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ABSTRACT. In this paper, we give a formula for the number of rational points on
the Dwork hypersurfaces of degree six over finite fields by using Greene’s finite-field
hypergeometric function, which is a generalization of Goodson’s formula for the Dwork
hypersurfaces of degree four. Our formula is also a higher-dimensional and a finite
field analogue of Matsumoto-Terasoma-Yamazaki’s formula. Furthermore, we also
explain the relation between our formula and Miyatani’s formula.

1. Introduction

It is an interesting problem to express the number of rational points on
certain varieties over finite fields by using finite-field hypergeometric functions.
Finite-field hypergeometric functions were introduced independently by Greene
[8], Katz [14], Koblitz [3] and McCarthy [4]. For example, in [5], McCarthy
gave a formula for the Dwork hypersurfaces over finite fields by using his
hypergeometric functions. In [15], Salerno gave a formula for diagonal hyper-
surfaces, which are generalizations of the Dwork hypersurfaces, by using Katz’s
hypergeometric functions.

In [1, Theorem 1.1], Goodson gave a formula for the number of ra-
tional points on the Dwork hypersurfaces of degree four over finite fields by
using Greene’s hypergeometric functions and Jacobi sums. Furthermore, in
[2, Theorem 1.2], she also gave a similar formula in the case of odd degrees
by Greene’s hypergeometric functions and Gauss sums. The purpose of this
paper is to extend Goodson’s result to the Dwork hypersurfaces of degree
six. We give the formula by using Greene’s hypergeometric functions and
Jacobi sums. The formula in [1, Theorem 1.1] and our formula are higher-
dimensional and finite field analogues of the formula of Matsumoto-Terasoma-
Yamazaki [9, Theorem 1], for the complex periods of a Hesse cubic curve, that
is, the Dwork hypersurface of degree three. (For more details, see Remark 5.)
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Now, we explain our formula precisely. First, we recall Goodson’s
results. Let IF, be the finite field with ¢ = p¢ elements, where p is a prime
number. Let 4 be a positive integer. For AelF,, we define the Dwork
hypersurface X f by the projective equation

d_ d d )
Xt +xy 4+ x; =dixixy X

over IF,. Let ]qu be the group of characters on IF in €*. For a character
xeIF;, we extend it by putting x(0) =0. We define the trivial character
€€ ]FX by putting €(x) =1 for any x e IF and extend it by putting €(0) = 0.
Then for y e F*, we define the Gauss sum g(x) by

(27:\/—_1 : tr(x))

g(x) ==Y x(x) exp P

xelF,

where tr is the trace map from IF, to IF,. Note that we obtain g(e) = —1 from
€(0) = 0. Furthermore, for characters y,y € IF*, we define the Jacobi sum by

TOow) =D 2l =x) = > 2(P().
xelF, x+y=1
More generally, for characters yy, x5,.-., X, € ]qu, we define the Jacobi sum by

J(leXZa"'7Xn) = Z Xl(xl)"'}(11(xn>'

X1, €IF
X1+-Fx,=1

Next, we define Greene’s hypergeometric function. For 4,Be ]qu, we define
the normalized Jacobi sum by

(A> Z A(x)B(1 — x) B(;l)J(A,BL

xelF,
where B is the complex conjugate of B. Then for n>1, Ao, Ay,..., A,
By, By,...,B, eIFqX and xeIF,, we define Greene’s hypergeometric function
n+1Fn by
Ay Ay ... A,
F,
s "< Bi ... B)|),

r%ZX (Af‘) () (e 22

A Bi( —
l ] Z A1 AlBl 1- )Ao(l — xy) (n = 1)
yelf,

Then, Goodson obtained the following results.
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THEOREM 1 ([1, Theorem 1.1]). Let ¢ = p° be a power of a prime number
such that q is congruent to 1 modulo 4 and w a generator of IFX We put t =
—1)/4  For .elF, with A +# 0 and 24 # 1, we have
)
T4
g

t 2t 3t

3
q o
):

——i+1mw(1mﬁa—xﬁ+qaa(w

1
C’)3t w3t wt 1
+3q? F —~ -
o) (" )
THEOREM 2 ([2, Theorem 1.4]). Let g = p°® be a power of a prime number

such that q is congruent to 1 modulo 5 and w a generator of ]FX We put t =
(¢g—1)/5. For A€, with A #0 and 2> #1, we have

(a)t o w3 oM 1)
s
A q

€ € €
t 4t

1
5> + 20q22F1 (CO @
2/ €

1>
PE
2/
2

t

%) +306122F1(w w3, iS)
A q o |1/,

In [2, Theorem 1.2], she also explained the formula for the Dwork hyper-
surfaces of odd degrees in terms of Greene’s hypergeometric function. We
remark that the coefficients of Greene’s hypergeometric functions in her for-
mula are products of Gauss sums. From a comparison with Matsumoto-
Terasoma-Yamazaki’s formula for the periods of the Hesse cubic curve over
C, the author considers that their coefficients should be written by Jacobi sums.
(See also Remark 5.)

In this paper, we consider the Dwork hypersurfaces of degree six. For a
generator o of ]qu, we put t:= (¢ —1)/6, ws := &', w3 := 0?, and w, := v
The main result of this paper is the following.

#X}(IF,

€ €

4
q 1
q):—l+q 4F;3

2t 3t
+ 20q22F1 <w @
€

#X (F

w[ w3l
+ 3047 F ( e

THEOREM 3. Let q= p¢ be a power of a prime number such that q is
congruent to 1 modulo 6. For /i elF, with /. #0 and 18 £ 1, we have
: >
6
/4

-1 \ we w3 Wy W3 O
#ﬁmﬂ%jT+%w%x1A%+¢¢4 o T T mE T

€ €

w3 wy @3 1
+3043w6(—1)3Fz( 2 Ts)
€ € | A q
wg Wy | 1
+30q33F2( 6 2 6 _6)
€ € | A q
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_15q3w6(—1)J(w2,cT)3,a_)6)4F3<w6 @6 @3 @3

€ € w?

—20q3w6<—1>J<w6,w3,w2>4&(“’6 @y @3 O

€ w3 W3

we W3
+60q2w6(—1)J(a)6,606,653)](&)2,67)3,@6)3}_'2< 6 3 2

1)
I
2,

€ g

)
),

w3 We W
+60q2J(C()3,a)3,Q)3)J(a)2,C(_)3,C(_)())3F2< ’ 6 :

o)
2%,

— 30¢%J (wg, w6)J (ws, ws,wz),ze(

€ e

03
+90q33F2<w2 @s 6

We W3

we Wy e

%)
2%,

w3 W3

w
— 120q2J(a)6,a)3,w2 2F1 @ 3
€

Sl

03| 1
—180q2J(a)6,a)3,a)2 2F1 @3 @ —

w7 )
—120q2J(w2,6537656)2F1( ’ af %)q
(" o)

w2 | A

e | 1
- 1806/2J(w6,w37602)2F1<w3 e _6>'
w3 | A%/,
REmMARK 4. The right hand side of this formula does not depend on the
choice of w. However, each term of the right hand side of this formula may
depend on the choice of w.

REMARK 5. One of the novelties of the above result is an expression by
using the Jacobi sum. In [9, Theorem 1], Matsumoto-Terasoma-Yamazaki
gave the formula for the periods of the Hesse cubic curve over € by the
hypergeometric series and the beta functions. The Jacobi sum is an analogue
of the beta function. Hence, Theorem 3 and [1, Theorem 1.1] are higher-
dimensional and finite field analogues of the formula due to Matsumoto-
Terasoma-Yamazaki. Furthermore, Theorem 3 and [1, Theorem 1.1] suggest
that [2, Theorem 1.2] can be rewritten by using the Jacobi sum.

Finally, we explain the proof of our formula. In the same way as the
proof of Goodson’s, our proof is based on Koblitz’s formula for the number
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of rational points on diagonal hypersurfaces. In [2, page 145, lines 2 to 4],
Goodson pointed out a possibility to deduce her formula from Miyatani’s
formula in terms of McCarthy’s hypergeometric functions since the relation
between Greene’s hypergeometric functions and McCarthy’s is known in this
case. (We remark that the coefficients of hypergeometric functions in his
formula are not Jacobi sums but products and quotients of Gauss sums. (Cf.
Theorem 21 in Appendix A.) In Appendix A, we give another simpler proof
of our formula based on Miyatani’s formula. We consider that our proof
based on Koblitz’s formula also has its own value since it is more elementary
and self-contained.

2. Example
As a special case of Theorem 3, we give the following example.

EXAMPLE 6. We define the character w € FF)§ by w(zk) = exp(knv—1/6).
(Note that 2 € F\3 is a generator of F;5.) Then w is a generator of F)5. We
put { =exp(2nv/—1/12). For A e, with A #0 and 2° # 1, we obtain

13° -1
13-1

W W3 @ @3 g
+13%- 5
€ € € €

1
),
1
}v_6>13

g W3 3

#XO(IF)3) = 360 - 132w, (1 — 1%)

9
)u6 13

1+30-13° -3F2<w3 @2 @3

€ €

130 133.3F2<“’6 @2 @6
€ €

15133427 - 1)4F3(“"’

1

)

1

o),
1
F)n
1
o

€ € (€9))

—~20- 133(_4c2+3)4F3((/U6 wy; W3 g

€ w3 w3

+60.132(Cz—4)(44“2—1)3F2(w6 @3 @

€ (g

+60-132(32% + 1) (482 — 1)3F> (“‘” @6 @2

)
AV

€ We

+90- 133~3F2<w2 @3 @6

We W3
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B e e Y (e

),
s
17,
7

)
251

w3 3

— 120 132(—4¢2 + 3),F (“’6 @3

— 120 132(4C% — 1)1 F (“’3 @

— 180 - 13%(—4C2 + 3),F, (”3

— 180 - 13%(—4¢* + 3),Fy <w3

3. The proof by Koblitz’s formula

3.1. Identities for the Gauss sums. In this subsection, we give identities
for the Gauss sums. Let w be a generator of IF, which we fix through-
out the rest of this paper. First, we recall the Hasse-Davenport product
relation.

THEOREM 7 ([11, Theorem 10.1]). Let m be a positive integer and let g
be a power of a prime number such that q is congruent 10 1 modulo m. For a
character y e IF of order m and a character € IF , we have

m—1 m—1
1T 9Gv) = =g (m) T 9"
=0 i=0

COROLLARY 8. Let q be a power of a prime number such that q is con-
gruent to 1 modulo 6. For jeZ and t = (q—1)/6, we have

[oo(e™)
o 9(6) [, g(")

Proor. This follows from Theorem 7 applied to m =6, y = w’, and
I;D = a)j‘ D

g(w¥) =

We use the following lemma to prove Theorem 3.

LemMma 1. Let a, b be multiples of t. Then, we have

N
S8}

(@) gl ol (~1)0¥(2) = (¢ - 1)g(0*")o" (1o~ @)1 - 2°).

1
(=}
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ProOF. We can prove this result similarly as in [2, Proposition 3.1].
(Just replace 4 with 6 everywhere.) O

3.2. Koblitz’s formula for diagonal hypersurfaces. In this subsection, we recall
the general formula by Koblitz. Koblitz gave a formula for the number of
IF,-rational points on diagonal hypersurfaces

D;V:x{!+x§l+ 4 X, fd)xf‘ hz-uxf":o,

where d |q— 1, hy +---+h, =d and ged(d,hy, ..., h,) = 1. Let W be the set
of all n-tuples w = (wr,...,w,) of the elements of Z/dZ satisfying >, w; =0,
that is, we put

W = {w:(wl,...,wn (z)dz)"

S -0}

We put ¢ := (¢ — 1)/d. Then it is known that the number of IF,-rational points
on the projective diagonal hypersurface

xl”]—i—---—l—x,”l]:O

is given by >, _, N,(0,w), where
("' = 1)/(g—1) (w;=0 for all i)

Ny(0w) = { (1) Tl g@™)  (wi # 0 for all i) 1)
0 (otherwise).

(For example, see [6, (2.12)] and [12].) We define an equivalence relation ~ on
W by

w~w if w—w' is a multiple of (/y,...,h,).

We denote an equivalence class of w by [w]. Then, we have the following
theorem.

THEOREM 9 ([6, Theorem 2|). We put t:=(q—1)/d. For i€, with
2 #0 and 2% # (K- W)~ we have

#D;(IF,) = > Ny(0,w) + Z an—

weW q [w]eW/~f=

" H—h,/)

o¥(di).  (2)

REMARK 10. The assumptions that A is not equal to zero and A? is not
equal to (hf" -~-h,’j")_] imply that D; is smooth.

REMARK 11. Note that g(w"*"/) itself is not well-defined, and only
[T~ g(w" i) is well-defined since we assume that >, w; and 3, /h; are equal

=

to zero in Z/dZ.
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ReEMARK 12. The notation in Theorem 9 differs from that in [6, Theorem
2]. In [6, Theorem 2], the summation of the second term is over se
(d/(gq—1))Z/Z and we W. We obtain an expression that is equivalent to
the identity (2) by replacing s with ds and summing over se (1/(q — 1))Z/Z.

3.3. An application of Koblitz’s formula. We explain our strategy for proving
the main theorem. As a first step, we apply Koblitz’s formula to the Dwork
hypersurfaces of degree six and we list up all of the elements of W /~. Next,
we calculate the right hand side of the identity (3), which is given in this sub-
section.  From 3,y No(0,w) = 32 cpjn 2owew) Na(0,w), we calculate the
right hand side of the identity (3) for each [w]e W /~.

By (2) with d=n=6 and (hy,...,h,) =(1,1,1,1,1,1), we have the
following.

COROLLARY 13.  For JelF, with 2 # 0 and 28 £ 1, we have

#X}(IF ZNqO”’ Z ZHﬁ wb)

weW [n eW/~ j=0

w"i t+j)

0¥(62). (3)

Let S¢ be the symmetric group of degree six. An action of Sg on W/~ is
naturally defined.

DErFINITION 14. We let

There exists o € Sg such that
k
Wiy ywe]D =< [x1,.. ., x6) € W/~

[Xo.(l), ‘e ,xg(@} = [Wl, ey Wé]
where

There exists g € Sg such that
k:#{[xl,...,xé]eW/~} ° }

[Xa(1), - -+ > Xa(6)] = [W1 -+ -, W]

By abuse of notation, we denote @ =a for ae Z/6Z. Then, we have

W/~ ={[0,0,0,0,0,0]>' U[0,0,0,0,1,5]>** U [0,0,0,0,2,4]»*
U ¢[0,0,0,0,3,3]>" U [0,0,0,1,1,4>% U ([0,0,0,1,2,3]>'*
U ¢[0,0,0,2,2,2]>* U [0,0,0,2,5,5]>% U[0,0,0,3,4,5]>'*
U ¢[0,0,1,1,2,2]>* U [0,0,2,2,4,4]>*° U [0,0,2,2,3,5]>'%

u([0,0,1,3,3,5>" L <[0,0,1,2,4,5])*.
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We put

=

q-2 6
Spy=(g—1)"" Z( g(w"'f’+-’)/g(w6-’)> % (64).
1

J=0

PROPOSITION 15.  We obtain the following identities:

Ny (0, w) + S0,0,0.0,0,0]

wel0,0,0,0,0,0]
51 D D6 | 1
_ 9 +q45F4<w6 w3 wy @3 @ 7) ()
q—1 € € €11/
w3 wy @3 1
Ny(0,w) + Sp0,0,0,0,1,5 = q3w6(—1)3Fz( P 6> (5)
wel[0,0,0,0,1,5) N AV
we wy g 1
Ny(0,w) 4 S0,0,0,0,2,4) = (133Fz( —6> (6)
wel0,0,0,0,2,4] € €11/
W, w3 @g| 1
Ny(0,w) + Sp,0,1,1,2,2) = q33Fz< —6> : (7)
wel0,0,1,1,2,2] We 03|41/,

ProOF. We give the proof of the identity (4). First, we calculate S, .
We obtain

q-—2 i\ 6
1 Gyglw) 6/

S0,0,0,0,0,0] = qj 4(@%) w”(64)
=0

1 -1° 5 it) 6 j 6y

_ (-1) +Zl,1 g(w™) n g(w’)’ g(w >a)6](6/1)
g—1] -1 - = q
j#0,1,..., 51

1 ° i\ 6 1[172 j\6 —6j\,.6]

Ty —1=> 9" +5Zg(w )°g(~ ) (64)
i=1 Jj=0

1 {—q_l—q_IZg(w”)6+

1
Cg—1 q q % q

1
= _——_ Z N,(0,w) +
9 1¢00,0,0.0,0,0] q(q —1) Jj=0
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Second, we calculate the hypergeometric function. We have

%)
2%,

we W3 Wy @3 g
sFy
€ € € €

Cdte 1) & [T (@)
1 2900 690 ! ()
9*(q—1) ,; g(ew)
U (1) Sy o (-64)
q“(q—l){ -1 +_,; q-ol(=1) }
_ ! L s 13209 w964
S vk S e +q;og(“’ Jg(e) w9 (62)
S S VOt
¢ ¢lg-1)
)
= LS e gl 0 6

Here, the first equality follows from the definition of the hypergeometric
function. The second equality follows from the definition of the Jacobi sum.
The third equality is obtained by using Corollary 8. The fourth equality is
obtained by using the identity g(w’)g(w™) = ¢ -w/(-1) for j #0.

This completes the proof of the identity (4). Similarly, we can show the
identities (5), (6) and (7). O

PropoSITION 16.  We obtain the following identities:

Nyg(0,w) + S00,0,0,0,3,3]
wel0,0,0,0,3,3]
w3 w3

we @
= —q3606(—1)J(w27653,656)4F3( 6 e
€ € (€95

y
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Ny(0,w) + Sp0,0,2,2,4,4
we(0,0,2,2,4,4]

2 we wy el 1
= —q J(wG,w6)J(a)6,w3,w2)3Fz( ws @ F)q (9)

Ny(0,w) + Sp0,0,0,2,2,2]
we[0,0,0,2,2,2]

we Wy O3 g
= g w(—1)J (ws, 03, 02)4F3 (

%)q. (10)

Proor. We give the proof of only the identity (8) since we can show the
identities (9) and (10) similarly. From a calculation similar to Si,o,0,0,0,0/, W€
obtain

€ w3 w3

1 q*2g w/ 4g w32 )
$00,0,0,0,3,3 = (@) (6» ) w¥(62)
q— 1 =0 g(w '/>

L I G VIR0 SR I Y CLOW (ko
q—1 -1 q—1 -1

&8 g@) @) g0 )0 (62)

q—l'A0 q

5
= _qjg(w3f)2 _ - ; Zl:g(wlt)4g(w3t+n)2
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3’*’ g(a)’ﬁf')w6j(6/l).

]

Next, we calculate the hypergeometric function. In a similar way to the proof
of the identity (4) in Proposition 15, we obtain

we ¢ 3 w3 1
JFs ( 3 w3 _6)
A q

€ € (69))
JR— JR— J— 1
)J(w’”,w/).}(wﬁﬂ,wJ)J(w‘”ﬂ,cof)J( 2t+j w3t+])wj (16>

¢ Ko'(-1

=1 4
9-1= 4

_ o'(=1) Eg(@ (@390 )@ )g(w]) g(@3 )= Y(4)
P-4 g(@")g(@>)g(w*)g(w™)

o' (=1)J (0", 0*) E2 g(0¥)g(0 ) gl 7)o 9(62)
Fla—-1) = g(@)g(w3+)

_ os(=DJ(@3,0) | (=1)(=1)*g(0*) n (—Dglo™¥)*(=1)

*(qg—1) (—1)g(w™) g(@3)(-1)
2 g0 g(o) glo ) 2o9(6))
D> Por I (-1)
Jj#0,3¢

_o=DJ @) (1 g(e)
-1 (1 Aty

q=2 Nalwo ) a(aw=317) 2=
L SR g(@M)g(07) g0 6(6@)

= Po'(-1)
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7g-1) N

_os(=DJ(w3,0) (=(g=1) _(¢-Dg(¥)’
q q

G g(@Y)g(0™) g0 ) 0= (6)
+2 g*o'(=1)

PE
.](603,602)‘127:2 (wé/) (607/.)4 (6073t7j)26076j(6i)
q5(q _ 1) e g g g
_ J(w3, ) <_UJ6(—1) B 1)
7 q
J (3, 07) &2
? 6 AN —3—j\2, —6)
+q5(q7 1) 2 g(@)g(0™) glw™") Y (64).
Then, the identity (8) follows from the identity
7
J(ws3,07) ¢ 0s(=1)J (@2, @3, ).

ProrosiTION 17. We obtain

Ny(0,w) + Sjo,0,0,1,1,4) + Z Ny(0,w) + Sj0,0,0,2,5,5]

wel[0,0,0,1,1,4] wel[0,0,0,2,5,5]
_ _ we W3 wy| 1
= q’ws(—1)J (ws, w6, @3)J (w3, B3, D6)3 F =
€ we| A/,
)

_ _ w3 e
+qu(wa,w37603)J(wz76037w6)3F2( ¢ o

%)
2%,

ProoF. By an argument similar to that in Proposition 16, we have

Ng(0,w) + S(0,0,0.1,1,4
we[0,0,0,1,1,4]

o w3 ¢ W2
:q2~J(w3,w3,w3)J(w27w3,w6)'3F2(

L
€ we|A° q
o ég(wSt)3g(w3I) + co’(fl)g(coZt)3

+ég<w’>zg<w‘”>

L 0™ + gl g(0") - o' (gl

299
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and
Ny(0,w) + Sj0,0,0,2,5,5]
wel[0,0,0,2,5,5]
we @3 wy| 1
:qzwe(—l)-](wé,ws,w3)J(w2,w3,606)'3F2< o 6)
€ | A/,
l 512 2t (1 4;3_1 13 3t
+qg(w )7g(0™) + o' (=1)g(w™) qg(w) g(@™)
1 1
- 5g(w’)2g(w4’) —o'(=1)g(e™)’ +59(w5’)3g(w3’)~
This completes the proof of Proposition 17. O

In the same fashion as the proof of [1, Proposition 4.6], we can obtain the
following results by using Lemma 8.

ProposITION 18.  We obtain the following identities:

we 3| 1
Ny(0,w) + Sj0,0.0.1,2.3 = —q*J (w6, w3,2)2 Fy 6™ —6> (11)
q

wel0,0,0,1,2,3] o < €|
_ @3 gl 1
Ny(0,w) +S)0,0,0,3,4,5] qu(wz,w3,w6)2Fl< 3T —6> (12)
we[0,0,0,3,4,5] €12/
w3 3| 1
Nq(ovw)"_S[O,O,l,S,&S] :—qu(w6;w37w2)2F1< ’ ’ —6> (13)
wel0,0,1,3,3,5] w2 |27/,
w3 g | 1
Ny(0,w) + S)0,0,2,2,3,5) = _qu(w67w37w2)2Fl< S —6> - (14)
wel0,0,2,2,3,5] CEN AV

ProoF. In the same way as the proof of [I, Proposition 4.6], we
have

U, Uy Ly

wel0,0,0,1,2,3]

— _qut(_l)J(wt7w217w3t) .wt(_l) Z th(y)wSI(l _ y)w4t(1 _ /16)})

Then, the substitution y — y/i6 implies
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Ny(0,w) + Sp0,0,0,1,2,3]
we[0,0,0,1,2,3]

S

_ _quz(_l)J(wt’w%’wSt) . t(q_l) Z th(/f;)wSt(l _;;)wM(l _ y)

yelF,

— _q2w1(_1)J(wt7w2t7w3t) .wr(fl) Z a)Z’(y)a)‘”(l _ y)w5t<1 _ l)

6
4 ¥, A
we W3 1
= —q*J (ws, 3,) - 2 F) — . O
€ /16 q

Finally, we calculate in the case of [w] =10,0,1,2,4,5].

ProrosITION 19. We obtain

Ny(0,w) + Sp.0.1.2.45 = ¢ (1 — 2°).
wel0,0,1.2,4,5]

Proor. First, we obtain

> Ny0,w) = N,(0,(3,3,4,5,1,2))
wel0,0,1,2,4,5]

- ég(w”)Zg<w4'>g<w5’>g<w’>g<wzf> )

Second, we calculate Sy o,1,2,4,5. From Corollary 8, we have

g(’)’ g0 )g(@)g(0*)g(w* )

N =— k A . Y
0.0.1.2.4.3 q—lgg(w )j:() glwi) - g(w3+) (%)
g0’ (-1)g(0*) 3 g(@’) i
q—1 = 9(0¥)

We consider g(w/)/g(w**/). If j # 3t, we have

9(@) _ 9(@Dg@) 1 i 1gtwiglw ),

g(@3)  g(3H)g(w=37) ¢

If j=3t, we have
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By Lemma 1, we obtain

q-2 q—2 1 3t
g(@ g@’) g(™) 45
- g(a)3f+/ = (2;3 g(w3’+/)w Y (4) +g(w3z+3t)w "(4)
= J=0,j#31
I A A o
—2 > W=Dl glo et - glo)
Jj=0,j#3t

-2

{ o™ (=1)g(e’)g(@ )Y (2)

J

=

S
Il
S

wr+3t(_1)g(w3r)g(w—31—3t)w6~3t(/1) } _ g<w3t)

— {0 (=1)+ (g - Dglo o (=D (1 - 29)
—g(@") - (1)} — g(0")
= {lg = Dalo)0™ (1 = 2% + (0™} g0,
Hence, we conclude

Ny(0,w) + Spo,0,1,2,4,5]

wel0,0,1,2,4,5]
1 1
=q 19 g*o'(~1)g(o™) 5{@—1)9(@”) (1=2%) +g(@™)} = g(@¥)
2 3
—yq +q2w3’(1f;6)+qq_‘11

= 20 (1 = 29).
Let us prove Theorem 3.

Proor. From Equation (3), we obtain

q— 2H6 Vi t+] .
#XF(Fy) = Y N,(0,w) Z y AL 6/ »¥(64)
weW wlew/~ j=0

q-2

Z N 0 w Z ZH;— a)é/w l+]) 6/(6;\’)

wleW/~we(w] [w]eW/~ Jj=0



Dwork hypersurfaces of degree six and Greene’s hypergeometric function 303

-2 6 wit+j
= 3 Y NO,w) 11qZH":1 “’5)“’. ) w9(62)

6
wleW/~ | welw] j=0 g( j)

= Z Z Nq(O, W) + S[w]

wleW/~ | welw]

Then, Propositions 15 through 19 complete the proof of Theorem 3. O

Appendix A. The proof by Miyatani’s formula

In this appendix, we give a proof of Theorem 3 by Miyatani’s formula
which is expressed in terms of McCarthy’s finite-field hypergeometric functions.
In [13, Proposition 3.9], Miyatani expressed the number of rational points on
hypersurfaces

X) : C]X[” + - +Cn+1Xan+l = )L,Xl "'X}'H—la

where ieIFqX such that X; is smooth, ci,..., ¢y eIF , and a; == (ay ;. ..,
Ans1,i) € Z'Z’gl with a;; +---+ a1, =n+1 and none of a;’s being equal to
'(1,...,1) (fori=1,...,n+1). Note that the notation X“ means the mono-
mial X“" X" for aj = (ayi,. .., ans1,i).  In our case, McCarthy’s hyper-
geometric function can be expressed as a product of the normalized Jacobi
sums and Greene’s hypergeometric function. (See Proposition 25.) Thus, we
can also obtain Theorem 3, [1, Theorem 1.1] and [2, Theorem 1.2] by Miyatani’s

formula.

A.1. McCarthy’s finite-field hypergeometric functions. In this subsection, we
introduce the finite-field hypergeometric function defined by McCarthy in
(4].

For Ay,...,A,11, Bi,...,Bup eIF we define McCarthy’s finite-field
hypergeometric function w1 Foi by

~ Al An+1 n+lg B_) n+1
n FVL . — _1 .
A ) zn‘ P 1) et

ye]Fx 1=

Furthermore, we use the following notation.

DerINiTION 20.  Let A44,...,A4,.1, Bi,...,B,;1 be characters on ]qu in
C*. By sorting index, we assume that {Ai,..., 4,1} and {Bi,...,Buyi1}
have no intersection and that {A4,2,..., 4,1} and {By2,...,By1} are
equal as multisets. Then we define the hypergeometric function with reduced
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parameters over IF, by

~ A o A ~ A e A
.Fc Red( ! G ax> = n’+1Fn’+1 ( : s 7x> .
Bl te Bn+1 F Bl T Bn’+l IF,

q
A.2. Miyatani’s formula. In this subsection, we recall Miyatani’s formula.
To state his formula, we introduce some notations. For the matrix 4’ :=
(@i = 1)1 2; j<ns1> the kernel 4 of the homomorphism Z"*' — Z"*! defined by
A’ is generated by a uniquely determined vector (o ..., 0,41) with all o; > 0.
(See [13, Proposition 2.2].) We put a := Z,”:ll o;.  Let N be a positive integer
divisible by all «; and «, and we put Zy :=Z/NZ. Let

fN . (ZN)”+1/A _ (ZN)n+1

be the morphism induced by the endomorphism of (ZN)”+1 defined by the
matrix A’ mod N and let di,...,d, be non-zero elementary divisors of A’.
By an isomorphism Im(fy) ~ @, d;Z/NZ, we see that the kernel of fy con-
sists of d:=d,---d, elements. We fix so:='(0,...,0), s1,...,5:-1 € {0,...,
q—2}""" that represent Ker(fy—1). For sj:="(s1,j,...,80+41,;), we put [s;] :==
> iSij, tij=si /o and t; == (3, s:;)/o.  To simplify notations, we put wy :=
'@~ V/F for a positive integer f. Note that wy is well-defined if ¢ is congruent
to 1 modulo . For each j=0,...,d — 1, we put

N &)
Fo Red( (2 ;C)»“) (/=0)
[y] o [on,] F,
LA P ]
77 oF, Red ;CLT” i #0),
q € (wtl'/[a}al} wtn+l.i[wﬁanl:| )]Fq (] # )
where [wg] and o /[wp] are respectively the sequences e, co/;,wé, . ,w'g*l and
', 0" - w0 o, o' -a)g*l, and where C:=a*- [/ (c;/o)™ and

5 1 (lsjj=0modg—1)
Y0 (|sj] #0mod g — 1).

For each j=0,...,d — 1, we put

n+1

y(g) = [T (o e ((=2) ")
i=1

n+1 oi—1 —ti j o bi o—1 ti b
[(69] o] J
% l l glo~") | | 9( - %') glw") g(w Cbuz)
i1 hi=1 g(wsz) =1 g(wy)

For the matrix 4 :=(a;;), we define (n+2)x (n+1) matrix 4 as
4:=(%). For a kxI matrix M := (m;),; with coefficients in Z, we
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define the morphism p(M) : (IF;") — ()" by o(M)((2);-1., = (0" -
y,’,"”) 1.k LetJ:={ji,...,ji} be an arbitrary subset of {1,...,n+ 1} with
t> (n + 1)/2 elements, let o(J) be the number of indices i {1, ...,n+ 1} with

a; ;=0 for all j¢J and let i,...,i,y) be all such indices. (We may assume
that i1,...,i,,) are elements of J. See [13, Proposition 2.1].) Then we put
#J—a(J) .
w= 3> ey ’”ZHM (),
JC{lnt1} =0
(n+1)/2<#]<n
where the most inner sum runs through all elements ‘(xy, ..., %)) € Ker(p(A4))

such that exactly n — 2i + 1 components are non-trivial. Then Miyatani’s for-
mula is the following.

THEOREM 21 ([13, Proposition 3.9]). Suppose that the following conditions
hold:

(1) gq—1 is divisible by all o;’s and by o.

(2) Each s;; is divisible by o; and |sj|(= ;s ;) is divisible by a.

(3) All elementary divisors of the (t+ 1) x a(J) matrix

Qi D

Qj iy iy
1 ... 1
divide q — 1.
Then for . eTF such that X, is smooth and 2" # C(= 0 T er/oi) ™), we
have

n—1 —1
#X,(F Zq +utq" V2D (=) () F(s),

i=

S

T.
[}

where D is defined to be the number of subsets J C {1,2,...,n+ 1} such that #J
is equal to (n+1)/2 and that for all i =1,... ,n+ 1 there exists j ¢ J such that
ajj = 1.

A.3. The proof of the main theorem. First, we give a lemma to apply
Theorem 21 to the Dwork hypersurfaces. From the Hasse-Davenport product
relation (Theorem 7), we have the following.

LEmMMA 2. We have

n+1 n+1

y(s57) = g(@"™)w ™ ( Hw“f c)oll(( Hq @ (o).
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Next, we apply Miyatani’s formula to the Dwork hypersurfaces of degree
six. By definition, ¥ and D in Theorem 21 are equal to zero, and the matrix
A’ is of size 6 x 6 and is given by

5 —1 - —1

4 is the group generated by ‘(1,1,1,1,1,1). (See [13, Example 2.5].) Then,
we have

Ker(fy-1)

= {t(xl,...,)%) € (qul)é/A

6X1='~-=6X6,
X1+ -+x5—5x=0 in qul

= {’(wll (mod g —1),...,wet (mod g—1))

Wi,...,we €Z, tz%
wit+ -+ wst =0 in Z, .

Note that Ker(f,_1) has 6* elements since the elementary divisors of A’ are
1,6,6,6,6,0. (See also [13, Example 3.3].) From Theorem 21 and Lemma 2,
we have the following.

COROLLARY 22. Let ¢ = p¢ be a power of a prime number such that q is
congruent to 1 modulo 6. For J.eF, with 2 #0 and J° # 1, we have

5
6 g -1
wSE) =LY EGe),
4q Sj=1(81,jyeeer 86, 7) € {80584 }
where
6
p(s) = — [ 9(@™)
i=1
and
F(s;)
~ € wg w3 Wy @3 @ 1 .
£ Red(e € € € € € ;F) (/=0)
— F,
) W6 o Hsl/6  2lsl6  3itlsl/6  rtlsl/6 o StHsI/6 ] .
oF. Red S1 7 $ 7 s s, s S 76 (J ;é())
@i @52 @5 % By % 28 )

q
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ReMaRrk 23. For the Dwork hypersurfaces of degree six, condition (1) in
Theorem 21 is equivalent to ¢ = 1 mod 6, and conditions (2) and (3) are auto-
matically satisfied. (See [13, Example 3.3].)

From the definition of Ker(f,—1), an action of the symmetric group of
degree six Ss on Ker(f,—1) is naturally defined. We put

<I(S1, e 756)>k

:_{t(vl7"'7v6) G{SO,...,S«&,I}

There exists a permutation o € Sg
such that ’(D,;(l), ceey 05(6)) =(s1,...,5) )’

where

k = #{1(1)17...,06) € {50,541}

There exists a permutation ¢ € Sg
such that I(UJ“), - 700(6)) = [(Sl g ,SG)

Then, we have
{s0...,86_1} = <’(0,0,0,0,0,0)>" U {’(0,0,0,0,, 5:)>*° U (!(0,0,0,0, 2z, 4) »*
U <!(0,0,0,0,32,36)>" U (/(0,0,0,1,1,41) Y
U !(0,0,0,,2t,31) ' U ¢/(0,0,0, 2¢,2¢,2¢) »*°
U <'(0,0,0,21,51,56)>° U (*(0,0,0, 31,41, 51) »12°
U <(0,0,1,1,22,20)* U (/(0,0,2¢, 2t, 41, 41) >*
U (0,0, 1,3¢,4t,41) > U (0,0, ,3¢, 3¢, 51) Y%
U {!(0,0,1,2t,4t, 51)»,
Next, we calculate A(s) := p(s)F(s) for
s=10,0,0,0,0,0),(0,0,0,0,1,57),...,°(0,0,12t,4t,5¢)
by using Theorem 22.

PrROPOSITION 24.  We have the following identities:

N t 2t 3t 4t 5t
A((0,0,0,0,0,0)) =—5F5(°° v e e ;—6> (15)
€ € € € € A F,
0¥ oM o 1
A('(0,0,0,0,1,5¢)) = —qa)’(—l)3F3( ;—6) (16)
€ € € 1JE

- wt 3¢ St 1
A('(0,0,0,0,21,41)) = —q3F3< ;—) (17)
€ € F
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, ; - CO’ 2t 4t 5t 1
A('(0,0,0,0,3t,31)) = qw (—1)4F4< . w3,;76> (18)
Vs IF,

2t 3t 5t
AC0.0,0.11,40) = a0, 0% 0o 1
€ € o' A

N 3t 4t t 1
A(f(o,o,o,zw,so)=—qJ(w'7wf,w4’)3F3<“’ v ) (20)

€ €

B t 3t 4t 5t 1
A((0,0,0,2£,24,21)) = —qJ (0¥, 0¥, )4F4<“’ oren @

€ € w

N 2t 1
A((0,0,0,3¢,4¢,51)) = —qJ(w’,wzf,w3f)2F2(” @ -7> (22)
IF,

_ w4t 6OSt 1
A(t(oa Oa Oa Z, 2ta3t)) = qJ(w3t7w4r7wSI)2Fz< _) (23)
IF

€ e )0 ,
w3t a)4t C()SI 1
A(1(0,0,1,¢,21,21)) = —qJ (0™, 0, 0>, )3F3< . o 2’;F> (24)
3t St I3
N AN ROl
A('(0,0,2¢,2¢,41,41)) = —q 3F3< Y 4,,5) (25)

- (o ot 1
A('(0,0,¢,3t,41,41)) = qJ (0¥, 0*, w3f,w5f)2F2< ) (26)
w

€ 4[’/16 :
_ th w4t 1
AC0.0,1303050) =~ (7 i) @7
IF‘I
_ wSz 1
A(I(0707 , 2[7 4t7 51)) = _qzwt(_l)lFl ( ’;_6> . (28)
€ | F

Finally, we rewrite Proposition 24 by using Greene’s hypergeometric func-
tion. McCarthy gave the relation between his hypergeometric function and
Greene’s hypergeometric function.

ProposITION 25 ([4, Proposition 2.5)). For characters Ay, ...,An, Bi,...,
B, with Ay #¢€ and A; # B; (i=1,...,n), we have
_ Ay Ay --- A,
nt1Fn ;
+1477+1 ( ¢ B --- B, X>IF

(AN g (Ao AL A,
—\t\s) ) B, ... B,
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Theorem 3 follows from using Propositions 24 and 25 and applying the
identity
Wy,
1Fo(

(see [8, (3.11)]) to the identity (28).

REMARK 26. We can also prove [1, Theorem 1.1] and [2, Theorem 1.2]
similarly.

Acknowledgement

The author is indebted to Professor Shinichi Kobayashi, his supervisor, for
his excellent guidance, patience and constant encouragement. He is grateful
to Professor Kazuaki Miyatani for informing the author about his result and
giving essential advice. He would also like to Professor Noriyuki Otsubo,
Akio Nakagawa and Hiroki Obama for valuable comments and discussion.

References

[1] H. Goodson, Hypergeometric functions and relations to Dwork hypersurfaces. Int. J.
Number Theory 13 (2017), no. 2, 439-485.

[2] H. Goodson, A complete hypergeometric point count formula for Dwork hypersurfaces.
J. Number Theory 179 (2017), 142-171.

[3] D. McCarthy, On a supercongruence conjecture of Rodriguez-Villegas. Proc. Amer. Math.
Soc. 140 (2012), no. 7, 2241-2254.

[4] D. McCarthy, Transformations of well-poised hypergeometric functions over finite fields.
Finite Fields Appl. 18 (2012), no. 6, 1133-1147.

[5] D. McCarthy, The number of IF,-points on Dwork hypersurfaces and hypergeometric
functions. Res. Math. Sci. 4 (2017), Paper No. 4, 15 pp.

[6] N. Koblitz, The number of points on certain families of hypersurfaces over finite fields.
Compositio Math. 48 (1983), no. 1, 3-23.

[7] K. Ireland and M. Rosen, A classical introduction to modern number theory. Second
edition. Graduate Texts in Mathematics, 84. Springer-Verlag, New York, 1990.

[8] J. Greene, Hypergeometric functions over finite fields. Trans. Amer. Math. Soc. 301 (1987),
no. 1, 77-101.

[9] K. Matsumoto, T. Terasoma and S. Yamazaki, Jacobi’s formula for Hesse cubic curves.
Acta Math. Vietnam. 35 (2010), no. 1, 91-105.

(10 G. L. Mullen and D. Panario, Handbook of finite fields, Discrete Mathematics and its
Applications (Boca Raton). CRC Press, Boca Raton, FL, 2013.

[11] S. Lang, Cyclotomic Fields I and II. Graduate Texts in Mathematics, vol. 121, Springer-
Verlag, New York, 1990.

(12] A. Weil, Numbers of solutions of equations in finite fields. Bull. Amer. Math. Soc. 55
(1949), 497-508.



310 Satoshi KUMABE

(13] K. Miyatani, Monomial deformations of certain hypersurfaces and two hypergeometric
functions. Int. J. Number Theory 11 (2015), no. 8, 2405-2430.

(14] N. M. Katz, Exponential sums and differential equations. Annals of Mathematics Studies,
124. Princeton University Press, Princeton, NJ, 1990.

[15] A. Salerno, Counting points over finite fields and hypergeometric functions. Funct.
Approx. Comment. Math. 49 (2013), no. 1, 137-157.

Satoshi Kumabe
Faculty of Mathematics
Kyushu University
Motooka, Fukuoka 819-0395 Japan
E-mail: kuma511ssk@gmail.com
URL: https://sites.google.com/view/satoshi-kumabe/home



