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The moduli space of points in quaternionic projective space
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ABSTRACT. Let .#(n,m;FIP") be the configuration space of m-tuples of pairwise
distinct points in IFIP", that is, the quotient of the set of m-tuples of pairwise distinct
points in IFIP” with respect to the diagonal action of PU(1,n;IF) equipped with the
quotient topology. In this paper, by mainly using the rotation-normalized and the
block-normalized algorithms, we construct the parameter spaces of both .#(n, m; 0Hy;)
and 4 (n,m;P(V,)), respectively.

1. Introduction

Let IF =R,C or H be respectively the set of real numbers, the set of
complex numbers or the set of quaternions, and <{z,w) = w*Jz a Hermitian
product in (n 4 1)-dimensional IF-vector space IF™! of signature (n,1). The
group of transformations of IF"*! preserving this Hermitian product is the
noncompact Lie group U(1,n;IF). That is

U(l,m;F)={ge GL(n+ 1,F) : g*Jg=J}.
These groups are traditionally denoted by
O(n,1) = U(1,n; R), U(n, 1) =U(1,n;C) and Sp(n, 1) = U(1,n; H).

Denote by IP the natural right projection from IF™! — {0} to projective space
IFIP". Let V_, V,, V. be the subsets of IF""! — {0} consisting of vectors where
{z,z) is negative, zero, or positive, respectively. Their projections to IFIP” are
called isotropic, negative, and positive points, respectively. Conventionally,
we denote Hjt = P(V_), oHjt = P(Vp) and Hf = Hj UH}.. The Bergman
metric on Hy is given by the distance formula

z,w) _ <z, wyXw,z)

2 A(
O T vy

zeP(z), we P~ (w). (1)
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The center Z(1,n;F) of U(l,m;F) is {+1,1} if F=R,H, and is the circle
group {el,,,} if F =C. We mention that g€ U(1,n;IF) acts on IFIP” as
g(z) = PglP~!(z). Therefore the holomorphic isometry group Isom(H{.) of Hj-
is actually the quotient PU(1,n;F) = U(l,n;IF)/Z(1,n;TF). We refer to [1, 8,
10, 17] for further details.

Let .#(n,m;FP") be the configuration space of m-tuples of pairwise dis-
tinct points in IFIP”, or equivalently, the quotient of the set of m-tuples of pair-
wise distinct points in IFIP” with respect to the diagonal action of PU(1,#n;TF)
equipped with the quotient topology. It is an important problem in hyperbolic
geometry to parameterize the space .#(n, m; FIP") and study the geometric and
topological structures on the associated parameter space. Such a problem is
called the moduli problem on IFIP” in what follows.

The moduli problems of the cases m =1,2 on JHf are trivial because
U(1,n;IF) acts doubly transitively on JHp when F=C or H. It is well
known that O(n, 1) acts triply transitively on the boundary. To handle the
cases of m > 3, one need to develop some geometric invariants or geometric
tools, such as the distance formula, Cartan’s angular invariant [9, 17], and
cross-ratio [21] etc.

The moduli problem of .#(2,4;0Hg) was considered by Falbel, Parker
and Platis [14, 15, 22, 23]. The main tool is the complex cross-ratio variety
determined by three complex cross-ratios.

The moduli problem of .#(n,m;H¢) was solved by Brehm and Et-Taoui
[3, 4]. Using Bruhat decomposition, Hakim and Sandler considered the
arrangement of n points in certain standard position on RIP"~! [19] and the
moduli problem on H [20].

We need to introduce the concept of Gram matrices of m-tuples in IFIP”
for further discussion.

DerFINITION 1.1, Given an m-tuple p = (p1,...,pm) of pairwise distinct
points in IFP" with lift p= (p,...,p,,) The following Hermitian matrix

G(p) = (95) = (0; 7p)) = (<p;; p:?)
is called the Gram matrix associated to p.

For simplicity, we also say that p is an m-tuple of pairwise distinct points
in IFIP” and p € [F,,4 , the set of (n + 1) x m matrices over IF. The action of
feU(l,n;F) on p is

fp= (fplv"'>fpm)'

By noting that f*Jf =J, we have the following proposition.
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ProrosiTION 1.1.

Gp)=pJp=p/"Jfp=G(fp), VfeU(l,nT). (2)

Given two m-tuples p = (p1,...,pm) and q=(qi,...,4m) in IFP" with
arbitrary lifts p = (p;,...,p,,) and q = (q;,...,q,,). We say that p and q are
PU(1, n; IF)-congruent if there exists an f € U(l,n;IF) such that

S (p;) = q;Ai; 2i # 0, i=1,...,m,
in language of matrix algebra, that is,
fp=4qD, D =diag(41,...,Am), 2 € F —{0}.
Therefore
G(p) =p"Jp=p'f"Jfp=D"q"JqD = D*G(q)D. 3)

Observe that an arbitrary lift of p can be represented by (p4i, ..., pyuin) = pD
and

G(pD) = D*p*JpD = D*G(p)D. 4)

The formulas (3) and (4) imply that Gram matrices contain the information
of the diagonal action of U(1,n;IF) on p. Moreover, a Gram matrix contains
entries {p;,p;», which are base material to construct the corresponding Hermi-
tian geometric invariants. Hence a Gram matrix is a desired tool in handling
moduli problems.

The moduli problem on dH¢ was solved by Cunha and Gusevskii [11, 12]
mainly by Gram matrices. It is interesting to consider these moduli problems
in quaternionic hyperbolic geometry. However, besides the noncommutativity
of quaternions, another essential difference between complex and quaternionic
hyperbolic geometry is the existence of elliptic elements of forms wul,,; in
Sp(n, 1), where e Sp(l). These properties make it difficult to define geo-
metric invariants and determine the representative Gram matrix in its equiv-
alent class.

Brehn and Et-Taoui [5] are the poineers on researching the congruence
classes of m-tuple points in Hy;. By mainly use of Gram matrices, they gave
a congruence criteria on such tuples.

By using quaternionic Cartan’s angular invariant and quaternionic cross-
ratio in Hj;,, Cao [8] solved the moduli problems of .#(n,3;Hj;) and
M (n,4; 0Hyy).

We will continue the research in this direction. In this paper we concen-
trate on the moduli problems of .# (n, m; dHy;) with m > 4 and 4 (n,m;P(V)).
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We need several notations to illustrate our strategies for overcoming the dif-
ficulties mentioned above.
Let v = (vy,...,v,) be a row vector in H' and

1

O, = {puop" = (porp™" .. o) Ve Sp(1)}.

The set O, can be thought of as the orbit of v under the action of Sp(1)/+1.
The procedure of giving a coordinate to the orbit O, is termed by the rotation-
normalized algorithm in this paper. We mention that the rotation-normalized
algorithm stems both from the noncommutativity of quaternions and the ex-
istence of isometries of the form ul,,; in Sp(n,1). Such an algorithm is
indigenous in quaternionic hyperbolic geometry, while obviously vacuous in
complex hyperbolic geometry.

Let i(G(p)) = (ny,n_,ny) be the signature of Hermitian matrix i(G(p)) and
V = span{p,,...,p,,} be of dimension k 4+ 1. There are two different cases of
the moduli problem on P(V.) according to ny +n_=k+1 or no +n_=k
(see Theorem 2.2). V is called parabolic provided that n, +n_ = k. The two
cases are termed by regular and non regular cases in complex hyperbolic plane
[13]. We still use this terminology in quaternionic setting.

When V is parabolic, the Gram matrix G(p) loses the information of the
configuration and only carries the information of the strati-form structure (see
Example 4.1 and Proposition 4.3). This strati-form structure will help us to
break down the space V' = span{p,,...,p,,} into finite 2-dimensional subspaces.
We mention that there exist at most » — 1 such 2-dimensional subspaces in
H"™'. These 2-dimensional subspaces share a common basis which is a fibre
in Vy. In each subspace containing more than three points of the m-tuple, we
need to introduce new invariants (the cross-ratios in IH U o0) to parameterize
their congruence classes. Of particular interest will be the harmonious co-
existence of these 2-dimensional subspaces (see Proposition 5.4).

When V is not parabolic, the Gram matrix G(p) contains the full infor-
mation of the congruence class of p. The moduli problem on P(V)) is trac-
table for each entry in Gram matrix G(p) being nonzero. On handling the
moduli problem on P(V,), the pivotal point is to find a partition of S(m) =
{1,...,m} to perform the rotation-normalized algorithm in each block inde-
pendently. This will help us to tackle the difficulty caused by orthogonality.
Such a method is termed by the block-normalized algorithm.

In our perspective, the parameter of the PSp(n, 1)-congruence class of p
is independent entries of a unique representative Gram matrix when ¥V is not
parabolic. For example, the PSp(n, 1)-congruence class of three points in GHJ%
is its quaternionic Cartan’s angular invariant [1, 8]. We mainly rely on the
rotation-normalized and the block-normalized algorithms to construct such a
moduli space in this paper. Our approaches sound natural and elementary.
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As should be apparent, our ideas and exposition owe a great deal to the
works of the references cited above, especially to those of [12, 13].

The paper is organized as follows. Section 2 contains properties of qua-
ternions, the some basic facts in quaternionic hyperbolic geometry and the
inertia of Gram matrices. These properties provide us with the tool to execute
the rotation-normalized algorithm and initiate the idea of the block-normalized
algorithm. The parameter space of .#(n,1;IP(V,)) is a single point (Theorem
2.1). Section 3 describes the parameter space of .#(n,m;dHy;) for m >4
(Theorem 3.2). This may be thought of as a generalization of those of [8,
12]. The application of rotation-normalized algorithm is fully described. This
method will be mimicked in more complicated cases in succeeding sections.
In Section 4, we mainly refine the structure of Gram matrices. These re-
fined structures are crucial in introducing new invariants in non regular case
and the block-normalized algorithm in regular case. The parameter space of
M (n,2;P(V,)) is also constructed (Theorem 4.2). In Section 5, the parameter
space of .#(n,m;P(V)) with m > 3 is constructed (Theorem 5.2) when ¥ is
parabolic. In Section 6, the parameter space of .#(n,m;P(V,)) with m > 3 is
constructed (Theorem 6.2) when V' is not parabolic.

ReMARK 1.1. The referee kindly informed the author that Gongopadhyay
and Gou etc. [16, 18] also considered the moduli problems of . (n,m;Hyy).
Roughly speaking, the methods used by them can be thought of as choosing
a special form of equivalent Gram matrices and figuring out some numerical
invariants of this Gram matrix. Some data of this Gram matrix and these
numerical invariants are used to present the parameterization of the moduli
space. The method we use is the rotation-normalized algorithm. Such an
algorithm attempts to parameterize the equivalent Gram matrices directly.
All these methods originate from the idea of these papers [4, 5, 8, 12,
13] etc. and share a common spirit in dealing with the noncommutativity of
quaternions.

2. The inertia of Gram matrices
In this section, we will recall some properties of quaternions and obtain

some properties of the inertia of Gram matrices.

2.1. Properties of quaternions. Recall that a quaternion is of the form a =
ap+ aiji + ayj+ ask e H where ;e R and i° =j> =k®> =ijk = —1. Let a=

ap — aii — aj — ask and |a| = Vaa = \/ag + a? + a3 + a? be the conjugate and
modulus of a, respectively. We define R(a) = (¢ + a)/2 and S(a) = (a — a)/2.
Two quaternions a and b are similar if there exists nonzero A€ IH such that
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b=2al"'. Tt is useful to view H as H=C @ Cj. In this way, each qua-
ternion a = ap + a;i + azj + ask can be uniquely expressed as

a=(ay+ai)+ (e +asd)j=c) + 2 = c1 +jé.

It is well-known that the action of Sp(l)/+1 on HH coincides with the action
of SO(3) on R*. We recall it as the following proposition.

PrOPOSITION 2.1.  Denote ¥ = (x, y7z)T for v=xi+ yj+zke H, where
AT is the transpose of a matrix A. For a unit quaternion u= ug+ uji+
wj + usk, we define

A ud —ud—uy 2ugu + 2uous 2uius — 2ugus

M,=| 2wur—2upuy us—ul+ul—ul  2uuy+ 2upu
2 0 oo
2uyus + 2uguy 2upus — 2uguy uy —uy —uy +ug

Then M, e SO(3) and
— ~
vy = M.

LemMA 2.1.  Let vy = x1i+ y1j + z1k and vy = xoi + yaj + 22k such that v{
and v5 are linear independent. Let vy -vy = 0, v;. Then there exists a unique
element e Sp(1)/+1 such that

oo, (nllea)? = (- 02)?,
+ i

= |uli,  fvop = ol | o (5)

PrOOF. Let v; = xji+ y1j+ 21k, v2 = x2i + y2j + 22k and 0 the angle
between v; and ;. Identify (IH) with the 3-dimensional real space Xyz.
Geometrically, by rotating the plane spanned by v; and v, to xy plane and then
rotating around the z-axis or x-axis if necessary, we can obtain a u such that
formulas (5) hold. It is helpful to regard these formulas as

vy = |y i, [ivap = |va| cos bi + |v2] sin 0j.

Suppose that there exists another unit quaternion v satisfying the above equal-
ities. Then we have v~!ulv[izv~' = |v;|i and therefore v~!x is a unit com-
plex number. Similarly we get v~'gjav~! =j which implies that v—'u= +1.
Therefore v=pu or v= —p. Ol

Lemma 2.1 is the foundation of the rotation-normalized algorithm. We
give an explicit formula of such a unique x4 by the following process. Note
that

—(lor]i+ o)vr (Jor[i + v1) = | [o1]i + o1 *[v1 i
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Let
i provided x; <0, y? + 22 = 0;
v=v(1) =4 jlitn . .
Bel(oim Otherwise.
Then
|V| = 17 \_/Ulv = |Ul|i.

Let Vv = ¢1 + ¢2f, where ¢;, ¢; are complex numbers. Since ¢, # 0, we have
e ey = |ey| with el* = ey Therefore u= +ve'® is the desired unit qua-
ternion. By finding the corresponding ¢, and (6), we obtain the following
formula:

i\/%j, provided x; <0, yi +z{ = 0;
w=p(v1,v2) = L 7
4 lmlito otherwise,
2[or|(Jo1]+x1)
where

F =2x(|o1| +x1) (31 + z10) — (Jo1] + x1)* (92 + 220) + (32 — 220) (01 + 20) ™.

2.2. The inertia of Gram matrices. In this paper, the J in quaternionic
Hermitian product {z,w) = w*Jz given in Section 1 will be taken one of the
following forms:

0 0 1

I, 0
J/, = 0 1 or Js = 0 In,1 0
1 0 O

The corresponding quaternionic hyperbolic spaces are usually termed by ball
model and Siegel domain model, respectively. Let C be the Cayley transfor-
mation mapping the ball to the Siegel domain. Then the relation of the two
models can be mainly expressed by the following two equations:

W'z = (Cw)"J(Cz),  g*Jpg=J,=C'J,C=C Y (CgC ) J(CgC)C.

Each model has its own advantage in certain situations. Basically we work
on Siegel domain model only in Section 5.
Note that g*Jyg = Jp, with g = (g1,...,9gu+1), that is,

<giagj>:07 l#]a <givgi>:17 izl,...77l, <gn+lvgn+1>:_1~ (8)
In terms of Gram matrices given by Definition 1.1, we have
G(g)=Jy,  VgeSp(n1).

Based on this observation, we have the following proposition.
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ProposiTION 2.2. Let p=(py,...,p,) and q=(qy,...,q,) such that
PP =<4;,9;0 =1 and {p;;p;» =<4, q;» =0, i # j. Then there is a g€
Sp(n, 1) such that

gp; = q;, i=1,...,m

Proor. By the signature restriction, we have m <n. We can extend

pand q to f=(p,Pyris--->Pur1) and 2 =(q,9q,.,...,9,,;) such that f,he
Sp(n,1). Then g = hf ! is the desired isometry. O

Proposition 2.2 implies the following simple result.
THEOREM 2.1. PSp(n,1) acts transitively on P(V ).

Let z+ = {we H"!: (z,w) = 0} be the orthogonal complement of the
fibre zZIH in H™' and dim,(¥) the quaternionic dimension of a subspace V of
H_InAl.

ProPOSITION 2.3.  We have the following statements concerning the orthog-
onal complements on H™!.
(i) IfzeV_, then z- C V,. There exists an orthogonal basis

{p27""pn+1} C ZL)

dim,(z') =n and {z,p,,...,Pys1} is a basis of H™'.
(ii) If ze Vo, then z- C Vo UVy and z-NVy=2zH. There exist mutu-
ally orthogonal vectors {p,,...,p,} in Vi and

z- =span{z,p,,...,p,}.
(iii) If ze Vy, then
L L i
NV, #J, NV #J, - NV_#J.
There exist mutually orthogonal vectors {p,,...,p,,P,y1} Such that

Span{z, p27 .. '7p11} - V+7 pn+l € V—
and {z,py,...,Pps1} is a basis of H™'.

ProoF. Let ze V_. Then zt C V,. By (8), there exists an orthogonal
basis {p,,...,p,.1} in z-. Hence dim,(z') =n and {z,p,,...,p,,,} is a basis
of H™!. Therefore case (i) holds. Case (iii) follows similarly.

Let ze Vy. We may assume that z=(1,0,...,0, l)T. It is obvious that
wezt is of the form w= (ql,qz,...,q,,,ql)r. Let e; be the standard basis
of H™!. Then e, i=2,...,n belong to z' and

zt =span{z,e,,...,e,}. O
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Recall that 4 e€H, , is called Hermitian if and only if 4 =A4*. Let
H,(IH) be the collection of n x n Hermitian matrices. It is well-known that
the right eigenvalues of A4 € H,(IH) are real and there exists an invertible matrix
B e, , such that B*AB is a diagonal matrix which has only entries +1, —1, 0
along the diagonal. The numbers of +1s, —1s and 0Os are denoted by n,, n_
and ny, respectively. We denote the signature of 4 by

i(A) = (ny,n_,ngp).

PROPOSITION 2.4 ([8, Proposition 1.1]). If z,w e H™! — {0} with <(z,z) <0
and {w,w) <0, then either w =z for some . €I or {z,w) # 0.

PropoSITION 2.5. Let p=(pi1,...,pm) be an m-tuple of pairwise distinct
points in 0Hy; with lift p= (p,...,p,) and m > 2. Then G(p) has a negative
eigenvalue.

ProoF. Let q =p; +p,u with = —{p;,p,>. By Proposition 2.4,

Suppose that the eigenvalues of G(p) are all non-negative. Then there exists
an invertible matrix S € H,, ,, such that

S*G(p)S = diag(1,...,1,0,...,0).

Then x*S*p*JpSx >0, VxeH™. This contradicts (9) when x = S~'/ and
I=(1,u,0,...,00" eH". O

The following proposition is obvious.
PROPOSITION 2.6. Let S be an invertible matrix. Then i(A) = i(S*AS).

A 0
Furthermore assume that S*AS —< Ol 4 > Then
2

i(4) = i(4)) + i(A>).

Let p=(py,...,p;) and q =(qy,-..,q,) such that <{p;,q;> =0 for all i, ;.
Then we have

(p.a)J(p,q) = (G(()p) G?q) ) (10)

We can now prove the following crucial result.
THEOREM 2.2. Let p= (py,-..,Pm) € Hut1,m, V =span{py,...,p,} and

dim, V=k+1,  i(G(p) = i(p"Jp) = (ns,n_. o).
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Then
k<n,+n_ <k+1, n,<n n_<I, ny +n_+ny=m.

In particular, we have the following statements.
(1) Ifp;eVy, i=1,....m, then np. =k, n_=1.
(2) Ifp;eVy, i=1,...,m, then there are three cases:
(1) ny =k, n_=1, in this case V is hyperbolic;
(it) ny=k+1, n_=0, in this case V is elliptic;
(iti) ny =k, n_ =0, in this case V is parabolic.

Proor. Let t=k+ 1. Without loss of generality, we assume that
P;;---,Pp, are linearly independent and

pj:pl;“lj+"'+pt;”ﬁ7 j:t+1""’m'
Let q= (p17-~~,p1)€]I_In+1,t' Then p:q(]t,/l)’ where A:(Alj), I = 17...,l,

I, —A41
j=t+1,...,m Let S= <0t I ) Direction computation shows that
m—t
*Jq 0
S*G(p)S = S*p*JpS = (q ; 1 0)'

Therefore, by Proposition 2.6, we have that
i(p"Jp) = i(q"Jq)-

This implies that ny +n_ <k + 1.

If VN V_+# ¢, then there exists a ze V_ such that V' =zH @ (z' N V).
In the space z* NV, there exist k mutually orthogonal positive lines q,...,q;
such that V = span{z,q,...,q;}. By (10), we have n,. =k, n_ =1 and V is
hyperbolic in this case.

By Proposition 2.5, a space with two different null lines must contain
negative lines. If VNV_ = and VNV, # ¢, then there exists a unique
zZH e V3. The space z' N V contains only k mutually orthogonal positive lines
qp,---,q;. In this case ny =k, n_ =0 and V is parabolic.

If VCV,, then V contains k+ 1 mutually orthogonal positive lines
qr,---,qgy;- In this case ny =k+1, n_=0 and V is elliptic.

It follows from Proposition 2.3 and 2.5 that the statements of (1) and (2)
hold. O

3. Moduli problem on P(7%)

In this section, we will consider the moduli problem on IP(Vy) for m > 4.
The application of the rotation-normalized algorithm is fully described. This



The moduli space of points in quaternionic projective space 265

method will be mimicked conceptually to more complicated cases in Sections 5
and 6.

3.1. Semi-normalized Gram matrix. We recall the following definition in
[1, 8.

DEerFINITION 3.1.  The quaternionic Cartan’s angular invariant of a triple p =
(p1, p2, p3) of pairwise distinct points in Hyy is the angular invariant Ap(p),
0 < An(p) <5, given by

R(—=<{p1, P2 P3))

Aw(p) = Au(p1, p2, p3) := arccos : (11)
I<p1, P2, P37
where py, py, Py are lifts of p1, pa, p3, respectively.
ProposiTION 3.1. Let p = (p1,..., pm) be an m-tuple of pairwise distinct

points in OHy. Then the equivalence class of Gram matrices associated to p
contains a matrix G = (g;) with

7 . —.A
gii:o, l:l,...,m, gifl,izly l:2’.“7m, 913=—e' ’

where A = Ay ((p1, p2, P3))-

Proor. Let p=(p;,...,p,,) be an arbitrary lift of p. We want to obtain
a diagonal matrix D such that G(pD) is the desired Gram matrix.

Note that <{p;,p;,» # 0 for i # j. Firstly we obtain the solutions 4;, i =
2,...,m of the equations below:

<P1aP212> = 11 <p2/ﬂ“2ap3/13> = 17 ey <prn71}“m*17pm}“m> =L (12)
Next, by (6), we let

A= v({p,P343)) V(<P2s P1O<P2, 3> <P1LP3Y)
1= — = . (13)
VIRl \/I<p27p1><pz,p3>“<p1,p3>\

By the property of quaternionic Cartan’s angular invariant, {p;4;,p34341) is a
unit complex with negative real part and therefore

P11, p3ad) = —e i,

Let s = Ji; for i>2, ;= JJ when i is odd, and x4 = 472, ' when i is
even. Then G(pD) is the desired Gram matrix with

D= diag(:ula R num)' D

DerFNITION 3.2, The Gram matrix G as in Proposition 3.1 of the
Sform
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0 1 g1z Jgia - Gim
1 0 1 g - gom
gz 10 1 - g3
Gm)=(g9;)=1| . 14
O (14)
0 1
Jdim ng % 1 0

is called the semi-normalized Gram matrix.

By repeating almost verbatim the arguments used for the complex case
in Theorems 2.1, 2.2 of [12], we obtain the following proposition.

PropoSITION 3.2, Let G = (g;) be a Hermitian m x m-matrix, m > 2
with

. . _iA
gii:07 lzl?"'amv gl’fl,izlv l:27"'ama g13:_el )

where A € [0,7/2]. Let i(G) = (ny,n_,ng). Then G is a semi-normalized Gram
matrix associated with some ordered m-tuple p = (p1, ..., pm) of pairwise distinct
isotropic points in OHyy if and only if

ny <n, n_=1, ny +n_+ny=m. (15)
3.2. The parameter space of .#(n,m;Hy;). The following lemma shows that

a semi-normalized Gram matrix is just an equivalent class, and also indicates
the necessity of performing the rotation-normalized algorithm.

LemMmA 3.1. Suppose that the Gram matrix G(p) is a semi-normalized
Gram matrix for p= (py,...,p,,). Then G(pD) is still a semi-normalized Gram
matrix with D = diag(y,,...,u,,) if and only if

D = ul, =diag(p,...,n),  pe ™ =e Py peSp(l).
Proor. It follows from
<P,;1,Ui717P,'/l,'> = 17 i:2,...,m

that all those y; with i odd are equal, and so do for all those u; with i even.

The fact {pip, pspiz) = —e~* implies py = p3. Hence py = py =+ =, ==
u and pe b = e7iby,
Set t = ("H)zﬁ We can represent a semi-normalized Gram matrix by

a t-vector:

vG = (913,914,924 - - Glms - - Gm—2.m)- (16)
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Also we represent
G = G(vg). (17)

Recall that two Hermitian matrices H and H are equivalent if there exists
a diagonal matrix D such that H = D*HD (see [8, 12]). By Lemma 3.1, we
obtain the following result.

LEMMA 3.2. Let G and G be two semi-normalized Gram matrices repre-
sented by vg and Vg Then G and G are equivalent if and only if

0,, =0,,. (18)

From this, Proposition 3.2 can be reformulated as follows.

vG

PROPOSITION 3.3. Let v= (vy,...,v;) with vy = —e"®, Ae[0,n/2]. Let
i(G(v)) = (ny,n_,ng). Then G(v) is a semi-normalized Gram matrix associated
with some ordered m-tuple p = (py, ..., pm) of distinct isotropic points in 0Hy; if
and only if

ny <n, n_=1, ny+n_+ny=m. (19)

DEFINITION 3.3,
Vinym) = {v=(v1,...,v) : i(G(v)) = (ny,n_,ng) with ny <n,n_ =1}

By Lemma 3.2, there is an equivalent relation in V' (n,m) defined by (18).
Therefore the configuration space .#(n,m;dHj;) can be thought of as the
quotient of V(n,m) under this equivalent relation. That is

M(n,m; 0Hy;) = V(n,m)/~.

Based on this observation, we are ready to construct the parameter space
M(n,m) for V(n,m)/~ with the rotation-normalized algorithm. We mainly
rely on Lemma 2.1 to execute the rotation-normalized algorithm.

This procedure can be described conceptually as follows:

In case A =0, or equivalently, —e # = —1, we basically need to find two
entries v; and v; in v e V(n,m) with 3(v;) and I(v;) being linearly independent
to specific the parameters for its representing equivalent class, whilst only a
quaternion in H — € in the case of A # 0.

The above conceptual description is a motivation of the definition of the
following sets.

Let

R* = {veH:v=xy+ x1i+ x2j, x3 > 0},

R ={veC:v=1x0+xi,x >0}
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DEerINITION 3.4.  We define the following sets.

) (n,m):v ¢ Rov; e, for i=2,...,t};

) (n,m) :v; ¢ R,v; € C, fbri<j,u,<elR2+}, j=2,...,t
ZMR)={veV(nm):v;eR fori=1,...,t};

) (n,m):v,eR, for t <iv;e R}, i=2,...,8

) (n,m) :v, e Rt < iyv; e R 0, e €1 < jv; e R*TY
for j=2,...,t 2<i<].

We remark that the sets defined above is roughly divided by two cases:
A #0 and A =0. Each case is refined according to the positions in which
Lemma 2.1 acts. Roughly speaking, such a Z(i, j) looks like
Z(i,j) = (-1,R*,...,R* R, €*,...,C*,R>* H* ..., H").

i—1 j—i—1

Let
P(n,m) = P(C)UP(j),  Z(n,m)=Z(R)UZ(CT,j)UZ(,j)
and
M(n,m) = P(n,m) U Z(n,m).
THEOREM 3.1. M(n,m) is a parameter space of V(n,m)/~.

PrOOF. Let v = (vy,...,v,) € V(n,m), where v; = —e #. We define a
map

VY :0, € V(nm)/~— M(n,m) (20)

by the following steps:

The equivalent class O, with A # 0 will be mapped to an element in
P(n,m). Tt is obvious that fvu e V(n,m) if and only if x e U(1). If all entries
of v are complex numbers, then O, is represented by v itself. Equivalently,
the parameter of O, assigned by ¥ in IM(n,m) is v which belongs to € P(C).
Otherwise, let j be the smallest index among entries of v such that v; e
H-C. Letpu=pu(3(v1),3(v;)) given by (7). Therefore O, is assigned to the
parameter jvu, which belongs to P(j).

The equivalent class O, with A = 0 belongs to Z(n,m). More precisely, if
all entries of v are reals, then O, is represented by v itself belonging to Z(R).
We divide the remainder into two cases. If all entries of v are complex
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numbers with i being the smallest index such that v;e C —IR. Let u=
v(S(v;)) be given by (6). Then we assign O, to jwu, which belongs to
Z(C,j). For the latter case, let i be the smallest index such that
v;ieC—R and j the smallest index such that v;elH—-C. Let
u=u(S(vi),3(v;)). Then we assign O, to zvu, which belongs to Z(i, j).
By Lemma 2.1 and the constructions of P(n,m) and Z(n,m) above, the
map V¥ is bijection. Therefore IM(n,m) is a parameter space of V(n,m)/~.

O

THEOREM 3.2.  The configuration space M (n,m;0Hy;) is homeomorphic to
M(n, m).

ProOF. Let m(p) € .#(n,m;0Hy;) be the point represented by p=
(p1y---ypm). We can get a semi-normalized Gram matrix G with arbitrary
lift of p. Proposition 3.3 and Theorem 3.1 imply that we can define a map

T :m(p) € M (n,m; 0Hy;) — Y (vg) € M(n, m).

This map is a bijection. Such a map is a homeomorphism because IM(n,m)
has the topology structure induced from IH'’. O

We conclude this section by some remarks. Firstly, if we allow m = 3 in
our process then we get the parameter of quaternionic Cartan’s angular invar-
iant A (in fact a complex number —e~#); while the case of m = 4 is exactly
the result in [8]. Secondly it seems that the parameters of m-tuples in Z(IR),
Z(R)UZ(C,i) U P(C) can be thought of as m-tuples living in a copy of 0Hy
and 0H¢, respectively.

4. The structure of Gram matrices of points on P(77)

The main purpose of this section is to refine the structures of Gram
matrices. These refined structures are crucial in introducing new invariants
in non regular case and the block-normalized algorithm in regular case.

4.1. 1-normalized Gram matrices.

ProposITION 4.1.  Let p = (pi1,..., pm) be an m-tuple of pairwise distinct
points in P(V,). Then the equivalence class of Gram matrices associated to p
contains a matrix G = (g;) with

gi=1, i=1,...,m, gi; =0, j=2,...,m.

Proor. Let p=(p;,...,p,,) be an arbitrary lift of p. We want to obtain
a diagonal matrix D; such that G(pD;) is the desired Gram matrix.
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We may assume that {p,,p,> =1 by noticing that

1
iAisPidiy =1, for Z; = 4/ )
<p b > <p[’ pi>

For i=2,...,m, let

2= ﬁﬁffﬁfip provided {p;,p;> # 0; 1)
1, otherwise.

Then there exists a 4; € Sp(1) such that A /1_3<p2,p3 YA21 1s a complex number
with non-negative imaginary part if <{p,,p;> #0. Then

G(plll s pz;nzih e ,pn,l}vmil)

is the desired Gram matrix. In other words, G(pD;) is the desired Gram
matrix with

1 I I
Dy = dia I, Johs e\ | | (22
1 g(\/<p1,p1> 1 \/<pz,pz> i P P 1) ( D)

DEerINITION 4.1. The Gram matrix G as in Proposition 4.1 of the
form

1 diz. 913 dJ14 - Gim
g2 1 g3 gu - Goum
g3 93 1 gu - Gm
G= (qu) - gi4 ﬁ ﬁ 1 ctr Y4m (23)
Jim 92m G3m  Gam -1

is called the 1-normalized Gram matrix.
The following result can be shown similarly as Proposition 3.2.

THEOREM 4.1 ([13, Proposition 3.2]). Let G = (g;) be a Hermitian m x m-
matrix, m > 2 with

gi=1 i=1,...,m, gy =0, j=2,....m.

Let i(G) = (ny,n_,ng). Then G is a 1-normalized Gram matrix associated with
an m-tuple of pairwise distinct points in P(Vy) if and only if

l<n,+n_<n+1, n.<n n_<lI, ny+n_+n=m (24)



The moduli space of points in quaternionic projective space 271

4.2. The parameter space of .#(n,2;IP(V,)). In this subsection, we will con-
struct the parameter space of .#(n,2;P(V;)). We need the following lemma,
which is easy to be verified. We refer to [2, 6] for more details of Sp(l,1).

LemMa 4.1. Let geSp(2,1) and e =(0,1,00" e H>' such that
ges =eu. Then g is of the form

&S
Il
o o 2
ox® ©
[V O >

where

b
(Z’ d) eSp(1,1)  and  peSp(l).
THEOREM 4.2. The configuration space M (n,2;IP(V,)) is homeomorphic to
{teR:1=0}.

ProoF. It is obvious that we can work in IH>! in this situation. By
Proposition 4.1, we only need to show that there exists a g € Sp(2,1) such

ﬂ A
that gp, = ay/s and gp; = ax72 when G((py,p) = Gl @) =, 1 ) with

t > 0. By noting Proposition 2.2, we only need to consider the case ¢ # 0.
Observe that ¢ # 0 implies 4; = 4,.  Since Sp(2, 1) acts transitively on P(77),
we may further assume that

plqu:(ovlvo)Ta p2:(x17t7x3)7 q2:(y17[7y3)Ta
where |x3|% = |xi|* = |y3|* = [»|* =2 — 1. By Lemma 4.1, we need to find
b .
an element f = (j d> e Sp(1,1) mapping (x1,x3)" to (y1,y3) u. The fact

that Sp(1,1) acts doubly transitively on OHL;, transitively on HL;, and on

IP(V,) respectively, concludes the proof. O
4.3. The structure of Gram matrices of points on IP(7.). In what follows,
we assume that G(p) is already a l-normalized Gram matrix.

ProposITION 4.2. Let p=(py,.-.,p,) be a t-tuple of pairwise distinct
points in (V) satisfying

<p15p/>:17 i,jil,...,t
and V = span{p,,...,p;}. Then there exists a unique fibre zIH € Vi such that
vV Cazt, VN Vy=zH, Vyav. =g.
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In fact
z=p,—p;, V =span{p;,p,} = span{z,p}.
PrOOF. Let u=p; 4 +py42 € V. Then
uuy = |42+ |7a)? + 2R(ZA) > 0. (25)

Note that {u,u) =0 if and only if 4; = —4>. Hence (p, — p;)H is the unique
fibre of the intersection span{p;,p,} N Vo and span{p;,p,} N V- = . By
noting that {p, — p;,p; — p;> = 0 and <{p; — p;,p, — p;)> = 0 for i # j, by Prop-
osition 2.4, we have (p, —p;)H = (p; —p;)H. Since {p;, (p; —p,)> =0, i =
1,...,1, we have V C (p, —p,)". It follows from p, —p, € (p, —p;)H that
there exist A; such that

P, =P+ (P2 — P1)4i = Podi +Pi(1 — 4), i=1,...,1
This implies that
V' = span{p;,p,} = span{z,p; }
and therefore VN Vy=zH, VNnV_= . O

The information of A; disappears in the sub Gram matrix G((p;,...,p,))-
Moreover, such information can not be rebuilt through the relationships with
other points in some situations. This implies that the Gram matrix loses the
configuration information of such a t-tuple. We provide the following explicit
example in ball model to illustrate this phenomenon.

ExampLE 4.1. Let z=(1,0,1)" € Vy and p, = (0,1,0) € V+. Let p, =
p, +iz, i=2,3. Then

111
G((p1,p2,3)) = G((p3,p2spy)) = 1 1 1
111

We claim that (P(p,), P(p,), P(p3)) and (P(p;), P(p,), P(p,)) are not PSp(2, 1)-
congruent.

PrOOF (Proof of the Claim). Suppose that the two triples above are
PSp(2, 1)-congruent. Then there exists a g € Sp(2,1) such that

gp1 = Psh, 9P =Prl2,  gP3 = P43
It follows from

<gpi, 9p;> = <9p;» 9p;> = <PisP;» =1



The moduli space of points in quaternionic projective space 273

that 2; € Sp(1) and /l_jxl,- =1, and therefore A; = 1, = 43 := 4. Hence
g2z =g(p — p1) = (P — P3)A = —24,
which contradicts

gz =g(p; — p2) = (P — P2)4 = —22/. ]

If V is parabolic, by Proposition 4.2, we can refine Theorem 2.2 as
follows.

ProposiTioN 4.3. Let p= (p,---,Py) € Hut1.m» V =span{p,...,p,}
and

dim, V=~k+1, i(G(p)) =i(p*Jp) = (k,0,m — k).
Then S(m)={l,...,m} has a partition:
Si:{si17~"7sl't,-}7 Sit < e < Sigg l:1,,k (26)

with the properties

S(WZ):USI’ <ps,,aps,l,>: 11 1 Sl7d§l‘la <p5,»l7p5_‘/‘d>:O> l7é] (27)

and in each

pS,- = (psna ) ps,',l )7

we can not partition likewise as in (27).
There exists a common 2y € Vy such that p €z and

Py, = Py, + Zoki, 1 </ < Card(S;), i=1,...,k, (28)
where Card(S;) is the cardinality of S;. We define
Vi = span{p,, ;... ,psni} = span{p,, , 7}, i=1,... k. (29)
If V' is not parabolic, we can refine Theorem 2.2 as follows.

ProprosiTION 4.4. Let p=(p;,-..,Pn) € Hys1,m, V =span{p;,...,p,}
and

dim,V =k +1, i(Gp) =ip*Jp) = (k,1,m—k—1) or
(k+1,0,m—k—1).
Then S(m) ={1,...,m} has a partition:

Si:{sila"'asiff}a Sip < v < Sigys izl,...,S (30)
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with the properties
Sm)={JS:  <pypy,>=0, i#) (31)

and in each pg, := (py,,---,Py, ), we can not partition likewise as above.

It is helpful to keep in mind that there are no relationships among the
blocked-entries corresponding to each components pg, in the diagonal matrix D
in (4). This is the motivation of refinement of Theorem 2.2. Furthermore,
when V' is not parabolic, we still need to partition the components S; in some
situations.

5. The moduli problem on IP(7,) of non regular case

We will work on the Siegel domain in this section. We will construct
invariants which describe the PSp(n, 1)-congruence classes when ¥V is parabolic.
We first recall the following fact of isometries in Sp(n,1) fixing co.

LemMa 5.1 (c.f. [10, Lemma 3.3.1]). Let z, = (1,0,...,0,0)", P(z,) =
and

G, ={9€eSpn1):g(w)=c0}.

Then g € Gy, is of the form

g= (32)

S O >

y*
U
0

T ™ =

where A,u,seH,p,ye H"!, UeSpn—1
—-Uypu.

> |ﬂ/1| = 1; %(ﬁs) = _%|ﬁ‘2) ﬁ =

~—

Let p=(p;,...,p,,) and q=(q;,...,q,,) be two ordered m-tuples of
pairwise distinct points in IP(V,) such that V(p) and V(q) are parabolic.
Observe that if p and q are PSp(n, 1)-congruent, then they have the same
structure given by Proposition 4.3. Since Sp(n,1) acts doubly transitively on
0Hj;, we can further assume that p,qez:. As showed by Example 4.1,
besides the information of structure, other conditions are needed for p, q being
PSp(n, 1)-congruent.

In what follows, we assume that m >3, V(p) = span{p,,...,p,} is par-
abolic and V(p) C z-. It is obvious that

z; = (zl,...,zn,O)T = (zl,ocT,O)T.
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Therefore the action of ge G, on z1 can be expressed by

7 Azl + y*a
g:|l o] — Uo
0 0

The restriction of the Hermitian form (,) on z. is the usual inner product
on H" ! ie.,

<(k1, Oﬁl,O)T, (kz, OCQ,O)T> = rx;ocl.

For g with the form (32), we define the map

(AT =
1I - - = -
geGy — g <0 U) eqG (33)
Then I7 is a homomorphism with
I 0 =
ker(IT) = 0 I, 0| with R(s)=0
0 0 1

and its homomorphic image G.. = I1(G,,) is a subgroup of GL(n,HH). The
action of G, on z2 can be expressed by the projection action of G, on
HP"! = (z;,a7)7.
By noting Proposition 4.3 and G(p) being a 1-normalized Gram matrix,
we have
b, = (ku,o[)T,  for syeS; (34)
and

OC-*O(,'ZI, 1<i<k.

1

Therefore there exists a U € Sp(n— 1) such that g = diag(l, U, 1) € Sp(n, 1)
satisfying

Ulor,... o) = (er, ... e0), (35)

where e;, 1 <i < k are k vectors in the standard basis of IH"~!. Therefore we
may further reformulate (34) as

b, = (kiel)", for sy € S;. (36)

In order to parameterize the moduli space, we introduce the following map ¢ to
give the corresponding coordinates in IH U co for vectors in V; = span{p;, ,Z. }:

$(z.) =0,  BB,) =k, 1<I<t;1<i<k (37)
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Ay
Let h=
© <0U

(/1 V*><kil>(Akil+y*ei><;hkil+ci>. (38)
0 U €; €; €;

This means that the restriction of 4 in V; is

*

) with Uley,...,e;) = (ey,...,e;) and y:(ch...,cn,l)T.
Note that

/’li : k,’[ — /’Lkil + Ci, 1 <i< k. (39)

The above treatment can be thought of as introducing the inhomogeneous
coordinates in each V;. From this point of view, the restriction of an element
g of form (33) to V; is a quaternionic Mobius transformation in I, the iso-
tropy group at oo in PSAL(2,H) [7].

Summarizing the above descriptions, we have so far defined a map

A i
Hi:geGOC—>h,»:<0 i)e]}c (40)

1L

o0

and the action of ¢g on z
identified with H.

Observe that the coordinates defined by (37) contain the information of
Ay in (28). To distinguish between PSp(n, 1)-congruence classes of m-tuples in
degenerate case is the same as distinguishing the /;-congruence classes in V; for
all i. For this purpose, we need to introduce new geometric invariants which
are invariant under the action of #;.

is inherited by the actions of A; on V;, which is

DeriNITION 5.1 ([2, Definition 4.2]). The quaternionic cross-ratio of four
points zy,z3,z3,24 € HU 0o is defined as

[21,22,23,24] = (Zl — Z3)(Zl — Z4)71(Zz — 24)(22 — 23)71.

Lemma 5.2 ([2, Proposition 4.1]). Given three distinct zy,z,z3 € H, the
element f € PS\L(2,H) defined by

f@)=(m-2)n-2)"-a)(z—2)" (41)

maps z1 to 0, zy to oo and z3 to 1. Moreover, all elements f € PSAL(2,H) with
the same property are of the form:

Mo f(2) =M (2)2”"
with 2 € H — {0}.
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A0
Note that f € PSAL(2,H) fixing 0, 1, oo is of the form f = (0 /1> = .

Based on this observation and [2, Proposition 4.4], the cross-ratios enjoy the
following properties.

Lemma 5.3. (1) For any zeH with z # 0 and z # 1, we have
[2,1,0,00] = z.
(2) Given distinct points zy,zs,z3,z € H,

[f(2), f(23): f(22), [ (21)] = Ayl 23,22, 202

where s is a quaternion solely depending on f € PSA\L(2,H). In
particular, for h; given by (39), we have

[hi(2), hi(z3), hi(z2), hi(21)] = Az, 23, 22, 214

DEerINITION 5.2.  We introduce the following geometric invariants in com-
ponent ps. = (py,;---,Py, ) when Card(S;) > 3:

A (Bsys By B,) = (kir = ki) (kg — keir) ™" = [k, ki, K, 0. (42)

We mention that since the points pg , Py, Py, are all distinct, y is finite
and y #0,1. Therefore

yeH—{0,1}.

To sort out the conditions for p and q being PSp(n, 1)-congruent, without
loss of generality, we may assume that p,q € z- have the same structure given
by Proposition 4.3. We denote the corresponding coordinates of qg, by

(lSi/ = (‘/VilyeiT)T7 for s;; € S; (43)

and compute the corresponding invariants of q in the same manner as these
of p.

We first obtain the necessary and sufficient condition of two triples being
PSp(n, 1)-congruent directly.

PrROPOSITION 5.1. p; = (Py,; Py, Bs,) and q; = (q,,,4s,,9,,) are PSp(n,1)-
congruent if and only if there exists a A€ H — {0} such that

2By By Byy) = (s, Qs Q)27

PrOOF. Assume that p;, and q, are PSp(n, 1)-congruent. Let p, and gq;
be the corresponding triples in H”!. Then there exists a g € G, such that
9(Ps, Psys Psy) = (G, V1,Gy,V2,45,73).  As before, we know that v; = vy = v3 :=
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v and |v| =1. This implies that gp;, = q,v, i.e.,
Ak + v e = wyv, Ue; = ¢, [1=1,2,3.
Therefore
Mk — kin) = (Wi — waia)v, Mk —kiz) = (Wi — wi)v.
Hence
AMkn — ki) (ki — ki3)71}fl = (wiq —wpi)(wn — W,’3)71.

Conversely, suppose that x(p;,,Py,:Ps;) ~ X(4s, 4,5 9s,)- Then there
exists a A such that

)v(k[l — k,'3)(k,'2 — kj})il}vil = (Wil — WB)(WZQ — W,‘3)71.

We may further require that |1] = % Let v=(w; — w,-3)712(k,'1 —ki).
Then ’

kit — kiz) = (win — wiz)v, Mkin — kiz) = (W — wiz)v.

From the above two equalities, we have A(k; — kn) = (wq — wp)v. We can
find a yeH"! and a U e Sp(n — 1) satisfying

Ak +yre; = wiv, Ue; = e;v.
The above equalities also imply
Ak + v e; = wpv, Akiz +yTe; = wiv.
With A, y, U above, we can construct a g € G, of the form (32) satisfying
9(Ps s Py Psy) = (A5, V1, €, V2, G, V3)- O

Translating Example 4.1 from ball model to Siegel domain model, one has
an instance of positive points:

p=(0,1,0"  p=02v2,1,00", and py=(3v2,1,0)".

Observe that x(p;,p,,p3) =3 and x(ps,p,.p1) =3. Thus (P(p,),P(p,),P(ps))

and (IP(p;),IP(p,),IP(p;)) are not PSp(2,1)-congruent. For the case of more
than three points, it is convenient to use the quaternionic cross-ratios.

PROPOSITION 5.2. Let p = (z1,...,zm) and q = (W1, ..., wy) be two ordered
m-tuples of pairwise distinct points in H, m > 4. Then p and q are congruent
with respect to the diagonal action of PSAL(2,H) if and only if there exists a
AeH — {0} such that

[z, 23,22, 1] = Alwj, w3, wz,wl})fl, 4 <Vj<m. (44)
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Proor. If there is an f € PSAL(2,H) such that f(z;) =w;, j=1,...,m.
Then by Lemma 5.3, the conditions of (44) hold.
Conversely, assume that

[z, 23, 22, 21] = Alwj, w3, w2, wl])v_l, 4 <Vj<m.

By Lemma 5.2 we can find f,g e PSAL(2,H) such that f(z3) =1, f(z) =0,
f(z1) = o0, and g(w3) =1, g(w2) =0, g(w;) = co. It follows from Lemma 5.3
that

f) =1/(z),1,0,00] = [f(5), £ (z3), [ (22), f (z1)] = Ay [z, 23,22, 21) !
and
g(w;) = [g(w;), 1,0, 0] = [g(w;), g(w3), g(w2), g(w1)] = Aglw, w3, wa, wi]A; "
Therefore our assumption implies that
h(z)) =g o dy(A) ' ho fz)=wi,  i=1,...,m.
Hence p and q are PS,L(2,H)-congruent. O

DEFINITION 5.3. For S; = {si,...,8u}, i =1,...,k with Card(S;) > 3, we
associate with S; the following geometric invariants:

Xio = X(Pyys Py Py)s Xit = X (P Psys P ) -+ Xii-3) = X(Pyy> Py Py, )
and
Xi(P) = (Nios -+ -+ Xi(i-3))-
Let X(p) be the vector whose components consisting of X;(p) above.

Taking z; = w; = oo in Proposition 5.2, we get the following proposition.

PROPOSITION 5.3.  Let pg, and qg, belong to zt with the same Gram matrix

whose entries are all equal to 1. Then pg, and qg, are PSp(n, 1)-congruent if and
only if there exists a A€ H — {0} such that

Xi(p) = iX;(q)2 "

We still need to generalize the above result to the case of G(p) and G(q)
having stratum structures.

ProposITiON 54. Let p=(py,...,p,,) and q=1(q,...,q,) be two
m-tuples of pairwise distinct positive points of non regular case. We also assume
that p and q have the same structure given by Proposition 4.3 with the property
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Card(S;) = 3 for some i. Then p and q are PSp(n, 1)-congruent if and only if
there exists a A€ H — {0} such that

X(p) = 2X(q)2 "

Proor. Without loss of generality, we assume that p,qezZ. If there
is an f € PSp(n,1) such that f(p;) =q;, j=1,...,m. Then f e G, is of the
form

o

y*
/= U (45)
0

o O
b S

and p, q must have the same structure given by Proposition 4.3. Here and
in what follows, x stands for an arbitrary entry satisfying constraint that the
corresponding matrix f belongs to Sp(n,1). By our normalization, we have

U(ela"'aek):(ela"'7ek) (46)
and in each block of index S;, we also have
;Lki] + y*e,- = wj, 1 < / < Card(Si). (47)

Therefore we have X (p) = AX(q)A~".
Conversely, suppose that X(p) = AX (q))fl. By Proposition 5.3, for two
specific blocks pg, and qg,, we can construct an element f; € Sp(n, 1) of the form

Ai yFo*
fz = 0 U,' *
0 0 «x
such that
Uiei = e, ;uik[/ + yi*e,» = Wi, 1< [ < Card(Si). (48)

It is a pleasant surprise that we can adjust f; to a suitable transformation which
works for p wholly as follows. First, it follows from Lemma 5.3 that 4; = /.
Let U e Sp(n— 1) having the property Uley,...,ex) = (e],...,e). It is ob-
vious that

Aoylox
hi=|0 U % (49)
0 0 «x

also maps pg, to qg. Note that k <n—1. Let

* * T
Y= (P1€1, ., ViChs Ky, x)
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and

A pF
h=]10 U
0 O

&

(50)

o S

Then one has the equations (47), and therefore p and q are congruent up to #.

O

By the above proof and Subsection 4.2, we have the following result which

means that structures of Gram matrices determine their congruent classes when
Card(S;) <2 for all 7.

ProposiTiON  5.5. Let p=(py,.-.,p,,) and q=1(qy,...,q,) be two
m-tuples of pairwise distinct positive points of non regular case with the same
structure given by Proposition 4.3 and Card(S;) <2,i=1,...,k.  Then p and q
are PSp(n, 1)-congruent.

In order to describe the parameter space, we need the following result.

PropOSITION  5.6.  The coordinates of Oy given by the rotation-
normalized algorithm is well defined.

PrROOF. If both /iy, € PSp(n,1) map V to a subspace of z1, then the
coordinates in (37) may be different from each other, which implies that X (p)
in Definition 5.3 is dependent on the map ¢ in (37). However, since h; '/ €
G, Lemma 5.3 and Proposition 5.4 imply that the coordinates of Oy given
by the rotation-normalized algorithm is well defined. O

Summarizing the previous results, we obtain the main result of this section.

THEOREM 5.1.  Let p= (py,...,p,,) be an m-tuple of pairwise distinct posi-
tive points given by Proposition 4.3.  Then the PSp(n, 1)-congruence class of p is
determined uniquely by the partition structure of S(m) = Ule S; and the coor-
dinates of Oy ) given by the rotation-normalized algorithm.

Therefore the moduli space can be described as follows.

THEOREM 5.2.  The moduli space of p = (py,...,P,,) given by Proposition
4.3 can be identified with the set IV} X - -- X My, where M| X --- x My, are the
coordinates of Oy given by the rotation-normalized algorithm.

6. The moduli problem on IP(7,) of regular case

In this section, we describe the moduli space of configurations of quater-
nionic (n — 1)-dimensional submanifolds when ¥ is not parabolic in conceptual
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style. The basic idea is to find a partition of S(m) = {1,...,m} to perform the
rotation-normalized algorithm in each block.

We begin with 1-normalized matrix of p. Proposition 4.4 roughly shows
that we can treat the mutually orthogonal blocks pg = (ps[l,...7ps“i), i=
1,...,s separately. Equivalently, we can perform the rotation-normalized
algorithm separately. This is the structure of Gram matrix at top level. For
each block pg, there may still exist Os in G(pg). We may need to partition
S; into more small blocks to perform the rotation-normalized algorithm. We
call such a partition process, together with similar 1-normalized process in
each small blocks, the block-normalized algorithm. The output of the block-
normalized algorithm is a special kind of Gram matrix, which is still not
unique and can be viewed as an equivalent class. We still need to apply the
rotation-normalized algorithm to get the parameters.

We describe the block-normalized algorithm conceptually as follows.

The block-normalized algorithm:

Step 1: Let Oy be the number of entries being zero in i/th row of G(ps,) and
record the set of columns of these entries being nonzero as P;. Let
n; =min{O;, ..., 0y} and K; the set of indices i/ such that Oy = n;.
Let ¢;; be the smallest integer in K; and denote the corresponding P
of ¢y as S;1.  In other words, ¢;; is the smallest index in S; = {s;1, ...,
i+ such that the cardinality of nonzero entries in the c¢;th row of
G(S;) is the largest among those of the others; the set of columns of
nonzero entries is recorded as S;. It is obvious that ¢; € S;.

Step 2: Repeating the process in Step 1 for the remainder of S; —S;, we
obtain ¢p and Sp. It is obvious that we can continue this process
only finite steps. We denote by 7; the number of steps and record
the corresponding numbers in each step as ¢; and Sy for 1 < j <1;.
Then we have

S; = USz/-
j=1

Step 3: In each subindex set Sj, we perform the c;-normalized process to
G(ps,). We denote such result of the sub Gram matrix as Gy(ps,)-
In other words, the entries of Gb(Ps,-j) have the following properties:

gu =1, Geye 20, Yiey = 0, 1€ Sj.

As in (22) of Section 4, we record the corresponding normalized sub-
diagonal matrix as Dj. That is

Gy(ps,) = G(ps, Dy)-
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Step 4: Let
D; = diag(Dy, ..., D), D, = diag(Dy, ..., Dy). (51)
We define
Go(ps,) = G(ps,Di) (52)
and
Gy(p) = G(pDy). (53)

DerNITION 6.1.  The Gram matrix Gy(p) obtained by the above block-
normalized algorithm is called the block-normalized matrix of G(p).

We mention that our strategy in the block-normalized algorithm is from
parts to entirety. We deal with the diagonal blocks separately. In this scale
ps, and ps, are totally independent. In each block pg, all processes are
explicitly recorded by the corresponding sub-diagonal matrices D; =
diag(Dj1,...,Di;). In this way the entries <p,,p,,> in off-diagonal blocks
of pg, are all determined definitely by D;. We describe the structure of Gy (p)
in the following proposition in more details.

PROPOSITION 6.1.  The block-normalized Gram matrix Gy(p) has the follow-

ing characteristics.

(1) If we view the block-normalized Gram matrix Gy(p) in its permuted
position with index S;, then Gy(p) consists of blocks submatrix Gy(ps,),
and the entries of the corresponding off-diagonal blocks matrices are
zero (see (30) in Proposition 4.4).

(2) In the cith row (and column) of submatrix Gy(pg,), the first Card(S;)
entries are nonzero real numbers, and the others are zeros (see Step 2
of the block-normalized algorithm).

(3) In the cipth row (and column) of submatrix Gy(ps,), the entries with
index between Card(S;)+ 1 and Card(S;) + Card(Sp) are nonzero
real numbers, the entries with index bigger than Card(S;) + Card(Sp)
are zeros; the entries in the c;th row (and column) of submatrix Gy(ps,)

can be described similarly when j=3,... 1,
(4)  Gp(ps,) can not be block diagonal according to our partition in Prop-
osition 4.4.

Similarly to Lemma 3.1, we have the following result.

LemMA 6.1.  Suppose that G(q) is a block-normalized Gram matrix Gy (p)
forp=(py,.--,p,) Then G(qD,) is still a block-normalized Gram matrix with

Dr = diag(:ula s num)
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if only if every u, with te Sy is the same quaternion of modulus 1, i.e.,
e = My, Vte Sy, where ;e Sp(1).
Summarizing the previous treatments, we have the following procedure.

THEOREM 6.1. Let p= (py,.-.,P,,) be an m-tuple of pairwise distinct posi-
tive point given by Proposition 4.4. We can assign the PSp(n,1)-congruence
class of p a coordinate as follows.
(1) Obtain a block-normalized matrix G(pDy) by performing the block-
normalized algorithm, where Dy, is given by (51).

(2) Perform the rotation-normalized algorithm to each block S; (as the
case of m-tuple of P(Vy) in Section 3). This is equivalent to choosing
a specific p; € Sp(1).  Combine them to the corresponding whole rota-
tion normalized diagonal matrix D,.

(3) The independent entries of

G(prDl’)7

that is, all the entries above the diagonal entries, are the desired coor-
dinate of the PSp(n,1)-congruent class of p.

We now are ready to give a conceptual description of the parameter space
IM(n,m) in regular case. We mimic conceptually the method used in Section
3.2 as follows.

The procedure of constructing parameter space:
For a partition .% of S(m) ={1,...,m} as

S,‘Z{S,‘],...,Siti}, Sit < e < Sy iZ],...,S

with sub partitions

Let Card(Sj;) =o0;. As in Section 3.2, we construct the parameter space
M(n, ;) of Sj. Let

M(n, i) = M(n,041) % ---M(n,0;,) x C;,

where the set of C; is the corresponding space of the off-diagonal sub-blocks.
Let

M(n,m, &) = M(n,i) x ---M(n,s).
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The Hermitian matrix constructed from the entries of the parameter space
M(n,m, ) should subject to analogous constraints as those of Theorem 4.1.
Then the union of the parameter spaces determined by all possible partitions

M (n,m) = JM(n,m, ) (54)
%

is a parameter space of the configuration space .#(n,m;P(V,)) when V is not
parabolic.
Therefore, the moduli space can be described as follows.

THEOREM 6.2. The moduli space of p= (py,...,p,,) given by Proposition
4.4 can be identified with the set

M(n,m) = UIM(n,m,V). (55)
7

Acknowledgement

The author would like to express his deep gratitude to the referee for
carefully reading this paper and some useful suggestions.

References

(1] B. N. Apanasov and I. Kim, Cartan angular invariant and deformations of rank 1
symmetric spaces, Sbornik Math. 198(2) (2007), 147-169.

[2] C. Bisi and G. Gentili, Mobius transformations and the Poincare distance in the quater-
nionic setting, Indiana Univ. Math. J. 58 (2009), 2729-2764.

[3] U. Brehm, The shape invariant of triangles and trigonometry in two-point homogeneous
spaces, Geom. Dedicata 33 (1990), 59-76.

[4] U. Brehm and B. Et-Taoui, Congruence criteria for finite subsets of complex projective and
complex hyperbolic spaces, Manuscr. Math. 96(1) (1998), 81-95.

[5] U. Brehm and B. Et-Taoui, Congruence criteria for finite subsets of quaternionic elliptic and
quaternionic hyperbolic spaces, Geom. Dedicata 84(1) (2001), 261-269.

[6] W.S. Cao, J. R. Parker and X. T. Wang, On the classification of quaternionic Mdbius
transformations, Math. Proc. Camb. Phil. Soc. 137 (2004), 349-361.

[7] W.S. Cao, On the classification of four-dimensional M&bius transformations, Proc. Edinb.
Math. Soc. 50 (2007), 49-62.

[8] W. S. Cao, Congruence of points in quaternionic hyperbolic space, Geom. Dedicata 180
(2016), 203-228.

[9] E. Cartan, Sur le groupe de la géométrie hypersphérique, Comment. Math. Helv. 4 (1932),
158-171.

[10] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to analysis. Academic
Press, New York, 49-87 (1974).

[11] H. Cunha and N. Gusevskii, On the moduli space of quadruples of points in the boundary
of complex hyperbolic space, Transform. Groups 15(2) (2010), 261-283.



286

12]

Wensheng Cao

H. Cunha and N. Gusevskii, The moduli space of points in the boundary of complex
hyperbolic space, J. Geom. Anal. 22 (2012), 1-11.

H. Cunha, F. Dutenhefner, N. Gusevskii and R. S. Thebaldi, The moduli space of complex
geodesics in the complex hyperbolic plane, J. Geom. Anal. 22 (2012), 295-319.

E. Falbel and 1. D. Platis, The PU(2,1) confguration space of four points in S3 and the
cross-ratio variety, Math. Ann. 340(4) (2008), 935-962.

E. Falbel, A spherical CR structure on the complement of the fgure eight knot with discrete
holonomy, J. Differ. Geom. 79(1) (2008), 69-110.

K. Gongopadhyay and S. B. Kalane, On conjugation orbits of semisimple pairs in rank
one, Forum Math. 31(5) (2019), 1097-1118.

W. M. Goldman, Complex hyperbolic geometry, In: Oxford Mathematical Monographs,
Oxford Science Publications, Oxford University Press, New York (1999).

G. S. Gou and Y. P. Jiang, The moduli space of points in the boundary of quaternionic
hyperbolic space, Osaka J. Math. 57(4) (2020), 827-846.

J. Hakim and H. Sandler, Standard position for objects in hyperbolic space, J. Geom. 68
(2000), 100-113.

J. Hakim and H. Sandler, The moduli space of n + 1 points in complex hyperbolic n-space,
Geom. Dedicata 97 (2003), 3-15.

A. Koranyi and H. M. Reimann, The complex cross-ratio on the Heisenberg group,
Enseign. Math. 33 (1987), 291-300.

J. R. Parker and 1. D. Platis, Complex hyperbolic Fenchel-Nielsen coordinates, Topology
47(2) (2008), 101-135.

J. R. Parker and I. D. Platis, Global geometrical coordinates on Falbel’s cross-ratio variety,
Canad. Math. Bull. 52 (2009), 285-294.

Wensheng Cao
School of Mathematics and Computational Science
Wuyi University
Jiangmen, Guangdong 529020, P.R. China
E-mail: wenscao@aliyun.com



