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ABSTRACT. We show that if three meromorphic functions share three two-point sets
CM, then there exist two of the meromorphic functions such that one of them is a
Mobius transform of the other.

1. Introduction

For nonconstant meromorphic functions f and g on C and a finite set S
in C=CU{x}, we say that f and g share S CM (counting multiplicities)
if f71(S) =¢7!(S) and if for each zp e f~'(S) two functions f — f(zo) and
g —g(z0) have the same multiplicity of zero at z;, where we consider 1/f
and 1/g for f — f(z0) and g — g(zo) if f(z9) = o0 and g(z9) = o, respectively.
Also, if f~1(S) =¢~!(S), then we say that f and g share S IM (ignoring
multiplicities). In particular if S is a one-point set {a}, then we say also that
f and g share ¢ CM or IM.

In [C], H. Cartan showed the following theorem:

THEOREM 1. Let f, g and h be three nonconstant meromorphic functions
on C and let ay, ay and az be three distinct points in C. If f, g and h share
a; CM for j=1,2,3, then at least two of f, g and h are identical.

On the other hand the author proved ([S3], see also [S2] and [ST]).

THEOREM 2. Let Sy, S, S3, S4 be four one-point or two-point sets in C.
Suppose that Sy, Sy, S3 and Sy are pairwise disjoint. If two nonconstant mer-
omorphic functions f and g on C share S; CM for j=1,...,4, then [ is a
Mébius transform of g.

Theorem 2 contains partially the result of Nevanlinna ([N1] and [N2]).

THEOREM 3. Let f and g be two distinct nonconstant meromorphic func-
tions on C and let ay, ..., a4 be four distinct points in C. If f and g share
ai,...,as CM, then f is a Mobius transform of g, i.e., f = (ag+b)/(cg+d)
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for some complex numbers a, b, c, d with ad — bc # 0. Moreover, there exists
a permutation ¢ of {1,2,3,4} such that a,z3) and ayq) are Picard exceptional
values of f and g and the cross ratio (1), ds(2), do(3), de@)) = —1.

Theorems 1 and 2 raise the following problem:

PrOBLEM. If three meromorphic functions on C share three pairwise dis-
joint two-point sets, then do there exist two in the three meromorphic func-
tions such that one of them is a Mobius transform of the other?

In this paper we consider three meromorphic functions on C sharing three
two-point sets in C CM.

THEOREM 4. Let Si, S», S3 be three two-point sets in C. Suppose that
S1, S», S5 are pairwise disjoint.  If three nonconstant meromorphic functions f, g
and h on C share each of Si, S», S3 CM, then one of f, g and h is a Mobius
transform of one of the others.

For the proof of Theorem 4, by considering compositions of f, g, & and
a suitable Mobius transformation, it is enough to prove the following theorem
which assume that each §; is in C.

THEOREM 5. Let S|, Sy, S3 be three two-point sets in C. Suppose that
S1, S, S3 are pairwise disjoint.  If three nonconstant meromorphic functions f, ¢
and h on C share each of Si, S», S3 CM, then one of f, g and h is a Mobius
transform of one of the others.

2. Representations of rank N and some lemmas

In this section we introduce the definition of representations of rank N.
Let G be a torsion-free abelian multiplicative group, and consider a g-tuple
A= (ay,...,a;) of elements g; in G.

DEerINITION 1. Let N be a positive integer. We call integers u; represen-
tations of rank N of a; if
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J
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. . ;o p a1
are equivalent for any integers ¢, & with > 7, || <N and 3 7, [¢]| < N.
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For the existence of representations of rank N, see [S1].

For two entire function o and £ without zeros we say that they are equiv-
alent if o/f is constant. Then we denote « ~ . This relation “equivalent” is
an equivalence relation.

We introduce following Borel’s Lemma, whose proof can be found, for
example, on p. 186 of [L].

LemMmA 1. If entire functions oy, o, ...,o, without zeros satisfy
ap +oq + oy =0,

then for each j=0,1,...,n there exists some k(# j) such that oa; ~ oy, and the
sum of all elements of each equivalence class in {og,...,0,} is zero.

Now we investigate the torsion-free abelian multiplicative group G = &/%,
where & is the abelian group of entire functions without zeros and % is the
subgroup of all non-zero constant functions. We represent by [«] the ele-
ment of &/% with the representative o€ &. Let ay,...,0, be elements in &.

q
Take representations y; of rank N of [o]. For o= [] rx;f we define its index

J=1

q
Ind(«) by > & The indices depend only on [
q =t

> lgjl < N. Trivially Ind(1) =0, and hence Ind(x) = 0 and the constantness
=1

of a are equivalent, and Ind(x) = Ind(o’) is equivalent to that o/a’ is constant,

9 o ..
[I e/ | under the condition
=i

a ¢ g 4 q
where o = Hloc;f and o = Hlocjf with 2% lejl < N and 2% lef| < N.
j= = = j=
We use the following lemma in the proof of Theorem 5 which is an ap-
plication of Lemma 1 (for the proof see Lemma 2.3 of [ST]).

LEMMA 2. Assume that there is a relation ¥(oi,...,04) =0 where
Y(Xi,...,X,) e C[X1,...,X,| is a nonconstant polynomial of degree at most
N of Xi,...,X,. Then each term aX{' ---X;" of ¥(Xi,...,X,) has another
term bX 181’ e X;‘; such that o' - - oy’ and oc'f{ --~oc;‘; have the same indices, where
a and b are non-zero constants.

3. A Lemma from the theory of general resultants

For the proof of Theorem 5 we preparate a result from the theory of
general resultants in this section.

Let d (>=2) be an integer and let F,...,Fs be six homogeneous poly-
nomials of degree d of six variables X,, X, Yy, Y1, Zy, Z;. Denote their
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Jacobian determinant by J:

_[0F oK 0F OF 0F OF

A P B R N N R .
0Xo 0X1 0Yy 0Y1 0Zy 0Zi| 1<
LeEmMA 3. Let P be a non-trivial common zero of Fy,... Fs. Then (1) J is
.. o/ oJ dJ o o oJ
zero at P; (ii) all the partial derivatives oYY Y e zero

at P; (iil) if we assume that 0Xo™ 0X\" 0% 0T\ 02y 02

O’F, O°F; O°F,
. — v = I — . — 1 o . _ 1
(S) XY, vz azox, 0 U=L.6kI=01)

and if plural components of P are not zero, then the second partial derivatives
0%J or i

0X;0Yy™ 0Y;0Z" 0Z;j0X

assumption (S), if plural components of P are not zero, then the third partial

have zero at P for any j,k=0,1; (iv) under the

derivative m has zero at P for any j, k,1=0,1.

Proor. Without loss of generality, we may assume that the X, compo-
nent of P is not zero.

By Euler’s relation we have

S P R
Xy Xy 0Z1 |1<j<6
OF; OF;
=dlF =L ... 2L 3.1
J (7X1 621 IS./Sé ( )
and, hence we have J(P) =0, which is (i).
By differentiating (3.1) by Xy, X1,...,Z, respectively, we get
’\2
J_,_Xoa_‘]:djq-dp 0k % E E ﬂ
0Xy 4 0Xo0X, 0Yy 0Y, 0Zy 0Z, 1<j<6
_|_..._|_dF], ﬂ @ % @ 517} s (3.2)
’ 6X1 6Y0 6Y1 62() aXoazl 1<j<6
O R A
1.¢ / 6X12 Yy 0Y, 07y, 07, 1<j<6
2
+---+d|F E E E E 6F} s (3.3)
/ 6X1 6Y0 6Y1 620 6X1821 1<j<6
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2 )
0w |y OB o5 on om0
07, 7 0X,0Z) 0Yy 0Y1 0Zy 0Zili<j<6
. . . . 2 .
toyalp, 2505 OF O UK (3.4)

0X, oYy Y, 0Zy oZ?

1<j<6

Therefore we obtain (ii) since F;(P)=0 (j=1,...,6).
Under the assumption (S), the equations (3.2), (3.3) and (3.4), and so on,
become

2
J+XO?—J:dJ+d F O°F, oF 0k OF OF , (3.5
Xy ! 0Xp0X) 0Yy oY, 0Zy 0Z 1<j<6
oJ 0°F, 0F, 0F, 0F OF
Xo—=d|F, — L 2L L L ) 3.6
’ox, I X2 3Y, oY, Zo 0Zi| (36)
1<j<6
| o OF O PE R
621 J 5X1 aYo (3Y1 620621 021 1<j<6
0F, 0F;, 0F 0F 0°F
dlp b oty o oy J 3.7
TN X v vz oz2| 3.7
1<j<6
By differentiating (3.5), (3.6), (3.7), and so on, by Y,, we get
Y 0Xo0Yy Y 0Xo0X1 0Y; 0Y1 0Zy 0Z; i
=)=
+d| F. asz OF; asz OF; Ok , (3.8)
/ 6X0(3X1 aYo aYoﬁYl 620 621 1<j<6
¥ o%J 0*F, 0*F; O0F, O0F 0F
e = Al A Rl Al A
0X10Y, J aXlz aYOZ Y, 07y, 07, 1<j<6
0°F, O0F, 0’F; O0F, OF
valr OE K i Ly (39
/ 5X12 OY() 5Y0@Y1 5Zo 621 1<j<6
A O B
Y0Yodzi |V aX, oY Y\ 0ZedZy Zi|,
1<j<6




144 Manabu SHIROSAKI
vy B E O PH 0k
/ aXl OYO 6Y06Y1 620621 621 1<j<6
2 2 22
cdp 0 TH 5 PH 2R
X, oYy 0Yi 0Zy0Z, ozZ}| .
1<j<6
I PO B B
2 )
0X) 0Yy 0Yy0Y, 0Zy0Z, 0Z; 1<j<6
hence we obtain, with similar manners, (iii).
Differentiate (3.8) and (3.9) by Zj, then we have
o°J o°J
+ Xo =
6Y0820 oXOE)YO@ZO
o dlF 0’F;,  *F; OF, 0°F; OF
0Y00Zy T 0Xo0X, oYy oYy 0Z; 07, <<t
LdlE, ’’F, K, 0F 0F 0K
0Xp0X, 5Y02 Y, 0Zy 0Zy0Z, 1<j<6
0’F,  0F,  0*F;  0'F; OF,
T\ Gxex: 3, aYeY, iz oz
0AXp0A1  OXp 00 1] 0 Hicj<e
vdp OF O PE 2K
J f\ ) ’
anﬁXl OY() 6Y08Y1 620 520621 1<j<6
¥ g |\ F K 0F °F 0F
VOX10Y0dZy |7 oxE ov@ oY, 0z Zi|
1<j<6
PR
OXI 6Y0 6Y1 UZ() 620821 1<j<6
vdp OB 0B OB 2K R
70Xt oYy 0YedY, 0Z; 0Z .
LdlF 0*F; 0F,  0*F,  OF,  0F
/ 6X2 6Y0 (3Y()6Y1 620 52()@21 .
1 1<j<
A3 3
F; 0°F; -
Hence we have 6X006 Y; 7P =3y 6Y; 7 (P) =0, and by the similar ways,

we get (iv).

O
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Let

2
Fi(Xo, X1, Yo, Y1, 20, Z1) = Z(a,kxg—"xf +bp YERY) ez ZE)

k=0

(j=1,...,6) be six quadratic homogeneous polynomials satisfying the assump-
tion (S). Then the first derivatives are

OF; OF;

6—X]0=20_/0X0+0!_/1X1, 6—X11=aj1X0+2a_/2X1,

OF; OF;

a—Y{JZZb/OYO+bj1 Yy, 6—Y]1:bjl Yo +2bp Y1,

OF; oF;

6—210 = 2¢j0Zo + ci1 2y, 6—211 = cj1Zy + 2cpZy.

Since J is the determinant of the matrix DX, where

D=(aw an apo buw bu bo co cu cllz)lg,usé (3.10)
and

2Xo O 0 0 0 0

X1 Xy, 0 0 0 0
0 2X; O 0 0 0
0 0 2Yy O 0 0

X=] 0 0 i Yy, O 0 |1,

0 0 0 2Y; O 0
0 0 0 0 27z, O
0 0 0 0 Z Z
0 0 0 0 0 2z

we see, by the formula of determinant of product of m X n matrix and n x m
matrix with 1 <m <n,

J =28 Z 2(/(2—j)+k(2—k)+1(2—1)Djle(_)/‘Xlzfj YOk le_kzézlz_l7
0<j,k,1<2

where Djy is the determinant of the 6 x 6 matrix obtained from D by excluding

three columns (ay); ;<6 (buk)i<p<e and (Cu))<pzs-
By differentiating J, we have

1 37

— ————— = D X Y0Zo + D21 Xo Yo Z1 + D212 Xo Y1Z
64 0Xy0Y00Z, 222X0 Y0Zo + Do Xo YoZ1 + D2n X0 Y12

+ Dy 1 Xo Y1Z1 + D122 X1 Yo Zy + D121 X1 YoZ4
+ DipX1Y1Zy+ DinXi Y12y,
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1 37

64 0X,0Yo0Z,

1 37

64 0X,0Y,02Z,

1 37

64 0X,0Y,0Z,

1 7

64 0X,0Y,0Z,

1 7

64 0X,0Y,0Z,

1 7

64 0X,0Y,0Z,

1 o3

64 0X,0Y,0Z,
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D1 X0 YoZo + Do Xo YoZ1 + Dr11 X0 Y120

+ D110 X0 Y1Z1 + D121X1 Yo Zy + D120 X1 Yo 24

+ D X1 Y1Zo + DnioX1 Y1274,

D12 X0 Yo0Zo + D211 Xo YoZ1 + DraXo Y12y

+ D01 Xo Y1Z1 + D112X1 Yo Zo + D111 X1 YoZ4

+ Do X1 Y1Zo + Dio1 X1 Y1274,

D711 X0 Yo0Zo + D210 Xo YoZ1 + D1 X0 Y120

+ D20 Xo Y1Z1 + D111X1 Yo Zo + D110X1 YoZ4

+ D101 X1 Y1Zo + Do X1 Y124,

D122 X0 YoZo + D121 X0 YoZ1 + D112 X0 Y120

+ D111 Xo Y1Z1 + Do X1 YoZy + Doo1 X1 YoZ4

+ Do12 X1 Y1Zo + Do X1 Y124,

D121 X0 YoZo + D120 X0 Yo Z1 + D111 X0 Y12y

+ D110 X0 Y1Z1 + Do21 X1 Yo Zy + Do X1 YoZ4

+ Do X1 Y1Zy + Do1o X1 Y124,

D112 X0 YoZo + D111 X0 YoZ1 + D102 X0 Y12y

+ D101 Xo Y1Z1 + Do12X1 YoZo 4+ Do11 X1 YoZ,

+ Do X1 Y1Zy + Do X1 Y124,

D111 X0 YoZo + D110 Xo YoZ1 + D101 X0 Y120

+ Do Xo Y1Z1 + Do11 X1 YoZo + Do1oX1 YoZ,

+ Do X1 Y1Zy + Dooo X1 Y1Z;.
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If P(xo,x1, Yo, ¥1,20,21) is a common zero of Fj,...,Fs such that some
x;jykzi # 0, then

Dy» Dxpy Dy Day Dz Dizit Dz Din
Dy Dxno Dot Dao Dizt Do Dt Dio
Dy Doy D2 Dt Diiz Dint Dz Dio
A Dyi1 Do Dot Do Dint Dio Dion Dioo ERT)
Di»» Dyt Diz Dt Doz Dot Doz Donr
D1 Do Dint Duo Dozt Doo Dorr - Doro
Diiz Dinn Dz Dion Doz Dotr Doz Doo

Diii Do Dot Dioo Dot Doto Door  Dooo

at P since all of the above derivatives are zero at P by (iii) of
Lemma 3.

4. The key theorem and the proof of Theorem 5

By the following theorem we can prove Theorem 5 easily.

THEOREM 6. Let f = fi/fo, 9=g1/g90 and h=hy/hy be nonconstant
meromorphic functions on C, where fy and fi are entire functions without
common zero and so are go and ¢\, and hy and hy. Let Pi(z) = 72 +ajz + b;
(j=1,2,3) be polynomials such that P;(z) and Pi(z) have no common zero for
distinct j, k. Assume that there exist entire functions w;, ff; without zeros such
that

o0 (/7 +aififo+ bify) = 91 + @gigo + bigg (4.1)
and
Bi(f2+aififo +bif3) = hi + ajhiho + bl (4.2)

Sfor j=1,2,3. Then one of the followings holds: (A) both oy /o, and o) /o3 are
constant; (B) both f,/f, and B,/f; are constant; (C) both (a1/f,)/(x2/f,) and
(o1/By)/(23/B5) are constant; (D) both o;/oy and B;/B; are constant for some
1<j<k<3.

Proor. Take ze C. Then (fy(z), fi(2),90(2),91(2),ho(z), hi(z)) is a com-
mon zero of

o(2) (b X5 + 4 XoXi + X7) — (b Y5 + ¢ Yo Y1 + Y7)
and

Bi(2)(biXg + aiXo Xy + X7) — (bZ5 + 4 ZoZy + Z7)
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for j=1,2,3. Under this situation the matrix D of (3.10) is

blocl ayoy oy —b1 —da -1 0 0 0
bzaz axoly 0o —b2 —da) -1 0 0 0
b33€3 azoz o3 —b3 —d3 -1 0 0 0

by apy B 0 0 0 -b —-a -1
by arp, B, 0 0 0 —-by —an -1
by aifs By 0 0 0 —by —az —1

Since some f;(z)gi(z)hi(z) # 0, by (3.11), we have 4(z) =0, and hence 4 = 0.
Put

:bﬂ ay

for u,v=1,2,3, and 4" =D 4P =p" 4P =pD" for j=0,1,2.
Then

D= (=)D 4 41 0,p,. (4.3)

I<p,v<3

Since each Dy, is a quadratic homogeneous polynomial of a1, o, a3, B, 5, B3
which consists of terms oy f; (k # ), by (3.11) 4 is a homogeneous polynomial

8
of degree sixteen of them whose terms are [ «; f, , where j, # ky, m=
m=1
I,...,8, with complex coefficients. Fix g, v such that 1 < g, v <3 and u # v.
For simplicity, we write D; for D}”V), A; for A;”) and B; for Aj(v). Then, in
the expansion of 4, from (3.11) and (4.3) the term (—1)"""(,8,)® has the

coefficient

DyA2By DyAxBy DyA1By DyAyBy Di1AxBy, DvAxBy D1A1By DA By
D>A>By DyAxBy  DyA1By DyA1By D1AxBy D1AxBy D1A1By D1A1 By
D>A\By DyA1By DyAoBy DyAoBy Di1A1By D1A1By Di1AoBx Di1AoB)
D>A\By DyA1By DyAoBy DyAoBy D1A\Bi D1A1By Di1AoBy D1AgBy
D\A2By D1Ax2By D1A1By D1A1By DyAxBy DoAxBy DoA1By  DyAy By
D\A>By D1Ax2By D1A1By D1A1By DoAxBy DoAxBy DoA1By  DyA1By
D\A\By D1A1Bi D1AoBy D1AoBy DoABy DoA1Br DoAoBx DyAyB
DyA1By Di141By DyAoBy DiAogBy DoA1B; DoA1Dy DoAoBi DyAoBy

| D:Ey D\E4
" |D\Es DyEs
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A2By  ABy A1By A1B
AyBy AxBy A1B1 A1 By
A1By A1By AoBy AoBi
A1By A1By AoB1 AoBy

8 AyBy A2By A1By A By
A>,B; A,By A By AiBy
A1By A1By AoBy AoB
A1By A1By AoB1  AoBo
B A1 E;
B DyEy, D\Ey| |A\E, AyE>
_’D1E4 DoEs| AE;  ALE,
A1Ey Aok
B, B
B; By
B>, B
By By
8 B, B
By By
B, B
By By

= (DD — D})* (Ao Ay — AD)*(BoB> — B})*
= {R(P,ua PV)R(P).a PV)R(PA’ PM)}4>

where void elements represent 0, and E, is the unit matrix of size n and
R(P,Q) is the resultant of two polynomials P(z) and Q(z), and {4,u,v} =
{1,2,3}. Since R(P;, Pr) # 0 for j # k, every term (ocﬂﬂ‘,)8 really appears in
the expansion of A for u #v.

Now take representations g, v; of [o], [B;] of rank 16. Let 41, A2, 43, 4a,
/s, 46 be the indices u; + v of (j # k), which are arranged as 4, > A, >
A3 > A4 = As = Ag.  If 41 > /Ay, then there is no term in the expansion of 4 with
the index 81; except one, which contradicts Lemma 2. Hence 4; = 4, and
similarly, s = J.

Without loss of generality, we may assume that x4 > u, > p3. Note that
(A), (B), (C) and (D) are equivalent to the followings, respectively: (a) u; =
Mo =p3; (b) vi=va=v3 (©) wy—vi=pp—v2=p3—vy; (d) ;= py, v; = vk
for some 1 < j<k<3.

(I) The case where v; > v, > v3. In this case u; +vy = u; +v3 =ty + v3,
M +Vvi = +v > +vy and puy, +vi >, +v3. When we consider the
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maximal index, following three cases arise: (i) g +va > 1 + vy, (i) gy + v <
1y, + vy and (iil) gy +v2 = up +vi. If (i), then gy +v2 = y; + v3 are the max-
imal indices, and hence v, = v3. If (ii), then u, + v; = u3 + v; are the maximal
incices, and hence u, = u;. When we consider the minimal index, following
three cases arise: (iv) p, +v3 > us + v, (V) th +v3 <z +v2 and (Vi) g, + 3
=3 +vo. If (iv), then p3 + v» = p3 + v are the minimal indices, and hence
vy =v;. If (v), then g, +v3 =y +v; are the minimal indices, and hence
My = Hy.

Furthermore we must consider nine cases by multipying the first three
cases (i), (ii), (iii) and the secondary three cases (iv), (v), (vi). In the case
where (i) and (iv), v; = v = v3, which is (b). In the case of (i) and (v), 0 =
1 — W > vi — vo, which contradicts v; > v,. In the case where (i) and (vi),
vy = v3 and u, = us, which is (d). In the case where (ii) and (iv), 0 = u, — u3 >
v; —v3 >0, which is a contradiction. In the case where (ii) and (v), u; =
Iy = i3, which is (a). In the case where (ii) and (vi), ¢, = y3 and v» = v3. We
get (d). If (iii) and (iv) hold, then v; = v, and y; = u,, which is (d). Also, in
the case where (iii) and (v), we have (d). If (iii) and (vi) hold, then yx; —v; =
Iy — v2 = 3 — v3, which is (c).

(I) The case where v; >v3>wv. In this case u +vi=u +v=
MV, v =+ = +veoand g v v = vz = pus v
When we consider the minimal index, the following two subcases arises:
(i) p+vi=wu3+vs. Then O0<p,—p3=v,—v3 <0, and hecne, u, =y,
i, =v3, which is (d). (i) g, +vs>pu3+va. Then w3 +vy=p +v, or
3+ vy =3+ vy holds. In the former case, we have u; = 3, which implies
(a). In the latter case, we have v; = v,, which is (b).

(III) The case where v, >v; >v;. In this case we have u; +v, >
M3 =y Vs, v = v =zt and g+ > s, g+ >
M3 +va. When we consider the maximal index, we have following three
subcases: (i) py + v2 = u3 + 12, and hence, u; = us;, which is (a). (i) g +»
= u; +v3, and hence, v, =v3, which is (b). (iii) g +v2 =, +v;. In this
case 0 <y —u, =vi —u, <0, and hence, u; =, vi = v, which is (d).

(IV) The case where v, > v3 > v,. In this case the inequalties x; + v, >
WM+t = +vi=u+ve oand g+ v = p3+v2 =3+ v hold.
We see that u; + v is the minimal index and that g3 + v, or u, + v, equals
it. If g3 +v2 = p3 + v, then v, = v, which implies (b). If u, +vi = 3 + vy,
then u, = u3. On the other hand the maximal indices are u; +v2 = u; +v3
or u; + vy = 3 +v2. In the former, we obtain x, = v3 with g, = p3, which is
(d). In the latter, we get (a).

(V) The case where v3 > v; > v,. In this case the inequalities x; + v3 >
U +V3=py+vi >3 +vi >3 +v2 and gy +v3 > p +v2 > p3+ o hold.
The maximal indices are u; +v3 = u; + v2 or gy +v3 = it +v3. In the former
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vz = v3, which implies (b). In the latter, we have u; =g,. The minimal
indices are g3+ vo =gy +Vv2 or pz3+vo=p3+vi. In the former gy = us,
which is (a). In the latter, we have v; =v,. Hence in any cases, we get
one of (a), (b) and (d).

(VI) The case where vi>wvy>v. In this case g +v3=>pu +v >
Wo+Vvi 23+, V3 +vs >+ v and o +v3 = a3+ v = a3+
When we consider the maximal index, we have two cases: (i) 1 +v3 =
4 + vz, and hence, v, = v3; (ii) gy +vs = 4, + v3, and hence, y; = u,. When
we consider the minimal index, we have two cases: (iil) w3 +vi = 1, + v,
which implies u, = pt3; (iv) p3 +vi = 3 +v2, which implies vi =v,. If (i)
and (i) hold, then we have (d). In the case where (i) and (iv), we have
(b). In the case where (ii) and (iii), we have (a). If (ii) and (iv) hold, then we
have (d).

We have completed the proof. ]

REMARK. Note that we did not assume that P; have no double zeros in
the above proof.

Now, we start the proof of Theorem 5.

Let

Si={&.m} ={z"+az+b=0} (j=12.3)

be pairwise disjoint two-point sets in C and let f, g, & be nonconstant
meromorphic functions on C sharing each §; CM. Then we can take
Pi(z) =z +aiz+b; in Theorem 6 and there exist some entire functions
a; without zeros satistying (4.1) and (4.2) for j=1,2,3, where fy, fi, 9o,
g1, ho, hy are as in Theorem 6. By Theorem 6, one of (A), (B), (C) and
(D) holds.

First we consider the case where (A) holds. If {z: f(z) =g(z) e S;} = &
(j=1,2), then f~1(&) =g '(n;) and f~'(n,) =g (&) for j=1,2. We can
take a Mobius transformation 7' such that T($) =n;, T(n) =¢ (j=1,2).
Then f and T og share four values &, #;, & and #, CM, and we get the
conclusion by Nevanlinna’s four-value theorem (Theorem 3). So, we may
assume there exists zp € C such that f(zy) = g(z9) = &, without loss of gen-
erality. Now, ¢:= oy /a3 is a nonzero constant and

SPraf+b gPtag+b
f24a3f+bs  g*+azg+b;

holds. This equality at z;, induces ¢ =1, and hence, we get the con-
clusion.
Similarly, we get the conclusion in each case (B) and (C).
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Now, we consider the case (D). Without loss of generality, we may
assume that p; = 4y, vi =v2. Then

fP4af+b g +ag+b
fPraf+b g*+amg+b

and

,f2+a1f+b1 :h2+a1h+b1
f2+a2f+b2 h? + ayh + by

hold, where ¢ := oy /0y, ¢’ := f,/f, are nonzero constants. If c=1 or ¢/ =1
or ¢ =c', then we get the conclusion. Now assume that ¢ # 1, ¢/ # 1 and
¢ #¢’. Then there is no z € C such that f(z) = g(z) € S3 or f(z) =h(z) € S;
or g(z) = h(z) € S5. This fact implies that f, g and /# omit two values &; and
73, and hence, f, g and & share S|, S>, {&3} and {n;} CM, and we get the
conclusion by Theorem 2.

We have completed the proof.

5. Proof of Theorem 1

Though proofs of Theorem 1 are given by H. Cartan in §56 of [C] and
by R. Nevanlinna in p. 125 of [N2], we prove it, again, by using Theorem 6.

Let f, g and /& be nonconstant meromorphic functions on C and let &, &,
&, be distinct points in C.  Assume that f, g and / share each ¢ CM. Then,
we prove that two of f, g and & are identical.

By considering compositions of each of f, g, & and a suitable Mobius
transformation, we may assume that {; e C (j =1,2,3). Put Pj(z) = (z — éj)z.
Then, by Theorem 6, one of (A), (B), (C) and (D) holds.

In the case (A), we have

al(f=&)/(f =&)=(9-<)/(g— &),
a(f—&)/(f—&)=(g—%&)/(g—¢&),

where cj2 =o;/a3 (j=1,2) are nonzero constants. Since f and ¢ are non-
constant, we obtain f =g from these identities.
Similarly, we get f =/ in the case (B) and g =/ in the case (C).
Consider the case (D). We may assume that u; = u, and v; = v,. Then

we have

c(f =&)/(f—&)=(g—-¢1)/(9— &)
(f=&)/(f &) =(h=¢&)/(h—&),
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where ¢ and ¢’ are nonzero constants. We get f =g, f=h and g=nh if
c=1, ¢/ =1 and ¢ = ¢/, respectively.

Assume that ¢ # 1, ¢/ #1 and ¢ # c¢’. Then f, g and & must omit &;.
Since from the above identities

(& —c)g — (1 =)
(I—c)g— (& — )

f=

and

—
AN

8]

|
q\
e
~—
=

|
—
—_

|

c)éé
(1=ch— (& —'E)

hold, f omit also two values

(& —c&i)é — (1 =)
(1 =c)é3— (& — &)

and

(& — &) — (1= c)Eé,
(1=eN&G— (& —c&)

It follows from ¢ # 1, ¢’ #1, ¢ # ¢’ and distinctness of &, &, &3 that three
exceptional values of f are distinct, which is a contradiction.
Hence we have proved Theorem 1.
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