ
Xy

j¼Jrþ2

ð1þ 22ð j�1�JrÞ�1 � 22JrÞ�s02 jkuk2B�ðX Þ

a
XJrþ1

j¼0

2 jkuk2B�ðXÞ þ
Xy

j¼Jrþ2

2�s0ð2j�3Þþjkuk2B�ðX Þ
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¼ 2Jrþ2 � 1þ 23s0þðJrþ2Þð1�2s0Þ

1� 21�2s0

� �
kuk2B �ðXÞ

¼ 8r� 1þ 22�s0r1�2s0

1� 21�2s0

� �
kuk2B�ðXÞ:

Thus

kpauk2B�ðXaÞ aC2 sup
r>1

r�1 8r� 1þ 22�s0r1�2s0

1� 21�2s0

� �
kuk2B �ðXÞ ¼ C3kuk2B �ðXÞ;

which completes the proof.

Proof of (19). Thanks to (11) the second term in the right-hand side of

(20) belongs to L2
s ðXÞ for some s > 1=2. The first term is decomposed as

ðI sa ðxÞ þ IaðxÞ � ~IIaðxaÞÞJavGl;a½g�

¼ kðxÞðI sa ðxÞ þ IaðxÞ � ~IIaðxaÞÞJavGl;a½g�

þ ð1� kðxÞÞðI sa ðxÞ þ IaðxÞ � ~IIaðxaÞÞJavGl;a½g�; ð48Þ

where supp k � fx : ejxaj > jxajg and kðxÞ ¼ 1 in fx : 2�1ejxaj > jxajg with

some e > 0. Here, we find IaðxÞ � IaðxaÞ ¼
Ð 1
0 x

a‘aIaðtxa; xaÞdt. On supp k

we have

jxja jxaj þ jxaja jxaj þ ejxaj;

and thus

jxajb cjxj; ð49Þ

where c :¼ 1=ð1þ eÞ. Remembering supp g � Can
S

bEa Xb and XðijÞ ¼
fx : xi ¼ xjg, we deduce that for ðijÞE a there exists ~cc > 0 such that
jxi�xj j
jxaj > ~cc on supp g \ fx : jxaj > 1g. Combining these facts yields jxi � xjj >

c~ccjxj on supp kg for ðijÞE a and jxj su‰ciently large. Therefore, we have

j‘aIaðtxa; xaÞj ¼ Oðjxj�1�mÞ uniformly with respect to 0 < t < 1 on supp kg.

Hence by using (18),

kðxÞðIaðxÞ � IaðxaÞÞJavGl;a½g� A L2
1=2þm�e 0 ðX Þ; ð50Þ

for any e 0 > 0. We can also see that by Assumption 1,

I sa ðxÞ ¼ 0; ð51Þ

for jxj large enough on supp kg. Since g ¼ 0 near CanC 0
a ¼ Ca \ ð

S
bEa XbÞ

¼
S

bEafx̂xa A Ca : P
bx̂xa ¼ 0g, by suppðIaðxaÞ � ~IIaðxaÞÞ �

S
bEafxa : jP bxaja
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2ðlnhxaiÞ�1hxaig, and (49) we have

IaðxaÞ � ~IIaðxaÞ ¼ 0; ð52Þ

for jxj large enough on supp kg. Thanks to (14) and Jav
G
l;a½g� ¼ ua n vGl;a½g� we

can see that

ð1� kðxÞÞðI sa ðxÞ þ IaðxÞ � ~IIaðxaÞÞJavGl;a½g� A L2
s0�1=2�e 0 ðXÞ; ð53Þ

for any e 0 > 0. By (50)–(53) the right-hand side of (48) belongs to L2
s ðXÞ for

some s > 1=2 which completes the proof.

For the proofs of outgoing and incoming properties in Lemmas 2 and 3,

we collect standard results of pseudodi¤erential operators. For p1 A Rk; s and

p2 A Rk 0;s 0 by the theorem of compositions of pseudodi¤erential operators (see

e.g., [10, Section 18]), there exists q A Rkþk 0; sþs 0 such that

Opðp1ÞOpðp2Þ ¼ OpðqÞ: ð54Þ

Moreover q has an expansion (see e.g., [16, Theorem 2.7.4])

q@
Xy
l¼0

1

i l l!
½ð�‘x � ‘uÞ lfp1ðu; hÞp2ðx; xÞg�u¼x

h¼x
: ð55Þ

The meaning of the expansion (55) is that the following holds:

q�
Xm
l¼0

1

i l l!
½ð�‘x � ‘uÞ lfp1ðu; hÞp2ðx; xÞg�u¼x

h¼x
A Rkþk 0; sþs 0�m�1:

If p A R0;0, by theorem of L2 continuity of pseudodi¤erential operators (see

e.g., [10, Section 18]) we have

OpðpÞ A LðL2ðRnÞÞ: ð56Þ

We frequently use the following: since hxis A R0; s for any s A R, by (54) and

(56), we have hxisOpðpÞhxi�s A LðL2ðRnÞÞ and therefore,

OpðpÞ A LðL2
s ðRnÞÞ; ð57Þ

for any s A R.

Proof of Lemma 2. Let pH A RHðGeÞ, and w A Cy
c ðRnÞ be a function

such that wðxÞ ¼ 1 for jxj < 1. Then we can write with the convergence in the

sense of distribution

OpðpHÞvGl ½g� ¼ lim
d#0

ð
wðdyÞeiðx�yÞ�xGiKðy;lÞpHðy; xÞgð ŷyÞhðyÞjyj�ðn�1Þ=2

dydx:
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Choosing e <
ffiffiffi
l

p
=2 in the definition of pG, we have

jxH
ffiffiffi
l

p
ŷyj > ðjxj þ

ffiffiffi
l

p
Þ=2; ð58Þ

for ðy; xÞ A supp pHðy; xÞ, and we obtain

ijxH
ffiffiffi
l

p
ŷyj�2ðxH

ffiffiffi
l

p
ŷyÞ � ‘ye

�iy�xGi
ffiffi
l

p
jyj ¼ e�iy�xGi

ffiffi
l

p
jyj:

Integration by parts yields

OpðpHÞvGl ½g� ¼ lim
d#0

ð
eiðx�yÞ�xGi

ffiffi
l

p
jyjfd‘wðdyÞ � ~ppHwðyÞ þ wðdyÞ � ‘ð~ppHwÞðyÞgdydx

¼ lim
d#0

ð
eiðx�yÞ�xGi

ffiffi
l

p
jyjwðdyÞ � ‘ð~ppHwÞðyÞdydx

¼ Opð~ppHÞ � ðeGi
ffiffi
l

p
jxj‘wÞ þOpðð‘ � ~ppHÞhyim 0 Þhxi�m 0

eGi
ffiffi
l

p
jxjw; ð59Þ

where

~ppHðy; xÞ :¼ ijxH
ffiffiffi
l

p
ŷyj�2ðxH

ffiffiffi
l

p
ŷyÞpHðy; xÞ;

wðxÞ :¼ �eGiY ðx;lÞgðx̂xÞhðxÞjxj�ðn�1Þ=2:

Using the estimate (7) we have

eGi
ffiffi
l

p
jxj‘w; hxi�m 0

eGi
ffiffi
l

p
jxjw A L2

�s 0 ðRnÞ; ð60Þ

for 1=2 > s 0 > 1=2� m 0 and ~ppH; ð‘ � ~ppHÞhyim 0
A R0. Thus by (57) we have

Opð~ppHÞ;Opðð‘ � ~ppHÞhyim 0 Þ A LðL2
�s 0 ðRnÞÞ. Combining this continuity and (60)

we can see that the right hand side of (59) belongs to L2
�s 0 ðRnÞ which shows the

outgoing or incoming property.

The following lemma used in the proof of Lemma 3 is proved in the

similar way as Lemma 2.

Lemma 8. If f A CyðRÞ satisfies fðtÞ ¼ 0 near l and fðtÞ ¼ 1 for t large

enough, we have fð�DÞvGl ½g� A L2
�s 0 ðRnÞ for some 0 < s 0 < 1=2.

Proof. Instead of (58) we have

jxH
ffiffiffi
l

p
ŷyj > c;

for some constant c > 0 on supp fðjxj2Þ. Thus we can show the assertion in

the same way as in the proof of Lemma 2 with pHðx; xÞ replaced by fðjxj2Þ.

Lemma 3 is concerned with Jav
G
l;a½g� ¼ ua n vGl;a½g�. Since the energy of

vGl;a½g� is la and the one of ua is Ea, the energy of Jav
G
l;a½g� is finite and we

can insert a cut-o¤ function with respect to the energy (Hamiltonian) Ha :¼

207N-body long-range scattering matrix



�Da þHa in the proof of Lemma 3 below. Because in pseudodi¤erential

calculus we need localization with respect to momentum, we need a relation

between the cut-o¤ functions of the energy and those of momentum. Lemma

9 below provides such a relation. Let a be a cluster decomposition and c A
Cy

c ðRÞ. Let j A CyðRÞ be a function such that supp j � ð1;yÞ and jðtÞ ¼ 1

for t > 2. We define

KC :¼ jð�D=CÞcðHaÞ: ð61Þ

Lemma 9. kKCkLðL2ðXÞÞ < 1=2, for su‰ciently large C.

Proof. Set

Gðt;CÞ :¼ etDjð�D=CÞðcðHaÞÞ2jð�D=CÞetD:

Then we compute for any u A L2ðX Þ

� d

dt
hu;Gðt;CÞui ¼ 2 Rehu; etDjð�D=CÞð�DÞðcðHaÞÞ2jð�D=CÞetDui:

Since ð�DÞðHa � iÞ�1 and ðHa � iÞcðHaÞ are bounded operators and

kjð�D=CÞetDuka e�tCkuk;

we can estimate as

� d

dt
hu;Gðt;CÞuiaC1kjð�D=CÞetDuk2 aC1e

�2tCkuk2; ð62Þ

where C1 :¼ 2kð�DÞðcðHaÞÞ2kLðL2ðXÞÞ.

Noticing Gð0;CÞ ¼ jð�D=CÞðcðHaÞÞ2jð�D=CÞ and integrating (62) with

respect to t, we obtain

kcðHaÞjð�D=CÞuk2 aC1ð2CÞ�1kuk2:

Hence

kKCkLðL2ðX ÞÞ ¼ kK �
CkLðL2ðXÞÞ ¼ kcðHaÞjð�D=CÞkLðL2ðXÞÞ

aC
1=2
1 ð2CÞ�1=2:

Thus we have kKCkLðL2ðXÞÞ < 1=2, for su‰ciently large C.

By Lemma 9 the operator ð1� KCÞ�1 is well-defined. Here we note

that

hxi�sð1� KCÞ�1hxi s A LðL2ðXÞÞ; ð63Þ

holds for any s A R (cf. [6, Lemma 2.3]).
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In the proof of Lemma 3 we insert a cut-o¤ function of momentum using

Lemma 9. However, the operator KC remains in the expression, and the com-

mutator of KC and a pseudodi¤erential operator does not have a good decay

property due to the potential Vij which does not decay in all directions. We

can overcome this problem by considering functions of a kind of first order

di¤erential operator instead of the pseudodi¤erential operator. Since the com-

mutator of Vij and the operator such as 1
2

x
hxi � ð�i‘Þ þ ð�i‘Þ � x

hxi

� �
has a good

decay property ignoring the singularity of Vij, in the proof of Lemma 3 we

replace psudodi¤erential operators by such a di¤erential operator. More pre-

cisely, to allow the singularity of Vij near the origin we use the Graf vector

field w (see [7]) whose norm is bounded and the operator

B :¼ ðw � ð�i‘Þ þ ð�i‘Þ � wÞ=2;

as in [6, page 138]. The commutator of B and ð1� KCÞ�1 decays and we

have

hxi t½B; ð1� KCÞ�1�hxi t 0 A LðL2ðXÞÞ; ð64Þ

for any t; t 0 A R such that tþ t 0 a 1 (cf. [6, Lemma 2.3]). To insert a function

of B we need Lemma 10 below. For any t > 0 we let FþðtÞ (resp., F�ðtÞ)
denote the class of functions f A CyðRÞ such that supp f � ðt;yÞ and f ðtÞ ¼ 1

for t > 2t (resp., supp f � ð�y; tÞ and f ðtÞ ¼ 1 for t < t=2). As in the proof

of [6, Theorem 2.12], we have the following lemma which is convincing by

the expansion of a product of pseudodi¤erential operators (55) considering the

product OpðpHÞFGðBÞ as if B were a psudodi¤erential operator with the symbol
x

hxi � x and FGðBÞ were that with FG
x

hxi � x
� �

.

Lemma 10. Let e be a positive constant.

(1) If p� A R�ðeÞ and Fþ A FþðeÞ, then

hxirOpðp�ÞFþðBÞhxi r A LðL2ðXÞÞ ð65Þ

for any r A R.

(2) If pþ A RþðeÞ and F� A F�ðeÞ, then

hxirOpðpþÞF�ðBÞhxi r A LðL2ðXÞÞ ð66Þ

for any r A R.

The proof of (65) is exactly the same as the proof for the boundedness

of A2 in the proof of [6, Theorem 2.12], except that we replace the constants

rj
ffiffiffiffiffiffiffiffiffi
aðlÞ

p
, j ¼ 1; 2 and r

ffiffiffiffiffiffiffiffiffi
aðlÞ

p
with r; r2 < r1 there by constants e; e2 < e1.

The proof of (66) is similar.
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Remark 4. Our definition of FG is customized to have a convenient form

in the proof of Lemma 11 below. We have 1� Fþ A F�ð2eÞ by our definition.

Lemma 10 holds for more general FG and e A R. In fact, only the support

property and jF ðkÞ
G ðtÞjaCkð1þ jtjÞ�k

, are needed.

Using Lemma 10 and taking a commutator of a function of B and

ð1� KCÞ�1 we can move a pseudodi¤erential operator from the left of

ð1� KCÞ�1 to the right as in the following lemma. We shall prove only

the outgoing case of Lemma 3, since the proof for the incoming case is

completely analogous. Thus the lemmas below are used for the outgoing case.

Lemma 11. Let p� A R�ðeÞ, e > 0, ~jj A Cy
c ðRÞ identifying X ¼ Rn and KC

be the operator in (61). Then there exist ~pp� A R�ð6eÞ and operators T1, T2 such

that

Opðp�Þð1� KCÞ�1 ~jjð�DÞ ¼ T1Opð~pp�Þ~jjð�DÞ þ T2;

and T1 A LðL2
s ðX ÞÞ, hxi tT2hxi

t 0 A LðL2ðXÞÞ for any s A R and tþ t 0 a 1.

Proof. Let Fþ A FþðeÞ. We decompose the operator as

Opðp�Þð1� KCÞ�1 ~jjð�DÞ ¼ Opðp�Þð1� FþðBÞÞð1� KCÞ�1 ~jjð�DÞ

þOpðp�ÞFþðBÞð1� KCÞ�1 ~jjð�DÞ: ð67Þ

As for the second term, by (65), (63) and continuity (57) of ~jjð�DÞ we have

hxi rOpðp�ÞFþðBÞð1� KCÞ�1 ~jjð�DÞhxi r A LðL2ðXÞÞ;

for any r A R. As for the first term, commuting 1� FþðBÞ and ð1� KCÞ�1,

we obtain

ð1� FþðBÞÞð1� KCÞ�1 ~jjð�DÞ ¼ ð1� KCÞ�1ð1� FþðBÞÞ~jjð�DÞ

� ½FþðBÞ; ð1� KCÞ�1�~jjð�DÞ: ð68Þ

By (64) and (57) the second term in the right-hand side satisfies

hxi t½FþðBÞ; ð1� KCÞ�1�~jjð�DÞhxi t 0 A LðL2ðXÞÞ;

for tþ t 0 a 1.

Let us consider the first term in the right-hand side of (68). Let f� A
F�ð6eÞ and ĵj A Cy

c ðRÞ be a function such that ĵjðtÞ ¼ 1 on supp ~jj and set

q�ðx; xÞ :¼ f�ðx̂x � xÞĵjðjxj2Þ;

qþðx; xÞ :¼ ð1� f�ðx̂x � xÞÞĵjðjxj2Þ:
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Then we can easily see that q� A R�ð6eÞ and qþ A Rþð2eÞ. We can decompose

the operator as

ð1� FþðBÞÞ~jjð�DÞ ¼ ð1� FþðBÞÞOpðq�Þ~jjð�DÞ

þ ð1� FþðBÞÞOpðqþÞ~jjð�DÞ: ð69Þ

As for the second term, since ð1� FþÞ A F�ð2eÞ and ~ppþ A Rþð2eÞ, by (66) and

(57) we obtain

hxi rð1� FþðBÞÞOpðqþÞ~jjð�DÞhxi r A LðL2ðXÞÞ;

for any r A R.

By (67)–(69), (63) and the estimates of the operators as above we

obtain

Opðp�Þð1� KCÞ�1 ~jjð�DÞ ¼ T1Opð~pp�Þ~jjð�DÞ þ T2;

where T1 :¼ ð1�KCÞ�1ð1� FþðBÞÞð�D� iÞ�1, ~pp�ðx; xÞ :¼ ðjxj2 � iÞq�ðx; xÞ and
T2 satisfying the condition in the lemma. Since we have

hxi�sð1� FþðBÞÞð�D� iÞ�1hxis A LðL2ðX ÞÞ;

for any s A R (cf. [6, Lemma 2.3]), by (63) T1 satisfies the condition in the

lemma. It is easy to see that the condition ~pp�ðx; xÞ A R�ð6eÞ holds.

In order to utilize the outgoing property of vþl;a½g�, we need to replace

the pseudodi¤erential operator in X by that in Xa. We achieve this aim by

inserting cut-o¤ functions. In the region where jxaj > djxj holds for some con-

stant d > 0, using the decay of ua we have a good decay estimate of Jav
þ
l;a½g�.

The other region is close to Xa and we can introduce the pseudodi¤erential

operator on Xa in such region.

Lemma 12. Let e be a positive constant, ~jj A Cy
c ðRÞ and ~pp�ðx; xÞ A R�ðeÞ.

Then there exist pa
�ðxa; xaÞ A R�ð4eÞ, zðxÞ A CyðXÞ and operators ~TT1, ~TT2, ~TT3

such that

Opð~pp�Þ~jjð�DÞ ¼ ~TT1Opðpa
�Þ þ ~TT2zðxÞ þ ~TT3;

z is homogeneous of degree 0 for jxj > 2, supp z \ fx : jxj > 1g � fx : jxajb
djxjg for some d > 0, ~TT1; ~TT2 A LðL2

s ðXÞÞ and hxi t ~TT3hxi
t 0 A LðL2ðX ÞÞ for any

s A R and tþ t 0 a 1.

Proof. We decompose the operator as

Opð~pp�Þ~jjð�DÞ ¼ Opð~pp�Þ~jjð�DÞ~zzðxÞ þOpð~pp�Þ~jjð�DÞð1� ~zzðxÞÞ

¼ Opð~pp�Þ~jjð�DÞ~zzðxÞ þ ~TT2zðxÞ; ð70Þ
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where ~zzðxÞ A CyðXÞ satisfies supp ~zz � fx : jxaj < 2djxj; jxj > 1g, ~zzðxÞ ¼ 1 in

fx : jxaj < djxj; jxj > 1g for some d > 0 and homogeneous of degree 0 for

jxj > 2, ~TT2 :¼ Opð~pp�Þ~jjð�DÞ and z :¼ 1� ~zz. By the continuity (57) of the

pseudodi¤erential operator Opð~pp�Þ~jjð�DÞ and the support property of ~zz, ~TT2

and z satisfy the conditions in the lemma.

Set a symbol p̂p�ðx; xÞ :¼ ~pp�ðx; xÞ~jjðjxj
2ÞzðxÞ. Then by expansion (55) of

a product of pseudodi¤erential operators, it follows that the first term in the

right-hand side of (70) is decomposed as

Opð~pp�Þ~jjð�DÞ~zzðxÞ ¼ Opð p̂p�Þ þOpðqÞ; ð71Þ

where q A R�1, so that

hxi tOpðqÞhxi t 0 A LðL2ðXÞÞ; ð72Þ

for any tþ t 0 a 1. Choosing su‰ciently small d, on supp p̂p� we have jx̂xaj < ~ee

and jxaj2 < 2C, with ~ee > 0 arbitrarily small, so that choosing su‰ciently small ~ee

x̂xa � xa < x̂x � xþ e < 2e; ð73Þ

on supp p̂p�, where we used ~pp� A R�ðeÞ in the second inequality.

Let ja A Cy
c ðRÞ be a function such that jaðtÞ ¼ 1 on a interval ½�C;C � �

supp ~jjðtÞ and ~ff� A F�ð4eÞ, and set a symbol pa
�ðxa; xaÞ :¼ ~ff�ðx̂xa � xaÞjaðjxaj

2Þ.
Then it is easily seen that pa

� A R�ð4eÞ. Moreover, by jxaj2 a jxj2 we have

1� jaðjxaj
2Þ ¼ 0 on supp ~jjðjxj2Þ, and by (73), 1� ~ff�ðx̂xa � xaÞ ¼ 0 on supp p̂p�.

Combining these support properties we obtain

1� pa
�ðxa; xaÞ ¼ 0 on supp p̂p�ðx; xÞ: ð74Þ

We decompose the first term of (71) as

Opð p̂p�Þ ¼ Opð p̂p�ÞOpðpa
�Þ þOpð p̂p�Þð1�Opðpa

�ÞÞ: ð75Þ

By (74), the expansion formula (55) and (56) we have

hxirOpð p̂p�Þð1�Opðpa
�ÞÞhxi r A LðL2ðXÞÞ; ð76Þ

for any r A R.

Combining (70), (71) and (75) we obtain

Opð~pp�Þ~jjð�DÞ ¼ ~TT1Opðpa
�Þ þ ~TT2zðxÞ þ ~TT3;

where ~TT1 :¼ Opð p̂p�Þ and ~TT3 :¼ OpðqÞ þOpð p̂p�Þð1�Opðpa
�ÞÞ. It follows from

the continuity (57) of the pseudodi¤erential operator Opð p̂p�Þ, (72) and (76) that

the ~TT1 and ~TT3 satisfy the conditions in the lemma which completes the proof.

With the above preliminaries we can now prove Lemma 3.
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Proof of Lemma 3. Our goal is to prove

OpðpHÞJavGl;a½g� A L2
�s 0 ðXÞ;

for some 0 < s 0 < 1=2, where p� A R�ðeÞ and pþ A Rþð�eÞ for some e > 0

identifying X ¼ Rn. We shall consider the outgoing case. We fix e in the

following and will choose su‰ciently small e near the end of the proof. Let

c0 A Cy
c ðRÞ be a function such that c0ðtÞ ¼ 1 near 0. Then by Lemma 8 we

have ð1� c0ð�Da � laÞÞvþl;a½g� A L2
�s 0 ðXaÞ, and thus,

ð1� c0ð�Da � laÞÞJavþl;a½g� A L2
�s 0 ðXÞ; ð77Þ

for some 0 < s 0 < 1=2. By (77) and (57) we have

Opðp�Þð1� c0ð�Da � laÞÞJavþl;a½g� A L2
�s 0 ðX Þ:

Thus we only need to prove

Opðp�Þc0ð�Da � laÞJavþl;a½g� ¼ Opðp�Þc0ð�Da � laÞuavþl;a½g� A L2
�s 0 ðX Þ: ð78Þ

Since Haua ¼ Eaua and la ¼ l� Ea, we have

c0ð�Da � laÞuavþl;a½g� ¼ c0ðHa � lÞuavþl;a½g�; ð79Þ

where Ha :¼ �Da þHa ¼ �Dþ
P

ðijÞaa Vij. Using ~cc A Cy
c ðRÞ satisfying ~cc ¼ 1

near l, the operator c0ðHa � lÞ can be rewritten as ~ccðHaÞ. Let j A CyðRÞ be
a function such that supp j � ð1;yÞ and jðtÞ ¼ 1 for t > 2, and c A Cy

c ðRÞ be
a function such that c ¼ 1 on supp ~cc. Setting j0 :¼ 1� j we have

~ccðHaÞ ¼ ðKC þ j0ð�D=CÞÞ ~ccðHaÞ; ð80Þ

where C > 0 and KC :¼ jð�D=CÞcðHaÞ. By Lemma 9, kKCkLðL2ðXÞÞ < 1=2,

for su‰ciently large C. Therefore, by (80) we can write

~ccðHaÞ ¼ ð1� KCÞ�1j0ð�D=CÞ ~ccðHaÞ;

and therefore,

~ccðHaÞuavþl;a½g� ¼ ð1� KCÞ�1j0ð�D=CÞ ~ccðHaÞuavþl;a½g�: ð81Þ

Since by (77) we have

ð1� ~ccðHaÞÞuavþl;a½g� ¼ ð1� c0ð�Da � laÞÞuavþl;a½g� A L2
�s 0 ðX Þ;

for some 0 < s 0 < 1=2, by (63) and (57) we obtain

Opðp�Þð1� KCÞ�1j0ð�D=CÞð1� ~ccðHaÞÞuavþl;a½g� A L2
�s 0 ðXÞ: ð82Þ
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By (79), c0ðHa � lÞ ¼ ~ccðHaÞ, (81) and (82) we can see that (78) holds if we

show

Opðp�Þð1� KCÞ�1j0ð�D=CÞuavþl;a½g�; ð83Þ

belongs to L2
�s 0 ðXÞ for some 0 < s 0 < 1=2. Defining functions ~jj and Ca;l½g� by

~jjðtÞ :¼ j0ðt=CÞ and Ca;l½g� :¼ uav
þ
l;a½g� A L2

�sðX Þ, Es > 1=2 we can rewrite (83)

as

Opðp�Þð1� KCÞ�1 ~jjð�DÞCa;l½g�: ð84Þ

By Lemma 11, (84) is equal to

T1Opð~pp�Þ~jjð�DÞCa;l½g� þ T2Ca;l½g�;

where T1, T2 and ~pp� satisfies the conditions in Lemma 11. As for the second

term, choosing 1=2 < s < 1 we have

T2Ca;l½g� ¼ fT2hxi
sgfhxi�sCa;l½g�g A L2ðXÞ:

Therefore, we have only to show first term belongs to L2
�s 0 ðXÞ for some

0 < s 0 < 1=2. By Lemma 12 there exist pa
�ðxa; xaÞ A R�ð24eÞ, z A CyðX Þ and

operators ~TT1, ~TT2, ~TT3 such that

T1Opð~pp�Þ~jjð�DÞ ¼ T1
~TT1Opðpa

�Þ þ T1
~TT2zðxÞ þ T1

~TT3; ð85Þ

and satisfying the conditions in the lemma. Using the properties of T1 and ~TT3,

we can easily see that the third term satisfies

T1
~TT3Ca;l½g� A L2ðXÞ: ð86Þ

As for the second term, it follows from the support property of z that there

exists C > 0 such that jhxi s0zðxÞjaCjhxais0zðxÞj. Thus by the decay assump-

tion (14) of ua and vþl;a½g� A L2
�sðXaÞ, Es > 1=2 we have

zðxÞCl;a½g� ¼ zðxÞuavþl;a½g� ¼ hxi�s0hxi s0zðxÞuavþl;a½g� A L2ðXÞ: ð87Þ

As for the first term, the outgoing property of vþl;a½g� implies

Opðpa
�Þvþl;a½g� A L2

�s 0 ðXaÞ; ð88Þ

for some 0 < s 0 < 1=2 and su‰ciently small e. Since ua is obviously in L2ðX aÞ
and Ca;l½g� ¼ uav

þ
l;a½g�, by (88) it follows that

Opðpa
�ÞCa;l½g� A L2

�s 0 ðXÞ: ð89Þ
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Combining (85)–(87) (89) and the continuity of T1, ~TT1, ~TT2 we obtain

T1Opð~pp�Þ~jjð�DÞCa;l½g� A L2
�s 0 ðXÞ;

for some 0 < s 0 < 1=2 which completes the proof. The proof for the incoming

case is similar.

References

[ 1 ] W. Amrein, A. Boutet de Monvel and V. Georgescu, C0-Groups, commutator methods and

spectral theory of N-body Hamiltonians, Birkhäuser, Basel, Boston, Berlin, 1996.
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