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Abstract. We consider function spaces which consist of two parabolic Bloch spaces,

and present reproducing formulas. As an application, we introduce Bloch type spaces

which consist of solutions of a partial di¤erential equation ðLðaÞÞ2u ¼ 0, and investigate

several properties.

1. Introduction

Let H be the upper half-space of the ðnþ 1Þ-dimensional Euclidean space

Rnþ1 ðnb 1Þ, that is, H ¼ fðx; tÞ A Rnþ1; x A Rn; t > 0g. For 0 < aa 1, the

parabolic operator LðaÞ is defined by

LðaÞ ¼ qt þ ð�DxÞa;

where qt ¼ q=qt and Dx is the Laplacian with respect to x. Let CðHÞ be the

set of all real-valued continuous functions on H, and CkðHÞ the set of all k

times continuously di¤erentiable functions on H. A function u A CðHÞ is said

to be LðaÞ-harmonic if LðaÞu ¼ 0 in the sense of distributions (for details, see

Section 2).

We describe the definition of parabolic Bloch spaces. Put mðaÞ ¼
min 1; 1

2a

� �
. Let s > �mðaÞ. We denote by BaðsÞ the set of all LðaÞ-harmonic

functions u A C1ðHÞ which satisfy

kukBaðsÞ :¼ sup
ðx; tÞ AH

tsft1=2aj‘xuðx; tÞj þ tjqtuðx; tÞjg < y;

where ‘x ¼ ðq1; . . . ; qnÞ and qj ¼ q=qxj. We also denote by ~BBaðsÞ the set of

all functions u A BaðsÞ which satisfy uð0; 1Þ ¼ 0. We call ~BBaðsÞ (or BaðsÞ) the
parabolic Bloch space. We remark that ~BBaðsÞ is a Banach space with the
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norm k � kBaðsÞ (see [2]). Furthermore, we also note that ~BB1=2ð0Þ coincides with
the harmonic Bloch space of Ramey and Yi [9].

Our aim of this paper is to study function spaces which consist of poly-

harmonic functions and solutions of the iterative parabolic equation ðLðaÞÞmu ¼
0 (called poly-parabolic functions). We state the background of this study.

Pavlović [8] introduced the Almansi type decomposition for Hardy spaces

of poly-harmonic functions, and investigated several properties. Tanaka [10]

introduced bi-harmonic Bergman spaces on the unit ball in Rn, and inves-

tigated the reproducing kernel, which was given by the Almansi type decom-

position. After that, Nishio and Shimomura [5] introduced an iterated

parabolic operator ðLðaÞÞm and poly-parabolic Bergman spaces bm;p
a . They

also gave the Almansi type decomposition with respect to poly-parabolic

Bergman functions, and characterized the reproducing kernel on the Hilbert

space bm;2
a . On the other hand, there is no similar discussion with respect

to bi-parabolic or poly-parabolic Bloch type functions. It is known that the

investigation of Bloch type spaces plays an important role for the study of

Bergman type spaces. Therefore, we introduce Bloch type spaces which consist

of bi-parabolic functions, and investigate several properties. In this paper, we

consider a kind of sum spaces which consist of two parabolic Bloch spaces,

which is based on the study of bi-parabolic or poly-parabolic function theory.

And we investigate the reproducing formula on sum spaces. After that, we

derive bi-parabolic Bloch spaces from parabolic Bloch spaces, and discuss

dualities.

Here, we describe a remark of this paper. We will be able to consider a

natural extension to a theory of poly-parabolic Bloch spaces. We just have to

introduce sum spaces which consist of several parabolic Bloch spaces. And we

can see that the investigation of poly-parabolic Bloch spaces is similar to that

of bi-parabolic Bloch spaces.

To state our result, we give some notations. We denote by dVðx; tÞ ¼
dxdt the Lebesgue volume measure on H. Also, we denote by W ðaÞ the

fundamental solution of LðaÞ. It is well known that the fundamental solutions

of Lð1=2Þ and Lð1Þ are the Poisson kernel and the heat kernel, respectively. For

a real number k, we denote by Dk
t ¼ ð�qtÞk a di¤erential operator of fractional

order k (for the explicit definition, see Section 2).

We introduce the following function spaces which consist of parabolic

Bloch functions.

Definition 1. Let 0 < aa 1, s > �mðaÞ, and r0 0 be real numbers

such that sþ r > �mðaÞ. A function space Baðs; rÞ consists of all functions

u on H which satisfy uðx; tÞ ¼ u0ðx; tÞ þ tru1ðx; tÞ, where u0 A ~BBaðsÞ and u1 A
~BBaðsþ rÞ.
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We remark that Baðs; rÞ is a Banach space under the norm k � kBaðs;rÞ
defined by

kukBaðs;rÞ ¼ ku0kBaðsÞ þ ku1kBaðsþrÞ:

The quantity kukBaðs;rÞ is independent of the choices u0 and u1. In fact, it is

easy to show that

~BBaðsÞ \ ftru; u A ~BBaðsþ rÞg ¼ f0g;

because u and tru are LðaÞ-harmonic on H if and only if u1 0.

Now, we present the main results of this paper. The first result is the

reproducing formula on Baðs; rÞ. For a function uðx; tÞ ¼ u0ðx; tÞ þ tru1ðx; tÞ
on H and a real number k, we define a di¤erential operator Ek

t by

Ek
t uðx; tÞ ¼ Dk

t u0ðx; tÞ þ trDk
t u1ðx; tÞ:

Theorem 1. Let 0 < aa 1, s > �mðaÞ, and r > 0 such that sþ r > 0.

Also, let k > maxf0;�sg and n > s. Then, the reproducing formula

uðx; tÞ ¼ 2nþk

ð
H

Ek
t uðy; sÞRn;k;r

a ðx; t; y; sÞsnþk�1 dVðy; sÞ ð1:1Þ

holds for all u A Baðs; rÞ and ðx; tÞ A H, where

Rn;k;r
a ðx; t; y; sÞ ¼

X1

k;l¼0

Ck;l2
ðkþlÞrtkrslronþðkþlÞr

a ðx; t; y; sÞ;

on
aðx; t; y; sÞ ¼ Dn

t W
ðaÞðx� y; tþ sÞ �Dn

t W
ðaÞð�y; 1þ sÞ;

and

C0;0 C0;1

C1;0 C1;1

� �
Gðnþ kÞ Gðnþ kþ rÞ

Gðnþ kþ rÞ Gðnþ kþ 2rÞ

� �
¼ 1 0

0 1

� �
: ð1:2Þ

The second result is a characterization of dual spaces with respect to bi-

parabolic Bergman spaces. We denote by b2;1a ðlÞ the bi-parabolic Bergman

space with a weighted Lebesgue volume measure tl dV , which was introduced

in [6] (for explicit definition, see Section 5). Moreover, we define the integral

pairing on b2;1a ðlÞ �Baðs; 1Þ by

hu; vil;s ¼ 2lþsþ2

ð
H

uðx; tÞEtvðx; tÞtlþsþ1 dVðx; tÞ; u A b2;1a ðlÞ; v A Baðs; 1Þ;

where Et ¼ E1
t . We claim that a dual space of b2;1a ðlÞ is isomorphic to

Baðs; 1Þ under a suitable integral pairing.

249Function spaces induced by two parabolic Bloch spaces



Theorem 2. Let 0 < aa 1, l > �1, and s > �mðaÞ. Then, ðb2;1a ðlÞÞ� G
Baðs; 1Þ under the pairing

FvðuÞ ¼ hu; vil;s; u A b2;1a ðlÞ;

where Fv is the linear functional induced by v A Baðs; 1Þ. Moreover, there exists

a constant C > 0 independent of v such that

C�1kvkBaðs;1Þ a kFvkaCkvkBaðs;1Þ:

Finally, we describe the construction of this paper. In Section 2, we give

some notations, and present basic properties which are used in our argument.

In Section 3, we present the previous result with respect to parabolic Bloch

functions. And we investigate a generalization of the reproducing formula of

Lemma 5 below. In Section 4, we introduce a function space Baðs; rÞ, and

study properties of Baðs; rÞ-functions. In particular, we prove the reproducing

formula on Baðs; rÞ. As an application, we discuss dual and pre-dual spaces

of bi-parabolic Bergman spaces in Section 5.

2. Preliminaries

In this section, we present basic properties of fractional calculus of LðaÞ-

harmonic functions. We describe the definition of LðaÞ-harmonic functions.

Since the case a ¼ 1 is trivial, we only describe the case 0 < a < 1. Let

CyðHÞ be the set of all infinitely di¤erentiable functions on H and Cy
c ðHÞ the

set of all functions in CyðHÞ with compact support. For 0 < a < 1, ð�DxÞa is

the convolution operator defined by

ð�DxÞacðx; tÞ ¼ �cn;a lim
d!0þ

ð
jy�xj>d

cðy; tÞ � cðx; tÞ
jy� xjnþ2a

dy ð2:1Þ

for all c A Cy
c ðHÞ and ðx; tÞ A H, where

cn;a ¼ �
4ap�n=2G nþ2a

2

� �
Gð�aÞ > 0:

A function u A CðHÞ is said to be LðaÞ-harmonic on H if u satisfies the

following condition: for every c A Cy
c ðHÞ,

ð
H

ju � ~LLðaÞcjdV < y and

ð
H

u � ~LLðaÞc dV ¼ 0; ð2:2Þ

where ~LLðaÞ ¼ �qt þ ð�DxÞa is the adjoint operator of LðaÞ. By (2.1) and the

compactness of suppðcÞ (the support of c), there exist 0 < t1 < t2 < y and
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a constant C > 0 such that suppð~LLðaÞcÞ � S ¼ Rn � ½t1; t2� and j~LLðaÞcðx; tÞja
Cð1þ jxjÞ�n�2a for all ðx; tÞ A S. Thus, the integrability condition of (2.2) is

equivalent to the following: for any 0 < t1 < t2 < y,

ð t2

t1

ð
Rn

juðx; tÞjð1þ jxjÞ�n�2a
dVðx; tÞ < y: ð2:3Þ

We introduce the fundamental solution of LðaÞ. For x A Rn, the funda-

mental solution W ðaÞ of LðaÞ is defined by

W ðaÞðx; tÞ ¼
1

ð2pÞn
ð
Rn

expð�tjxj2a þ
ffiffiffiffiffiffiffi
�1

p
x � xÞdx; t > 0;

0; ta 0;

8<
:

where x � x denotes the usual inner product on Rn. It is known that W ðaÞ is

LðaÞ-harmonic on H and W ðaÞ A CyðHÞ.
We define fractional integral and di¤erential operators. Let CðRþÞ be the

set of all continuous functions on Rþ ¼ ð0;yÞ. For a positive real number k,

let FC�k be the set of all functions j A CðRþÞ such that there exists a constant

e > 0 with jðtÞ ¼ Oðt�k�eÞ as t ! y: We remark that FC�n � FC�k if 0 <

ka n. For j A FC�k, we can define the fractional integral of j with order k

by

D�k
t jðtÞ ¼ 1

GðkÞ

ðy
0

tk�1jðtþ tÞdt; t A Rþ:

Furthermore, let FCk be the set of all functions j A C dkeðRþÞ such that q
dke
t j A

FC�ðdke�kÞ, where dke is the smallest integer greater than or equal to k. Also,

we define FC0 ¼ CðRþÞ. For j A FCk, we can also define the fractional

derivative of j with order k by

Dk
t jðtÞ ¼ D

�ðdke�kÞ
t ð�qtÞdkejðtÞ; t A Rþ;

where we define D0
t j ¼ j.

Now, we describe basic properties of fractional derivatives of the fun-

damental solution W ðaÞ, which were given in [1]. Let N0 ¼ N [ f0g. For

a multi-index b ¼ ðb1; . . . ; bnÞ A Nn
0 , let qb

x ¼ qjbj=qx
b1
1 � � � qxbn

n , where jbj ¼
b1 þ � � � þ bn.

Lemma 1 (Theorem 3.1 of [1]). Let 0 < aa 1, b A Nn
0 , and k > � n

2a .

Then, the following statements hold.

(1) The both derivatives qb
xD

k
t W

ðaÞðx; tÞ and Dk
t q

b
xW

ðaÞðx; tÞ are well-

defined and qb
xD

k
t W

ðaÞðx; tÞ ¼ Dk
t q

b
xW

ðaÞðx; tÞ. Moreover, there exists a con-
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stant C > 0 such that

jqb
xD

k
t W

ðaÞðx; tÞjaCðtþ jxj2aÞ�ðnþjbjÞ=ð2aÞ�k

for all ðx; tÞ A H.

(2) Let n be a real number such that kþ n > � n
2a . Then,

Dn
t q

b
xD

k
t W

ðaÞðx; tÞ ¼ qb
xD

kþn
t W ðaÞðx; tÞ

for all ðx; tÞ A H.

(3) qb
xD

k
t W

ðaÞ is LðaÞ-harmonic on H.

We present basic properties of the function on
a defined in Theorem 1.

Lemma 2 (Lemma 5.6 of [2]). Let 0 < aa 1, s > �mðaÞ, and n > � n
2a .

If r > �1 and h :¼ n� r� 1 > �mðaÞ, then there exists a constant C ¼
Cðn; a; n; rÞ > 0 such that

ð
H

jon
aðx; t; y; sÞjsr dVðy; sÞaCFa;hðx; tÞ

for all ðx; tÞ A H, where

Fa;hðx; tÞ :¼
1þ jxj�2ah þ t�h; 0 > h > �mðaÞ;
1þ logð1þ jxjÞ þ jlog tj; h ¼ 0;

1þ t�h; h > 0:

8><
>:

Lemma 3 (Lemma 5 of [7]). Let y; c A R. If y > �1 and y� cþ n
2a þ 1 <

0, then there exists a constant C ¼ Cðn; a; y; cÞ > 0 such that

ð
H

sy

ðtþ sþ jx� yj2aÞc
dVðy; sÞ ¼ Cty�cþn=ð2aÞþ1

for all ðx; tÞ A H.

3. A generalization of reproducing formula for parabolic Bloch functions

In this section, we give a generalization of the reproducing formula on

parabolic Bloch spaces. First, we present basic properties of parabolic Bloch

functions.

Lemma 4 (Theorem 3.2 and Proposition 5.4 of [2]). Let 0 < aa 1, s >

�mðaÞ, g A Nn
0 , and k be a real number such that k ¼ 0 or k > maxf0;�sg.

If u A BaðsÞ, then the following statements hold.
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(1) There exists a constant C > 0 independent of u such that

juðx; tÞjaCkukBaðsÞFa;sðx; tÞ

for all ðx; tÞ A H, where Fa;sðx; tÞ is the function defined in Lemma 2.

(2) The derivatives qg
xD

k
t uðx; tÞ and Dk

t q
g
xuðx; tÞ can be defined, and the

equation qg
xD

k
t uðx; tÞ ¼ Dk

t q
g
xuðx; tÞ holds. Furthermore, if ðg; kÞ0 ð0; 0Þ, then

there exists a constant C ¼ Cðn; a; s; g; kÞ > 0 such that

jqg
xD

k
t uðx; tÞjaCt�ðjgj=ð2aÞþkþsÞkukBaðsÞ

for all ðx; tÞ A H.

(3) qg
xD

k
t u is LðaÞ-harmonic on H.

The following lemma is the reproducing formula on parabolic Bloch

spaces.

Lemma 5 (Theorem 5.7 of [2]). Let 0 < aa 1 and s > �mðaÞ. If real

numbers k and n satisfy k > maxf0;�sg and n > s, then the reproducing formula

uðx; tÞ ¼ 2kþn

Gðkþ nÞ

ð
H

Dk
t uðy; sÞon

aðx; t; y; sÞskþn�1 dVðy; sÞ ð3:1Þ

holds for all u A ~BBaðsÞ and ðx; tÞ A H. If k ¼ 0 and n > maxf0; sg, then (3.1)

also holds.

Lemma 6 (Theorem 3 of [4]). Let 0 < aa 1 and s1; s2 > �mðaÞ. Then,
~BBaðs1ÞG ~BBaðs2Þ under the relation D�s1þk

t u ¼ D�s2þk
t v for u A ~BBaðs1Þ and

v A ~BBaðs2Þ, where k > maxf0; s1; s2g. Moreover, there exists a constant C > 0

such that

C�1kvkBaðs2Þ a kukBaðs1Þ aCkvkBaðs2Þ:

Next, we introduce the following integral operator induced by on
a . Let

0 < aa 1 and n, r be real numbers. For a function f on H, the integral

operator Pn;r
a is defined by

Pn;r
a f ðx; tÞ :¼

ð
H

f ðy; sÞon
aðx; t; y; sÞsr dVðy; sÞ: ð3:2Þ

We give the following two lemmas, which give some properties with respect to

the operator Pn;r
a . We denote by LyðHÞ the set of all essentially bounded

Lebesgue measurable functions on H, and k f kLyðHÞ ¼ esssupfj f ðx; tÞj; ðx; tÞ A
Hg.

Lemma 7 (Theorem 5.8 of [2]). Let 0 < aa 1, s > �mðaÞ, and n > s.

Then, Pn; n�s�1
a is a bounded operator from LyðHÞ onto ~BBaðsÞ.
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Lemma 8. Let 0 < aa 1 and r > �1. Also, let k > 0 and n > � n
2a such

that n� r� 1 > �mðaÞ. Then,

Dk
t P

n;r
a f ðx; tÞ ¼

ð
H

f ðy; sÞDkþn
t W ðaÞðx� y; tþ sÞsr dVðy; sÞ

holds for all f A LyðHÞ and ðx; tÞ A H.

Proof. By (1) of Lemma 1, Lemma 2, and Lemma 3, a di¤erentiation

under the integral sign and the Fubini theorem show the assertion, directly.

r

In order to show Theorem 1, we prepare the following lemma, which is a

generalization of Lemma 5.

Lemma 9. Let 0 < aa 1 and s; r > �mðaÞ. Also, let k > maxf0;�sg
and n > r. Then, for any u A ~BBaðsÞ, the following statements hold:

(1) If r ¼ s, then

2kþnP n; n�r�1
a ðskþsDk

t uÞðx; tÞ ¼ Gðkþ nÞuðx; tÞ

holds for all ðx; tÞ A H.

(2) If r < s, then there exists v A ~BBaðrÞ such that

Dk
t u ¼ 2s�rD

kþs�r
t v

on H and

2kþnP n; n�r�1
a ðskþsDk

t uÞðx; tÞ ¼ Gðkþ nþ s� rÞvðx; tÞ

holds for all ðx; tÞ A H.

(3) If r > maxf0; sg, then vðx; tÞ :¼ 2r�sðDr�s
t uðx; tÞ �D

r�s
t uð0; 1ÞÞ A

~BBaðrÞ and

2kþnP n; n�r�1
a ðskþsDk

t uÞðx; tÞ ¼ Gðkþ nþ s� rÞvðx; tÞ

holds for all ðx; tÞ A H.

Proof. We note that the function tkþsDk
t u is in LyðHÞ by (2) of

Lemma 4.

(1) The assertion is the same as that of Lemma 5.

(2) By Lemma 6, there exists v A ~BBaðrÞ such that Dk
t u ¼ 2s�rD

kþs�r
t v

on H. Since kþ s� r > maxf0;�rg and n > r, Lemma 5 implies that

2kþnP n; n�r�1
a ðskþsDk

t uÞðx; tÞ

¼ 2kþnþs�r

ð
H

D
kþs�r
t vðy; sÞon

aðx; t; y; sÞskþnþs�r�1 dVðy; sÞ

¼ Gðkþ nþ s� rÞvðx; tÞ:
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(3) By Lemmas 5 and 8, we have

D
r�s
t uðx; tÞ ¼ 2kþnþs�r

Gðkþ nþ s� rÞD
r�s
t Pnþs�r; n�r�1

a ðskþsDk
t uÞðx; tÞ

¼ 2kþnþs�r

Gðkþ nþ s� rÞ

ð
H

Dk
t uðy; sÞDn

t W
ðaÞ

� ðx� y; tþ sÞskþnþs�r�1 dVðy; sÞ: ð3:3Þ

Put vðx; tÞ ¼ 2r�sðDr�s
t uðx; tÞ �D

r�s
t uð0; 1ÞÞ. Since r� s > maxf0;�sg, (2)

and (3) of Lemma 4 imply that v A ~BBaðrÞ. Moreover by (3.3), we obtain

Gðkþ nþ s� rÞvðx; tÞ ¼ 2kþnP n; n�r�1
a ðskþsDk

t uÞðx; tÞ

for all ðx; tÞ A H. r

4. The reproducing formula on Baðs; rÞ

In this section, we show several properties of Baðs; rÞ-functions. We

recall the definition of a fractional di¤erential operator Ek
t . Let k be a real

number. Also, let u0 and u1 be functions on H and uðx; tÞ ¼ u0ðx; tÞ þ
tru1ðx; tÞ. Then, we define

Ek
t uðx; tÞ ¼ Dk

t u0ðx; tÞ þ trDk
t u1ðx; tÞ:

Theorem 3. Let 0 < aa 1, s > �mðaÞ, and r0 0 be real numbers such

that sþ r > �mðaÞ. Also, let g A Nn
0 and k > maxf0;�s;�s� rg. For u A

Baðs; rÞ, the following statements hold.

(1) There exists a constant C > 0 independent of u such that

juðx; tÞjaCðFa;sðx; tÞ þ trFa;sþrðx; tÞÞkukBaðs;rÞ

for all ðx; tÞ A H, where Fa;sðx; tÞ is the function defined in Lemma 2.

(2) The derivative qg
xE

k
t u is well-defined. Moreover, there exists a constant

C > 0 independent of u such that

jqg
xE

k
t uðx; tÞjaCt�ðjgj=ð2aÞþkþsÞkukBaðs;rÞ

for all ðx; tÞ A H.

Proof. Let u A Baðs; rÞ. Then, we can take u0 A ~BBaðsÞ and u1 A
~BBaðsþ rÞ such that uðx; tÞ ¼ u0ðx; tÞ þ tru1ðx; tÞ.

(1) The assertion is shown by (1) of Lemma 4, directly.
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(2) By (2) of Lemma 4, the derivative qg
xE

k
t u is well-defined, and there

exists a constant C > 0 such that

jqg
xE

k
t uðx; tÞja jqg

xD
k
t u0ðx; tÞj þ trjqg

xD
k
t u1ðx; tÞjaCt�ðjgj=ð2aÞþkþsÞkukBaðs;rÞ:

This completes the proof. r

Now, we show Theorem 1.

Proof of Theorem 1. Let u A Baðs; rÞ. Then, we can take u0 A ~BBaðsÞ
and u1 A ~BBaðsþ rÞ such that u ¼ u0 þ tru1 on H. By Lemma 2 and the proof

of Theorem 3 (2), the right-hand side of (1.1) is well-defined. Hence, we

obtain

2nþk

ð
H

Ek
t uðy; sÞRn;k;r

a ðx; t; y; sÞsnþk�1 dVðy; sÞ

¼
X1

k;l; j¼0

Ck;l2
nþkþðkþlÞrtkr

�
ð
H

s jrDk
t ujðy; sÞonþðkþlÞr

a ðx; t; y; sÞskþnþlr�1 dVðy; sÞ

¼
X1

k;l; j¼0

Ck;l2
nþkþðkþlÞrtkrðPnþðkþlÞr; nþlr�s�1

a ðskþsþjrDk
t ujÞðx; tÞÞ:

When ðk; jÞ ¼ ð0; 0Þ and ð1; 1Þ, (1) of Lemma 9 implies that

C0;l2
nþkþlrP nþlr; nþlr�s�1

a ðskþsDk
t u0Þðx; tÞ ¼ C0;lGðnþ kþ lrÞu0ðx; tÞ

and

C1;lt
r2nþkþðlþ1ÞrP nþðlþ1Þr; nþðlþ1Þr�ðsþrÞ�1

a ðskþsþrDk
t u1Þðx; tÞ

¼ C1;lGðnþ kþ ðlþ 1ÞrÞtru1ðx; tÞ

hold for all l ¼ 0; 1. Let ðk; jÞ ¼ ð1; 0Þ. Then by (3) of Lemma 9, there

exists v0 A ~BBaðsþ rÞ such that

C1;l2
nþkþðlþ1ÞrtrP nþðlþ1Þr; nþðlþ1Þr�ðsþrÞ�1

a ðskþsDk
t u0Þðx; tÞ

¼ C1;lGðnþ kþ lrÞtrv0ðx; tÞ

for all l ¼ 0; 1, because r > 0 and sþ r > 0. Let ðk; jÞ ¼ ð0; 1Þ. Then by (2)

of Lemma 9, there exists v1 A ~BBaðsÞ such that
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C0;l2
nþkþlrP nþlr; nþlr�s�1

a ðskþsþrDk
t u1Þðx; tÞ

¼ C0;lGðnþ kþ ðlþ 1ÞrÞv1ðx; tÞ

for all l ¼ 0; 1.

Since the constants C0;0, C0;1, C1;0, C1;1 satisfy the condition (1.2), we can

get the desired result. r

Remark 1. Since nþ k > 0 and r > 0, the matrix

Gðnþ kÞ Gðnþ kþ rÞ
Gðnþ kþ rÞ Gðnþ kþ 2rÞ

� �

is invertible. Because the function log GðxÞ is strictly convex on Rþ ¼ ð0;yÞ.
Hence, the constants C0;0, C0;1, C1;0, C1;1 in Theorem 1 can be written as

follows:

C0;0 ¼
Gðnþ kþ 2rÞ

Gðnþ kÞGðnþ kþ 2rÞ � ðGðnþ kþ rÞÞ2
;

C0;1 ¼ C1;0 ¼
Gðnþ kþ rÞ

ðGðnþ kþ rÞÞ2 � Gðnþ kÞGðnþ kþ 2rÞ
;

C1;1 ¼
Gðnþ kÞ

Gðnþ kÞGðnþ kþ 2rÞ � ðGðnþ kþ rÞÞ2
:

Finally, we introduce an integral operator induced by the kernel function

Rn;k;r
a . Let k, n, s, and r be real numbers. For a function f on H, an

integral operator P
n;k; ðs;rÞ
a is defined by

Pn;k; ðs;rÞ
a f ðx; tÞ ¼

ð
H

f ðy; sÞRn;k;r
a ðx; t; y; sÞsn�s�1 dVðy; sÞ:

In the following theorem, we give a characterization of the operator

P
n;k; ðs;rÞ
a .

Theorem 4. Let 0 < aa 1, s > �mðaÞ, and r > 0 such that sþ r > 0.

Also, let k > maxf0;�sg and n > s. Then, P
n;k; ðs;rÞ
a is a bounded linear oper-

ator from LyðHÞ onto Baðs; rÞ.

Proof. We show that P
n;k; ðs;rÞ
a is bounded linear operator from LyðHÞ

to Baðs; rÞ. Let f A LyðHÞ. Then, we have

Pn;k; ðs;rÞ
a f ðx; tÞ ¼ C0;0P

n; n�s�1
a f ðx; tÞ þ C0;12

rP nþr; nþr�s�1
a f ðx; tÞ

þ trfC1;02
rP nþr; n�s�1

a f ðx; tÞ þ C1;14
rP nþ2r; nþr�s�1

a f ðx; tÞg;
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where constants C0;0, C0;1, C1;0, C1;1 and the operator Pn; n�s�1
a are defined as

(1.2) and (3.2), respectively. Put

v0ðx; tÞ ¼ C0;0P
n; n�s�1
a f ðx; tÞ þ C0;12

rP nþr; nþr�s�1
a f ðx; tÞ;

v1ðx; tÞ ¼ C1;02
rP nþr; n�s�1

a f ðx; tÞ þ C1;14
rP nþ2r; nþr�s�1

a f ðx; tÞ:

Then, Lemma 7 implies that v0 A ~BBaðsÞ, v1 A ~BBaðsþ rÞ, and there exists a

constant C > 0 independent of f such that

kPn;k; ðs;rÞ
a f ðx; tÞkBaðs;rÞ ¼ kv0kBaðsÞ þ kv1kBaðsþrÞ aCk f kLyðHÞ:

Namely, P
n;k; ðs;rÞ
a is a bounded linear operator from LyðHÞ to Baðs; rÞ.

We show that the operator P
n;k; ðs;rÞ
a is surjective. For u A Baðs; rÞ, put

f ðx; tÞ ¼ 2kþntkþsEk
t uðx; tÞ. Then, (2) of Theorem 3 implies that f A LyðHÞ.

Moreover by Theorem 1, we obtain u ¼ P
n;k; ðs;rÞ
a f on H. This completes the

proof. r

As an application of Theorem 4 and (2) of Theorem 3, we give the esti-

mate of the following normal derivative norm of Baðs; rÞ-functions.

Corollary 1. Let 0 < aa 1, s > �mðaÞ, and r > 0 such that sþ r > 0.

Also, let k > maxf0;�sg. Then there exists a constant C > 0 such that for

any u A Baðs; rÞ,

C�1kukBaðs;rÞ a ktkþsEk
t ukLyðHÞ aCkukBaðs;rÞ:

5. Introduction to bi-parabolic Bloch spaces

In this section, we introduce bi-parabolic Bloch spaces, and investigate

several properties.

Let 0 < aa 1 and s > �mðaÞ. We define ~BB2
a ðsÞ ¼ Baðs; 1Þ. In fact, an

elementary calculation shows that for any u A Baðs; 1Þ, the equation ðLðaÞÞ2u ¼
0 holds on H and

sup
ðx; tÞ AH

tsft1=2aj‘uðx; tÞj þ tjEtuðx; tÞjg < y:

We also define the norm on ~BB2
a ðsÞ by

kuk ~BB2
a ðsÞ :¼ kukBaðs;1Þ:

We discuss a dual space of the bi-parabolic Bergman space b2;1a ðlÞ. We

present previous results with respect to bi-parabolic Bergman spaces. Let

dV lðx; tÞ ¼ tl dVðx; tÞ on H. We denote by LpðH; dV lÞ the set of all
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Lebesgue measurable functions f on H which satisfy

k f kL pðlÞ :¼
ð
H

j f ðx; tÞjpdV lðx; tÞ
� �1=p

< y:

Definition 2 (Section 1 of [6]). Let 0 < aa 1, 1a p < y, and l > �1.

The bi-parabolic Bergman space b2;pa ðlÞ is defined by

b2;pa ðlÞ :¼
�
u A CyðHÞ; ðLðaÞÞ2u ¼ 0; u A LpðH; dV lÞ;LðaÞu A LpðH; dV lþpÞ;

Et > 0 and Eðb; jÞ A Nnþ1
0 ; sup

x ARn

jqb
xq

j
t uðx; tÞj < y

	
:

We present the reproducing formula on b2;pa ðlÞ.

Lemma 10 (Theorem 4 of [6]). Let 0 < aa 1, 1a p < y, and l > �1.

Also, let k > � lþ1
p

and n > lþ1
p
. Then, the reproducing formula

uðx; tÞ ¼ 2nþk

ð
H

Ek
t uðy; sÞK2; n;k

a ðx; t; y; sÞsnþk�1 dVðy; sÞ

holds for all u A b2;pa ðlÞ and ðx; tÞ A H, where

K2; n;k
a ðx; t; y; sÞ

¼ nþ kþ 1

Gðnþ kÞ D
n
t W

ðaÞðx� y; tþ sÞ � 2s

Gðnþ kÞD
nþ1
t W ðaÞðx� y; tþ sÞ

� 2t

Gðnþ kÞD
nþ1
t W ðaÞðx� y; tþ sÞ þ 4ts

Gðnþ kþ 1ÞD
nþ2
t W ðaÞðx� y; tþ sÞ:

Moreover, the assertion also holds when p ¼ 1 and n ¼ lþ 1.

Here, we remark that the kernel function K2; n;k
a ð�; �; �; �Þ is symmetric on

H �H, that is, K2; n;k
a ðx; t; y; sÞ ¼ K2; n;k

a ðy; s; x; tÞ for all ðx; tÞ; ðy; sÞ A H.

Now, we show Theorem 2.

Proof of Theorem 2. For v A ~BB2
a ðsÞ, we define iðvÞ ¼ Fv. Then, it is

easy to see that i : ~BB2
a ðsÞ ! ðb2;1a ðlÞÞ� and kFvkaCkvk ~BB2

a ðsÞ. In fact, (2) of

Theorem 3 shows that

jFvðuÞjaCkukL1ðlÞkvk ~BB2
a ðsÞ

for all u A b2;1a ðlÞ.
We show that the mapping i is injective. Let v A ~BB2

a ðsÞ such that iðvÞ ¼ 0.

Then by Theorem 1, we have
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vðx; tÞ ¼ 2lþsþ2

ð
H

Etvðy; sÞRlþsþ1;1;1
a ðx; t; y; sÞslþsþ1 dVðy; sÞ

¼ FvðRlþsþ1;1;1
a ðx; t; �; �ÞÞ:

Here, we have Rlþsþ1;1;1
a ðx; t; �; �Þ A b2;1a ðlÞ by (1), (2), (3) of Lemma 1 and

Lemma 2. Therefore, we obtain v ¼ 0.

We show that the mapping i is surjective. Let F A ðb2;1a ðlÞÞ�. Since

b2;1a ðlÞ � L1ðH; dV lÞ, the Hahn-Banach theorem and the Riesz representation

theorem show that there exists a function f A LyðHÞ with

FðuÞ ¼
ð
H

uðx; tÞ f ðx; tÞtl dVðx; tÞ

for all u A b2;1a ðlÞ and k f kLyðHÞ ¼ kFk. Put vðx; tÞ ¼ P
lþsþ1;1; ðs;1Þ
a f ðx; tÞ.

Then by Theorem 4, v A ~BB2
a ðsÞ and there exists a constant C > 0 indepen-

dent of v such that kvk ~BB2
a ðsÞ aCkFk. We claim FðuÞ ¼ hu; vil;s. In fact, we

have

hu; vil;s ¼ 2lþsþ2

ð
H

uðx; tÞEtðPlþsþ1;1; ðs;1Þ
a f ðx; tÞÞtlþsþ1 dVðx; tÞ:

A di¤erentiation under the integral sign shows that

EtðPlþsþ1;1; ðs;1Þ
a f ðx; tÞÞ ¼

ð
H

f ðy; sÞK2;lþsþ2;0
a ðx; t; y; sÞsl dVðy; sÞ:

Since K2;lþsþ2;0
a ð�; �; �; �Þ is symmetric on H �H, the Fubini theorem and

Lemma 10 imply that

hu; vil;s ¼
ð
H

f ðy; sÞuðy; sÞsl dVðy; sÞ ¼ FðuÞ:

This completes the proof. r

Finally, we discuss a pre-dual space of b2;1a ðlÞ. We define bi-parabolic

little Bloch spaces ~BB2
a;0ðsÞ. To begin with, we present the definition of par-

abolic little Bloch spaces in [2]. Let 0 < aa 1 and s > �mðaÞ. A function

space Ba;0ðsÞ is defined by the space of functions u A BaðsÞ which satisfy

lim
ðx; tÞ!qH[fyg

tsft1=2aj‘xuðx; tÞj þ tjqtuðx; tÞjg ¼ 0:

We also denote by ~BBa;0ðsÞ the space of functions u A Ba;0ðsÞ such that

uð0; 1Þ ¼ 0. We call ~BBa;0ðsÞ (or Ba;0ðsÞ) the parabolic little Bloch space. We
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note that ~BBa;0ðsÞ is a closed subspace of ~BBaðsÞ. The bi-parabolic little Bloch

space ~BB2
a;0ðsÞ is defined by

~BB2
a;0ðsÞ :¼ fuðx; tÞ ¼ u0ðx; tÞ þ tu1ðx; tÞ; u0 A ~BBa;0ðsÞ; u1 A ~BBa;0ðsþ 1Þg:

We note that if u A ~BB2
a;0ðsÞ, then the following equality holds:

lim
ðx; tÞ!qH[fyg

tsft1=2aj‘xuðx; tÞj þ tjEtuðx; tÞjg ¼ 0: ð5:1Þ

We claim that a pre-dual space of b2;1a ðlÞ is isomorphic to ~BB2
a;0ðsÞ under a

suitable integral pairing. In order to show our assertion, we prepare the fol-

lowing lemma. Let C0ðHÞ be the set of all continuous functions on H which

vanish continuously on qH [ fyg.

Lemma 11. Let 0 < aa 1 and s > �mðaÞ. Also, let k and n be real

numbers such that n > s and nþ k > 0. Then,

~BB2
a;0ðsÞ ¼ fu A ~BB2

a ðsÞ; tsþ1Etu A C0ðHÞg ¼ fPn;k; ðs;1Þ
a f ; f A C0ðHÞg:

Proof. By (5.1) and Theorem 1,

~BB2
a;0ðsÞ � fu A ~BB2

a ðsÞ; tsþ1Etu A C0ðHÞg

and

fu A ~BB2
a ðsÞ; tsþ1Etu A C0ðHÞg � fPn;k; ðs;1Þ

a f ; f A C0ðHÞg

are trivial. We show fPn;k; ðs;1Þ
a f ; f A C0ðHÞg � ~BB2

a;0ðsÞ. Let f A C0ðHÞ. In

the proof of Theorem 4, we get

Pn;k; ðs;1Þ
a f ðx; tÞ ¼ C0;0P

n; n�s�1
a f ðx; tÞ þ C0;12P

nþ1; n�s
a f ðx; tÞ

þ tfC1;02P
nþ1; n�s�1
a f ðx; tÞ þ C1;14P

nþ2; n�s
a f ðx; tÞg

¼: v0ðx; tÞ þ tv1ðx; tÞ:

Here by Lemma 6.2 of [2], we already obtained

fPn; n�s�1
a f ; f A C0ðHÞg ¼ ~BBa;0ðsÞ:

Thus, we have v0 A ~BBa;0ðsÞ and v1 A ~BBa;0ðsþ 1Þ. Consequently, we have

P
n;k; ðs;1Þ
a f A ~BB2

a;0ðsÞ. This completes the proof. r

Now, we show the following theorem.
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Theorem 5. Let 0 < aa 1, l > �1, and s > �mðaÞ. Then, b2;1a ðlÞG
ð ~BB2

a;0ðsÞÞ
�
under the pairing

FuðvÞ ¼ hu; vil;s; v A ~BB2
a;0ðsÞ;

where Fu is the linear functional induced by u A b2;1a ðlÞ. Moreover, there exists

a constant C > 0 independent of u such that

C�1kukL1ðlÞ a kFukaCkukL1ðlÞ:

Proof. For u A b2;1a ðlÞ, we define iðuÞ ¼ Fu. Then, it is easy to see that

i : b2;1a ðlÞ ! ð ~BB2
a;0ðsÞÞ

� and kFukaCkukL1ðlÞ. In fact, (2) of Theorem 3 shows

that

jFuðvÞjaCkukL1ðlÞkvkBaðs;1Þ

for all v A ~BB2
a;0ðsÞ.

We show that the mapping i is injective. Let u A b2;1a ðlÞ such that iðuÞ ¼
Fu ¼ 0. Then by Lemma 10 and (2) of Lemma 1, we obtain

uðx; tÞ ¼ 2lþsþ2

ð
H

uðy; sÞK2;lþsþ2;0
a ðx; t; y; sÞslþsþ1 dVðy; sÞ

¼ hu;Fðx; t; �; �Þil;s;

where

Fðx; t; y; sÞ ¼ lþ sþ 3

Gðlþ sþ 2Þ ðD
lþsþ1
t W ðaÞðx� y; tþ sÞ �Dlþsþ1

t W ðaÞðx; tþ 1ÞÞ

� 2t

Gðlþ sþ 2Þ ðD
lþsþ2
t W ðaÞðx� y; tþ sÞ �Dlþsþ2

t W ðaÞðx; tþ 1ÞÞ

� 2s

Gðlþ sþ 2Þ ðD
lþsþ2
t W ðaÞðx� y; tþ sÞ �Dlþsþ2

t W ðaÞðx; tþ 1ÞÞ

þ 4ts

Gðlþ sþ 3Þ ðD
lþsþ3
t W ðaÞðx� y; tþ sÞ �Dlþsþ3

t W ðaÞðx; tþ 1ÞÞ:

By (1) and (3) of Lemma 1, for every ðx; tÞ A H, the function Fðx; t; �; �Þ belongs
to ~BB2

a;0ðsÞ. Hence, we have u ¼ 0.

We show that the mapping i is surjective. Let F A ð ~BB2
a;0ðsÞÞ

�. We define

a mapping L on C0ðHÞ by

Lð f Þ ¼ 2lþsþ2FðPlþsþ1;1; ðs;1Þ
a f Þ:

Then, Theorem 4 and Lemma 11 imply that L is a bounded linear functional

on C0ðHÞ and kLkaCkFk. Hence, the Hahn-Banach theorem and the Riesz

representation theorem show that there exists a bounded signed measure m on
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H which satisfies kmk ¼ kLk and

Lð f Þ ¼
ð
H

f ðx; tÞdmðx; tÞ:

We define a function uðy; sÞ such that

uðy; sÞ ¼
ð
H

K2;lþsþ2;0
a ðx; t; y; sÞtsþ1 dmðx; tÞ:

Then by (1) of Lemma 1 and Lemma 3, there exists a constant C > 0 inde-

pendent of m such that

kukL1ðlÞ aC

ð
H

ð
H

sl

ðtþ sþ jx� yj2aÞn=ð2aÞþlþsþ2
dVðy; sÞtsþ1 djmjðx; tÞaCkmk

and

kLðaÞukL1ðlþ1Þ aC

ð
H

ð
H

slþ1

ðtþ sþ jx� yj2aÞn=ð2aÞþlþsþ3
dVðy; sÞtsþ1 djmjðx; tÞ

aCkmk:

Also, for any s > 0 and ðb; jÞ A Nnþ1
0 , (1) and (2) of Lemma 1 imply that

sup
y AR

jqb
xq

j
t uðy; sÞj < y:

Moreover, it is easy to see that ðLðaÞÞ2u ¼ 0 on H, because for fixed ðx; tÞ A H,

ðLðaÞÞ2K2;lþsþ2;0
a ðx; t; �; �Þ ¼ 0 on H. Hence, we have u A b2;1a ðlÞ. Now, we

show iðuÞ ¼ F. Let v A ~BB2
a;0ðsÞ. Since ~BB2

a;0ðsÞ � ~BB2
a ðsÞ, Theorem 1 implies

that v ¼ 2lþsþ2P
lþsþ1;1; ðs;1Þ
a ðtsþ1EtvÞ holds on H. Since tsþ1Etv A C0ðHÞ by

Lemma 11, we have

FðvÞ ¼ 2lþsþ2FðPlþsþ1;1; ðs;1Þ
a ðtsþ1EtvÞÞ

¼ Lðtsþ1EtvÞ ¼
ð
H

Etvðx; tÞtsþ1 dmðx; tÞ:

On the other hand, the Fubini theorem, a di¤erentiation under the integral

sign, and Theorem 1 imply that

hu; vil;s

¼ 2lþsþ2

ð
H

uðy; sÞEtvðy; sÞslþsþ1 dVðy; sÞ

¼ 2lþsþ2

ð
H

ð
H

K2;lþsþ2;0
a ðx; t; y; sÞtsþ1 dmðx; tÞEtvðy; sÞslþsþ1 dVðy; sÞ
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¼
ð
H

2lþsþ2

ð
H

K2;lþsþ2;0
a ðx; t; y; sÞEtvðy; sÞslþsþ1 dVðy; sÞtsþ1 dmðx; tÞ

¼
ð
H

Et 2lþsþ2

ð
H

Rlþsþ1;1;1
a ðx; t; y; sÞEtvðy; sÞslþsþ1 dVðy; sÞ

� �
tsþ1 dmðx; tÞ

¼
ð
H

Etvðx; tÞtsþ1 dmðx; tÞ:

Consequently, we obtain iðuÞ ¼ F. This completes the proof. r
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Yôsuke Hishikawa

Depertment of Mathematics

Faculty of Education

Gifu University

1-1 Yanagido 501-1193 Japan

E-mail: yhishik@gifu-u.ac.jp

Masaharu Nishio

College of Engineering

Chubu University

264 Yôsuke Hishikawa et al.



1200 Matsumoto, Kasugai 487-8501, Japan

E-mail: masaharunishio@isc.chubu.ac.jp

Katsunori Shimomura

Depertment of Mathematics

Faculty of Science

Ibaraki University

2-1-1 Bunkyo Mito 310-8512 Japan

E-mail: katsunori.shimomura.sci@vc.ibaraki.ac.jp

Masahiro Yamada

Depertment of Mathematics

Faculty of Education

Gifu University

1-1 Yanagido 501-1193 Japan

E-mail: yamada33@gifu-u.ac.jp

265Function spaces induced by two parabolic Bloch spaces


