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Abstract. In this paper, we show that every locally solvable subnormal subgroup or

locally solvable quasinormal subgroup of the multiplicative group of a division ring is

central.

1. Introduction

A subgroup N of a group G is said to be subnormal in G if there is a finite

chain of subgroups

N ¼ Nr aNr�1 a � � �aN0 ¼ G;

for which Ni is normal in Ni�1 for all 1a ia r. Also, if Q is a subgroup of G

such that the relation QH ¼ HQ holds for any subgroup H of G, then we say

that Q is quasinormal (or permutable) in G. It is pointed out in [11, Chapter 7]

that there are close relations between these types of subgroups. It was shown

by S. E. Stonehewer that if G is a finitely generated group, then every quasi-

normal subgroup of G is subnormal ([12, Theorem B]). However, the con-

verse does not hold up. As an example, let G be the dihedral group of

order 8 generated by subgroups A and B which are of order 2. It follows that

AB0BA since jABj ¼ 4 and G0AB, implying that A and B are not quasi-

normal subgroups of G. On the other hand, the nilpotency of G implies that

both A and B are subnormal. (Recall that every subgroup of a nilpotent group

is subnormal.) In this paper, we study subnormal subgroups and quasinormal

subgroups of the multiplicative group of a division ring. Relating to this, note

that in [1] there is an example of a division ring which contains quasinormal

subgroups that are not subnormal.
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In the literature, there are very rich results concerning the algebraic struc-

ture of multiplicative subgroups in a division ring (e.g., see [6]). As a direction

of the study, in 1950’s and 1960’s, many authors paid attention to an inter-

esting question of how far the multiplicative group D� of a division ring D is

from being abelian. In this direction, a well-known result of L. K. Hua says

that if D� is solvable, then D is a field. Motivated by this result, several other

authors examined various aspects of subnormal subgroups of D�, instead of the

whole group D�. For example, it was shown that every subnormal subgroup

of D� must be central in D if it is locally nilpotent, solvable, or n-Engel (see

[13], [8], [10], respectively). Now, we consider the same problem in which the

subnormal subgroup is assumed to be locally solvable. By definition, a group

is called locally solvable if its every finitely generated subgroup is solvable.

In [4], B. X. Hai and D. V. P. Ha proved that if D� is locally solvable, then

D is a field. Moreover, it was proved by A. E. Zalesskii in [17] that every

locally solvable normal subgroup of D� is contained in the center F of D. It

is natural to ask whether every locally solvable subnormal subgroup, say G,

of D� is also contained in F . A positive answer to this question was given

for some particular cases where D is supposed to be algebraic over F ([5]),

or where the derived subgroup G ðiÞ of G is assumed to be algebraic over F

for some ib 1 ([9]). The first purpose of the present paper is to give the

a‰rmative answer to the question in the general setting; that is, we shall

show that every locally solvable subnormal subgroup of D� is contained in F

(Theorem 1). The second purpose is to prove that every locally solvable

quasinormal subgroup of D� is also central; and this goal will be achieved in

Theorem 3.

Throughout this paper, the word ‘‘ring’’ always refers to a ring with an

identity element 10 0. For a ring R, the symbol R� denotes the group of

units in R. If D is a division ring with center F and S is a subset of D,

then F ½S� (resp. F ðSÞ) denotes the subring (resp. the division subring) of D

generated by F [ S. For a group G, the Hirsch-Plotkin radical of G is de-

fined to be the subgroup generated by all locally nilpotent normal subgroups

of G. If H and K are two subgroups of G, then the symbol ½H;K � stands for

the subgroup of G generated by the set of all commutators ½a; b� ¼ a�1b�1ab,

where a A H and b A K . We say that G is radical over a subgroup Q if for

each g in G, there is a positive integer n depending on g such that gn belongs

to Q.

2. Locally solvable subnormal subgroups

We begin with a group-theoretic lemma which, despite its apparent sim-

plicity, will be frequently applied in the sequel.
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Lemma 1. Every group contains a unique maximal periodic normal sub-

group. Moreover, such a subgroup is characteristic in the whole group.

Proof. Our proof shall be obtained by mainly using Zorn’s Lemma.

First, we define a family of subgroups of a group G by taking

A ¼ fH jH is a periodic normal subgroup of Gg:

This family is obviously non-empty since the identity subgroup belongs to A.

Now, we consider an arbitrary chain fHig of subgroups in A. Our task, of

course, is to show that
S

Hi is again a member of A; that is, to prove that
S

Hi forms a periodic normal subgroup of G. For this purpose, pick any two

elements a; b A
S

Hi. Then, there exist indices i and j for which a A Hi and

b A Hj. Since the collection fHig forms a chain, either Hi � Hj or Hj � Hi.

It is clear that we may assume that Hi � Hj and so a:b�1 A Hj �
S

Hi. This

implies that
S

Hi is a subgroup of G. The normality as well as the periodicity

of
S

Hi may be obtained by the same way. All of this shows that
S

Hi is a

member of A, completing our task. Therefore, on the basic of Zorn’s Lemma,

the family A contains a maximal element M.

Next, we shall prove that M is maximal with respect to being periodic

and normal. Let N be a periodic normal subgroup of G for which M � N.

Since M is a maximal element of A and N A A, we must have M ¼ N, which

implies the maximality of M.

To see the uniqueness of M, take any periodic normal subgroup A of G.

The normality of M and A in G permits us to form the product subgroup AM,

which is obviously a periodic normal subgroup of G. But then, the maximality

of M reveals that AM ¼ M, or A � M. This argument shows that every

periodic normal subgroup of G is contained in M, proving the uniqueness

of M.

It remains only to show that M is characteristic in G. For this purpose,

we pick j A AutðGÞ, then jðMÞ is certainly a periodic normal subgroup of G.

The uniqueness of M implies that jðMÞ ¼ M. Our proof is finally finished.

For any group G, let us denote by tðGÞ the unique maximal periodic

normal subgroup of G and by BðGÞ the subgroup of G such that BðGÞ=tðGÞ
is the Hirsch-Plotkin radical of G=tðGÞ. It is easy to see that BðGÞ is a normal

subgroup of G.

Proposition 1. Let D be a division ring with center F . If G is a sub-

normal subgroup of D�, then BðGÞ is contained in F.

Proof. Being a normal subgroup of G, the subgroup tðGÞ is a periodic

subnormal subgroup of D�. With reference to [7, Theorem 8], we conclude

that tðGÞ is contained in F .
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Our next step is to assert that BðGÞ is indeed a locally nilpotent group.

For this purpose, we take an arbitrary finitely generated subgroup H of BðGÞ,
and our aim is to show that this is a nilpotent group. It is a simple matter to

see that HtðGÞ=tðGÞ is a finitely generated subgroup of BðGÞ=tðGÞ. Accord-

ingly, the local nilpotence of BðGÞ=tðGÞ implies that HtðGÞ=tðGÞ is nilpotent.

We set

H1 ¼ ½H;H�; H2 ¼ ½H1;H�;

H3 ¼ ½H2;H�; . . .

Now, as HtðGÞ=tðGÞ is nilpotent, we can find an integer n for which

Hn � tðGÞ � F . This fact says that any element of Hn commutes element-

wise with H and, in consequence, we have Hnþ1 ¼ ½Hn;H� ¼ 1, from which it

follows that H is nilpotent. In other words, we obtain that BðGÞ is locally

nilpotent, as asserted.

As we have pointed out before, BðGÞ is a normal subgroup of G. This

assures us to conclude that BðGÞ is a locally nilpotent subnormal subgroup of

D�. By virtue of Huzurbazar’s result ([8]), we finally obtain that BðGÞ � F .

Our proof is finished.

The following lemma, which provides the key to later success, gives us a

way to calculate the normalizer of a locally solvable subgroup in a division

ring.

Lemma 2 ([15, Point 20]). Let R ¼ F ½G� be an algebra over the field F that

is a domain. If G is a locally solvable, then R is an Ore domain. Moreover, if

we assume that D is the skew field of fractions of R and that BðGÞ ¼ F � \ G,

then ND � ðGÞ ¼ GF �.

Lemma 3. Let D be a division ring with center F . If G is a locally

solvable non-central subnormal subgroup of D�, then F ðGÞ ¼ D and ND � ðGÞ is

locally solvable.

Proof. With reference to the previous lemma, the local solvability of G

assures us to conclude that R ¼ F ½G� is an Ore domain. Accordingly, its skew

field of fractions is exactly FðGÞ, the division subring of D generated by G over

F . Since FðGÞ contains G which is assumed to be non-central, in the light of

Stuth’s Theorem ([13, Theorem 1]), we obtain that F ðGÞ ¼ D.

Next, we argue that BðGÞ ¼ F � \ G. First, it follows directly from Prop-

osition 1 that BðGÞ � F � \ G, which implies that BðGÞ=tðGÞ � ðF � \ GÞ=tðGÞ.
In regard to the reverse inclusion, we note that, being the Hirsch-Plotkin

radical of G=tðGÞ, the factor group BðGÞ=tðGÞ is the largest locally nilpotent

normal subgroup of G=tðGÞ. On the other hand, it is clear that ðF � \ GÞ=tðGÞ
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is an abelian normal subgroup of G=tðGÞ, which yields that ðF � \ GÞ=tðGÞ �
BðGÞ=tðGÞ. In other words, we must have ðF � \ GÞ=tðGÞ ¼ BðGÞ=tðGÞ, from
which it follows that BðGÞ ¼ F � \ G. Our argument is now finished. Finally,

the last assertion follows immediately from the proceeding lemma.

Before presenting the main theorem, we need a result of Zalesskii:

Lemma 4 ([17]). Let D be a division ring with center F . If G is locally

solvable normal subgroup of D�, then G is contained in F.

Here now is the main results of this section.

Theorem 1. Let D be a division ring with center F. If G is a locally

solvable subnormal subgroup of D�, then G is contained in F .

Proof. There is nothing to prove if D is commutative. Therefore, we

may suppose that D is non-commutative. Assume that G is not contained

in F . Since G is a subnormal subgroup of D�, there exists a finite chain of

subgroups

G ¼ Gr aGr�1 a � � �aG0 ¼ D�;

in which Gi is normal in Gi�1 for 0a ia r. By virtue of Lemma 3, we con-

clude that ND � ðGÞ, the normalizer of G in D�, is a locally solvable group.

The normality of Gr in Gr�1 implies that Gr�1 is contained in ND � ðGÞ and, in

consequence, the subgroup Gr�1 is locally solvable and non-central.

Repeat this procedure, now starting with Gr�1, we obtain that Gr�2 is

locally solvable, too. This process must eventually terminate after finite steps,

and at the final stage, we have the fact that D� is locally solvable. It follows

immediately from Lemma 4 that D is commutative, which is a contradiction.

Our proof is finally completed.

3. Locally solvable quasinormal subgroups

We prepare the way by first establishing a few results concerning groups

which are radical over subgroups.

Lemma 5 ([3, Theorem 2]). Let G be a group and Q a quasinormal sub-

group of G. If C is an infinite cyclic subgroup of G such that Q \ C ¼ 1, then

Q is a normal subgroup of QG and Q=QG is abelian.

Lemma 6. Let G be a group. If Q is a quasinormal subgroup of G, then

either G is radical over Q or Q is subnormal in G of defect at most 2.

Proof. To start, we assume that G is not radical over Q. As such, we

can find an element g A G such that gn does not belong to Q for every integer
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number n. Let C be the cyclic subgroup of G generated by the element g.

Then, the fact that gn B Q for any choice of n ensures that Q \ C ¼ 1. By

virtue of the above lemma, we obtain that Q is normal in QG, which is a

normal subgroup of G. Phrased in another way, Q is a subnormal subgroup

of G with the correspondent series QtQG tG. This completes our proof.

The next lemma, which is an interesting result of C. Faith, provides the

key to establish the main result of this section.

Lemma 7 ([2, Theorem B]). Every division ring which is radical over a

proper subring is a field.

By an analogy with C. Faith’s result, a ring which is radical over a sub-

group may be characterized in the following manner.

Proposition 2. Let R be a ring and G a subgroup of R�. If Rnf0g is

radical over G, then R is a division ring.

Proof. To prove that R is a division ring, it su‰ces to show that each

nonzero element of R is right invertible. For this purpose, we take x to be

an arbitrary nonzero element of R. The radicality over G of x permits us to

find an integer nb 1 for which xn A G. As G is a group, we can find an

element g A G such that xng ¼ 1. Or, equivalently, we have xðxn�1gÞ ¼ 1:

This relation shows that x is right invertible with the right inverse x�1 ¼ xn�1g.

Therefore, the ring R is indeed a division ring and our proposition is proved.

Lemma 8. Let D be a division ring, and G a non-abelian subgroup of D�.

Assume that D� is radical over G. Then, every subring of D containing G is

coincided with D.

Proof. For a proof by contradiction, we assume that E is a proper

subring of D containing G. It is a fairly simple matter to see that E ¼ E½G�.
The assumption on D� assures us to deduce that D is radical over E and so D

is a field by Lemma 7. But this contrasts to the fact that G is assume to be

non-abelian.

The following theorem illustrates how the multiplicative group of a di-

vision ring is a¤ected by certain subgroups over which it is radical.

Theorem 2. Let D be a division ring, and G a locally solvable subgroup

of D�. If D� is radical over G, then D is a field.

Proof. Suppose, to the contrary, that D is non-commutative. If G is

abelian, then F ðGÞ is a proper subfield over which D is radical. It follows

from previous lemma that D is a field, which violates our supposition. We
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may therefore assume that G is non-abelian. In the light of Lemma 8, we

obtain that F ½G� ¼ D and so G possesses an abelian normal subgroup A for

which G=A is locally finite ([14, Point 3]). This last fact ensures that G is

radical over A and, in consequence, so is D�. As a result, the division ring

D is radical over the subfield F ðAÞ, from which it follows that D is a field.

Again, we arrive at a desired contradiction, proving our theorem.

This may be a good place to give the main result of this section.

Theorem 3. Let D be a division ring with center F . If Q is a locally

solvable quasinormal subgroup of D�, then Q is contained in F.

Proof. With reference to Lemma 6, we have either Q is subnormal in

D� or D� is radical over Q. In the first event, our result follows immediately

from Theorem 1. It remains to examine the case where D� is radical over Q.

In this case, previous theorem says that D is commutative, and our result

certainly holds. Our proof is now completed.
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