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The moduli space of points in quaternionic projective space
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Abstract. Let Mðn;m;FPnÞ be the configuration space of m-tuples of pairwise

distinct points in FPn, that is, the quotient of the set of m-tuples of pairwise distinct

points in FPn with respect to the diagonal action of PUð1; n;FÞ equipped with the

quotient topology. In this paper, by mainly using the rotation-normalized and the

block-normalized algorithms, we construct the parameter spaces of both Mðn;m; qHn
HÞ

and Mðn;m;PðVþÞÞ, respectively.

1. Introduction

Let F ¼ R;C or H be respectively the set of real numbers, the set of

complex numbers or the set of quaternions, and hz;wi ¼ w�Jz a Hermitian

product in ðnþ 1Þ-dimensional F-vector space Fn;1 of signature ðn; 1Þ. The

group of transformations of Fnþ1 preserving this Hermitian product is the

noncompact Lie group Uð1; n;FÞ. That is

Uð1; n;FÞ ¼ fg A GLðnþ 1;FÞ : g�Jg ¼ Jg:

These groups are traditionally denoted by

Oðn; 1Þ ¼ Uð1; n;RÞ; Uðn; 1Þ ¼ Uð1; n;CÞ and Spðn; 1Þ ¼ Uð1; n;HÞ:

Denote by P the natural right projection from Fn;1 � f0g to projective space

FPn. Let V�, V0, Vþ be the subsets of Fn;1 � f0g consisting of vectors where

hz; zi is negative, zero, or positive, respectively. Their projections to FPn are

called isotropic, negative, and positive points, respectively. Conventionally,

we denote Hn
F ¼ PðV�Þ, qHn

F ¼ PðV0Þ and Hn
F ¼ Hn

F [ qHn
F. The Bergman

metric on Hn
F is given by the distance formula

cosh2 rðz;wÞ
2

¼ hz;wihw; zi

hz; zihw;wi
; z A P�1ðzÞ; w A P�1ðwÞ: ð1Þ
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The center Zð1; n;FÞ of Uð1; n;FÞ is fGInþ1g if F ¼ R;H, and is the circle

group fe iyInþ1g if F ¼ C. We mention that g A Uð1; n;FÞ acts on FPn as

gðzÞ ¼ PgP�1ðzÞ. Therefore the holomorphic isometry group IsomðHn
FÞ of Hn

F
is actually the quotient PUð1; n;FÞ ¼ Uð1; n;FÞ=Zð1; n;FÞ. We refer to [1, 8,

10, 17] for further details.

Let Mðn;m;FPnÞ be the configuration space of m-tuples of pairwise dis-

tinct points in FPn, or equivalently, the quotient of the set of m-tuples of pair-

wise distinct points in FPn with respect to the diagonal action of PUð1; n;FÞ
equipped with the quotient topology. It is an important problem in hyperbolic

geometry to parameterize the space Mðn;m;FPnÞ and study the geometric and

topological structures on the associated parameter space. Such a problem is

called the moduli problem on FPn in what follows.

The moduli problems of the cases m ¼ 1; 2 on qHn
F are trivial because

Uð1; n;FÞ acts doubly transitively on qHn
F when F ¼ C or H. It is well

known that Oðn; 1Þ acts triply transitively on the boundary. To handle the

cases of mb 3, one need to develop some geometric invariants or geometric

tools, such as the distance formula, Cartan’s angular invariant [9, 17], and

cross-ratio [21] etc.

The moduli problem of Mð2; 4; qH2
CÞ was considered by Falbel, Parker

and Platis [14, 15, 22, 23]. The main tool is the complex cross-ratio variety

determined by three complex cross-ratios.

The moduli problem of Mðn;m;Hn
CÞ was solved by Brehm and Et-Taoui

[3, 4]. Using Bruhat decomposition, Hakim and Sandler considered the

arrangement of n points in certain standard position on RPn�1 [19] and the

moduli problem on Hn
C [20].

We need to introduce the concept of Gram matrices of m-tuples in FPn

for further discussion.

Definition 1.1. Given an m-tuple p ¼ ðp1; . . . ; pmÞ of pairwise distinct

points in FPn with lift p ¼ ðp1; . . . ; pmÞ. The following Hermitian matrix

GðpÞ ¼ ðgijÞ ¼ ðp�
i JpjÞ ¼ ðhpj; piiÞ

is called the Gram matrix associated to p.

For simplicity, we also say that p is an m-tuple of pairwise distinct points

in FPn and p A Fnþ1;m, the set of ðnþ 1Þ �m matrices over F. The action of

f A Uð1; n;FÞ on p is

f p ¼ ð f p1; . . . ; f pmÞ:

By noting that f �Jf ¼ J, we have the following proposition.
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Proposition 1.1.

GðpÞ ¼ p�Jp ¼ p�f �Jf p ¼ Gð f pÞ; Ef A Uð1; n;FÞ: ð2Þ

Given two m-tuples p ¼ ðp1; . . . ; pmÞ and q ¼ ðq1; . . . ; qmÞ in FPn with

arbitrary lifts p ¼ ðp1; . . . ; pmÞ and q ¼ ðq1; . . . ; qmÞ. We say that p and q are

PUð1; n;FÞ-congruent if there exists an f A Uð1; n;FÞ such that

f ðpiÞ ¼ qili; li 0 0; i ¼ 1; . . . ;m;

in language of matrix algebra, that is,

f p ¼ qD; D ¼ diagðl1; . . . ; lmÞ; li A F� f0g:

Therefore

GðpÞ ¼ p�Jp ¼ p�f �Jf p ¼ D�q�JqD ¼ D�GðqÞD: ð3Þ

Observe that an arbitrary lift of p can be represented by ðp1l1; . . . ; pmlmÞ ¼ pD

and

GðpDÞ ¼ D�p�JpD ¼ D�GðpÞD: ð4Þ

The formulas (3) and (4) imply that Gram matrices contain the information

of the diagonal action of Uð1; n;FÞ on p. Moreover, a Gram matrix contains

entries hpi; pji, which are base material to construct the corresponding Hermi-

tian geometric invariants. Hence a Gram matrix is a desired tool in handling

moduli problems.

The moduli problem on qHn
C was solved by Cunha and Gusevskii [11, 12]

mainly by Gram matrices. It is interesting to consider these moduli problems

in quaternionic hyperbolic geometry. However, besides the noncommutativity

of quaternions, another essential di¤erence between complex and quaternionic

hyperbolic geometry is the existence of elliptic elements of forms mInþ1 in

Spðn; 1Þ, where m A Spð1Þ. These properties make it di‰cult to define geo-

metric invariants and determine the representative Gram matrix in its equiv-

alent class.

Brehn and Et-Taoui [5] are the poineers on researching the congruence

classes of m-tuple points in Hn
H. By mainly use of Gram matrices, they gave

a congruence criteria on such tuples.

By using quaternionic Cartan’s angular invariant and quaternionic cross-

ratio in Hn
H, Cao [8] solved the moduli problems of Mðn; 3;Hn

HÞ and

Mðn; 4; qHn
HÞ.

We will continue the research in this direction. In this paper we concen-

trate on the moduli problems of Mðn;m; qHn
HÞ with m > 4 and Mðn;m;PðVþÞÞ.
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We need several notations to illustrate our strategies for overcoming the dif-

ficulties mentioned above.

Let v ¼ ðv1; . . . ; vtÞ be a row vector in H t and

Ov ¼ fmvm�1 ¼ ðmv1m�1; . . . ; mvtm
�1Þ : Em A Spð1Þg:

The set Ov can be thought of as the orbit of v under the action of Spð1Þ=G1.

The procedure of giving a coordinate to the orbit Ov is termed by the rotation-

normalized algorithm in this paper. We mention that the rotation-normalized

algorithm stems both from the noncommutativity of quaternions and the ex-

istence of isometries of the form mInþ1 in Spðn; 1Þ. Such an algorithm is

indigenous in quaternionic hyperbolic geometry, while obviously vacuous in

complex hyperbolic geometry.

Let iðGðpÞÞ ¼ ðnþ; n�; n0Þ be the signature of Hermitian matrix iðGðpÞÞ and
V ¼ spanfp1; . . . ; pmg be of dimension k þ 1. There are two di¤erent cases of

the moduli problem on PðVþÞ according to nþ þ n� ¼ k þ 1 or nþ þ n� ¼ k

(see Theorem 2.2). V is called parabolic provided that nþ þ n� ¼ k. The two

cases are termed by regular and non regular cases in complex hyperbolic plane

[13]. We still use this terminology in quaternionic setting.

When V is parabolic, the Gram matrix GðpÞ loses the information of the

configuration and only carries the information of the strati-form structure (see

Example 4.1 and Proposition 4.3). This strati-form structure will help us to

break down the space V ¼ spanfp1; . . . ; pmg into finite 2-dimensional subspaces.

We mention that there exist at most n� 1 such 2-dimensional subspaces in

Hn;1. These 2-dimensional subspaces share a common basis which is a fibre

in V0. In each subspace containing more than three points of the m-tuple, we

need to introduce new invariants (the cross-ratios in H [y) to parameterize

their congruence classes. Of particular interest will be the harmonious co-

existence of these 2-dimensional subspaces (see Proposition 5.4).

When V is not parabolic, the Gram matrix GðpÞ contains the full infor-

mation of the congruence class of p. The moduli problem on PðV0Þ is trac-

table for each entry in Gram matrix GðpÞ being nonzero. On handling the

moduli problem on PðVþÞ, the pivotal point is to find a partition of SðmÞ ¼
f1; . . . ;mg to perform the rotation-normalized algorithm in each block inde-

pendently. This will help us to tackle the di‰culty caused by orthogonality.

Such a method is termed by the block-normalized algorithm.

In our perspective, the parameter of the PSpðn; 1Þ-congruence class of p

is independent entries of a unique representative Gram matrix when V is not

parabolic. For example, the PSpðn; 1Þ-congruence class of three points in qH2
H

is its quaternionic Cartan’s angular invariant [1, 8]. We mainly rely on the

rotation-normalized and the block-normalized algorithms to construct such a

moduli space in this paper. Our approaches sound natural and elementary.
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As should be apparent, our ideas and exposition owe a great deal to the

works of the references cited above, especially to those of [12, 13].

The paper is organized as follows. Section 2 contains properties of qua-

ternions, the some basic facts in quaternionic hyperbolic geometry and the

inertia of Gram matrices. These properties provide us with the tool to execute

the rotation-normalized algorithm and initiate the idea of the block-normalized

algorithm. The parameter space of Mðn; 1;PðVþÞÞ is a single point (Theorem

2.1). Section 3 describes the parameter space of Mðn;m; qHn
HÞ for m > 4

(Theorem 3.2). This may be thought of as a generalization of those of [8,

12]. The application of rotation-normalized algorithm is fully described. This

method will be mimicked in more complicated cases in succeeding sections.

In Section 4, we mainly refine the structure of Gram matrices. These re-

fined structures are crucial in introducing new invariants in non regular case

and the block-normalized algorithm in regular case. The parameter space of

Mðn; 2;PðVþÞÞ is also constructed (Theorem 4.2). In Section 5, the parameter

space of Mðn;m;PðVþÞÞ with mb 3 is constructed (Theorem 5.2) when V is

parabolic. In Section 6, the parameter space of Mðn;m;PðVþÞÞ with mb 3 is

constructed (Theorem 6.2) when V is not parabolic.

Remark 1.1. The referee kindly informed the author that Gongopadhyay

and Gou etc. [16, 18] also considered the moduli problems of Mðn;m; qHn
HÞ.

Roughly speaking, the methods used by them can be thought of as choosing

a special form of equivalent Gram matrices and figuring out some numerical

invariants of this Gram matrix. Some data of this Gram matrix and these

numerical invariants are used to present the parameterization of the moduli

space. The method we use is the rotation-normalized algorithm. Such an

algorithm attempts to parameterize the equivalent Gram matrices directly.

All these methods originate from the idea of these papers [4, 5, 8, 12,

13] etc. and share a common spirit in dealing with the noncommutativity of

quaternions.

2. The inertia of Gram matrices

In this section, we will recall some properties of quaternions and obtain

some properties of the inertia of Gram matrices.

2.1. Properties of quaternions. Recall that a quaternion is of the form a ¼
a0 þ a1iþ a2jþ a3k A H where ai A R and i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1: Let a ¼
a0 � a1i� a2j� a3k and jaj ¼

ffiffiffiffiffi
aa

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 þ a21 þ a22 þ a23

q
be the conjugate and

modulus of a, respectively. We define <ðaÞ ¼ ðaþ aÞ=2 and =ðaÞ ¼ ða� aÞ=2.
Two quaternions a and b are similar if there exists nonzero l A H such that
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b ¼ lal�1. It is useful to view H as H ¼ ClCj. In this way, each qua-

ternion a ¼ a0 þ a1iþ a2jþ a3k can be uniquely expressed as

a ¼ ða0 þ a1iÞ þ ða2 þ a3iÞj ¼ c1 þ c2j ¼ c1 þ jc2:

It is well-known that the action of Spð1Þ=G1 on H coincides with the action

of SOð3Þ on R3. We recall it as the following proposition.

Proposition 2.1. Denote ~vv ¼ ðx; y; zÞT for v ¼ xiþ yjþ zk A H, where

AT is the transpose of a matrix A. For a unit quaternion m ¼ u0 þ u1iþ
u2jþ u3k, we define

Mm ¼
u21 þ u20 � u23 � u22 2u1u2 þ 2u0u3 2u1u3 � 2u0u2

2u1u2 � 2u0u3 u22 � u23 þ u20 � u21 2u2u3 þ 2u0u1

2u1u3 þ 2u0u2 2u2u3 � 2u0u1 u23 � u22 � u21 þ u20

0
B@

1
CA:

Then Mm A SOð3Þ and

mvm
�! ¼ Mm~vv:

Lemma 2.1. Let v1 ¼ x1iþ y1jþ z1k and v2 ¼ x2iþ y2jþ z2k such that v1
!

and v2
! are linear independent. Let v1 � v2 ¼ v2

!T v1
!. Then there exists a unique

element m A Spð1Þ=G1 such that

mv1m ¼ jv1ji; mv2m ¼ v1 � v2
jv1j

iþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðjv1j jv2jÞ2 � ðv1 � v2Þ2

q
jv1j

j: ð5Þ

Proof. Let v1 ¼ x1iþ y1jþ z1k, v2 ¼ x2iþ y2jþ z2k and y the angle

between v1
! and v2

!. Identify =ðHÞ with the 3-dimensional real space xyz.

Geometrically, by rotating the plane spanned by v1 and v2 to xy plane and then

rotating around the z-axis or x-axis if necessary, we can obtain a m such that

formulas (5) hold. It is helpful to regard these formulas as

mv1m ¼ jv1ji; mv2m ¼ jv2j cos yiþ jv2j sin yj:

Suppose that there exists another unit quaternion n satisfying the above equal-

ities. Then we have n�1mjv1jimn�1 ¼ jv1ji and therefore n�1m is a unit com-

plex number. Similarly we get n�1mjmn�1 ¼ j which implies that n�1m ¼G1.

Therefore n ¼ m or n ¼ �m. r

Lemma 2.1 is the foundation of the rotation-normalized algorithm. We

give an explicit formula of such a unique m by the following process. Note

that

�ðjv1jiþ v1Þv1ðjv1jiþ v1Þ ¼ j jv1jiþ v1j2jv1ji:
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Let

n ¼ nðv1Þ ¼
j; provided x1 < 0; y21 þ z21 ¼ 0;

jv1jiþv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jv1jðjv1jþx1Þ

p ; otherwise:

8<
: ð6Þ

Then

jnj ¼ 1; nv1n ¼ jv1ji:

Let nv2n ¼ c1 þ c2j, where c1, c2 are complex numbers. Since c2 0 0, we have

e�2iac2 ¼ jc2j with e ia ¼
ffiffiffiffiffi
c2
jc2j

q
. Therefore m ¼Gne ia is the desired unit qua-

ternion. By finding the corresponding c2 and (6), we obtain the following

formula:

m ¼ mðv1; v2Þ ¼
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2þz2iffiffiffiffiffiffiffiffiffiffi
y2
2
þz2

2

p
r

j; provided x1 < 0; y21 þ z21 ¼ 0;

G jv1jiþv1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jv1jðjv1jþx1Þ

p
ffiffiffiffiffi
F
jF j

q
; otherwise;

8>><
>>: ð7Þ

where

F ¼ 2x2ðjv1j þ x1Þðy1 þ z1iÞ � ðjv1j þ x1Þ2ðy2 þ z2iÞ þ ðy2 � z2iÞðy1 þ z1iÞ2:

2.2. The inertia of Gram matrices. In this paper, the J in quaternionic

Hermitian product hz;wi ¼ w�Jz given in Section 1 will be taken one of the

following forms:

Jb ¼
In 0

0 �1

� �
or Js ¼

0 0 1

0 In�1 0

1 0 0

0
B@

1
CA:

The corresponding quaternionic hyperbolic spaces are usually termed by ball

model and Siegel domain model, respectively. Let C be the Cayley transfor-

mation mapping the ball to the Siegel domain. Then the relation of the two

models can be mainly expressed by the following two equations:

w�Jbz ¼ ðCwÞ�JsðCzÞ; g�Jbg ¼ Jb ¼ C�1JsC ¼ C�1ðCgC�1Þ�JsðCgC�1ÞC:

Each model has its own advantage in certain situations. Basically we work

on Siegel domain model only in Section 5.

Note that g�Jbg ¼ Jb with g ¼ ðg1; . . . ; gnþ1Þ, that is,

hgi; gji ¼ 0; i0 j; hgi; gii ¼ 1; i ¼ 1; . . . ; n; hgnþ1; gnþ1i ¼ �1: ð8Þ

In terms of Gram matrices given by Definition 1.1, we have

GðgÞ ¼ Jb; Eg A Spðn; 1Þ:

Based on this observation, we have the following proposition.
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Proposition 2.2. Let p ¼ ðp1; . . . ; pmÞ and q ¼ ðq1; . . . ; qmÞ such that

hpi; pii ¼ hqi; qii ¼ 1 and hpi; pji ¼ hqi; qji ¼ 0, i0 j. Then there is a g A
Spðn; 1Þ such that

gpi ¼ qi; i ¼ 1; . . . ;m:

Proof. By the signature restriction, we have ma n. We can extend

p and q to f ¼ ðp; pmþ1; . . . ; pnþ1Þ and h ¼ ðq; qmþ1; . . . ; qnþ1Þ such that f ; h A
Spðn; 1Þ. Then g ¼ hf �1 is the desired isometry. r

Proposition 2.2 implies the following simple result.

Theorem 2.1. PSpðn; 1Þ acts transitively on PðVþÞ.

Let z? ¼ fw A Hn;1 : hz;wi ¼ 0g be the orthogonal complement of the

fibre zH in Hn;1 and dimqðVÞ the quaternionic dimension of a subspace V of

Hn;1.

Proposition 2.3. We have the following statements concerning the orthog-

onal complements on Hn;1.

( i ) If z A V�, then z? � Vþ. There exists an orthogonal basis

fp2; . . . ; pnþ1g � z?;

dimqðz?Þ ¼ n and fz; p2; . . . ; pnþ1g is a basis of Hn;1.

( ii ) If z A V0, then z? � Vþ [ V0 and z? \ V0 ¼ zH. There exist mutu-

ally orthogonal vectors fp2; . . . ; png in Vþ and

z? ¼ spanfz; p2; . . . ; png:

(iii) If z A Vþ, then

z? \ Vþ 0q; z? \ V0 0q; z? \ V� 0q:

There exist mutually orthogonal vectors fp2; . . . ; pn; pnþ1g such that

spanfz; p2; . . . ; png � Vþ; pnþ1 A V�

and fz; p2; . . . ; pnþ1g is a basis of Hn;1.

Proof. Let z A V�. Then z? � Vþ. By (8), there exists an orthogonal

basis fp2; . . . ; pnþ1g in z?. Hence dimqðz?Þ ¼ n and fz; p2; . . . ; pnþ1g is a basis

of Hn;1. Therefore case (i) holds. Case (iii) follows similarly.

Let z A V0. We may assume that z ¼ ð1; 0; . . . ; 0; 1ÞT . It is obvious that

w A z? is of the form w ¼ ðq1; q2; . . . ; qn; q1ÞT . Let ei be the standard basis

of Hn;1. Then ei, i ¼ 2; . . . ; n belong to z? and

z? ¼ spanfz; e2; . . . ; eng: r
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Recall that A A Hn;n is called Hermitian if and only if A ¼ A�. Let

HnðHÞ be the collection of n� n Hermitian matrices. It is well-known that

the right eigenvalues of A A HnðHÞ are real and there exists an invertible matrix

B A Hn;n such that B�AB is a diagonal matrix which has only entries þ1, �1, 0

along the diagonal. The numbers of þ1s, �1s and 0s are denoted by nþ, n�
and n0, respectively. We denote the signature of A by

iðAÞ ¼ ðnþ; n�; n0Þ:

Proposition 2.4 ([8, Proposition 1.1]). If z;w A Hn;1 � f0g with hz; zia 0

and hw;wia 0, then either w ¼ zl for some l A H or hz;wi0 0.

Proposition 2.5. Let p ¼ ðp1; . . . ; pmÞ be an m-tuple of pairwise distinct

points in qHn
H with lift p ¼ ðp1; . . . ; pmÞ and mb 2. Then GðpÞ has a negative

eigenvalue.

Proof. Let q ¼ p1 þ p2m with m ¼ �hp1; p2i. By Proposition 2.4,

hq; qi ¼ �2jhp1; p2ij < 0: ð9Þ

Suppose that the eigenvalues of GðpÞ are all non-negative. Then there exists

an invertible matrix S A Hm;m such that

S �GðpÞS ¼ diagð1; . . . ; 1; 0; . . . ; 0Þ:

Then x�S �p�JpSxb 0, Ex A Hm. This contradicts (9) when x ¼ S�1l and

l ¼ ð1; m; 0; . . . ; 0ÞT A Hm. r

The following proposition is obvious.

Proposition 2.6. Let S be an invertible matrix. Then iðAÞ ¼ iðS �ASÞ.

Furthermore assume that S �AS ¼ A1 0

0 A2

� �
. Then

iðAÞ ¼ iðA1Þ þ iðA2Þ:

Let p ¼ ðp1; . . . ; plÞ and q ¼ ðq1; . . . ; qtÞ such that hpi; qji ¼ 0 for all i, j.

Then we have

ðp; qÞ�Jðp; qÞ ¼ GðpÞ 0

0 GðqÞ

� �
: ð10Þ

We can now prove the following crucial result.

Theorem 2.2. Let p ¼ ðp1; . . . ; pmÞ A Hnþ1;m, V ¼ spanfp1; . . . ; pmg and

dimq V ¼ k þ 1; iðGðpÞÞ ¼ iðp�JpÞ ¼ ðnþ; n�; n0Þ:
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Then

ka nþ þ n� a k þ 1; nþ a n; n� a 1; nþ þ n� þ n0 ¼ m:

In particular, we have the following statements.

(1) If pi A V0, i ¼ 1; . . . ;m, then nþ ¼ k, n� ¼ 1.

(2) If pi A Vþ, i ¼ 1; . . . ;m, then there are three cases:

( i ) nþ ¼ k, n� ¼ 1, in this case V is hyperbolic;

( ii ) nþ ¼ k þ 1, n� ¼ 0, in this case V is elliptic;

(iii) nþ ¼ k, n� ¼ 0, in this case V is parabolic.

Proof. Let t ¼ k þ 1. Without loss of generality, we assume that

p1; . . . ; pt are linearly independent and

pj ¼ p1l1j þ � � � þ ptltj; j ¼ tþ 1; . . . ;m:

Let q ¼ ðp1; . . . ; ptÞ A Hnþ1; t. Then p ¼ qðIt;LÞ, where L ¼ ðlijÞ, i ¼ 1; . . . ; t,

j ¼ tþ 1; . . . ;m. Let S ¼ It �L

0 Im�t

� �
: Direction computation shows that

S �GðpÞS ¼ S �p�JpS ¼ q�Jq 0

0 0

� �
:

Therefore, by Proposition 2.6, we have that

iðp�JpÞ ¼ iðq�JqÞ:

This implies that nþ þ n� a k þ 1.

If V \ V� 0q, then there exists a z A V� such that V ¼ zHl ðz? \ VÞ.
In the space z? \ V , there exist k mutually orthogonal positive lines q1; . . . ; qk
such that V ¼ spanfz; q1; . . . ; qkg. By (10), we have nþ ¼ k, n� ¼ 1 and V is

hyperbolic in this case.

By Proposition 2.5, a space with two di¤erent null lines must contain

negative lines. If V \ V� ¼ q and V \ V0 0q, then there exists a unique

zH A V0. The space z? \ V contains only k mutually orthogonal positive lines

q1; . . . ; qk. In this case nþ ¼ k, n� ¼ 0 and V is parabolic.

If V � Vþ, then V contains k þ 1 mutually orthogonal positive lines

q1; . . . ; qkþ1. In this case nþ ¼ k þ 1, n� ¼ 0 and V is elliptic.

It follows from Proposition 2.3 and 2.5 that the statements of (1) and (2)

hold. r

3. Moduli problem on PðV0Þ

In this section, we will consider the moduli problem on PðV0Þ for m > 4.

The application of the rotation-normalized algorithm is fully described. This
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method will be mimicked conceptually to more complicated cases in Sections 5

and 6.

3.1. Semi-normalized Gram matrix. We recall the following definition in

[1, 8].

Definition 3.1. The quaternionic Cartan’s angular invariant of a triple p ¼
ðp1; p2; p3Þ of pairwise distinct points in Hn

H is the angular invariant AHðpÞ,
0aAHðpÞa p

2 , given by

AHðpÞ ¼ AHðp1; p2; p3Þ :¼ arccos
<ð�hp1; p2; p3iÞ
jhp1; p2; p3ij

; ð11Þ

where p1, p2, p3 are lifts of p1, p2, p3, respectively.

Proposition 3.1. Let p ¼ ðp1; . . . ; pmÞ be an m-tuple of pairwise distinct

points in qHn
H. Then the equivalence class of Gram matrices associated to p

contains a matrix G ¼ ðgijÞ with

gii ¼ 0; i ¼ 1; . . . ;m; gi�1; i ¼ 1; i ¼ 2; . . . ;m; g13 ¼ �e�iA;

where A ¼ AHððp1; p2; p3ÞÞ.

Proof. Let p ¼ ðp1; . . . ; pmÞ be an arbitrary lift of p. We want to obtain

a diagonal matrix D such that GðpDÞ is the desired Gram matrix.

Note that hpi; pji0 0 for i0 j. Firstly we obtain the solutions li, i ¼
2; . . . ;m of the equations below:

hp1; p2l2i ¼ 1; hp2l2; p3l3i ¼ 1; . . . ; hpm�1lm�1; pmlmi ¼ 1: ð12Þ

Next, by (6), we let

l1 ¼
nðhp1; p3l3iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhp1; p3l3ij

p ¼ nðhp2; p1ihp2; p3i�1hp1; p3iÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhp2; p1ihp2; p3i�1hp1; p3ij

q : ð13Þ

By the property of quaternionic Cartan’s angular invariant, hp1l1; p3l3l1i is a

unit complex with negative real part and therefore

hp1l1; p3l3l1i ¼ �e�iA:

Let m1 ¼ l1; for ib 2, mi ¼ lil1 when i is odd, and mi ¼ lil1
�1

when i is

even. Then GðpDÞ is the desired Gram matrix with

D ¼ diagðm1; . . . ; mmÞ: r

Definition 3.2. The Gram matrix G as in Proposition 3.1 of the

form
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GðnÞ ¼ ðgijÞ ¼

0 1 g13 g14 � � � g1m

1 0 1 g24 � � � g2m

g13 1 0 1 � � � g3m

g14 g24 1 . .
. . .

. ..
.

..

. ..
. ..

. . .
.

0 1

g1m g2m g3m � � � 1 0

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð14Þ

is called the semi-normalized Gram matrix.

By repeating almost verbatim the arguments used for the complex case

in Theorems 2.1, 2.2 of [12], we obtain the following proposition.

Proposition 3.2. Let G ¼ ðgijÞ be a Hermitian m�m-matrix, m > 2

with

gii ¼ 0; i ¼ 1; . . . ;m; gi�1; i ¼ 1; i ¼ 2; . . . ;m; g13 ¼ �e�iA;

where A A ½0; p=2�. Let iðGÞ ¼ ðnþ; n�; n0Þ. Then G is a semi-normalized Gram

matrix associated with some ordered m-tuple p ¼ ðp1; . . . ; pmÞ of pairwise distinct

isotropic points in qHn
H if and only if

nþ a n; n� ¼ 1; nþ þ n� þ n0 ¼ m: ð15Þ

3.2. The parameter space of Mðn;m; qHn
HÞ. The following lemma shows that

a semi-normalized Gram matrix is just an equivalent class, and also indicates

the necessity of performing the rotation-normalized algorithm.

Lemma 3.1. Suppose that the Gram matrix GðpÞ is a semi-normalized

Gram matrix for p ¼ ðp1; . . . ; pmÞ. Then GðpDÞ is still a semi-normalized Gram

matrix with D ¼ diagðm1; . . . ; mmÞ if and only if

D ¼ mIm ¼ diagðm; . . . ; mÞ; me�iA ¼ e�iAm; m A Spð1Þ:

Proof. It follows from

hpi�1mi�1; pimii ¼ 1; i ¼ 2; . . . ;m

that all those mi with i odd are equal, and so do for all those mi with i even.

The fact hp1m1; p3m3i ¼ �e�iA implies m1 ¼ m3. Hence m1 ¼ m2 ¼ � � � ¼ mm :¼
m and me�iA ¼ e�iAm. r

Set t ¼ ðm�1Þðm�2Þ
2 . We can represent a semi-normalized Gram matrix by

a t-vector:

vG ¼ ðg13; g14; g24; . . . ; g1m; . . . ; gm�2;mÞ: ð16Þ
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Also we represent

G ¼ GðvGÞ: ð17Þ

Recall that two Hermitian matrices H and ~HH are equivalent if there exists

a diagonal matrix D such that ~HH ¼ D�HD (see [8, 12]). By Lemma 3.1, we

obtain the following result.

Lemma 3.2. Let G and ~GG be two semi-normalized Gram matrices repre-

sented by vG and V ~GG. Then ~GG and G are equivalent if and only if

OvG ¼ Ov ~GG
: ð18Þ

From this, Proposition 3.2 can be reformulated as follows.

Proposition 3.3. Let v ¼ ðv1; . . . ; vtÞ with v1 ¼ �e�iA, A A ½0; p=2�. Let

iðGðvÞÞ ¼ ðnþ; n�; n0Þ. Then GðvÞ is a semi-normalized Gram matrix associated

with some ordered m-tuple p ¼ ðp1; . . . ; pmÞ of distinct isotropic points in qHn
H if

and only if

nþ a n; n� ¼ 1; nþ þ n� þ n0 ¼ m: ð19Þ

Definition 3.3.

Vðn;mÞ ¼ fv ¼ ðv1; . . . ; vtÞ : iðGðvÞÞ ¼ ðnþ; n�; n0Þ with nþ a n; n� ¼ 1g:

By Lemma 3.2, there is an equivalent relation in Vðn;mÞ defined by (18).

Therefore the configuration space Mðn;m; qHn
HÞ can be thought of as the

quotient of Vðn;mÞ under this equivalent relation. That is

Mðn;m; qHn
HÞ ¼ Vðn;mÞ=F:

Based on this observation, we are ready to construct the parameter space

Mðn;mÞ for Vðn;mÞ=F with the rotation-normalized algorithm. We mainly

rely on Lemma 2.1 to execute the rotation-normalized algorithm.

This procedure can be described conceptually as follows:

In case A ¼ 0, or equivalently, �e�iA ¼ �1, we basically need to find two

entries vi and vj in v A Vðn;mÞ with =ðviÞ and =ðvjÞ being linearly independent

to specific the parameters for its representing equivalent class, whilst only a

quaternion in H�C in the case of A0 0.

The above conceptual description is a motivation of the definition of the

following sets.

Let

R2þ ¼ fv A H : v ¼ x0 þ x1iþ x2j; x2 > 0g;

R1þ ¼ fv A C : v ¼ x0 þ x1i; x1 > 0g:
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Definition 3.4. We define the following sets.

PðCÞ ¼ fv A Vðn;mÞ : v1 B R; vi A C; for i ¼ 2; . . . ; tg;

Pð jÞ ¼ fv A Vðn;mÞ : v1 B R; vi A C; for i < j; vj A R2þg; j ¼ 2; . . . ; t;

ZðRÞ ¼ fv A Vðn;mÞ : vi A R for i ¼ 1; . . . ; tg;

ZðC; iÞ ¼ fv A Vðn;mÞ : vt A R; for t < i; vi A R1þg; i ¼ 2; . . . ; t;

Zði; jÞ ¼ fv A Vðn;mÞ : vt A R; t < i; vi A R1þ; vt A C; t < j; vj A R2þg

for j ¼ 2; . . . ; t, 2a i < j:

We remark that the sets defined above is roughly divided by two cases:

A0 0 and A ¼ 0. Each case is refined according to the positions in which

Lemma 2.1 acts. Roughly speaking, such a Zði; jÞ looks like

Zði; jÞ ¼ ð�1;R�; . . . ;R�|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
i�1

;R1þ;C�; . . . ;C�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
j�i�1

;R2þ;H�; . . . ;H�Þ:

Let

Pðn;mÞ ¼ PðCÞ [ Pð jÞ; Zðn;mÞ ¼ ZðRÞ [ ZðC; jÞ [ Zði; jÞ

and

Mðn;mÞ ¼ Pðn;mÞ [ Zðn;mÞ:

Theorem 3.1. Mðn;mÞ is a parameter space of Vðn;mÞ=F.

Proof. Let v ¼ ðv1; . . . ; vtÞ A Vðn;mÞ, where v1 ¼ �e�iA. We define a

map

c : Ov A Vðn;mÞ=F! Mðn;mÞ ð20Þ

by the following steps:

The equivalent class Ov with A0 0 will be mapped to an element in

Pðn;mÞ. It is obvious that mvm A Vðn;mÞ if and only if m A Uð1Þ. If all entries

of v are complex numbers, then Ov is represented by v itself. Equivalently,

the parameter of Ov assigned by c in Mðn;mÞ is v which belongs to A PðCÞ.
Otherwise, let j be the smallest index among entries of v such that vj A
H�C. Let m ¼ mð=ðv1Þ;=ðvjÞÞ given by (7). Therefore Ov is assigned to the

parameter mvm, which belongs to Pð jÞ.
The equivalent class Ov with A ¼ 0 belongs to Zðn;mÞ. More precisely, if

all entries of v are reals, then Ov is represented by v itself belonging to ZðRÞ.
We divide the remainder into two cases. If all entries of v are complex
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numbers with i being the smallest index such that vi A C�R. Let m ¼
nð=ðviÞÞ be given by (6). Then we assign Ov to mvm, which belongs to

ZðC; jÞ. For the latter case, let i be the smallest index such that

vi A C�R and j the smallest index such that vj A H�C. Let

m ¼ mð=ðviÞ;=ðvjÞÞ. Then we assign Ov to mvm, which belongs to Zði; jÞ.
By Lemma 2.1 and the constructions of Pðn;mÞ and Zðn;mÞ above, the

map c is bijection. Therefore Mðn;mÞ is a parameter space of Vðn;mÞ=F.

r

Theorem 3.2. The configuration space Mðn;m; qHn
HÞ is homeomorphic to

Mðn;mÞ.

Proof. Let mðpÞ A Mðn;m; qHn
HÞ be the point represented by p ¼

ðp1; . . . ; pmÞ. We can get a semi-normalized Gram matrix G with arbitrary

lift of p. Proposition 3.3 and Theorem 3.1 imply that we can define a map

t : mðpÞ A Mðn;m; qHn
HÞ ! cðvGÞ A Mðn;mÞ:

This map is a bijection. Such a map is a homeomorphism because Mðn;mÞ
has the topology structure induced from H t. r

We conclude this section by some remarks. Firstly, if we allow m ¼ 3 in

our process then we get the parameter of quaternionic Cartan’s angular invar-

iant A (in fact a complex number �e�iA); while the case of m ¼ 4 is exactly

the result in [8]. Secondly it seems that the parameters of m-tuples in ZðRÞ,
ZðRÞ [ ZðC; iÞ [ PðCÞ can be thought of as m-tuples living in a copy of qHn

R
and qHn

C, respectively.

4. The structure of Gram matrices of points on PðVþÞ

The main purpose of this section is to refine the structures of Gram

matrices. These refined structures are crucial in introducing new invariants

in non regular case and the block-normalized algorithm in regular case.

4.1. 1-normalized Gram matrices.

Proposition 4.1. Let p ¼ ðp1; . . . ; pmÞ be an m-tuple of pairwise distinct

points in PðVþÞ. Then the equivalence class of Gram matrices associated to p

contains a matrix G ¼ ðgijÞ with

gii ¼ 1; i ¼ 1; . . . ;m; g1j b 0; j ¼ 2; . . . ;m:

Proof. Let p ¼ ðp1; . . . ; pmÞ be an arbitrary lift of p. We want to obtain

a diagonal matrix D1 such that GðpD1Þ is the desired Gram matrix.
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We may assume that hpi; pii ¼ 1 by noticing that

hpili; pilii ¼ 1; for li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

hpi; pii

s
:

For i ¼ 2; . . . ;m, let

li ¼
hp1;pii
jhp1;piij

; provided hp1; pii0 0;

1; otherwise:

(
ð21Þ

Then there exists a l1 A Spð1Þ such that l1l3hp2; p3il2l1 is a complex number

with non-negative imaginary part if hp2; p3i0 0. Then

Gðp1l1; p2l2l1; . . . ; pmlml1Þ

is the desired Gram matrix. In other words, GðpD1Þ is the desired Gram

matrix with

D1 ¼ diag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

hp1; p1i

s
l1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

hp2; p2i

s
l2l1; . . . ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

hpm; pmi

s
lml1

 !
: ð22Þ

r

Definition 4.1. The Gram matrix G as in Proposition 4.1 of the

form

G ¼ ðgijÞ ¼

1 g12 g13 g14 � � � g1m

g12 1 g23 g24 � � � g2m

g13 g23 1 g34 � � � g3m

g14 g24 g34 1 � � � g4m

..

. ..
. ..

. ..
. . .

. ..
.

g1m g2m g3m g4m � � � 1

0
BBBBBBBBB@

1
CCCCCCCCCA

ð23Þ

is called the 1-normalized Gram matrix.

The following result can be shown similarly as Proposition 3.2.

Theorem 4.1 ([13, Proposition 3.2]). Let G ¼ ðgijÞ be a Hermitian m�m-

matrix, m > 2 with

gii ¼ 1; i ¼ 1; . . . ;m; g1j b 0; j ¼ 2; . . . ;m:

Let iðGÞ ¼ ðnþ; n�; n0Þ. Then G is a 1-normalized Gram matrix associated with

an m-tuple of pairwise distinct points in PðVþÞ if and only if

1a nþ þ n� a nþ 1; nþ a n; n� a 1; nþ þ n� þ n0 ¼ m: ð24Þ
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4.2. The parameter space of Mðn; 2;PðVþÞÞ. In this subsection, we will con-

struct the parameter space of Mðn; 2;PðVþÞÞ. We need the following lemma,

which is easy to be verified. We refer to [2, 6] for more details of Spð1; 1Þ.

Lemma 4.1. Let g A Spð2; 1Þ and e2 ¼ ð0; 1; 0ÞT A H2;1 such that

ge2 ¼ e2m: Then g is of the form

g ¼
a 0 b

0 m 0

c 0 d

0
B@

1
CA;

where

a b

c d

� �
A Spð1; 1Þ and m A Spð1Þ:

Theorem 4.2. The configuration space Mðn; 2;PðVþÞÞ is homeomorphic to

ft A R : tb 0g.

Proof. It is obvious that we can work in H2;1 in this situation. By

Proposition 4.1, we only need to show that there exists a g A Spð2; 1Þ such

that gp1 ¼ q1l1 and gp2 ¼ q2l2 when Gððp1; p2ÞÞ ¼ Gððq1; q2ÞÞ ¼
1 t

t 1

� �
with

tb 0. By noting Proposition 2.2, we only need to consider the case t0 0.

Observe that t0 0 implies l1 ¼ l2. Since Spð2; 1Þ acts transitively on PðVþÞ,
we may further assume that

p1 ¼ q1 ¼ ð0; 1; 0ÞT ; p2 ¼ ðx1; t; x3Þ; q2 ¼ ðy1; t; y3ÞT ;

where jx3j2 � jx1j2 ¼ jy3j2 � jy1j2 ¼ t2 � 1. By Lemma 4.1, we need to find

an element f ¼ a b

c d

� �
A Spð1; 1Þ mapping ðx1; x3ÞT to ðy1; y3ÞTm. The fact

that Spð1; 1Þ acts doubly transitively on qH1
H, transitively on H1

H, and on

PðVþÞ respectively, concludes the proof. r

4.3. The structure of Gram matrices of points on PðVþÞ. In what follows,

we assume that GðpÞ is already a 1-normalized Gram matrix.

Proposition 4.2. Let p ¼ ðp1; . . . ; ptÞ be a t-tuple of pairwise distinct

points in PðVþÞ satisfying

hpi; pji ¼ 1; i; j ¼ 1; . . . ; t

and V ¼ spanfp1; . . . ; plg. Then there exists a unique fibre zH A V0 such that

V � z?; V \ V0 ¼ zH; V \ V� ¼ q:
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In fact

z ¼ p2 � p1; V ¼ spanfp1; p2g ¼ spanfz; p1g:

Proof. Let u ¼ p1l1 þ p2l2 A V . Then

hu; ui ¼ jl1j2 þ jl2j2 þ 2<ðl2l1Þb 0: ð25Þ

Note that hu; ui ¼ 0 if and only if l1 ¼ �l2. Hence ðp2 � p1ÞH is the unique

fibre of the intersection spanfp1; p2g \ V0 and spanfp1; p2g \ V� ¼ q. By

noting that hpi � pj; pi � pji ¼ 0 and hpi � pj ; p2 � p1Þi ¼ 0 for i0 j, by Prop-

osition 2.4, we have ðp2 � p1ÞH ¼ ðpi � pjÞH. Since hpi; ðp1 � p2Þi ¼ 0, i ¼
1; . . . ; t, we have V � ðp2 � p1Þ

?. It follows from pi � p1 A ðp2 � p1ÞH that

there exist li such that

pi ¼ p1 þ ðp2 � p1Þli ¼ p2li þ p1ð1� liÞ; i ¼ 1; . . . ; t:

This implies that

V ¼ spanfp1; p2g ¼ spanfz; p1g

and therefore V \ V0 ¼ zH, V \ V� ¼ q: r

The information of li disappears in the sub Gram matrix Gððp1; . . . ; ptÞÞ.
Moreover, such information can not be rebuilt through the relationships with

other points in some situations. This implies that the Gram matrix loses the

configuration information of such a t-tuple. We provide the following explicit

example in ball model to illustrate this phenomenon.

Example 4.1. Let z ¼ ð1; 0; 1ÞT A V0 and p1 ¼ ð0; 1; 0Þ A Vþ. Let pi ¼
p1 þ iz, i ¼ 2; 3. Then

Gððp1; p2; p3ÞÞ ¼ Gððp3; p2; p1ÞÞ ¼
1 1 1

1 1 1

1 1 1

0
B@

1
CA:

We claim that ðPðp1Þ;Pðp2Þ;Pðp3ÞÞ and ðPðp3Þ;Pðp2Þ;Pðp1ÞÞ are not PSpð2; 1Þ-
congruent.

Proof (Proof of the Claim). Suppose that the two triples above are

PSpð2; 1Þ-congruent. Then there exists a g A Spð2; 1Þ such that

gp1 ¼ p3l1; gp2 ¼ p2l2; gp3 ¼ p1l3:

It follows from

hgpi; gpii ¼ hgpi; gpji ¼ hpi; pii ¼ 1
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that li A Spð1Þ and ljli ¼ 1, and therefore l1 ¼ l2 ¼ l3 :¼ l. Hence

g2z ¼ gðp2 � p1Þ ¼ ðp2 � p3Þl ¼ �zl;

which contradicts

gz ¼ gðp3 � p2Þ ¼ ðp1 � p2Þl ¼ �z2l: r

If V is parabolic, by Proposition 4.2, we can refine Theorem 2.2 as

follows.

Proposition 4.3. Let p ¼ ðp1; . . . ; pmÞ A Hnþ1;m, V ¼ spanfp1; . . . ; pmg
and

dimq V ¼ k þ 1; iðGðpÞÞ ¼ iðp�JpÞ ¼ ðk; 0;m� kÞ:

Then SðmÞ ¼ f1; . . . ;mg has a partition:

Si ¼ fsi1; . . . ; sitig; si1 < � � � < siti ; i ¼ 1; . . . ; k ð26Þ

with the properties

SðmÞ ¼
[k
i¼1

Si; hpsil ; psidi ¼ 1; 1a l; da ti; hpsil ; psjdi ¼ 0; i0 j ð27Þ

and in each

pSi
:¼ ðpsi1 ; . . . ; psiti Þ;

we can not partition likewise as in (27).

There exists a common z0 A V0 such that p A z?0 and

psil ¼ psi1 þ z0lil ; 1 < laCardðSiÞ; i ¼ 1; . . . ; k; ð28Þ

where CardðSiÞ is the cardinality of Si. We define

Vi ¼ spanfpsi1 ; . . . ; psiti g ¼ spanfpsi1 ; z0g; i ¼ 1; . . . ; k: ð29Þ

If V is not parabolic, we can refine Theorem 2.2 as follows.

Proposition 4.4. Let p ¼ ðp1; . . . ; pmÞ A Hnþ1;m, V ¼ spanfp1; . . . ; pmg
and

dimqV ¼ k þ 1; iðGðpÞÞ ¼ iðp�JpÞ ¼ ðk; 1;m� k � 1Þ or

ðk þ 1; 0;m� k � 1Þ:

Then SðmÞ ¼ f1; . . . ;mg has a partition:

Si ¼ fsi1; . . . ; sitig; si1 < � � � < siti ; i ¼ 1; . . . ; s ð30Þ
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with the properties

SðmÞ ¼
[s
i¼1

Si; hpsil ; psjdi ¼ 0; i0 j ð31Þ

and in each pSi
:¼ ðpsi1 ; . . . ; psiti Þ, we can not partition likewise as above.

It is helpful to keep in mind that there are no relationships among the

blocked-entries corresponding to each components pSi
in the diagonal matrix D

in (4). This is the motivation of refinement of Theorem 2.2. Furthermore,

when V is not parabolic, we still need to partition the components Si in some

situations.

5. The moduli problem on PðVþÞ of non regular case

We will work on the Siegel domain in this section. We will construct

invariants which describe the PSpðn; 1Þ-congruence classes when V is parabolic.

We first recall the following fact of isometries in Spðn; 1Þ fixing y.

Lemma 5.1 (c.f. [10, Lemma 3.3.1]). Let zy ¼ ð1; 0; . . . ; 0; 0ÞT , PðzyÞ ¼y
and

Gy ¼ fg A Spðn; 1Þ : gðyÞ ¼ yg:

Then g A Gy is of the form

g ¼
l g� s

0 U b

0 0 m

0
B@

1
CA; ð32Þ

where l; m; s A H; b; g A Hn�1, U A Spðn� 1Þ, jmlj ¼ 1, <ðmsÞ ¼ � 1
2 jbj

2
, b ¼

�Ugm:

Let p ¼ ðp1; . . . ; pmÞ and q ¼ ðq1; . . . ; qmÞ be two ordered m-tuples of

pairwise distinct points in PðVþÞ such that VðpÞ and VðqÞ are parabolic.

Observe that if p and q are PSpðn; 1Þ-congruent, then they have the same

structure given by Proposition 4.3. Since Spðn; 1Þ acts doubly transitively on

qHn
H, we can further assume that p; q A z?y. As showed by Example 4.1,

besides the information of structure, other conditions are needed for p, q being

PSpðn; 1Þ-congruent.
In what follows, we assume that mb 3, VðpÞ ¼ spanfp1; . . . ; pmg is par-

abolic and VðpÞ � z?y. It is obvious that

z?y ¼ ðz1; . . . ; zn; 0ÞT :¼ ðz1; aT ; 0ÞT :
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Therefore the action of g A Gy on z?y can be expressed by

g :

z1

a

0

0
@

1
A!

lz1 þ g�a

Ua

0

0
B@

1
CA:

The restriction of the Hermitian form h ; i on z?y is the usual inner product

on Hn�1, i.e.,

hðk1; a1; 0ÞT ; ðk2; a2; 0ÞTi ¼ a�
2a1:

For g with the form (32), we define the map

P : g A Gy ! ~gg ¼ l g�

0 U

� �
A ~GGy: ð33Þ

Then P is a homomorphism with

kerðPÞ ¼
1 0 s

0 In�1 0

0 0 1

0
B@

1
CA with <ðsÞ ¼ 0

8><
>:

9>=
>;

and its homomorphic image ~GGy ¼ PðGyÞ is a subgroup of GLðn;HÞ. The

action of Gy on z?y can be expressed by the projection action of ~GGy on

HPn�1 ¼ ðz1; aT ÞT .
By noting Proposition 4.3 and GðpÞ being a 1-normalized Gram matrix,

we have

~ppsil ¼ ðkil ; aT
i Þ

T ; for sil A Si ð34Þ

and

a�
i ai ¼ 1; 1a ia k:

Therefore there exists a U A Spðn� 1Þ such that g ¼ diagð1;U ; 1Þ A Spðn; 1Þ
satisfying

Uða1; . . . ; akÞ ¼ ðe1; . . . ; ekÞ; ð35Þ

where ei, 1a ia k are k vectors in the standard basis of Hn�1. Therefore we

may further reformulate (34) as

~ppsil ¼ ðkil ; eTi Þ
T ; for sil A Si: ð36Þ

In order to parameterize the moduli space, we introduce the following map f to

give the corresponding coordinates in H [y for vectors in Vi ¼ spanfpsi1 ; zyg:

fðzyÞ ¼ y; fð~ppsil Þ ¼ kil ; 1a la ti; 1a ia k: ð37Þ
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Let h ¼ l g�

0 U

� �
with Uðe1; . . . ; ekÞ ¼ ðe1; . . . ; ekÞ and g ¼ ðc1; . . . ; cn�1ÞT .

Note that

l g�

0 U

� �
kil

ei

� �
¼ lkil þ g�ei

ei

� �
¼ lki1 þ ci

ei

� �
: ð38Þ

This means that the restriction of h in Vi is

hi : kil ! lki1 þ ci; 1a ia k: ð39Þ

The above treatment can be thought of as introducing the inhomogeneous

coordinates in each Vi. From this point of view, the restriction of an element

~gg of form (33) to Vi is a quaternionic Möbius transformation in Gy, the iso-

tropy group at y in PSsLð2;HÞ [7].

Summarizing the above descriptions, we have so far defined a map

P i : g A Gy ! hi ¼
l ci

0 1

� �
A Gy ð40Þ

and the action of g on z?y is inherited by the actions of hi on Vi, which is

identified with H.

Observe that the coordinates defined by (37) contain the information of

lil in (28). To distinguish between PSpðn; 1Þ-congruence classes of m-tuples in

degenerate case is the same as distinguishing the hi-congruence classes in Vi for

all i. For this purpose, we need to introduce new geometric invariants which

are invariant under the action of hi.

Definition 5.1 ([2, Definition 4.2]). The quaternionic cross-ratio of four

points z1; z2; z3; z4 A H [y is defined as

½z1; z2; z3; z4� ¼ ðz1 � z3Þðz1 � z4Þ�1ðz2 � z4Þðz2 � z3Þ�1:

Lemma 5.2 ([2, Proposition 4.1]). Given three distinct z1; z2; z3 A H, the

element f A PSsLð2;HÞ defined by

f ðzÞ ¼ ðz3 � z2Þðz3 � z1Þ�1ðz� z1Þðz� z2Þ�1 ð41Þ

maps z1 to 0, z2 to y and z3 to 1. Moreover, all elements f A PSsLð2;HÞ with
the same property are of the form:

lI2 � f ðzÞ ¼ lf ðzÞl�1

with l A H� f0g.
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Note that f A PSsLð2;HÞ fixing 0, 1, y is of the form f ¼ l 0

0 l

� �
¼ lI2:

Based on this observation and [2, Proposition 4.4], the cross-ratios enjoy the

following properties.

Lemma 5.3. (1) For any z A H with z0 0 and z0 1, we have

½z; 1; 0;y� ¼ z:

(2) Given distinct points z1; z2; z3; z A H,

½ f ðzÞ; f ðz3Þ; f ðz2Þ; f ðz1Þ� ¼ lf ½z; z3; z2; z1�l�1
f ;

where lf is a quaternion solely depending on f A PSsLð2;HÞ. In

particular, for hi given by (39), we have

½hiðzÞ; hiðz3Þ; hiðz2Þ; hiðz1Þ� ¼ l½z; z3; z2; z1�l�1:

Definition 5.2. We introduce the following geometric invariants in com-

ponent pSi
¼ ðpsi1 ; . . . ; psiti Þ when CardðSiÞb 3:

wð~ppsil ; ~ppsij ; ~ppsitÞ ¼ ðkil � kitÞðkij � kitÞ�1 ¼ ½kil ; kij ; kit;y�: ð42Þ

We mention that since the points ~ppsi1 , ~ppsij , ~ppsit are all distinct, w is finite

and w0 0; 1. Therefore

w A H� f0; 1g:

To sort out the conditions for p and q being PSpðn; 1Þ-congruent, without
loss of generality, we may assume that p; q A z?y have the same structure given

by Proposition 4.3. We denote the corresponding coordinates of ~qqSi
by

~qqsil ¼ ðwil ; e
T
i Þ

T ; for sil A Si ð43Þ

and compute the corresponding invariants of q in the same manner as these

of p.

We first obtain the necessary and su‰cient condition of two triples being

PSpðn; 1Þ-congruent directly.

Proposition 5.1. ~ppi ¼ ð~ppsi1 ; ~ppsi2 ; ~ppsi3Þ and ~qqi ¼ ð~qqsi1 ; ~qqsi2 ; ~qqsi3Þ are PSpðn; 1Þ-
congruent if and only if there exists a l A H� f0g such that

wð~ppsi1 ; ~ppsi2 ; ~ppsi3Þ ¼ lwð~qqsi1 ; ~qqsi2 ; ~qqsi3Þl
�1:

Proof. Assume that ~ppi and ~qqi are PSpðn; 1Þ-congruent. Let pi and qi
be the corresponding triples in Hn;1. Then there exists a g A Gy such that

gðpsi1 ; psi2 ; psi3Þ ¼ ðqsi1n1; qsi2n2; qsi3n3Þ. As before, we know that n1 ¼ n2 ¼ n3 :¼
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n and jnj ¼ 1. This implies that ~gg~ppi ¼ ~qqin, i.e.,

lkil þ g�ei ¼ wiln; Uei ¼ ein; l ¼ 1; 2; 3:

Therefore

lðki2 � ki3Þ ¼ ðwi2 � wi3Þn; lðki1 � ki3Þ ¼ ðwi1 � wi3Þn:

Hence

lðki1 � ki3Þðki2 � ki3Þ�1
l�1 ¼ ðwi1 � wi3Þðwi2 � wi3Þ�1:

Conversely, suppose that wð~ppsi1 ; ~ppsi2 ; ~ppsi3Þ@ wð~qqsi1 ; ~qqsi2 ; ~qqsi3Þ. Then there

exists a l such that

lðki1 � ki3Þðki2 � ki3Þ�1l�1 ¼ ðwi1 � wi3Þðwi2 � wi3Þ�1:

We may further require that jlj ¼ jki1�ki3j
jwi1�wi3j . Let n ¼ ðwi1 � wi3Þ�1lðki1 � ki3Þ.

Then

lðki1 � ki3Þ ¼ ðwi1 � wi3Þn; lðki2 � ki3Þ ¼ ðwi2 � wi3Þn:

From the above two equalities, we have lðki1 � ki2Þ ¼ ðwi1 � wi2Þn. We can

find a g A Hn�1 and a U A Spðn� 1Þ satisfying

lki1 þ g�ei ¼ wi1n; Uei ¼ ein:

The above equalities also imply

lki2 þ g�ei ¼ wi2n; lki3 þ g�ei ¼ wi3n:

With l, g, U above, we can construct a g A Gy of the form (32) satisfying

gðpsi1 ; psi2 ; psi3Þ ¼ ðqsi1n1; qsi2n2; qsi3n3Þ: r

Translating Example 4.1 from ball model to Siegel domain model, one has

an instance of positive points:

p1 ¼ ð0; 1; 0ÞT ; p2 ¼ ð2
ffiffiffi
2

p
; 1; 0ÞT ; and p3 ¼ ð3

ffiffiffi
2

p
; 1; 0ÞT :

Observe that wðp1; p2; p3Þ ¼ 3 and wðp3; p2; p1Þ ¼ 3
2 . Thus ðPðp1Þ;Pðp2Þ;Pðp3ÞÞ

and ðPðp3Þ;Pðp2Þ;Pðp1ÞÞ are not PSpð2; 1Þ-congruent. For the case of more

than three points, it is convenient to use the quaternionic cross-ratios.

Proposition 5.2. Let p ¼ ðz1; . . . ; zmÞ and q ¼ ðw1; . . . ;wmÞ be two ordered

m-tuples of pairwise distinct points in H, mb 4. Then p and q are congruent

with respect to the diagonal action of PSsLð2;HÞ if and only if there exists a

l A H� f0g such that

½zj; z3; z2; z1� ¼ l½wj;w3;w2;w1�l�1; 4a Ejam: ð44Þ
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Proof. If there is an f A PSsLð2;HÞ such that f ðzjÞ ¼ wj, j ¼ 1; . . . ;m.

Then by Lemma 5.3, the conditions of (44) hold.

Conversely, assume that

½zj; z3; z2; z1� ¼ l½wj;w3;w2;w1�l�1; 4a Ejam:

By Lemma 5.2 we can find f ; g A PSsLð2;HÞ such that f ðz3Þ ¼ 1, f ðz2Þ ¼ 0,

f ðz1Þ ¼ y, and gðw3Þ ¼ 1, gðw2Þ ¼ 0, gðw1Þ ¼ y. It follows from Lemma 5.3

that

f ðzjÞ ¼ ½ f ðzjÞ; 1; 0;y� ¼ ½ f ðzjÞ; f ðz3Þ; f ðz2Þ; f ðz1Þ� ¼ lf ½z; z3; z2; z1�l�1
f

and

gðwjÞ ¼ ½gðwjÞ; 1; 0;y� ¼ ½gðwjÞ; gðw3Þ; gðw2Þ; gðw1Þ� ¼ lg½w;w3;w2;w1�l�1
g :

Therefore our assumption implies that

hðzjÞ ¼ g�1 � lgðlf lÞ�1
I2 � f ðziÞ ¼ wi; i ¼ 1; . . . ;m:

Hence p and q are PSsLð2;HÞ-congruent. r

Definition 5.3. For Si ¼ fsi1; . . . ; sitig, i ¼ 1; . . . ; k with CardðSiÞ > 3, we

associate with Si the following geometric invariants:

wi0 ¼ wðpsil ; psi2 ; psi3Þ; wi1 ¼ wðpsil ; psi2 ; psi4Þ; . . . ; wiðti�3Þ ¼ wðpsil ; psi2 ; psiti Þ

and

XiðpÞ ¼ ðwi0; . . . ; wiðti�3ÞÞ:

Let XðpÞ be the vector whose components consisting of XiðpÞ above.

Taking z1 ¼ w1 ¼ y in Proposition 5.2, we get the following proposition.

Proposition 5.3. Let pSi
and qSi

belong to z?y with the same Gram matrix

whose entries are all equal to 1. Then pSi
and qSi

are PSpðn; 1Þ-congruent if and
only if there exists a l A H� f0g such that

XiðpÞ ¼ lXiðqÞl�1:

We still need to generalize the above result to the case of GðpÞ and GðqÞ
having stratum structures.

Proposition 5.4. Let p ¼ ðp1; . . . ; pmÞ and q ¼ ðq1; . . . ; qmÞ be two

m-tuples of pairwise distinct positive points of non regular case. We also assume

that p and q have the same structure given by Proposition 4.3 with the property
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CardðSiÞb 3 for some i. Then p and q are PSpðn; 1Þ-congruent if and only if

there exists a l A H� f0g such that

X ðpÞ ¼ lXðqÞl�1:

Proof. Without loss of generality, we assume that p; q A z?y. If there

is an f A PSpðn; 1Þ such that f ðpiÞ ¼ qi, j ¼ 1; . . . ;m. Then f A Gy is of the

form

f ¼
l g� ?

0 U ?

0 0 ?

0
B@

1
CA ð45Þ

and p, q must have the same structure given by Proposition 4.3. Here and

in what follows, ? stands for an arbitrary entry satisfying constraint that the

corresponding matrix f belongs to Spðn; 1Þ. By our normalization, we have

Uðe1; . . . ; ekÞ ¼ ðe1; . . . ; ekÞ ð46Þ

and in each block of index Si, we also have

lkil þ g�ei ¼ wil ; 1a laCardðSiÞ: ð47Þ

Therefore we have X ðpÞ ¼ lXðqÞl�1:

Conversely, suppose that X ðpÞ ¼ lXðqÞl�1: By Proposition 5.3, for two

specific blocks pSi
and qSi

, we can construct an element fi A Spðn; 1Þ of the form

fi ¼
li g�i ?

0 Ui ?

0 0 ?

0
B@

1
CA

such that

Uiei ¼ ei; likil þ g�i ei ¼ wil ; 1a laCardðSiÞ: ð48Þ

It is a pleasant surprise that we can adjust fi to a suitable transformation which

works for p wholly as follows. First, it follows from Lemma 5.3 that li ¼ l.

Let U A Spðn� 1Þ having the property Uðe1; . . . ; ekÞ ¼ ðe1; . . . ; ekÞ. It is ob-

vious that

hi ¼
l g�i ?

0 U ?

0 0 ?

0
B@

1
CA ð49Þ

also maps pSi
to qSi

. Note that ka n� 1. Let

g ¼ ðg�1e1; . . . ; g�kek; ?; . . . ; ?Þ
T
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and

h ¼
l g� ?

0 U ?

0 0 ?

0
B@

1
CA: ð50Þ

Then one has the equations (47), and therefore p and q are congruent up to h.

r

By the above proof and Subsection 4.2, we have the following result which

means that structures of Gram matrices determine their congruent classes when

CardðSiÞa 2 for all i.

Proposition 5.5. Let p ¼ ðp1; . . . ; pmÞ and q ¼ ðq1; . . . ; qmÞ be two

m-tuples of pairwise distinct positive points of non regular case with the same

structure given by Proposition 4.3 and CardðSiÞa 2, i ¼ 1; . . . ; k. Then p and q

are PSpðn; 1Þ-congruent.

In order to describe the parameter space, we need the following result.

Proposition 5.6. The coordinates of OXðpÞ given by the rotation-

normalized algorithm is well defined.

Proof. If both h1; h2 A PSpðn; 1Þ map V to a subspace of z?y, then the

coordinates in (37) may be di¤erent from each other, which implies that X ðpÞ
in Definition 5.3 is dependent on the map f in (37). However, since h�1

1 h2 A
Gy, Lemma 5.3 and Proposition 5.4 imply that the coordinates of OXðpÞ given

by the rotation-normalized algorithm is well defined. r

Summarizing the previous results, we obtain the main result of this section.

Theorem 5.1. Let p ¼ ðp1; . . . ; pmÞ be an m-tuple of pairwise distinct posi-

tive points given by Proposition 4.3. Then the PSpðn; 1Þ-congruence class of p is

determined uniquely by the partition structure of SðmÞ ¼
Sk

i¼1 Si and the coor-

dinates of OXðpÞ given by the rotation-normalized algorithm.

Therefore the moduli space can be described as follows.

Theorem 5.2. The moduli space of p ¼ ðp1; . . . ; pmÞ given by Proposition

4.3 can be identified with the set M1 � � � � �Mk, where M1 � � � � �Mk are the

coordinates of OXðpÞ given by the rotation-normalized algorithm.

6. The moduli problem on PðVþÞ of regular case

In this section, we describe the moduli space of configurations of quater-

nionic ðn� 1Þ-dimensional submanifolds when V is not parabolic in conceptual
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style. The basic idea is to find a partition of SðmÞ ¼ f1; . . . ;mg to perform the

rotation-normalized algorithm in each block.

We begin with 1-normalized matrix of p. Proposition 4.4 roughly shows

that we can treat the mutually orthogonal blocks pSi
¼ ðpsi1 ; . . . ; psiti Þ, i ¼

1; . . . ; s separately. Equivalently, we can perform the rotation-normalized

algorithm separately. This is the structure of Gram matrix at top level. For

each block pSi
, there may still exist 0s in GðpSi

Þ. We may need to partition

Si into more small blocks to perform the rotation-normalized algorithm. We

call such a partition process, together with similar 1-normalized process in

each small blocks, the block-normalized algorithm. The output of the block-

normalized algorithm is a special kind of Gram matrix, which is still not

unique and can be viewed as an equivalent class. We still need to apply the

rotation-normalized algorithm to get the parameters.

We describe the block-normalized algorithm conceptually as follows.

The block-normalized algorithm:

Step 1: Let Oil be the number of entries being zero in ilth row of GðpSi
Þ and

record the set of columns of these entries being nonzero as Pil . Let

ni ¼ minfOi1; . . . ;Oitig and Ki the set of indices il such that Oil ¼ ni.

Let ci1 be the smallest integer in Ki and denote the corresponding Pil

of ci1 as Si1. In other words, ci1 is the smallest index in Si ¼ fsi1; . . . ;
sitig such that the cardinality of nonzero entries in the ci1th row of

GðSiÞ is the largest among those of the others; the set of columns of

nonzero entries is recorded as Si1. It is obvious that ci1 A Si1.

Step 2: Repeating the process in Step 1 for the remainder of Si � Si1, we

obtain ci2 and Si2. It is obvious that we can continue this process

only finite steps. We denote by ti the number of steps and record

the corresponding numbers in each step as cij and Sij for 1a ja ti.

Then we have

Si ¼
[ti
j¼1

Sij:

Step 3: In each subindex set Sij, we perform the cij-normalized process to

GðpSij
Þ. We denote such result of the sub Gram matrix as GbðpSij

Þ.
In other words, the entries of GbðpSij

Þ have the following properties:

gtt ¼ 1; gcij t b 0; gtcij b 0; t A Sij :

As in (22) of Section 4, we record the corresponding normalized sub-

diagonal matrix as Dij. That is

GbðpSij
Þ ¼ GðpSij

DijÞ:
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Step 4: Let

Di ¼ diagðDi1; . . . ;DitiÞ; Db ¼ diagðD1; . . . ;DsÞ: ð51Þ

We define

GbðpSi
Þ ¼ GðpSi

DiÞ ð52Þ

and

GbðpÞ ¼ GðpDbÞ: ð53Þ

Definition 6.1. The Gram matrix GbðpÞ obtained by the above block-

normalized algorithm is called the block-normalized matrix of GðpÞ.

We mention that our strategy in the block-normalized algorithm is from

parts to entirety. We deal with the diagonal blocks separately. In this scale

pSi
and pSj

are totally independent. In each block pSi
, all processes are

explicitly recorded by the corresponding sub-diagonal matrices Di ¼
diagðDi1; . . . ;DitiÞ. In this way the entries hpsil ; psidi in o¤-diagonal blocks

of pSi
are all determined definitely by Di. We describe the structure of GbðpÞ

in the following proposition in more details.

Proposition 6.1. The block-normalized Gram matrix GbðpÞ has the follow-

ing characteristics.

(1) If we view the block-normalized Gram matrix GbðpÞ in its permuted

position with index Si, then GbðpÞ consists of blocks submatrix GbðpSi
Þ,

and the entries of the corresponding o¤-diagonal blocks matrices are

zero (see (30) in Proposition 4.4).

(2) In the ci1th row (and column) of submatrix GbðpSi
Þ, the first CardðSi1Þ

entries are nonzero real numbers, and the others are zeros (see Step 2

of the block-normalized algorithm).

(3) In the ci2th row (and column) of submatrix GbðpSi
Þ, the entries with

index between CardðSi1Þ þ 1 and CardðSi1Þ þ CardðSi2Þ are nonzero

real numbers, the entries with index bigger than CardðSi1Þ þ CardðSi2Þ
are zeros; the entries in the cijth row (and column) of submatrix GbðpSi

Þ
can be described similarly when j ¼ 3; . . . ; ti.

(4) GbðpSi
Þ can not be block diagonal according to our partition in Prop-

osition 4.4.

Similarly to Lemma 3.1, we have the following result.

Lemma 6.1. Suppose that GðqÞ is a block-normalized Gram matrix GbðpÞ
for p ¼ ðp1; . . . ; pmÞ. Then GðqDrÞ is still a block-normalized Gram matrix with

Dr ¼ diagðm1; . . . ; mmÞ
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if only if every mt with t A Sij is the same quaternion of modulus 1, i.e.,

mt ¼ mij ; Et A Sij ; where mij A Spð1Þ:

Summarizing the previous treatments, we have the following procedure.

Theorem 6.1. Let p ¼ ðp1; . . . ; pmÞ be an m-tuple of pairwise distinct posi-

tive point given by Proposition 4.4. We can assign the PSpðn; 1Þ-congruence
class of p a coordinate as follows.

(1) Obtain a block-normalized matrix GðpDbÞ by performing the block-

normalized algorithm, where Db is given by (51).

(2) Perform the rotation-normalized algorithm to each block Sij (as the

case of m-tuple of PðV0Þ in Section 3). This is equivalent to choosing

a specific mij A Spð1Þ. Combine them to the corresponding whole rota-

tion normalized diagonal matrix Dr.

(3) The independent entries of

GðpDbDrÞ;

that is, all the entries above the diagonal entries, are the desired coor-

dinate of the PSpðn; 1Þ-congruent class of p.

We now are ready to give a conceptual description of the parameter space

Mðn;mÞ in regular case. We mimic conceptually the method used in Section

3.2 as follows.

The procedure of constructing parameter space:

For a partition S of SðmÞ ¼ f1; . . . ;mg as

Si ¼ fsi1; . . . ; sitig; si1 < � � � < siti ; i ¼ 1; . . . ; s

with sub partitions

Si ¼
[ti
j¼1

Sij:

Let CardðSijÞ ¼ sij: As in Section 3.2, we construct the parameter space

Mðn; sijÞ of Sij . Let

Mðn; iÞ ¼ Mðn; si1Þ � � � �Mðn; sitiÞ �Ci;

where the set of Ci is the corresponding space of the o¤-diagonal sub-blocks.

Let

Mðn;m;SÞ ¼ Mðn; iÞ � � � �Mðn; sÞ:
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The Hermitian matrix constructed from the entries of the parameter space

Mðn;m;SÞ should subject to analogous constraints as those of Theorem 4.1.

Then the union of the parameter spaces determined by all possible partitions

Mðn;mÞ ¼
[
S

Mðn;m;SÞ ð54Þ

is a parameter space of the configuration space Mðn;m;PðVþÞÞ when V is not

parabolic.

Therefore, the moduli space can be described as follows.

Theorem 6.2. The moduli space of p ¼ ðp1; . . . ; pmÞ given by Proposition

4.4 can be identified with the set

Mðn;mÞ ¼
[
S

Mðn;m;SÞ: ð55Þ
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