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Three dimensional contact metric manifolds with Cotton solitons
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Abstract. In this article we study a three dimensional contact metric manifold M 3

with Cotton solitons. We mainly consider two classes of contact metric manifolds

admitting Cotton solitons. Firstly, we study a contact metric manifold with Qx ¼ rx,

where r is a smooth function on M constant along Reeb vector field x and prove that

it is Sasakian or has constant sectional curvature 0 or 1 if the potential vector field

of Cotton soliton is collinear with x or is a gradient vector field. Moreover, if r is

constant we prove that such a contact metric manifold is Sasakian, flat or locally

isometric to one of the following Lie groups: SUð2Þ or SOð3Þ if it admits a Cotton

soliton with the potential vector field being orthogonal to Reeb vector field x. Sec-

ondly, it is proved that a ðk; m; nÞ-contact metric manifold admitting a Cotton soliton

with the potential vector field being Reeb vector field is Sasakian. Furthermore, if the

potential vector field is a gradient vector field, we prove that M is Sasakian, flat, a

contact metric ð0;�4Þ-space or a contact metric ðk; 0Þ-space with k < 1 and k0 0. For

the potential vector field being orthogonal to x, if n is constant we prove that M is

either Sasakian, or a ðk; mÞ-contact metric space.

1. Introduction

A Cotton soliton is a metric defined on a three dimensional smooth mani-

fold M such that the following equation

LVgþ C � sg ¼ 0 ð1Þ

holds for a constant s and one vector field V , called potential vector field,

where C is the ð0; 2Þ-Cotton tensor defined by

Cij ¼
1

2
ffiffiffi
g

p Cnmie
nmlglj ð2Þ
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in a local frame of M. Here e is a tensor density, in an orthonormal frame

e123 ¼ 1 and Cijk is Cotton tensor. As the Ricci soliton being fixed point of

Ricci flow, Cotton solitons are fixed points of the Cotton flow up to di¤eo-

morphisms and rescaling:

q

qt
gðtÞ ¼ CgðtÞ;

introduced in [14], where CgðtÞ is the ð0; 2Þ-Cotton tensor of ðM; gðtÞÞ. Cotton

soliton is said to be trivial if C ¼ 0 (i.e. locally conformally flat). Using the

terminology of Ricci solitons, we call a Cotton soliton shrinking, steady and

expanding according as s is positive, zero and negative respectively. If the

potential vector field V is a gradient field for some function, then g is called

a gradient Cotton soliton, i.e. the following equation

2 Hess f þ C ¼ sg ð3Þ

is satisfied for a smooth function f on M.

For a Riemannian case, in [18] it proved that a compact Riemannian

Cotton soliton is locally conformally flat, and in the noncompact case the

existence of a nontrivial shrinking Cotton soliton on Heisenberg group H is

given. Meanwhile, for a non-Riemannian case, they gave the existence of

Lorentzian Cotton solitons. Furthermore, E. Calviño-Louzao et al. studied

left-invariant Cotton solitons on homogeneous manifolds, see [17].

In fact, Cotton solitons are closely related to Ricci and Yamabe solitons,

which are defined respectively by

LVgþ Ric ¼ sg and LVg ¼ ðr� sÞg;

where Ric and r are denoted by the Ricci tensor and scalar curvature, respec-

tively (see the examples [16, 7]). We notice that many authors studied Ricci

solitons and Yamabe solitons on contact metric manifolds, for instance, Cho

and Sharma in [5, 6] studied a contact metric manifold with a Ricci soliton

such that potential vector field V being collinear with x, and Venkatesha-Naik

[21] proved that a contact metric manifold with a Yamabe soliton is flat or

it has constant scalar curvature under the assumption that fQ ¼ Qf. More

results can refer to [10, 11, 19, 20].

The previous works motivate us to study Cotton solitons on a three

dimensional contact metric manifold. In this article, we study two classes

of contact metric 3-manifolds admitting a Cotton soliton including a contact

metric 3-manifolds with Qx ¼ rx and a ðk; m; nÞ-contact metric 3-manifold. In

Section 3, for a contact metric 3-manifolds with Qx ¼ rx, we first assume that

the function r is constant along Reeb vector field x. Such a class of contact

metric manifolds was studied in [2] under the hypothesis of pseudosymmetric.
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We classify such a class of contact metric manifold admitting a Cotton soliton

with potential vector field V being collinear with x or a gradient vector field.

For V being orthogonal to Reeb vector field, we need to assume that r is a

constant function. For a ðk; m; nÞ-contact metric manifold, in Section 4 we also

consider the potential vector field of a Cotton soliton being Reeb vector field,

a gradient vector field and orthogonal to x, respectively. In order to state and

prove our conclusions, we need to give some preliminaries of contact manifolds,

which are presented in Section 2.

2. Preliminaries

A contact metric manifold is a smooth manifold M 2nþ1 with a global one

form h such that h5ðdhÞn 0 0 everywhere. The one form h induces an almost

contact structure ðf; x; hÞ on M, which satisfies

f2 ¼ �I þ hn x; h � f ¼ 0; f � x ¼ 0:

Here x is a unique vector field (called Reeb or characteristic vector field ) dual to

h and satisfying dhðx;X Þ ¼ 0 for all X . It is well-known that there exists a

Riemannian metric g such that

dhðX ;Y Þ ¼ gðX ; fY Þ; gðX ; xÞ ¼ hðX Þ

for any X ;Y A XðMÞ. We refer to ðM 2nþ1; f; x; h; gÞ as a contact metric mani-

fold. A contact metric manifold ðM 2nþ1; f; x; h; gÞ for which Reeb vector field

x is Killing, i.e. Lxg ¼ 0, is called a K-contact manifold.

On a contact metric manifold, we recall a operator h ¼ 1
2Lxf, which is

a self-dual operator, and l ¼ Rð�; xÞx. Concerning the operators the following

identities, which were given in [3], are satisfied:

hx ¼ 0; fh ¼ �hf; ‘Xx ¼ �fX � fhX ; gðhX ;Y Þ ¼ gðX ; hYÞ;
traceðhÞ ¼ traceðfhÞ ¼ 0; h � h ¼ 0;

traceðlÞ ¼ gðQx; xÞ ¼ 2n� traceðh2Þ:

8<
: ð4Þ

If h ¼ 0 then we have Lxg ¼ 0, that means that M 2nþ1 is a K-contact manifold.

One can define a complex structure J on M �R by J X ; f d
dt

� �
¼
�
fX � f x;

hðXÞ d
dt

�
for any X A XðMÞ and f A CyðM �RÞ. A contact metric structure

ðf; x; h; gÞ is said to be normal and M is called Sasakian if the correspond-

ing complex structure J on M �R is integrable. A Sasakian manifold is a

K-contact manifold and the converse does not hold, but if dim M ¼ 3 then a

K-contact manifold is Sasakian.

In the following we assume that M is a 3-dimensional contact metric

manifold. Let U be the open subset where the tensor h0 0 and U 0 be the
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open subset such that h is identically zero. U [U 0 is open dense in M be-

cause h is a smooth function on M, thus a property that is satisfied in U 0 [U

is also satisfied in M. For any p A U 0 [U , there exists a local orthonormal

frame field E ¼ fe1 ¼ e; e2 ¼ fe; e3 ¼ xg such that he ¼ le and hfe ¼ �lfe on

U , where l is a positive non-vanishing smooth function of M.

First of all, we have the following lemma:

Lemma 1 ([9]). In the open subset U, the Levi-Civita connection ‘ is given

by

‘xe ¼ afe; ‘xfe ¼ �ae; ‘xx ¼ 0;

‘ex ¼ �ð1þ lÞfe; ‘ee ¼ bfe; ‘efe ¼ �beþ ð1þ lÞx;

‘fex ¼ ð1� lÞe; ‘fefe ¼ ce; ‘fee ¼ �cfeþ ðl� 1Þx;

where a is a smooth function,

b ¼ 1

2l
½feðlÞ þ A� with A ¼ Ricðe; xÞ; ð5Þ

c ¼ 1

2l
½eðlÞ þ B� with B ¼ Ricðfe; xÞ: ð6Þ

The components of Ricci operator Q are given by

Qe ¼ 1
2 r� 1þ l2 � 2al
� �

eþ Zfeþ Ax;

Qfe ¼ Zeþ 1
2 r� 1þ l2 þ 2al
� �

feþ Bx;

Qx ¼ Aeþ Bfeþ 2ð1� l2Þx;

8><
>: ð7Þ

where Z ¼ xðlÞ and the scalar curvature

r ¼ traceðQÞ ¼ 2ð1� l2 � b2 � c2 þ 2aþ eðcÞ þ feðbÞÞ: ð8Þ

Moreover, it follows from Lemma 1 that

½e; fe� ¼ ‘efe� ‘fee ¼ �beþ cfeþ 2x;

½e; x� ¼ ‘ex� ‘xe ¼ �ðaþ lþ 1Þfe;
½fe; x� ¼ ‘fex� ‘xfe ¼ ða� lþ 1Þe:

8><
>: ð9Þ

Putting X ¼ e, Y ¼ fe and Z ¼ x in the Jacobi identity ½½X ;Y �;Z� þ ½½Y ;Z�;X �
þ ½½Z;X �;Y � ¼ 0 and using (9), we conclude

bðaþ lþ 1Þ � xðcÞ � feðlÞ � feðaÞ ¼ 0;

cða� lþ 1Þ þ xðbÞ þ eðlÞ � eðaÞ ¼ 0:

�
ð10Þ

Proposition 1. If the Reeb vector field x is an eigenvector of Q, in the

open subset U the components of ð0; 2Þ-Cotton tensor C can be expressed
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as follows:

C11 ¼ Cðe; eÞ ¼ �ð1� lÞ 1

2
r� 3þ 3l2 � 2al

� �
� xðZÞ þ 4a2l; ð11Þ

C12 ¼ Cðe; feÞ ¼ �2lxðaÞ � 4aZ � ð1� lÞZ þ 1

4
xðrÞ; ð12Þ

C13 ¼ Cðe; xÞ ¼ eðZÞ � 4abl� feðl2 � 2alÞ � 2cZ � 1

4
feðrÞ; ð13Þ

C22 ¼ Cðfe; feÞ ¼ xðZÞ � 4a2l� ð1þ lÞ 1

2
r� 3þ 3l2 þ 2al

� �
; ð14Þ

C23 ¼ Cðfe; xÞ ¼ eðl2 þ 2alÞ þ 2bZ � feðZÞ � 4aclþ 1

4
eðrÞ; ð15Þ

C33 ¼ Cðx; xÞ ¼ rþ 4al2 � 6ð1� l2Þ: ð16Þ

Proof. It is well-known that the Cotton tensor is defined by

CðX ;YÞZ ¼ ð‘XSÞðY ;ZÞ � ð‘YSÞðX ;ZÞ ð17Þ

for all X , Y , Z, where

SðX ;YÞ ¼ RicðX ;YÞ � r

4
gðX ;YÞ

is the Schouten tensor. In the frame field E, by (2) the ð0; 2Þ-Cotton tensor

is simplified as

Cij ¼
1

2
Cnmie

nmj ; i; j ¼ 1; 2; 3;

where Cijk ¼ Cðei; ejÞek. It is clear that Cijk ¼ �Cjik and Ciik ¼ 0 for all

i, j, k. Thus

C11 ¼
1

2
Cnm1e

nm1 ¼ 1

2
C1m1e

1m1 þ 1

2
C2m1e

2m1 þ 1

2
C3m1e

3m1

¼ 1

2
C231e

231 þ 1

2
C321e

321 ¼ C231:

Analogously, we have

C12 ¼ C311; C13 ¼ C121; C22 ¼ C312; C23 ¼ C122; C33 ¼ C123:

Since x is an eigenvector of Q, by the third term of (7) we have

A ¼ B ¼ 0. Next, making use of (17) and Lemma 1, we directly compute

the components of C as follows:
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C11 ¼ ð‘e2SÞðe3; e1Þ � ð‘e3SÞðe2; e1Þ ¼ ð‘fe RicÞðx; eÞ � ð‘x RicÞðfe; eÞ

¼ �Ricð‘fex; eÞ � Ricðx;‘feeÞ � xðZÞ þ Ricð‘xfe; eÞ þ Ricðfe;‘xeÞ

¼ �ð1� lÞ 1

2
r� 1þ l2 � 2al

� �
� 2ðl� 1Þð1� l2Þ

� xðZÞ � a
1

2
r� 1þ l2 � 2al

� �
þ a

1

2
r� 1þ l2 þ 2al

� �

¼ �ð1� lÞ 1

2
r� 3þ 3l2 � 2al

� �
� xðZÞ þ 4a2l;

C12 ¼ ð‘e3SÞðe1; e1Þ � ð‘e1SÞðe3; e1Þ ¼ ð‘x RicÞðe; eÞ � ð‘e RicÞðx; eÞ �
1

4
xðrÞ

¼ x
1

2
r� 1þ l2 � 2al

� �
� 2 Ricð‘xe; eÞ þ Ricð‘ex; eÞ þ Ricðx;‘eeÞ �

1

4
xðrÞ

¼ x
1

2
r� 1þ l2 � 2al

� �
� 2aZ � ð1þ lÞZ � 1

4
xðrÞ

¼ �2lxðaÞ � 4aZ � ð1� lÞZ þ 1

4
xðrÞ;

C13 ¼ ð‘e1SÞðe2; e1Þ � ð‘e2SÞðe1; e1Þ ¼ ð‘e RicÞðfe; eÞ � ð‘fe RicÞðe; eÞ þ
1

4
feðrÞ

¼ eðZÞ � Ricð‘efe; eÞ � Ricðfe;‘eeÞ � fe
1

2
r� 1þ l2 � 2al

� �

þ 2 Ricð‘fee; eÞ þ
1

4
feðrÞ

¼ eðZÞ � 4abl� fe
1

2
r� 1þ l2 � 2al

� �
� 2cZ þ 1

4
feðrÞ

¼ eðZÞ � 4abl� feðl2 � 2alÞ � 2cZ � 1

4
feðrÞ;

C22 ¼ ð‘e3SÞðe1; e2Þ � ð‘e1SÞðe3; e2Þ ¼ ð‘x RicÞðe; feÞ � ð‘e RicÞðx; feÞ

¼ xðZÞ � Ricð‘xe; feÞ � Ricðe;‘xfeÞ þ Ricð‘ex; feÞ þ Ricðx;‘efeÞ

¼ xðZÞ � 4a2l� ð1þ lÞ 1

2
rþ 2al

� �
þ 3ð1þ lÞð1� l2Þ;

C23 ¼ ð‘e1SÞðe2; e2Þ � ð‘e2SÞðe1; e2Þ

¼ ð‘e RicÞðfe; feÞ � ð‘fe RicÞðe; feÞ �
1

4
eðrÞ

280 Xiaomin Chen



¼ e
1

2
r� 1þ l2 þ 2al

� �
� 2 Ricð‘efe; feÞ � feðZÞ þ Ricð‘fee; feÞ

þ Ricðe;‘fefeÞ �
1

4
eðrÞ

¼ eðl2 þ 2alÞ þ 2bZ � feðZÞ � 4aclþ 1

4
eðrÞ;

C33 ¼ ð‘e1SÞðe2; e3Þ � ð‘e2SÞðe1; e3Þ ¼ ð‘e RicÞðfe; xÞ � ð‘fe RicÞðe; xÞ

¼ �Ricð‘efe; xÞ � Ricðfe;‘exÞ þ Ricð‘fee; xÞ þ Ricðe;‘fexÞ

¼ 1

2
rþ 2al

� �
ð1þ lÞ � 6ð1� l2Þ þ ð1� lÞ 1

2
r� 2al

� �

¼ rþ 4al2 � 6ð1� l2Þ:

This completes the proof. r

3. Contact metric 3-manifolds with Qx ¼ rx

First we assume that the function r is constant along Reeb vector field x

and prove the following conclusion.

Theorem 1. Let ðM 3; f; x; h; gÞ be a contact metric manifold such that

Qx ¼ rx, where r is a smooth function on M 3 constant along Reeb vector field x.

If M admits a Cotton soliton with potential vector field being collinear with Reeb

vector field x, then M either is Sasakian, or has constant sectional curvature 0

or 1.

Proof. We can denote U 0 and U as follows:

U 0 ¼ fp A M : l ¼ 0 in a neighborhood of pg;

U ¼ fp A M : l0 0 in a neighborhood of pg:

If M ¼ U 0, then M is Sasakian. In the following we assume that U is not

empty, and let fe; fe; xg be a f-basis in U .

The assumption that Qx ¼ rx and (7) imply A ¼ B ¼ 0 and r ¼ 2ð1� l2Þ,
where xðrÞ ¼ 0: From this we know Z ¼ xðlÞ ¼ 0.

If V ¼ 0 then Cotton equation (1) becomes C ¼ sg. Since the ð0; 2Þ-
tensor C is trace-free, we see that s must vanish, thus M is locally conformally

flat. By Theorem 4.1 of [8], M has constant sectional curvature 0 or 1.

Next we suppose that V ¼ f x for some non-zero smooth function f .

Then in view of (4), for any X ;Y A XðMÞ, Cotton soliton equation (1) may be
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expressed as

�2fgðfhX ;YÞ þ X ð f ÞhðY Þ þ Y ð f ÞhðX Þ þ CðX ;YÞ ¼ sgðX ;Y Þ: ð18Þ

Letting X ¼ Y ¼ e in (18) and recalling (11) imply

�ð1� lÞ 1

2
r� 2al

� �
þ 4a2lþ 3ð1� lÞð1� l2Þ ¼ s: ð19Þ

Similarly, letting X ¼ Y ¼ fe in (18) and recalling (14) give

�4a2l� ð1þ lÞ 1

2
rþ 2al

� �
þ 3ð1þ lÞð1� l2Þ ¼ s ð20Þ

and putting X ¼ e and Y ¼ fe in (18) and using (12) give

�2lxðaÞ þ 1

4
xðrÞ ¼ 2lf : ð21Þ

Now using (19) to plus (20) implies

2s ¼ �r� 4al2 þ 6ð1� l2Þ: ð22Þ

Comparing (22) with (19), we conclude

2að2aþ 1� l2Þ ¼ s:

Moreover, di¤erentiating this along x implies

ð4aþ 1� l2ÞxðaÞ ¼ 0 ð23Þ

since s is constant and xðlÞ ¼ 0.

If xðaÞ ¼ 0 then di¤erentiating (22) along x yields xðrÞ ¼ 0. By (21), we

have f ¼ 0 since l > 0. This shows that Cotton soliton is trivial.

If xðaÞ0 0 on some open subset O � U , then l2 ¼ 1þ 4a by (23). There-

fore, by di¤erentiating this along x, we see xðaÞ ¼ 0. This is a contradiction.

We complete the proof theorem. r

For a gradient Cotton soliton on M 3, we prove the following conclusion.

Theorem 2. Let ðM 3; f; x; h; gÞ be a contact metric manifold such that

Qx ¼ rx, where r is a smooth function on M constant along Reeb vector field x.

If M admits a gradient Cotton soliton, then M either is Sasakian, or has constant

sectional curvature 0 or 1.

Proof. As before if M ¼ U 0 then M is Sasakian. Let fe; fe; xg be a

f-basis in non-empty set U . First we write the potential vector field

V ¼ ‘f ¼ f1eþ f2feþ f3x;
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where f1, f2, f3 are three smooth functions on M. Since C is divergence-free,

we have Q‘f ¼ 0 (see [18, Remark 3]). Hence we derive from (7) that

f1
1

2
r� 1þ l2 � 2al

� �
¼ 0; f2

1

2
r� 1þ l2 þ 2al

� �
¼ 0;

f3ð1� l2Þ ¼ 0: ð24Þ

If V ¼ 0 then Cotton soliton is trivial as in the proof of Theorem 1. Now

we assume that at least one of f1, f2, f3 is nonzero. Next we will divide into

two cases to discuss.

Case I: If l ¼ 1 then b ¼ c ¼ 0 by (5) and (6). Moreover, Equation

(8) implies r ¼ 4a, thus it follows from the second term of Equation (24) that

af2 ¼ 0.

For every Riemannian manifold we recall the following well-known

formula:

1

2
‘r ¼ div Q:

Making use of (7) and the above formula, a direct computation deduces that

‘a ¼ 0, i.e. a is constant. If a ¼ 0 all components of C are zero, that means

that M is locally conformally flat. If a0 0, then f2 ¼ 0. By Proposition 1,

the components of C become

C11 ¼ 4a2; C12 ¼ 0; C13 ¼ 0;

C22 ¼ �4a2 � 8a; C23 ¼ 0; C33 ¼ 8a: ð25Þ

For any X ;Y A XðMÞ, the gradient Cotton soliton equation (3) is ex-

pressed as

2gð‘X‘f ;YÞ þ CðX ;YÞ ¼ sgðX ;YÞ: ð26Þ

By taking X ¼ Y ¼ e in (26) and using (25), we get

2eð f1Þ þ 4a2 ¼ s

and taking X ¼ x and Y ¼ e in (26) gives xð f1Þ ¼ 0. Finally, putting X ¼ fe

and Y ¼ e in (26) implies feð f1Þ ¼ 0 since l ¼ 1. By the third term of (9)

acting on f1, we find eð f1Þ ¼ 0, which shows s ¼ 4a2. Moreover, putting

X ¼ Y ¼ fe in (26) gives

�4a2 � 8a ¼ s ¼ 4a2;

which shows a ¼ �1.
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Similarly, we can obtain from (26) that feð f3Þ ¼ 0, eð f3Þ ¼ 0 and

xð f3Þ þ 8a ¼ s ¼ 4a2, i.e. xð f3Þ ¼ 12 as a ¼ �1. However, the first term of

(9) acting on f3 implies xð f3Þ ¼ 0 because b ¼ c ¼ 0. This leads to a con-

tradiction.

Case II: If l0 1 in some open set O � U then f3 ¼ 0 by the third term

of (24). Putting X ¼ Y ¼ x in (26) and using (16) we have

rþ 4al2 � 6ð1� l2Þ ¼ s: ð27Þ

Letting X ¼ e and Y ¼ x in (26), we conclude from (13) and (5) that

2f2ð1þ lÞ � ð4bl2 � 2lfeðaÞÞ � 1

4
feðrÞ ¼ 0: ð28Þ

Similarly, letting X ¼ fe and Y ¼ x in (26), we conclude from (6) and (15)

that

2f1ðl� 1Þ þ 4cl2 þ 2leðaÞ þ 1

4
eðrÞ ¼ 0: ð29Þ

Next we consider the following open sets:

O1 ¼ p A O :
1

2
r� 1þ l2 � 2al0 0 in a neighborhood of p

� �
;

O2 ¼ p A O :
1

2
r� 1þ l2 � 2al ¼ 0 in a neighborhood of p

� �
;

where the set O1 [ O2 is open and dense in the closure of O. In the set O1, it

implies f1 ¼ 0 from the first term of (24). Since f3 ¼ 0, we must have that

f2 0 0 in O1. Hence the second term of (24) yields

1

2
r� 1þ l2 þ 2al ¼ 0:

By comparing it with (27), we get

�4ð1� l2Þ � 4aðl� l2Þ ¼ s: ð30Þ

Since Poincare Lemma d 2f ¼ 0, i.e. the relation

gð‘X‘f ;Y Þ ¼ gð‘Y‘f ;XÞ ð31Þ

holds for any X ;Y A XðMÞ, letting X ¼ x and Y ¼ e in (31) and using Lemma

1, we obtain

a ¼ �1� l:
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Substituting this into (30) implies that l and a are constants. Thus b ¼ c ¼ 0

by (5) and (6). Furthermore, it follows from (27) that r is also constant.

Recalling (28), we find f2ð1þ lÞ ¼ 0. This shows f2 ¼ 0 since l > 0 in O.

The contradiction means that O1 is empty.

In O2, the following relation holds:

1

2
r� 1þ l2 � 2al ¼ 0: ð32Þ

Then af2 ¼ 0 by the second term of (24). Write

V1 ¼ fp A O2 : a0 0g and V2 ¼ fp A O2 : a ¼ 0g:

Here V1 [V2 is the open and dense in the closure of O2. Then f2 ¼ 0 in V1.

Letting X ¼ x and Y ¼ fe in (31) and using Lemma 1, we obtain

a ¼ �1þ l

since f1 0 0 in V1. Adopting analogous method as before, we can prove

that b ¼ c ¼ 0 and a, r are constants. Thus (29) implies f1 ¼ 0. The con-

tradiction shows that V1 is empty. Thus a ¼ 0 in O2 and it implies from (32)

that

r ¼ 2ð1� l2Þ:

Inserting this into (27) implies s ¼ �4ð1� l2Þ. This shows that r is constant

and b ¼ c ¼ 0. However, Equations (28) and (29) yield f1 ¼ f2 ¼ 0 since

l0 1. It is impossible.

We complete the proof of theorem. r

Furthermore, for the potential vector field V being orthogonal to x, we

need more strong hypothesis that r is constant.

Theorem 3. Let ðM 3; f; x; h; gÞ be a contact metric manifold such that

Qx ¼ rx, where r is constant. If M admits a Cotton soliton with potential

vector field being orthogonal to Reeb vector field x, then M is either

(a) Sasakian,

(b) flat,

(c) locally isometric to one of the following Lie groups equipped with a left

invariant metric: SUð2Þ or SOð3Þ.

Proof. Under the assumption, by the main theorem of [12], the Ricci

operator is expressed as

Q ¼ aI þ bhn xþ gh;
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where a ¼ 1
2 ðr� 2kÞ, b ¼ 1

2 ð6k � rÞ, g ¼ �a and k ¼ 1
2 traceðlÞ. Moreover, r

and l ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
are constants. Thus we have b ¼ c ¼ A ¼ B ¼ Z ¼ 0 and

a ¼ 1
2 a is also constant from (7).

When l ¼ 0, M is Sasakian. In the following we assume l > 0. By

Proposition 1, the components of C become

C11 ¼ ð1� lÞðb þ alÞ þ a2l;

C12 ¼ 0; C13 ¼ 0;

C22 ¼ ð1þ lÞðb � alÞ � a2l;

C23 ¼ 0; C33 ¼ 2aþ 2al2 � 4k:

8>>><
>>>:

ð33Þ

Set V ¼ f1eþ f2fe, where f1, f2 are smooth functions on M. For any

X ;Y A XðMÞ, Cotton soliton equation (1) is rewritten as

gð‘XV ;YÞ þ gð‘YV ;XÞ þ CðX ;Y Þ ¼ sgðX ;Y Þ: ð34Þ

Putting X ¼ Y ¼ e in (34), it follows from Lemma 1 and (33) that

2eð f1Þ þ ð1� lÞðb þ alÞ þ a2l ¼ s: ð35Þ

Putting X ¼ Y ¼ fe in (34), it follows from Lemma 1 that

2feð f2Þ þ ð1þ lÞðb � alÞ � a2l ¼ s: ð36Þ

Similarly, putting X ¼ Y ¼ x in (34) and using (33) we have

s ¼ 2aþ 2al2 � 4k: ð37Þ

Letting X ¼ e and Y ¼ x in (34), it implies from Lemma 1 that

f2ð1þ l� aÞ þ xð f1Þ ¼ 0: ð38Þ

Letting X ¼ e and Y ¼ fe in (34) implies

eð f2Þ þ feð f1Þ ¼ 0 ð39Þ

and letting X ¼ fe and Y ¼ x in (34) implies

f1ðl� 1þ aÞ þ xð f2Þ ¼ 0: ð40Þ

Now di¤erentiating (38) along e and using (39), we have

�feð f1Þð1þ l� aÞ þ eðxð f1ÞÞ ¼ 0:

Since eð f1Þ is constant by (35), applying the second term of (9) in f1
provides

eðxð f1ÞÞ ¼ xðeð f1ÞÞ � ðaþ lþ 1Þfeð f1Þ ¼ �ðaþ lþ 1Þfeð f1Þ:
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Substituting this into previous formula gives feð f1Þ ¼ 0, which implies eð f2Þ ¼ 0

from (39).

Further, applying the first term of (9) in f1 and f2 respectively provides

xð f1Þ ¼ xð f2Þ ¼ 0. Therefore (38) and (40) become

f2ð1þ l� aÞ ¼ 0 and f1ðl� 1þ aÞ ¼ 0: ð41Þ

If 1þ l� a ¼ 0 then f1 ¼ 0. Applying the second term of (9) in f2
provides

eðxð f2ÞÞ � xðeð f2ÞÞ ¼ �ðaþ lþ 1Þfeð f2Þ ¼ �2ðlþ 1Þfeð f2Þ:

This shows that feð f2Þ ¼ 0, i.e. f2 is constant. Moreover, (35) and (36)

become

ð1þ lÞðb � alÞ � a2l ¼ s;

ð1� lÞðb þ alÞ þ a2l ¼ s:

The above equations, combining the relation b ¼ 2k � a and (37), imply

2a� 2k þ a2 ¼ 0 and 2a� 2k � ak ¼ 0:

That is, a ¼ �k. Because 1þ l ¼ a ¼ 1
2 a and l2 ¼ 1� k, we get a ¼ 8 and

l ¼ 3. Equation (9) becomes

½e; fe� ¼ 2x; ½x; e� ¼ 8fe; ½fe; x� ¼ 2e:

Thus M is locally isometric to SUð2Þ or SOð3Þ according to [12, Theorem

3].

If l� 1þ a ¼ 0 then f2 ¼ 0 by (41). Applying the third term of (9) in

f1 provides

0 ¼ feðxð f1ÞÞ � xðfeð f1ÞÞ ¼ ða� lþ 1Þeð f1Þ ¼ �2ðl� 1Þeð f1Þ: ð42Þ

For l ¼ 1, then k ¼ 0 and a ¼ 0. Therefore, by (35) and (37), we have eð f1Þ ¼
4a� a2 ¼ 0. In this case M is flat and f1 is constant. When l0 1, Equation

(42) shows that eð f1Þ ¼ 0, i.e. f1 is constant. As before, from (35), (36) and

(37) we can obtain a ¼ 8 and l ¼ �3. It is impossible.

Summing up the above discussion, we thus complete the proof of theorem.

r

4. ðk; m; nÞ-contact metric 3-manifolds

Definition 1 ([13]). A contact metric manifold ðM 3; f; x; h; gÞ is called a

ðk; m; nÞ-contact metric manifold if the curvature tensor satisfies the condition
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RðX ;Y Þx ¼ kðhðYÞX � hðX ÞYÞ þ mðhðYÞhX � hðX ÞhY Þ

þ nðhðY ÞfhX � hðX ÞfhYÞ

for any vector fields X , Y , where k, m and n are smooth functions on M.

In particular, if n ¼ 0 and k, m are constants, M is said to be a ðk; mÞ-
contact metric space (cf. [4]).

Lemma 2 ([15, Lemma 4.3]). For every p A U, there exists an open neigh-

borhood W of p and orthonormal local vector fields e, fe, x, defined on W, such

that

he ¼ le; hfe ¼ �lfe; hx ¼ 0;

where l ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
.

Lemma 3. Let ðM 3; f; x; h; gÞ be a ðk; m; nÞ-contact metric manifold.

Then

xðrÞ ¼ 2xðkÞ ¼ �4ð1� kÞn:

Proof. For a ðk; m; nÞ-contact metric manifold the Ricci operator may be

expressed as (see [1, Eq. (3.3)]):

Q ¼ 1

2
r� k

� �
I þ � 1

2
rþ 3k

� �
hn xþ mhþ nfh: ð43Þ

Taking the basis fe; fe; xg, by Lemma 2, we thus have

Qx ¼ 2kx;

Qe ¼ 1

2
r� kþ lm

� �
eþ lnfe;

Qfe ¼ 1

2
r� k� lm

� �
feþ lne:

It implies from (7) that Z ¼ ln. Now using Lemma 1, we obtain

ð‘xQÞx ¼ 2xðkÞx;

ð‘eQÞe ¼ ‘eðQeÞ �Q‘ee ¼ e
1

2
r� kþ lm

� �
eþ b

1

2
r� kþ lm

� �
fe

þ eðlnÞfeþ lnð�beþ ð1þ lÞxÞ � bQfe

¼ e
1

2
r� kþ lm

� �
eþ b

1

2
r� kþ lm

� �
fe
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þ eðlnÞfeþ lnð�beþ ð1þ lÞxÞ � b
1

2
r� k� lm

� �
feþ lne

� �

¼ e
1

2
r� kþ lm

� �
� 2bln

� �
eþ f2blmþ eðlnÞgfeþ lnð1þ lÞx;

ð‘feQÞfe ¼ ‘feðQfeÞ �Q‘fefe ¼ fe
1

2
r� k� lm

� �
feþ c

1

2
r� k� lm

� �
e

þ feðlnÞeþ lnð�cfeþ ðl� 1ÞxÞ � cQe

¼ fe
1

2
r� k� lm

� �
feþ c

1

2
r� k� lm

� �
e

þ feðlnÞeþ lnð�cfeþ ðl� 1ÞxÞ � c
1

2
r� kþ lm

� �
eþ lnfe

� �

¼ ffeðlnÞ � 2clmgeþ fe
1

2
r� k� lm

� �
� 2cln

� �
feþ lnðl� 1Þx:

Since 1
2‘r ¼ div Q, which, in the basis fe; fe; xg, is written as

1

2
feðrÞeþ feðrÞfeþ xðrÞxg ¼ ð‘eQÞeþ ð‘feQÞfeþ ð‘xQÞx;

we conclude

1

2
xðrÞ ¼ 2l2nþ 2xðkÞ:

Since xðlÞ ¼ Z ¼ ln and l ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
, we get the desired conclusion. r

In the following we use the above two lemmas to prove our conclusions.

Theorem 4. Let ðM 3; f; x; h; gÞ be a ðk; m; nÞ-contact metric manifold. If

M admits a Cotton soliton such that the potential vector field V is the Reeb

vector field x, then M is Sasakian.

Proof. As before if M ¼ U 0 then M is Sasakian. Cotton soliton equa-

tion (1), for any X ;Y A XðMÞ, is expressed as

�2gðfhX ;YÞ þ CðX ;Y Þ ¼ sgðX ;YÞ: ð44Þ

The relation Qx ¼ 2kx shows A ¼ B ¼ 0 from the third term of (7). Further-

more, Z ¼ ln and m ¼ �2a by (7) and (43).

Letting X ¼ Y ¼ e in (44) and using (11) imply

�ð1� lÞ 1

2
r� 3þ 3l2 � 2al

� �
� xðZÞ þ 4a2l ¼ s
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and letting X ¼ Y ¼ fe in (44) and using (14) give

xðZÞ � 4a2l� ð1þ lÞ 1

2
rþ 2al

� �
þ 3ð1þ lÞð1� l2Þ ¼ s:

The previous two formulas yield

2s ¼ �r� 4al2 þ 6ð1� l2Þ: ð45Þ

Putting X ¼ Y ¼ x in (44) and using (16), we have

r� 2mð1� kÞ � 6k ¼ s: ð46Þ

This yields s ¼ 0 by comparing (45) with (46). That is,

r ¼ 2ml2 þ 6k: ð47Þ

Putting X ¼ e and Y ¼ fe in (44) gives

lxðmÞ þ 2mln� ð1� lÞlnþ 1

4
xðrÞ ¼ 2l: ð48Þ

Similarly, using (13) and (15) respectively, we deduce

leðnÞ � lð4blþ feðmÞÞ � 1

4
feðrÞ ¼ 0; ð49Þ

lð4cl� eðmÞÞ � lfeðnÞ þ 1

4
eðrÞ ¼ 0: ð50Þ

Here we have used Z ¼ ln, a ¼ � 1
2 m and Equations (5) and (6).

Because xðlÞ ¼ Z ¼ ln, di¤erentiating (47) with respect to x gives

xðrÞ ¼ 2xðml2Þ þ 6xðkÞ ¼ 2l2xðmÞ þ 4mnl2 þ 6xðkÞ:

By Lemma 3, we see

xðmÞ ¼ 4n� 2mn: ð51Þ

Substituting (51) into (48), we obtain

n ¼ 2

3
: ð52Þ

For a ðk; m; nÞ-contact metric manifold, we recall the following equations

(see [13, Eq. (4-18)]):

eðkÞ � leðmÞ � lfeðnÞ ¼ 0; ð53Þ

�feðkÞ � lfeðmÞ þ leðnÞ ¼ 0: ð54Þ
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Making use of (49) and (50), we obtain from (47) that

feðmÞ ¼ �4b� 4bm;

eðmÞ ¼ �4c� 4cm:

Hence, by (52), inserting this into (53) and (54) respectively gives

0 ¼ feðnÞ ¼ �4clþ 4cþ 4cm; ð55Þ

0 ¼ eðnÞ ¼ �4bl� 4b� 4bm: ð56Þ

Next we decompose three cases to discuss.

Case I: If b ¼ c ¼ 0 then eðmÞ ¼ feðmÞ ¼ 0, and further eðkÞ ¼ feðkÞ ¼ 0

from (53) and (54). However, the first term of (9) acting on k implies

xðkÞ ¼ 0. It is a contradiction since xðkÞ ¼ �2l2n0 0 by (52).

Case II: If b0 0 in some open set O � U then lþ 1 ¼ �m by (56).

Inserting this into (55) gives cðmþ 1Þ ¼ 0. For m ¼ �1, it follows from (53)

and (54) that eðkÞ ¼ feðkÞ ¼ 0. It is impossible as before. Thus c ¼ 0, i.e.

eðmÞ ¼ 0 in O. Using the second term of (9) and (51), we have

0 ¼ eðxðmÞÞ � xðeðmÞÞ ¼ ½e; x�m ¼ �ðaþ lþ 1ÞfeðmÞ;

which yields aþ lþ 1 ¼ 0, i.e. lþ 1 ¼ 1
2 m since if feðmÞ ¼ 0 it will lead to a

contradiction as Case I. Recalling the previous relation lþ 1 ¼ �m, we derive

that m ¼ 0. That means that l ¼ �1. It is impossible.

Case III: If c0 0 in some open subset of U then l� 1 ¼ m by (55).

Inserting this into (56) gives bðmþ 1Þ ¼ 0. In the same way as Case II, we can

prove that it is impossible.

Hence we complete the proof. r

Theorem 5. Let ðM 3; f; x; h; gÞ be a ðk; m; nÞ-contact metric manifold. If

M admits a nontrivial gradient Cotton soliton, then one of the following state-

ments holds:

(a) for k ¼ 1, M is Sasakian,

(b) for k ¼ 0, M is either flat or ð0;�4Þ-contact metric space. In the

second case M is locally isometric to one of the following Lie groups:

SUð2Þ or SOð3Þ,
(c) for k < 1 and k0 0, M is a contact metric ðk; 0Þ-space. In this case,

M is locally isometric to one of the following Lie groups equipped with

a left invariant metric: SUð2Þ if 0 < k < 1, SLð2;RÞ if k < 0.

Proof. If M ¼ U 0 then a ðk; m; nÞ-contact metric manifold is Sasakian

with k ¼ 1, m A R and h ¼ 0. Next we assume that U is not empty and

fe; fe; xg is a f-basis as before.
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Write the potential vector field

V ¼ ‘f ¼ f1eþ f2feþ f3x;

where f1, f2, f3 are three smooth functions on M. For any X ;Y A XðMÞ,
the gradient Cotton soliton equation (3) is written as Equation (26). Since

Q‘f ¼ 0, we have

f1
1

2
r� kþ lm

� �
þ f2ln ¼ 0; f2

1

2
r� k� lm

� �
þ f1ln ¼ 0;

f3k ¼ 0: ð57Þ

If k1 0 in U then l ¼
ffiffiffiffiffiffiffiffiffiffiffi
1� k

p
¼ 1. We get Z ¼ xðlÞ ¼ ln ¼ 0, equiv-

alently, n ¼ 0. Further it is easy to see that r ¼ 4a and m ¼ �2a are con-

stants. From (57), af2 ¼ 0. If a ¼ 0, i.e. m ¼ 0 and in this case M is flat.

If a0 0 then f2 ¼ 0. Putting X ¼ Y ¼ x in (26) we have

2xð f3Þ þ 8a ¼ s: ð58Þ

Letting X ¼ e and Y ¼ x in (26) implies eð f3Þ ¼ 0. Moreover, letting X ¼ fe

and Y ¼ x in (26) implies feð f3Þ ¼ 0. Because b ¼ c ¼ 0, applying the first

term of (9) on f3 gives xð f3Þ ¼ 0. Thus (58) implies s ¼ 8a.

On the other hand, since gð‘x‘f ; feÞ ¼ gð‘fe‘f ; xÞ, we obtain af1 ¼ feð f3Þ
¼ 0, i.e. f1 ¼ 0. Letting X ¼ Y ¼ e in (26) implies 2eð f1Þ þ 4a2 ¼ s, i.e.

s ¼ 4a2. Therefore we find a ¼ 2, i.e. m ¼ �4: According to [4, Theorem

3], M is locally isometric to one of the following Lie groups: SUð2Þ or

SOð3Þ.
In the following we consider the case where k < 1 and k0 0. Denote

by

U1 ¼ fp A U : kðpÞ0 0 and kðpÞ < 1g:

Then f3 ¼ 0 in U1. Putting X ¼ Y ¼ x in (26) we have

r� 2mð1� kÞ � 6k ¼ s: ð59Þ

Since s is constant, di¤erentiating (59) along x and using Lemma 2, we also

obtain Equation (51).

Because at least one of f1 and f2 is nonzero, the first and second terms

of (57) imply

ð1� kÞðm2 þ n2Þ ¼ 1

2
r� k

� �2

: ð60Þ
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Next we prove n1 0 in U1. Since Z ¼ ln and a ¼ � 1
2 m, letting X ¼ e

and Y ¼ fe in (26) gives

2bf1 þ 2eð f2Þ þ lxðmÞ þ 2mln� ð1� lÞlnþ 1

4
xðrÞ ¼ 0:

In terms of (51) and Lemma 3, the above formula becomes

2bf1 þ 2eð f2Þ þ 3ln ¼ 0: ð61Þ

Letting X ¼ e and Y ¼ x in (26) implies

2f2ð1þ lÞ � 8l2b ¼ 1

4
feðrÞ: ð62Þ

Moreover, letting X ¼ fe and Y ¼ x in (26) implies

2f1ðl� 1Þ þ 8cl2 ¼ � 1

4
eðrÞ: ð63Þ

Here we have used Equations (53) and (54).

Using (62) and (63), we conclude from the second term of (9) that

�beðrÞ þ cfeðrÞ þ 2xðrÞ ¼ ½e; fe�r ¼ eðfeðrÞÞ � feðeðrÞÞ

¼ 8eð f2Þð1þ lÞ þ 16f2cl� 32l2eðbÞ

þ 8feð f1Þðl� 1Þ þ 16f1blþ 32l2feðcÞ:

It follows from Lemma 3 that

�l2n ¼ ½eð f2Þ þ bf1�ð1þ lÞ þ ½feð f1Þ þ cf2�ðl� 1Þ � 4l2eðbÞ þ 4l2feðcÞ: ð64Þ

Since gð‘fe‘f ; eÞ ¼ gð‘e‘f ; feÞ, using Lemma 1 we see that

feð f1Þ þ cf2 ¼ eð f2Þ þ bf1; ð65Þ

thus recalling (61) we obtain from (64) that

n ¼ �2eðbÞ þ 2feðcÞ: ð66Þ

Since A ¼ B ¼ 0, it follows from (5) and (6) that

eðbÞ ¼ e
feðlÞ
2l

� �
¼ eðfeðlÞÞl� feðlÞeðlÞ

2l2
;

feðcÞ ¼ fe
eðlÞ
2l

� �
¼ feðeðlÞÞl� eðlÞfeðlÞ

2l2
:

293Three dimensional contact metric manifolds with Cotton solitons



Hence using the first term of (9) we have

feðcÞ � eðbÞ ¼ ½fe; e�ðlÞ
2l

¼ beðlÞ � cfeðlÞ � 2xðlÞ
2l

¼ �n:

Substituting this into (66), we find that n ¼ 0 on U1. This shows xðkÞ ¼
xðmÞ ¼ 0 from (51). Moreover, by (60) we know that either 1

2 r� k ¼ lm or
1
2 r� k ¼ �lm.

If 1
2 r� k ¼ lm then Equation (57) implies f1m ¼ 0. Consider

V1 ¼ fp A U1 : f1ðpÞ ¼ 0g and V2 ¼ fp A U1 : f1ðpÞ0 0g:

Thus V1 [V2 is dense in the closure of U1. In V1, we have f2 0 0. Then

(61) yields eð f2Þ ¼ 0, which further implies c ¼ 0 from (65). Recalling (6) we

get eðlÞ ¼ 0.

Now by using the second term of (9) on l we obtain ðaþ lþ 1ÞfeðlÞ ¼
0. If feðlÞ0 0 in some open set V 0

1 � V1 then a ¼ �l� 1, i.e. 1
2 m ¼ lþ 1.

Recalling k ¼ 1� l2, we derive from (59) that

4lðlþ 1Þ � 4l3 � 4 ¼ s:

This shows that l is constant since s is constant. Consequently, feðlÞ ¼ 0 in

V 0
1 . The contradiction gives feðlÞ ¼ 0 in V1. Namely, l is constant, hence

it is easy to see that r is constant and b ¼ 0. However, Equation (62) yields

l ¼ �1, which is impossible since f2 0 0 and l is positive. This shows that

V1 is empty and m ¼ 0 in U1. We conclude from (53) and (54) that k is

constant.

For 1
2 r� k ¼ �lm, we have mf2 ¼ 0 from (57). In the same way, we can

prove that m ¼ 0 and k is constant.

Summing up the above discussion, we complete the proof. r

Since the condition that n is constant does not imply that the other func-

tions k and n are constants (see [13, Remark 5.3]), we consider the case where n

is constant.

Theorem 6. Let ðM 3; f; x; h; gÞ be a contact metric ðk; m; nÞ-manifold such

that n is constant. If M admits a Cotton soliton with potential vector field V

being orthogonal to Reeb vector field x, then M is either

(a) Sasakian,

(b) a contact metric ðk; mÞ-space. Moreover, by Theorem 3, in this case

M is either flat, or locally isometric to one of the following Lie groups

equipped with a left invariant metric: SUð2Þ or SOð3Þ.

Proof. We know that Qx ¼ 2kx implies A ¼ B ¼ 0, and Z ¼ ln, m ¼
�2a. Then xðZÞ ¼ l2n, eðZÞ ¼ 2lcn and feðZÞ ¼ 2bln.
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As before, we may set V ¼ f1eþ f2fe. Using Cotton soliton equation (1)

we derive from Lemma 1 and Proposition 1 the following equations:

bf1 þ eð f2Þ þ feð f1Þ þ f2cþ 3ln ¼ 0;

f2ð1þ l� aÞ þ xð f1Þ � 8bl2 ¼ 1
4 feðrÞ;

f1ðl� 1þ aÞ þ xð f2Þ þ 8cl2 ¼ � 1
4 eðrÞ;

2eð f1Þ � 2bf2 � ð1� lÞ 1
2 r� 3þ 3l2 þ ml
� �

þ 4a2l ¼ s;

2feð f2Þ � 2cf1 � 4a2l� ð1þ lÞ 1
2 r� 3þ 3l2 � ml
� �

¼ s;

r� 2mð1� kÞ � 6k ¼ s:

8>>>>>>>>><
>>>>>>>>>:

ð67Þ

Here the first equation has used (51) and Lemma 3 and the second and third

equations have used Equations (53) and (54).

Moreover, di¤erentiating the last equation of (67) along x, we can also

obtain (51). Since n is constant, by (53) and (54), we have

eðmÞ ¼ eðkÞ
l

¼ eð1� l2Þ
l

¼ �4cl ð68Þ

and

feðmÞ ¼ � feðkÞ
l

¼ � feð1� l2Þ
l

¼ 4bl: ð69Þ

Here we have used (5) and (6). Using (51) and the second term of (9), we

get

�ðaþ lþ 1ÞfeðmÞ ¼ ½e; x�m ¼ eðxðmÞÞ � xðeðmÞÞ

¼ �2eðmÞnþ 4xðcÞlþ 4cln:

Since m ¼ �2a and (69) imply feðlÞ ¼ �feðaÞ, we derive from the first term of

(10) that xðcÞ ¼ bðaþ lþ 1Þ. Hence inserting (68) and (69) into the previous

relation gives

3cn ¼ �2bðaþ lþ 1Þ: ð70Þ

Using the similar method with above, we can obtain

3bn ¼ 2cða� lþ 1Þ: ð71Þ

Next we consider four open subsets

U1 ¼ fp A U : bðpÞ0 0; cðpÞ0 0g;

U2 ¼ fp A U : bðpÞ ¼ 0; cðpÞ0 0g;
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U3 ¼ fp A U : bðpÞ0 0; cðpÞ ¼ 0g;

U4 ¼ fp A U : bðpÞ ¼ 0; cðpÞ ¼ 0g

of U . Clearly, U1 [U2 [U3 [U4 is dense in the closure of U .

Case I. For p A U , if p A U1 then the previous two formulas (70) and (71)

yield

9n2 ¼ �4ðaþ lþ 1Þða� lþ 1Þ: ð72Þ

Di¤erentiating this along e gives a� lþ 1 ¼ 0 since eðaÞ ¼ eðlÞ0 0 obtained

from (6) and (68). On the other hand, di¤erentiating (72) along fe gives

aþ lþ 1 ¼ 0 since feðaÞ ¼ �feðlÞ0 0. Thus we obtain l ¼ 0, which is

impossible.

Case II. If p A U2, we have n ¼ 0 and a� lþ 1 ¼ 0 from (70) and (71).

Moreover, it is easy to prove that eðmÞ0 0 and feðmÞ ¼ feðlÞ ¼ feðkÞ ¼
feðrÞ ¼ 0. By (51) and n ¼ 0, we know xðmÞ ¼ 0. Moreover, it is easy to

see that xðlÞ ¼ xðkÞ ¼ xðcÞ ¼ 0. Recalling k ¼ 1� l2, Equation (67) becomes

eð f2Þ þ feð f1Þ þ f2c ¼ 0;

f2ð1þ l� aÞ þ xð f1Þ ¼ 0;

f1ðl� 1þ aÞ þ xð f2Þ þ 8cl2 ¼ � 1
4 eðrÞ;

2eð f1Þ � klmþ m2l ¼ sþ 1
2 ð1� lÞs;

2feð f2Þ � 2cf1 � m2lþ klm ¼ sþ 1
2 ð1þ lÞs:

8>>>>><
>>>>>:

ð73Þ

Di¤erentiating the third term of (73) with respect to fe implies feðxð f2ÞÞ ¼
�feð f1Þðl� 1þ aÞ and di¤erentiating the last term of (73) with respect to x

gives xðfeð f2ÞÞ ¼ cxð f1Þ. Hence applying the third term of (9) in f2 implies

0 ¼ ½fe; x�ð f2Þ ¼ feðxð f2ÞÞ � xðfeð f2ÞÞ ¼ �feð f1Þðl� 1þ aÞ � cxð f1Þ:

Recalling the first and second terms of (73) we obtain

eð f2Þðl� 1Þ þ cf2l ¼ 0: ð74Þ

On the other hand, di¤erentiating the second term of (73) along e gives

eðxð f1ÞÞ ¼ �ðlþ 1� aÞeð f2Þ � ð2cl� eðaÞÞ f2 and di¤erentiating the fourth term

of (73) along x gives xðeð f1ÞÞ ¼ 0. Hence applying the second term of (9) in

f1 implies

�ðaþ lþ 1Þfeð f1Þ ¼ ½e; x�ð f1Þ ¼ eðxð f1ÞÞ � xðeð f1ÞÞ

¼ �ðlþ 1� aÞeð f2Þ � ð2cl� eðaÞÞ f2:

Recalling the first term of (73) we get

ðlþ 1Þeð f2Þ ¼ �lcf2: ð75Þ
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By comparing (74) with (75), we find 2clf2 ¼ 0, which shows f2 ¼ 0 since

l > 0. Thus Equation (73) is simplified as

2f1a ¼ 2cl2ða� mÞ ¼ 6acl2;

2eð f1Þ � klmþ m2l ¼ 1
2 ð3� lÞs;

�2cf1 � m2lþ klm ¼ 1
2 ð3þ lÞs;

r� 2mð1� kÞ � 6k ¼ s:

8>>><
>>>:

ð76Þ

Here we have used

eðrÞ ¼ eð2ml2 þ 6kÞ ¼ �8cl2ðl� mþ 3Þ:

We know a0 0 in U2, otherwise, if a ¼ 0 then l ¼ 1 which implies c ¼ 0 from

(6). By the first term of (76), we obtain f1 ¼ 3cl2. Inserting this into the

third term of (76) gives

�6c2l2 � m2lþ klm ¼ 1

2
ð3þ lÞs: ð77Þ

Di¤erentiating f1 ¼ 3cl2, we have

eð f1Þ ¼ 3l2eðcÞ þ 12c2l2:

Substituting this into the second term of (76), we conclude

6l2eðcÞ þ 24c2l2 � klmþ m2l ¼ 1

2
ð3� lÞs: ð78Þ

Furthermore, since r ¼ 2ml2 þ 6kþ s, it follows from (8) that

eðcÞ ¼ ð1þ l2Þmþ 2kþ c2 þ s

2
: ð79Þ

From (77), (78) and (79), we can eliminate the function c. We remark that

k ¼ 1� l2 and m ¼ �2a ¼ �2ðl� 1Þ. Therefore we see that l must be con-

stant since s is constant. It shows that c ¼ 0 from (6), which is contradictory

with p A U2.

Case III. If p A U3 then we have n ¼ 0 and aþ lþ 1 ¼ 0. Moreover,

feðmÞ0 0 and eðmÞ ¼ eðlÞ ¼ eðkÞ ¼ eðrÞ ¼ 0. Also, we have xðlÞ ¼ xðkÞ ¼
xðcÞ ¼ 0. In the same way as Case II, we can obtain from the above formulas

that f1 ¼ 0. Thus Equation (67) is simplified as

f2ð1þ l� aÞ � 8l2b ¼ 1
4 feðrÞ;

�2bf2 � klmþ m2l ¼ 1
2 ð3� lÞs;

2feð f2Þ � m2lþ klm ¼ 1
2 ð3þ lÞs;

r� 2mð1� kÞ � 6k ¼ s:

8>>><
>>>:
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As Case II, making use of (5), (8) and the above formulas, we can also prove

that l is constant, which is contradictory with p A U3.

Case IV. If p A U4 then eðmÞ ¼ feðmÞ ¼ 0. Applying the first term of

(9) on m, we get xðmÞ ¼ 0, which shows that m and a are constants. Moreover,

it is easy to prove that l; k are constants and n ¼ 0. That shows that M is

a contact metric ðk; mÞ-space, equivalently, M satisfies Qx ¼ rx with r ¼ 2k is

constant.

By Theorem 3, we complete the proof. r
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