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Abstract. It is well-known that the second highest coe‰cient of the Alexander

polynomial of any lens space knot in S3 is �1. We show that if the third highest

coe‰cient of the Alexander polynomial DK ðtÞ of a lens space knot K in S3 is non-zero,

then DK ðtÞ coincides with the Alexander polynomial of the ð2; 2gþ 1Þ-torus knot, where
g is the Seifert genus of K.

1. Introduction

1.1. Lens space knots. If a knot K in a homology sphere Y yields a

lens space by an integral Dehn surgery, then we call K a lens space knot

in Y . The result obtained by the Dehn surgery of a knot K in Y with slope

p is written by YpðKÞ. Hence, the lens space surgery is presented as YpðKÞ ¼
Lðp; qÞ for integers p and q. The homology class represented by the dual

knot of the surgery is identified with an element k in ðZ=pZÞ�. Precisely,

it will be explained in Section 2. The pair ðp; kÞ is called a lens surgery

parameter.

We call a polynomial DðtÞ a lens surgery polynomial (in Y) if there

exists a lens space knot K in Y such that DðtÞ ¼ DKðtÞ, the Alexander

polynomial of K . Lens surgery polynomials have the following interesting

properties.

In [6], Ozsváth and Szabó proved that any lens surgery polynomials in S3

are flat and alternating. Here, a polynomial is said to be flat, if the absolute

values of all coe‰cients of the polynomial are smaller than or equal to 1.

Also, a polynomial is said to be alternating, if the non-zero coe‰cients of the

polynomial are alternating sign in order. We say that a polynomial DðtÞ is

trivial, if DðtÞ ¼ 1.

Any lens space knot with trivial Alexander polynomial in S3 is isotopic to

the unknot due to [5]. Generally, if K is a lens space knot, then the degree

of the Alexander polynomial coincides with the Seifert genus gðKÞ.
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In this paper we use the following notation for coe‰cients of a lens

surgery polynomial:

DðtÞ ¼ t�g
X2g
i¼0

ait
i ¼

Xg

i¼�g

ait
i:

Note that ai ¼ ai�g. By the symmetry of the Alexander polynomial we obtain

ai ¼ a�i and ai ¼ a2g�i.

We consider non-trivial lens surgery polynomials from now. Then, due to

the author [8] and Hedden and Watson [4], any lens surgery polynomial in S3

has the following form around the top term tg:

DðtÞ ¼ tg � tg�1 þ � � � :

In [4], it is shown that the Alexander polynomial of any L-space knot has the

same form. Namely, the second highest coe‰cient from the top is �1.

In [8], it is proven that the second highest coe‰cient of any lens space

knot in any L-space homology sphere is �1. From now, we use the word ‘the

second term’ or ‘the third term’ as the meanings of ‘the second highest term’ or

‘the third highest term’ respectively.

1.2. The third term in lens surgery polynomial. Since the second term of the

Alexander polynomial of a lens space knot is always non-zero, that term can-

not be used to investigate some sort of characteristics of lens space knots.

However, Teragaito asked if the third terms might capture some characteristics

of lens space knots.

1.2.1. Main question and theorem.

Question 1 (Teragaito). If a non-trivial lens surgery polynomial in S3 has

the following form:

DðtÞ ¼ tg � tg�1 þ tg�2 þ � � � ;

then does DðtÞ coincide with DTð2;2gþ1ÞðtÞ?
In other words, if a lens surgery polynomial is not the Alexander polynomial

of the ð2; 2gþ 1Þ-torus knot for any integer g, then does a2 ¼ 0 hold?

Here Tðp; qÞ is the right-handed ðp; qÞ-torus knot. Our main aim in this

paper is to answer this question a‰rmatively.

Theorem 1. Question 1 is true.

This theorem holds even if the lens space knot K lies in an L-space

homology sphere and satisfies 2gðKÞa p because the condition is exactly the
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same as the case of S3. Very recently, in [1], J. Caudell gave an alternative

proof for Theorem 1 by classifying some changemaker lattices.

In [8, Theorem 1.15] gave a criterion for a lens space knot K to satisfy

DKðtÞ ¼ DTð2;2gþ1ÞðtÞ for some positive integer g. We can also say that The-

orem 1 gives a new criterion for a lens space knot to have the same Alexander

polynomial as that of Tð2; 2gþ 1Þ.

1.2.2. Realization of lens surgery. We fix the following terminology.

Definition 1. Let p, k be relatively prime positive integers. If a lens

surgery YpðKÞ ¼ Lðp; qÞ on a homology sphere Y has the lens surgery pa-

rameter ðp; kÞ, then we say that the parameter ðp; kÞ is realized by a lens space

knot K in Y .

Corollary 1. Let K be a lens space knot in S3 with the surgery pa-

rameter ðp; kÞ. The Alexander polynomial DKðtÞ has the following form around

the top term tg:

DKðtÞ ¼ tg � tg�1 þ tg�2 þ � � � ;

if and only if ðp; kÞ is realized by Tð2; 2gþ 1Þ.

The condition in this corollary is also equivalent to the condition of

k ¼ 2. We ask the next question:

Question 2. Let K be a non-trivial lens space knot with a2 ¼ 0. If

a3 0 0, then what kind of knots are the lens space surgery realized by?

The typical cases are Tð3; 3nG 1Þ and the pretzel knot Prð�2; 3; 7Þ:

DTð3;3nG1ÞðtÞ ¼ tgð1� t�1 þ t�3 þ � � �Þ; ðg ¼ 3n� 1G 1Þ

DPrð�2;3;7ÞðtÞ ¼ t5ð1� t�1 þ t�3 � t�4 þ t�5 � t�6 þ t�7 � t�9 þ t�10Þ:

1.3. The cases of lens space knots Kp;k in Yp;k. Consider a simple ð1; 1Þ-knot
in a lens space yielding a homology sphere by some integral Dehn surgery.

The ‘simple’ is defined in [7] and [10]. If such a simple ð1; 1Þ-knot generates

the 1st homology group of the lens space, we can always find such a slope.

Hence any simple ð1; 1Þ-knot is parameterized by relatively prime integers

ðp; kÞ. The dual knot is a lens space knot in the homology sphere. The dual

knot is denoted by Kp;k and the homology sphere by Yp;k. The readers should

probably understand these facts by reading [7] and [10]. The main result in [3]

gave a formula of the Alexander polynomial of Kp;k by using p, k. Here we

give the following conjecture:
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Conjecture 1. If the third term of the symmetrized Alexander polynomial

DKp; k
ðtÞ is non-zero, then DKp; k

ðtÞ coincides with DTð2;2gþ1ÞðtÞ for some integer g,

in other words, k ¼ 2 holds.

This conjecture can be easily checked by a computer program based on

the formula in [3]. The author checked the conjecture up to pa 600 with a

computer aid. Conjecture 1 is true under a little strong condition that Yp;k is

homeomorphic to S3, because of Theorem 1. The essential part is whether

Yp;k is homeomorphic to S3, if the third term of DKp; k
is non-zero. Notice that

in [8] the author proved that k ¼ 2 holds if and only if Yp;k is homeomorphic

to S3 and Kp;k is isotopic to Tð2; 2gþ 1Þ for some integer g. This condition is

also equivalent to the equality DKp; k
ðtÞ ¼ DTð2;2gþ1ÞðtÞ.

2. Preliminaries and Proofs

2.1. Brief preliminaries. Here we define the lens surgery parameter ðp; kÞ.

Definition 2. Let K be a knot in a homology sphere Y . Suppose that

YpðKÞ ¼ Lðp; qÞ and the dual knot ~KK has ½ ~KK� ¼ k½C� A H1ðLðp; qÞ;ZÞ for some

orientation of ~KK . Here the dual knot is the core knot in the solid torus

attached by the Dehn surgery. Furthermore, C is either of the core circles of

a genus one Heegaard decomposition of Lðp; qÞ. Then we call ðp; kÞ a lens

surgery parameter for YpðKÞ ¼ Lðp; qÞ. The integer k is called a dual class.

If Lðp; qÞ is obtained by a Dehn surgery of a homology sphere with slope

p, the surgery parameter ðp; kÞ is relatively prime and q ¼Gk2 mod p. These

facts are due to [8]. Note that we adopt the orientation of Lðp; qÞ as the one

of the p=q-surgery of the unknot in S3.

The ambiguity of the orientation of ~KK and the choice of the core circles

of a genus one Heegaard decomposition give (at most) four possibilities of the

dual class k0, �k0, k
�1
0 , �k�1

0 (in Z=pZ), for some integer k0. We always take

the minimal integer k as a representative satisfying 0 < k < p=2.

For any integer i we define the integer ½i�p to be the integer with i1
½i�p mod p and � p

2 < ½i�p a
p
2 . Let k2 be the absolute value of the integer ½k 0�p,

where k 0 is an integer satisfying kk 0 1 1 mod p. We call k2 the second dual

class of the surgery parameter. We set kk2 1 e mod p, e ¼G1, m ¼ kk2�e
p

,

q ¼ ½k2�p, q2 ¼ ½ðk2Þ2�p, c ¼ ðk�1Þðkþ1�pÞ
2 and for any non-zero integer l

Il :¼
f1; 2; . . . ; lg l > 0

flþ 1; . . . ;�1; 0g l < 0:

�

From these data, we can compute the i-th coe‰cient ai of the Alexander poly-

nomial of K due to [9]. Here we use a modified form introduced in [8].
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Proposition 1 (Proposition 2.3 in [8]). Let K be a lens space knot in S3.

For any integer i with jija p=2, the i-th coe‰cient of the Alexander polynomial

is computed as follows

ai ¼ �eðm�af j A Ik j ½q2ð j þ ki þ cÞ�p A Iek2gÞ:

To prove Theorem 1, we use the non-zero curve defined in [8]. Here let us

define a non-zero curve for a lens space knot K in S3. First, we will consider

coe‰cients ai obtained by extending ai to any integer i. For any integer i with

� p
2 < ia

p
2

ai ¼
ai jija gðKÞ
0 otherwise:

�

Here gðKÞ is the Seifert genus of K . For a general integer i, we define ai to be

ai ¼ a½i�p . In other words, the coe‰cients ai are obtained by extending coef-

ficients ai with period p by considering the estimates in [2] and [5].

We define an A-matrix and a dA-matrix as follows:

Ai; j :¼ ak2ðiþjek�cÞ; dAi; j :¼ Ai; j � Ai�1; j ;

where c :¼ ðk�1Þðkþ1�pÞ
2 . Due to the formula (9) in [8, Lemma 2.6], we have

dAi; j ¼ Eek2ðq2i þ k2ð j þ eÞÞ � Eek2ðq2i þ k2 jÞ ¼
1 ½q2i þ k2 j�p A I�k2

�1 ½q2i þ k2 j�p A Ik2
0 otherwise;

8<
: ð1Þ

where

EyðxÞ :¼
sgnðyÞ ½x�p A Iy

0 otherwise:

�

We put Ai; j on each lattice point ði; jÞ in Z2 � R2. For a non-zero coef-

ficient Ai; j we draw a horizontal positive or negative arrow on ði; jÞ according

to Ai; j ¼ 1 or �1 respectively, where a positive (resp. negative) arrow means

a horizontal arrow with positive (resp. negative) in the i-direction. After that,

we connect the horizontally adjacent arrows with the same orientation and

compatibly connect arrows around the non-zero dAi; j as in [8]. Then we can

obtain an infinite family of simple curves on R2 with no finite ends (i.e., they

are properly embedded curves in R2). The arrows are non-increasing with

respect to the j-coordinate. We call the curves non-zero curves.

Proposition 2 ([8]). Any non-zero curve for any lens space knot in S3 is

included in a non-zero region N. In each non-zero region there is a single

component non-zero curve.
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Here a non-zero region N (introduced in [8]) is defined as follows. First,

we consider the union of 2gþ 1 box-shaped neighborhoods of vertical sequent

lattice points corresponding to ag; ag�1; . . . ; a�g. Two adjacent box neighbor-

hoods are overlapped with a horizontal unit segment. Next, we take the

infinite parallel copies moved by n � v where v is the vector ð1;�k2Þ and n is

any integer. We denote the union of the infinite parallel copies by N and call

it a non-zero region. Moving a non-zero region N by n � ð0; pÞ for any integer

n, we obtain infinite non-zero regions on R2.

The following lemma is essential to prove the main theorem. This is also

the case of m ¼ 0 in [8, Lemma 4.4].

Lemma 1. If there exist integers i0, j0 such that dAi0; j0 ¼ �dAi0; j0þ1 ¼
�1, then for any integer i, there are no two adjacent zeros in the sequence

fdAi; s j s A Zg.

Proof. We assume the existence of integers i0, j0 satisfying dAi0; j0 ¼
�dAi0; j0þ1 ¼ �1. Let xj be i0 þ ð j0 þ jÞek. Using the formula (1), we have

½q2x�1�p A I�k2 ;

½q2x0� ¼ ½q2x�1 þ k2�p A Ik2 ;

and

½q2x1� ¼ ½q2x�1 þ 2k2�p A I�k2 :

Here we use q2ek ¼ k2 mod p. Hence, the sequence ½q2xs�1�p ðs ¼ 0; 1; 2; . . .Þ
starts at ½q2x�1�p and first returns in I�k2 at s ¼ 2. Therefore, we have

p� k2 < ðq2xþ 2k2Þ � q2x < pþ k2 and this means p < 3k2.

We suppose dAn; j ¼ dAn; jþ1 ¼ 0 for some integers n and j. Then

½q2ðnþ jekÞ�p; ½q2ðnþ jekÞ þ k2�p B I�k2 [ Ik2 . This implies p� k2 � k2 b k2.

This contradicts the inequality above. Hence, if for an integer n, the sequence

fdAn; s j s A Zg has no adjacent zeros, for any integer i the same thing holds

because the fdAi; s j s A Zg is a parallel copies of fdAn; s j s A Zg. Hence, the

desired conclusion is satisfied. r

Note that this lemma holds for any relatively prime positive integers

ðp; kÞ. Actually, to prove this lemma we do not require that the matrices A

and dA come from a lens space knot surgery in S3. In particular, if any Kp;k

in Yp;k (defined in Section 1.3) has a non-zero third term in the Alexander

polynomial, then p < 3k2 holds. To prove Conjecture 1, first we should prob-

ably classify ðYp;k;Kp;kÞ in the case of p < 3k2.

2.2. Proof of Theorem 1. We now porve Theorem 1.
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Proof. Let K be a lens space knot with lens surgery parameter ðp; kÞ and
with g ¼ gðKÞ. Suppose that a0 ¼ 1, a1 ¼ �1, and a2 ¼ 1. Now we assume

that 2g� k2 b 3. Since any non-zero curve has no finite ends, a3 ¼ �1 holds

naturally. Hence, we can assume that

a0 ¼ 1

a1 ¼ �1

a2 ¼ 1

a3 ¼ �1:

8>>><
>>>:

ð�Þ

Let i, j be fixed integers with k2ði þ jek � cÞ ¼ �g mod p. Then Ai; j ¼
a0 ¼ 1. Ai�1; j ¼ Ai�1; jþ1 ¼ Ai�1; jþ2 ¼ Ai�1; jþ3 ¼ 0, because any non-zero curve

is included in a non-zero region N due to Proposition 2.

We notice that the assumption of Lemma 1 is satisfied. Thus, we have

dAi; j ¼ 1, dAi; jþ1 ¼ �1, dAi; jþ2 ¼ 1, and dAi; jþ3 ¼ �1. The local values for

matrices A and dA are drawn in the top pictures in Figure 1.

Our situation falls into the following two cases:

( I ) Aiþ1; jþ1 ¼ �1, and Aiþ1; jþ2 ¼ 1;

(II) Aiþ1; jþ1 ¼ 0, and Aiþ1; jþ2 ¼ 0.

(I) and (II) correspond to the bottom two pictures of Figure 1. In the case

of (I), we obtain dAiþ1; jþ1 ¼ dAiþ1; jþ2 ¼ 0. This contradicts Lemma 1.

Fig. 1. The top picture: parts of A and dA matrices satisfying (�); the bottom pictures: parts of A

and dA matrices of cases (I) and (II).
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Next, consider the case of (II). We claim Aiþ2; jþ1 ¼ Aiþ2; jþ2 ¼ 0. The

picture of the A-matrix is as in Figure 2. If Aiþ2; jþ1 or Aiþ2; jþ2 is non-zero,

then the non-zero term is included in the non-zero region right next to N,

because there is only one non-zero curve in any non-zero region (Proposition

2). This implies that by seeing the j-coordinate in R2, we have

p� 2k2 a 2:

Since 2k2 < p, we have p ¼ 2k2 þ 1 or 2k2 þ 2. The equality p ¼ 2k2 þ 1

means it gives an integral lens space surgery on Tð2; 2gþ 1Þ. We consider the

case of p ¼ 2k2 þ 2. Since p, k2 are relatively prime, k2 is an odd number.

The equality p ¼ 2k2 þ 2 can give k2
2 � 1 ¼ k2�1

2 p1 0 mod p. It is a lens

space surgery yielding Lðp; 1Þ. Due to [5], this case is the one of k2 ¼ 1.

Thus, the claim above is true.

According to [8, Proposition 4.2], there are no lens space surgeries

satisfying 2a�2gþ k2, hence, the remaining cases satisfy �2a�2gþ k2 a 1.

By using [8, Theorems 1.15 and 4.20], each of these cases is realized by an

integral lens space surgery on Tð2; 2gþ 1Þ, Tð3; 4Þ or Prð�2; 3; 7Þ. The knots

Tð3; 4Þ and Prð�2; 3; 7Þ do not satisfy ð�Þ. Thus, the remained cases are the

ones of DKðtÞ ¼ DTð2;2gþ1ÞðtÞ. r

2.3. Proof of Corollary 1. We prove Corollary 1.

Proof. Let K be a lens space knot in S3 with parameter ðp; kÞ. If DKðtÞ
has a0 ¼ �a1 ¼ a2 ¼ 1, then DKðtÞ ¼ DTð2;2gþ1ÞðtÞ holds by Theorem 1 for some

positive integer g. Using [8, Theorem 1.15], this parameter is realized by the

ð2; 2gþ 1Þ-torus knot. r
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