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Abstract. We show that if three meromorphic functions share three two-point sets

CM, then there exist two of the meromorphic functions such that one of them is a

Möbius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on C and a finite set S

in C ¼ C [ fyg, we say that f and g share S CM (counting multiplicities)

if f �1ðSÞ ¼ g�1ðSÞ and if for each z0 A f �1ðSÞ two functions f � f ðz0Þ and

g� gðz0Þ have the same multiplicity of zero at z0, where we consider 1=f

and 1=g for f � f ðz0Þ and g� gðz0Þ if f ðz0Þ ¼ y and gðz0Þ ¼ y, respectively.

Also, if f �1ðSÞ ¼ g�1ðSÞ, then we say that f and g share S IM (ignoring

multiplicities). In particular if S is a one-point set fag, then we say also that

f and g share a CM or IM.

In [C], H. Cartan showed the following theorem:

Theorem 1. Let f , g and h be three nonconstant meromorphic functions

on C and let a1, a2 and a3 be three distinct points in C . If f , g and h share

aj CM for j ¼ 1; 2; 3, then at least two of f , g and h are identical.

On the other hand the author proved ([S3], see also [S2] and [ST]).

Theorem 2. Let S1, S2, S3, S4 be four one-point or two-point sets in C .

Suppose that S1, S2, S3 and S4 are pairwise disjoint. If two nonconstant mer-

omorphic functions f and g on C share Sj CM for j ¼ 1; . . . ; 4, then f is a

Möbius transform of g.

Theorem 2 contains partially the result of Nevanlinna ([N1] and [N2]).

Theorem 3. Let f and g be two distinct nonconstant meromorphic func-

tions on C and let a1; . . . ; a4 be four distinct points in C . If f and g share

a1; . . . ; a4 CM, then f is a Möbius transform of g, i.e., f ¼ ðagþ bÞ=ðcgþ dÞ
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for some complex numbers a, b, c, d with ad � bc0 0. Moreover, there exists

a permutation s of f1; 2; 3; 4g such that asð3Þ and asð4Þ are Picard exceptional

values of f and g and the cross ratio ðasð1Þ; asð2Þ; asð3Þ; asð4ÞÞ ¼ �1.

Theorems 1 and 2 raise the following problem:

Problem. If three meromorphic functions on C share three pairwise dis-

joint two-point sets, then do there exist two in the three meromorphic func-

tions such that one of them is a Möbius transform of the other?

In this paper we consider three meromorphic functions on C sharing three

two-point sets in C CM.

Theorem 4. Let S1, S2, S3 be three two-point sets in C . Suppose that

S1, S2, S3 are pairwise disjoint. If three nonconstant meromorphic functions f , g

and h on C share each of S1, S2, S3 CM, then one of f , g and h is a Möbius

transform of one of the others.

For the proof of Theorem 4, by considering compositions of f , g, h and

a suitable Möbius transformation, it is enough to prove the following theorem

which assume that each Sj is in C .

Theorem 5. Let S1, S2, S3 be three two-point sets in C . Suppose that

S1, S2, S3 are pairwise disjoint. If three nonconstant meromorphic functions f , g

and h on C share each of S1, S2, S3 CM, then one of f , g and h is a Möbius

transform of one of the others.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank N.

Let G be a torsion-free abelian multiplicative group, and consider a q-tuple

A ¼ ða1; . . . ; aqÞ of elements ai in G.

Definition 1. Let N be a positive integer. We call integers mj represen-

tations of rank N of aj if

Yq
j¼1

a
ej
j ¼

Yq
j¼1

a
e 0j
j

and

Xq

j¼1

ejmj ¼
Xq

j¼1

e 0jmj

are equivalent for any integers ej , e 0j with
Pq

j¼1 jejjaN and
Pq

j¼1 je 0j jaN.
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For the existence of representations of rank N, see [S1].

For two entire function a and b without zeros we say that they are equiv-

alent if a=b is constant. Then we denote a@ b. This relation ‘‘equivalent’’ is

an equivalence relation.

We introduce following Borel’s Lemma, whose proof can be found, for

example, on p. 186 of [L].

Lemma 1. If entire functions a0; a1; . . . ; an without zeros satisfy

a0 þ a1 þ � � � þ an ¼ 0;

then for each j ¼ 0; 1; . . . ; n there exists some kð0 jÞ such that aj @ ak, and the

sum of all elements of each equivalence class in fa0; . . . ; ang is zero.

Now we investigate the torsion-free abelian multiplicative group G ¼ E=C,

where E is the abelian group of entire functions without zeros and C is the

subgroup of all non-zero constant functions. We represent by ½a� the ele-

ment of E=C with the representative a A E. Let a1; . . . ; aq be elements in E.

Take representations mj of rank N of ½aj�. For a ¼
Qq
j¼1

a
ej
j we define its index

IndðaÞ by
Pq
j¼1

ejmj . The indices depend only on
Qq
j¼1

a
ej
j

" #
under the conditionPq

j¼1

jejjaN. Trivially Indð1Þ ¼ 0, and hence IndðaÞ ¼ 0 and the constantness

of a are equivalent, and IndðaÞ ¼ Indða 0Þ is equivalent to that a=a 0 is constant,

where a ¼
Qq
j¼1

a
ej
j and a 0 ¼

Qq
j¼1

a
e 0j
j with

Pq
j¼1

jej jaN and
Pq
j¼1

je 0j jaN.

We use the following lemma in the proof of Theorem 5 which is an ap-

plication of Lemma 1 (for the proof see Lemma 2.3 of [ST]).

Lemma 2. Assume that there is a relation Cða1; . . . ; aqÞ1 0 where

CðX1; . . . ;XqÞ A C ½X1; . . . ;Xq� is a nonconstant polynomial of degree at most

N of X1; . . . ;Xq. Then each term aX e1
1 � � �X eq

q of CðX1; . . . ;XqÞ has another

term bX
e 0
1

1 � � �X e 0q
q such that ae1

1 � � � aeq
q and a

e 0
1

1 � � � ae 0q
q have the same indices, where

a and b are non-zero constants.

3. A Lemma from the theory of general resultants

For the proof of Theorem 5 we preparate a result from the theory of

general resultants in this section.

Let d ðb 2Þ be an integer and let F1; . . . ;F6 be six homogeneous poly-

nomials of degree d of six variables X0, X1, Y0, Y1, Z0, Z1. Denote their
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Jacobian determinant by J:

J ¼ qFj

qX0

qFj

qX1

qFj

qY0

qFj

qY1

qFj

qZ0

qFj

qZ1

����
����
1aja6

:

Lemma 3. Let P be a non-trivial common zero of F1; . . . ;F6. Then (i) J is

zero at P; (ii) all the partial derivatives
qJ

qX0
,
qJ

qX1
,
qJ

qY0
,
qJ

qY1
,
qJ

qZ0
,
qJ

qZ1
are zero

at P; (iii) if we assume that

q2Fj

qXkqYl

¼ q2Fj

qYkqZl

¼ q2Fj

qZkqXl

¼ 0 ð j ¼ 1; . . . ; 6; k; l ¼ 0; 1ÞðSÞ

and if plural components of P are not zero, then the second partial derivatives

q2J

qXjqYk

,
q2J

qYjqZk

,
q2J

qZjqXk

have zero at P for any j; k ¼ 0; 1; (iv) under the

assumption ðSÞ, if plural components of P are not zero, then the third partial

derivative
q3J

qXjqYkqZl

has zero at P for any j; k; l ¼ 0; 1.

Proof. Without loss of generality, we may assume that the X0 compo-

nent of P is not zero.

By Euler’s relation we have

X0J ¼ X0
qFj

qX0

qFj

qX1
� � � qFj

qZ1

����
����
1aja6

¼ d Fj

qFj

qX1
� � � qFj

qZ1

����
����
1aja6

ð3:1Þ

and, hence we have JðPÞ ¼ 0, which is (i).

By di¤erentiating (3.1) by X0;X1; . . . ;Z1, respectively, we get

J þ X0
qJ

qX0
¼ dJ þ d Fj

q2Fj

qX0qX1

qFj

qY0

qFj

qY1

qFj

qZ0

qFj

qZ1

����
����
1aja6

þ � � � þ d Fj

qFj

qX1

qFj

qY0

qFj

qY1

qFj

qZ0

q2Fj

qX0qZ1

����
����
1aja6

; ð3:2Þ

X0
qJ

qX1
¼ d Fj

q2Fj

qX 2
1

qFj

qY0

qFj

qY1

qFj

qZ0

qFj

qZ1

�����
�����
1aja6

þ � � � þ d Fj

qFj

qX1

qFj

qY0

qFj

qY1

qFj

qZ0

q2Fj

qX1qZ1

����
����
1aja6

; ð3:3Þ

..

.
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X0
qJ

qZ1
¼ d Fj

q2Fj

qX1qZ1

qFj

qY0

qFj

qY1

qFj

qZ0

qFj

qZ1

����
����
1aja6

þ � � � þ d Fj

qFj

qX1

qFj

qY0

qFj

qY1

qFj

qZ0

q2Fj

qZ2
1

�����
�����
1aja6

: ð3:4Þ

Therefore we obtain (ii) since FjðPÞ ¼ 0 ð j ¼ 1; . . . ; 6Þ.
Under the assumption (S), the equations (3.2), (3.3) and (3.4), and so on,

become

J þ X0
qJ

qX0
¼ dJ þ d Fj

q2Fj

qX0qX1

qFj

qY0

qFj

qY1

qFj

qZ0

qFj

qZ1

����
����
1aja6

; ð3:5Þ

X0
qJ

qX1
¼ d Fj

q2Fj

qX 2
1

qFj

qY0

qFj

qY1

qFj

qZ0

qFj

qZ1

�����
�����
1aja6

; ð3:6Þ

..

.

X0
qJ

qZ1
¼ d Fj

qFj

qX1

qFj

qY0

qFj

qY1

q2Fj

qZ0qZ1

qFj

qZ1

����
����
1aja6

þ d Fj

qFj

qX1

qFj

qY0

qFj

qY1

qFj

qZ0

q2Fj

qZ2
1

�����
�����
1aja6

: ð3:7Þ

By di¤erentiating (3.5), (3.6), (3.7), and so on, by Y0, we get

qJ

qY0
þ X0

q2J

qX0qY0
¼ d

qJ

qY0
þ d Fj

q2Fj

qX0qX1

q2Fj

qY 2
0

qFj

qY1

qFj

qZ0

qFj

qZ1

�����
�����
1aja6

þ d Fj

q2Fj

qX0qX1

qFj

qY0

q2Fj

qY0qY1

qFj

qZ0

qFj

qZ1

����
����
1aja6

; ð3:8Þ

X0
q2J

qX1qY0
¼ d Fj

q2Fj

qX 2
1

q2Fj

qY 2
0

qFj

qY1

qFj

qZ0

qFj

qZ1

�����
�����
1aja6

þ d Fj

q2Fj

qX 2
1

qFj

qY0

q2Fj

qY0qY1

qFj

qZ0

qFj

qZ1

�����
�����
1aja6

; ð3:9Þ

..

.

X0
q2J

qY0qZ1
¼ d Fj

qFj

qX1

q2Fj

qY 2
0

qFj

qY1

q2Fj

qZ0qZ1

qFj

qZ1

�����
�����
1aja6
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þ d Fj

qFj

qX1

qFj

qY0

q2Fj

qY0qY1

q2Fj

qZ0qZ1

qFj

qZ1

����
����
1aja6

þ d Fj

qFj

qX1

q2Fj

qY 2
0

qFj

qY1

q2Fj

qZ0qZ1

q2Fj

qZ2
1

�����
�����
1aja6

þ d Fj

qFj

qX1

qFj

qY0

q2Fj

qY0qY1

q2Fj

qZ0qZ1

q2Fj

qZ2
1

�����
�����
1aja6

;

hence we obtain, with similar manners, (iii).

Di¤erentiate (3.8) and (3.9) by Z0, then we have

q2J

qY0qZ0
þ X0

q3J

qX0qY0qZ0

¼ d
q2J

qY0qZ0
þ d Fj

q2Fj

qX0qX1

q2Fj

qY 2
0

qFj

qY1

q2Fj

qZ2
0

qFj

qZ1

�����
�����
1aja6

þ d Fj

q2Fj

qX0qX1

q2Fj

qY 2
0

qFj

qY1

qFj

qZ0

q2Fj

qZ0qZ1

�����
�����
1aja6

þ d Fj

q2Fj

qX0qX1

qFj

qY0

q2Fj

qY0qY1

q2Fj

qZ2
0

qFj

qZ1

�����
�����
1aja6

þ d Fj

q2Fj

qX0qX1

qFj

qY0

q2Fj

qY0qY1

qFj

qZ0

q2Fj

qZ0qZ1

����
����
1aja6

;

X0
q3J

qX1qY0qZ0
¼ d Fj

q2Fj

qX 2
1

q2Fj

qY 2
0

qFj

qY1

q2Fj

qZ2
0

qFj

qZ1

�����
�����
1aja6

þ d Fj

q2Fj

qX 2
1

q2Fj

qY 2
0

qFj

qY1

qFj

qZ0

q2Fj

qZ0qZ1

�����
�����
1aja6

þ d Fj

q2Fj

qX 2
1

qFj

qY0

q2Fj

qY0qY1

q2Fj

qZ2
0

qFj

qZ1

�����
�����
1aja6

þ d Fj

q2Fj

qX 2
1

qFj

qY0

q2Fj

qY0qY1

qFj

qZ0

q2Fj

qZ0qZ1

�����
�����
1aja6

:

Hence we have
q3Fj

qX0qY0qZ0
ðPÞ ¼ q3Fj

qX1qY0qZ0
ðPÞ ¼ 0, and by the similar ways,

we get (iv). r

144 Manabu Shirosaki



Let

FjðX0;X1;Y0;Y1;Z0;Z1Þ ¼
X2

k¼0

ðajkX 2�k
0 X k

1 þ bjkY
2�k
0 Y k

1 þ cjkZ
2�k
0 Zk

1 Þ

ð j ¼ 1; . . . ; 6Þ be six quadratic homogeneous polynomials satisfying the assump-

tion (S). Then the first derivatives are

qFj

qX0
¼ 2aj0X0 þ aj1X1;

qFj

qX1
¼ aj1X0 þ 2aj2X1;

qFj

qY0
¼ 2bj0Y0 þ bj1Y1;

qFj

qY1
¼ bj1Y0 þ 2bj2Y1;

qFj

qZ0
¼ 2cj0Z0 þ cj1Z1;

qFj

qZ1
¼ cj1Z0 þ 2cj2Z1:

Since J is the determinant of the matrix DX , where

D ¼ ðam0 am1 am2 bm0 bm1 bm2 cm0 cm1 cm2Þ1ama6 ð3:10Þ
and

X ¼

2X0 0 0 0 0 0

X1 X0 0 0 0 0

0 2X1 0 0 0 0

0 0 2Y0 0 0 0

0 0 Y1 Y0 0 0

0 0 0 2Y1 0 0

0 0 0 0 2Z0 0

0 0 0 0 Z1 Z0

0 0 0 0 0 2Z1

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

;

we see, by the formula of determinant of product of m� n matrix and n�m

matrix with 1am < n,

J ¼ 8
X

0aj;k; la2

2 jð2�jÞþkð2�kÞþlð2�lÞDjklX
j
0X

2�j
1 Y k

0 Y
2�k
1 Zl

0Z
2�l
1 ;

where Djkl is the determinant of the 6� 6 matrix obtained from D by excluding

three columns ðamjÞ1ama6, ðbmkÞ1ama6 and ðcmlÞ1ama6.

By di¤erentiating J, we have

1

64

q3J

qX0qY0qZ0
¼ D222X0Y0Z0 þD221X0Y0Z1 þD212X0Y1Z0

þD211X0Y1Z1 þD122X1Y0Z0 þD121X1Y0Z1

þD112X1Y1Z0 þD111X1Y1Z1;
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1

64

q3J

qX0qY0qZ1
¼ D221X0Y0Z0 þD220X0Y0Z1 þD211X0Y1Z0

þD210X0Y1Z1 þD121X1Y0Z0 þD120X1Y0Z1

þD111X1Y1Z0 þD110X1Y1Z1;

1

64

q3J

qX0qY1qZ0
¼ D212X0Y0Z0 þD211X0Y0Z1 þD202X0Y1Z0

þD201X0Y1Z1 þD112X1Y0Z0 þD111X1Y0Z1

þD102X1Y1Z0 þD101X1Y1Z1;

1

64

q3J

qX0qY1qZ1
¼ D211X0Y0Z0 þD210X0Y0Z1 þD201X0Y1Z0

þD200X0Y1Z1 þD111X1Y0Z0 þD110X1Y0Z1

þD101X1Y1Z0 þD100X1Y1Z1;

1

64

q3J

qX1qY0qZ0
¼ D122X0Y0Z0 þD121X0Y0Z1 þD112X0Y1Z0

þD111X0Y1Z1 þD022X1Y0Z0 þD021X1Y0Z1

þD012X1Y1Z0 þD011X1Y1Z1;

1

64

q3J

qX1qY0qZ1
¼ D121X0Y0Z0 þD120X0Y0Z1 þD111X0Y1Z0

þD110X0Y1Z1 þD021X1Y0Z0 þD020X1Y0Z1

þD011X1Y1Z0 þD010X1Y1Z1;

1

64

q3J

qX1qY1qZ0
¼ D112X0Y0Z0 þD111X0Y0Z1 þD102X0Y1Z0

þD101X0Y1Z1 þD012X1Y0Z0 þD011X1Y0Z1

þD002X1Y1Z0 þD001X1Y1Z1;

1

64

q3J

qX1qY1qZ1
¼ D111X0Y0Z0 þD110X0Y0Z1 þD101X0Y1Z0

þD100X0Y1Z1 þD011X1Y0Z0 þD010X1Y0Z1

þD001X1Y1Z0 þD000X1Y1Z1:
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If Pðx0; x1; y0; y1; z0; z1Þ is a common zero of F1; . . . ;F6 such that some

xjykzl 0 0, then

D :¼

D222 D221 D212 D211 D122 D121 D112 D111

D221 D220 D211 D210 D121 D120 D111 D110

D212 D211 D202 D201 D112 D111 D102 D101

D211 D210 D201 D200 D111 D110 D101 D100

D122 D121 D112 D111 D022 D021 D012 D011

D121 D120 D111 D110 D021 D020 D011 D010

D112 D111 D102 D101 D012 D011 D002 D001

D111 D110 D101 D100 D011 D010 D001 D000

������������������

������������������

¼ 0 ð3:11Þ

at P since all of the above derivatives are zero at P by (iii) of

Lemma 3.

4. The key theorem and the proof of Theorem 5

By the following theorem we can prove Theorem 5 easily.

Theorem 6. Let f ¼ f1=f0, g ¼ g1=g0 and h ¼ h1=h0 be nonconstant

meromorphic functions on C , where f0 and f1 are entire functions without

common zero and so are g0 and g1, and h0 and h1. Let PjðzÞ ¼ z2 þ ajzþ bj
ð j ¼ 1; 2; 3Þ be polynomials such that PjðzÞ and PkðzÞ have no common zero for

distinct j, k. Assume that there exist entire functions aj , bj without zeros such

that

ajð f 21 þ aj f1 f0 þ bj f
2
0 Þ ¼ g21 þ ajg1g0 þ bjg

2
0 ð4:1Þ

and

bjð f 2
1 þ aj f1 f0 þ bj f

2
0 Þ ¼ h21 þ ajh1h0 þ bjh

2
0 ð4:2Þ

for j ¼ 1; 2; 3. Then one of the followings holds: (A) both a1=a2 and a1=a3 are

constant; (B) both b1=b2 and b1=b3 are constant; (C) both ða1=b1Þ=ða2=b2Þ and

ða1=b1Þ=ða3=b3Þ are constant; (D) both aj=ak and bj=bk are constant for some

1a j < ka 3.

Proof. Take z A C . Then ð f0ðzÞ; f1ðzÞ; g0ðzÞ; g1ðzÞ; h0ðzÞ; h1ðzÞÞ is a com-

mon zero of

ajðzÞðbjX 2
0 þ ajX0X1 þ X 2

1 Þ � ðbjY 2
0 þ ajY0Y1 þ Y 2

1 Þ

and

bjðzÞðbjX 2
0 þ ajX0X1 þ X 2

1 Þ � ðbjZ2
0 þ ajZ0Z1 þ Z2

1 Þ
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for j ¼ 1; 2; 3. Under this situation the matrix D of (3.10) is

D ¼

b1a1 a1a1 a1 �b1 �a1 �1 0 0 0

b2a2 a2a2 a2 �b2 �a2 �1 0 0 0

b3a3 a3a3 a3 �b3 �a3 �1 0 0 0

b1b1 a1b1 b1 0 0 0 �b1 �a1 �1

b2b2 a1b2 b2 0 0 0 �b2 �a2 �1

b3b3 a1b3 b3 0 0 0 �b3 �a3 �1

0
BBBBBBBB@

1
CCCCCCCCA
:

Since some fjðzÞgkðzÞhlðzÞ0 0, by (3.11), we have DðzÞ ¼ 0, and hence D1 0.

Put

D
ðmnÞ
0 ¼ am 1

an 1

����
����; D

ðmnÞ
1 ¼ bm 1

bn 1

����
����; D

ðmnÞ
2 ¼ bm am

bn an

����
����

for m; n ¼ 1; 2; 3, and A
ð1Þ
j ¼ D

ð23Þ
j , A

ð2Þ
j ¼ D

ð13Þ
j , A

ð3Þ
j ¼ D

ð12Þ
j for j ¼ 0; 1; 2.

Then

Djkl ¼
X

1am; na3

ð�1Þmþn
D

ðmnÞ
j A

ðmÞ
k A

ðnÞ
l ambn: ð4:3Þ

Since each Djkl is a quadratic homogeneous polynomial of a1, a2, a3, b1, b2, b3
which consists of terms akbl ðk0 lÞ, by (3.11) D is a homogeneous polynomial

of degree sixteen of them whose terms are
Q8
m¼1

ajmbkm , where jm 0 km, m ¼

1; . . . ; 8, with complex coe‰cients. Fix m, n such that 1a m; na 3 and m0 n.

For simplicity, we write Dj for D
ðmnÞ
j , Aj for A

ðmÞ
j and Bj for A

ðnÞ
j . Then, in

the expansion of D, from (3.11) and (4.3) the term ð�1ÞmþnðambnÞ
8 has the

coe‰cient

D2A2B2 D2A2B1 D2A1B2 D2A1B1 D1A2B2 D1A2B1 D1A1B2 D1A1B1

D2A2B1 D2A2B0 D2A1B1 D2A1B0 D1A2B1 D1A2B0 D1A1B1 D1A1B0

D2A1B2 D2A1B1 D2A0B2 D2A0B1 D1A1B2 D1A1B1 D1A0B2 D1A0B1

D2A1B1 D2A1B0 D2A0B1 D2A0B0 D1A1B1 D1A1B0 D1A0B1 D1A0B0

D1A2B2 D1A2B1 D1A1B2 D1A1B1 D0A2B2 D0A2B1 D0A1B2 D0A1B1

D1A2B1 D1A2B0 D1A1B1 D1A1B0 D0A2B1 D0A2B0 D0A1B1 D0A1B0

D1A1B2 D1A1B1 D1A0B2 D1A0B1 D0A1B2 D0A1B1 D0A0B2 D0A0B1

D1A1B1 D1A1B0 D1A0B1 D1A0B0 D0A1B1 D0A1D0 D0A0B1 D0A0B0

������������������

������������������
¼ D2E4 D1E4

D1E4 D0E4

����
����
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�

A2B2 A2B1 A1B2 A1B1

A2B1 A2B0 A1B1 A1B0

A1B2 A1B1 A0B2 A0B1

A1B1 A1B0 A0B1 A0B0

A2B2 A2B1 A1B2 A1B1

A2B1 A2B0 A1B1 A1B0

A1B2 A1B1 A0B2 A0B1

A1B1 A1B0 A0B1 A0B0

������������������

������������������

¼ D2E4 D1E4

D1E4 D0E4

����
���� �

A2E2 A1E2

A1E2 A0E2

A2E2 A1E2

A1E2 A0E2

���������

���������

�

B2 B1

B1 B0

B2 B1

B1 B0

B2 B1

B1 B0

B2 B1

B1 B0

������������������

������������������
¼ ðD0D2 �D2

1Þ
4ðA0A2 � A2

1Þ
4ðB0B2 � B2

1Þ
4

¼ fRðPm;PnÞRðPl;PnÞRðPl;PmÞg4;

where void elements represent 0, and En is the unit matrix of size n and

RðP;QÞ is the resultant of two polynomials PðzÞ and QðzÞ, and fl; m; ng ¼
f1; 2; 3g. Since RðPj;PkÞ0 0 for j0 k, every term ðambnÞ

8 really appears in

the expansion of D for m0 n.

Now take representations mj; nj of ½aj�, ½bj� of rank 16. Let l1, l2, l3, l4,

l5, l6 be the indices mj þ nk of ajbk ð j0 kÞ, which are arranged as l1 b l2 b

l3 b l4 b l5 b l6. If l1 > l2, then there is no term in the expansion of D with

the index 8l1 except one, which contradicts Lemma 2. Hence l1 ¼ l2, and

similarly, l5 ¼ l6.

Without loss of generality, we may assume that m1 b m2 b m3. Note that

(A), (B), (C) and (D) are equivalent to the followings, respectively: (a) m1 ¼
m2 ¼ m3; (b) n1 ¼ n2 ¼ n3; (c) m1 � n1 ¼ m2 � n2 ¼ m3 � n3; (d) mj ¼ mk, nj ¼ nk
for some 1a j < ka 3.

(I) The case where n1b n2b n3. In this case m1 þ n2bm1 þ n3bm2 þ n3,

m2 þ n1 b m3 þ n1 b m3 þ n2 and m2 þ n1 b m2 þ n3. When we consider the
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maximal index, following three cases arise: (i) m1 þ n2 > m2 þ n1, (ii) m1 þ n2 <

m2 þ n1 and (iii) m1 þ n2 ¼ m2 þ n1. If (i), then m1 þ n2 ¼ m1 þ n3 are the max-

imal indices, and hence n2 ¼ n3. If (ii), then m2 þ n1 ¼ m3 þ n1 are the maximal

incices, and hence m2 ¼ m3. When we consider the minimal index, following

three cases arise: (iv) m2 þ n3 > m3 þ n2, (v) m2 þ n3 < m3 þ n2 and (vi) m2 þ n3
¼ m3 þ n2. If (iv), then m3 þ n2 ¼ m3 þ n1 are the minimal indices, and hence

n2 ¼ n1. If (v), then m2 þ n3 ¼ m1 þ n3 are the minimal indices, and hence

m1 ¼ m2.

Furthermore we must consider nine cases by multipying the first three

cases (i), (ii), (iii) and the secondary three cases (iv), (v), (vi). In the case

where (i) and (iv), n1 ¼ n2 ¼ n3, which is (b). In the case of (i) and (v), 0 ¼
m1 � m2 > n1 � n2, which contradicts n1 b n2. In the case where (i) and (vi),

n2 ¼ n3 and m2 ¼ m3, which is (d). In the case where (ii) and (iv), 0 ¼ m2 � m3 >

n2 � n3 b 0, which is a contradiction. In the case where (ii) and (v), m1 ¼
m2 ¼ m3, which is (a). In the case where (ii) and (vi), m2 ¼ m3 and n2 ¼ n3. We

get (d). If (iii) and (iv) hold, then n1 ¼ n2 and m1 ¼ m2, which is (d). Also, in

the case where (iii) and (v), we have (d). If (iii) and (vi) hold, then m1 � n1 ¼
m2 � n2 ¼ m3 � n3, which is (c).

(II) The case where n1 b n3 b n2. In this case m1 þ n3 b m1 þ n2 b

m3 þ n2, m2 þ n1 b m3 þ n1 b m3 þ n2 and m1 þ n3; m2 þ n1 b m2 þ n3 b m3 þ n2.

When we consider the minimal index, the following two subcases arises:

(i) m2 þ n3 ¼ m3 þ n2. Then 0a m2 � m3 ¼ n2 � n3 a 0, and hecne, m2 ¼ m3,

m2 ¼ n3, which is (d). (ii) m2 þ n3 > m3 þ n2. Then m3 þ n2 ¼ m1 þ n2 or

m3 þ n2 ¼ m3 þ n1 holds. In the former case, we have m1 ¼ m3, which implies

(a). In the latter case, we have n1 ¼ n2, which is (b).

(III) The case where n2 b n1 b n3. In this case we have m1 þ n2 b

m1 þ n3 b m1 þ n3, m1 þ n2 b m2 þ n1 b m3 þ n1 and m2 þ n1 b m2 þ n3, m1 þ n2 b

m3 þ n2. When we consider the maximal index, we have following three

subcases: (i) m1 þ n2 ¼ m3 þ n2, and hence, m1 ¼ m3, which is (a). (ii) m1 þ n2
¼ m1 þ n3, and hence, n2 ¼ n3, which is (b). (iii) m1 þ n2 ¼ m2 þ n1. In this

case 0a m1 � m2 ¼ n1 � m2 a 0, and hence, m1 ¼ m2, n1 ¼ n2, which is (d).

(IV) The case where n2 b n3 b n1. In this case the inequalties m1 þ n2 b

m1 þ n3 b m2 þ m3 b m2 þ n1 b m3 þ n1 and m1 þ n2 b m3 þ n2 b m3 þ n1 hold.

We see that m3 þ n1 is the minimal index and that m3 þ n2 or m2 þ n1 equals

it. If m3 þ n2 ¼ m3 þ n1, then n2 ¼ n1, which implies (b). If m2 þ n1 ¼ m3 þ n1,

then m2 ¼ m3. On the other hand the maximal indices are m1 þ n2 ¼ m1 þ n3
or m1 þ n2 ¼ m3 þ n2. In the former, we obtain m2 ¼ n3 with m2 ¼ m3, which is

(d). In the latter, we get (a).

(V) The case where n3 b n1 b n2. In this case the inequalities m1 þ n3 b

m2 þ n3 b m2 þ n1 b m3 þ n1 b m3 þ n2 and m1 þ n3 b m1 þ n2 b m3 þ n2 hold.

The maximal indices are m1 þ n3 ¼ m1 þ n2 or m1 þ n3 ¼ m2 þ n3. In the former

150 Manabu Shirosaki



n2 ¼ n3, which implies (b). In the latter, we have m1 ¼ m2. The minimal

indices are m3 þ n2 ¼ m1 þ n2 or m3 þ n2 ¼ m3 þ n1. In the former m1 ¼ m3,

which is (a). In the latter, we have n1 ¼ n2. Hence in any cases, we get

one of (a), (b) and (d).

(VI) The case where n3 b n2 b n1. In this case m1 þ n3 b m1 þ n2 b

m2 þ n1 b m3 þ n1, m1 þ n3 b m2 þ n3 b m2 þ n1 and m2 þ n3 b m3 þ n2 b m3 þ n1.

When we consider the maximal index, we have two cases: (i) m1 þ n3 ¼
m1 þ n2, and hence, n2 ¼ n3; (ii) m1 þ n3 ¼ m2 þ n3, and hence, m1 ¼ m2. When

we consider the minimal index, we have two cases: (iii) m3 þ n1 ¼ m2 þ n1,

which implies m2 ¼ m3; (iv) m3 þ n1 ¼ m3 þ n2, which implies n1 ¼ n2. If (i)

and (iii) hold, then we have (d). In the case where (i) and (iv), we have

(b). In the case where (ii) and (iii), we have (a). If (ii) and (iv) hold, then we

have (d).

We have completed the proof. r

Remark. Note that we did not assume that Pj have no double zeros in

the above proof.

Now, we start the proof of Theorem 5.

Let

Sj ¼ fxj; hjg ¼ fz; z2 þ ajzþ bj ¼ 0g ð j ¼ 1; 2; 3Þ

be pairwise disjoint two-point sets in C and let f , g, h be nonconstant

meromorphic functions on C sharing each Sj CM. Then we can take

PjðzÞ ¼ z2 þ ajzþ bj in Theorem 6 and there exist some entire functions

aj without zeros satisfying (4.1) and (4.2) for j ¼ 1; 2; 3, where f0, f1, g0,

g1, h0, h1 are as in Theorem 6. By Theorem 6, one of (A), (B), (C) and

(D) holds.

First we consider the case where (A) holds. If fz : f ðzÞ ¼ gðzÞ A Sjg ¼ q
ð j ¼ 1; 2Þ, then f �1ðxjÞ ¼ g�1ðhjÞ and f �1ðhjÞ ¼ g�1ðxjÞ for j ¼ 1; 2. We can

take a Möbius transformation T such that TðxjÞ ¼ hj , TðhjÞ ¼ xj ð j ¼ 1; 2Þ.
Then f and T � g share four values x1, h1, x2 and h2 CM, and we get the

conclusion by Nevanlinna’s four-value theorem (Theorem 3). So, we may

assume there exists z0 A C such that f ðz0Þ ¼ gðz0Þ ¼ x1, without loss of gen-

erality. Now, c :¼ a2=a3 is a nonzero constant and

c
f 2 þ a2 f þ b2

f 2 þ a3 f þ b3
¼ g2 þ a2gþ b2

g2 þ a3gþ b3

holds. This equality at z0 induces c ¼ 1, and hence, we get the con-

clusion.

Similarly, we get the conclusion in each case (B) and (C).
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Now, we consider the case (D). Without loss of generality, we may

assume that m1 ¼ m2, n1 ¼ n2. Then

c
f 2 þ a1 f þ b1

f 2 þ a2 f þ b2
¼ g2 þ a1gþ b1

g2 þ a2gþ b2

and

c 0
f 2 þ a1 f þ b1

f 2 þ a2 f þ b2
¼ h2 þ a1hþ b1

h2 þ a2hþ b2

hold, where c :¼ a1=a2, c
0 :¼ b1=b2 are nonzero constants. If c ¼ 1 or c 0 ¼ 1

or c ¼ c 0, then we get the conclusion. Now assume that c0 1, c 0 0 1 and

c0 c 0. Then there is no z A C such that f ðzÞ ¼ gðzÞ A S3 or f ðzÞ ¼ hðzÞ A S3

or gðzÞ ¼ hðzÞ A S3. This fact implies that f , g and h omit two values x3 and

h3, and hence, f , g and h share S1, S2, fx3g and fh3g CM, and we get the

conclusion by Theorem 2.

We have completed the proof.

5. Proof of Theorem 1

Though proofs of Theorem 1 are given by H. Cartan in § 56 of [C] and

by R. Nevanlinna in p. 125 of [N2], we prove it, again, by using Theorem 6.

Let f , g and h be nonconstant meromorphic functions on C and let x1, x2,

x3 be distinct points in C. Assume that f , g and h share each xj CM. Then,

we prove that two of f , g and h are identical.

By considering compositions of each of f , g, h and a suitable Möbius

transformation, we may assume that xj A C ð j ¼ 1; 2; 3Þ. Put PjðzÞ ¼ ðz� xjÞ2.
Then, by Theorem 6, one of (A), (B), (C) and (D) holds.

In the case (A), we have

c1ð f � x1Þ=ð f � x3Þ ¼ ðg� x1Þ=ðg� x3Þ;

c2ð f � x2Þ=ð f � x3Þ ¼ ðg� x2Þ=ðg� x3Þ;

where c2j ¼ aj=a3 ð j ¼ 1; 2Þ are nonzero constants. Since f and g are non-

constant, we obtain f ¼ g from these identities.

Similarly, we get f ¼ h in the case (B) and g ¼ h in the case (C).

Consider the case (D). We may assume that m1 ¼ m2 and n1 ¼ n2. Then

we have

cð f � x1Þ=ð f � x2Þ ¼ ðg� x1Þ=ðg� x2Þ;

c 0ð f � x1Þ=ð f � x2Þ ¼ ðh� x1Þ=ðh� x2Þ;
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where c and c 0 are nonzero constants. We get f ¼ g, f ¼ h and g ¼ h if

c ¼ 1, c 0 ¼ 1 and c ¼ c 0, respectively.

Assume that c0 1, c 0 0 1 and c0 c 0. Then f , g and h must omit x3.

Since from the above identities

f ¼ ðx2 � cx1Þg� ð1� cÞx1x2
ð1� cÞg� ðx1 � cx2Þ

and

f ¼ ðx2 � c 0x1Þh� ð1� c 0Þx1x2
ð1� c 0Þh� ðx1 � c 0x2Þ

hold, f omit also two values

ðx2 � cx1Þx3 � ð1� cÞx1x2
ð1� cÞx3 � ðx1 � cx2Þ

and

ðx2 � c 0x1Þx3 � ð1� c 0Þx1x2
ð1� c 0Þx3 � ðx1 � c 0x2Þ

:

It follows from c0 1, c 0 0 1, c0 c 0 and distinctness of x1, x2, x3 that three

exceptional values of f are distinct, which is a contradiction.

Hence we have proved Theorem 1.
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