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ABSTRACT. We consider function spaces which consist of two parabolic Bloch spaces,
and present reproducing formulas. As an application, we introduce Bloch type spaces
which consist of solutions of a partial differential equation (L(ﬁ))zu =0, and investigate
several properties.

1. Introduction

Let H be the upper half-space of the (n + 1)-dimensional Euclidean space
R (n>1), that is, H = {(x,) e R""";xe R",¢>0}. For 0 <a <1, the
parabolic operator L* is defined by

L(“) = at + (_Ax)ocv

where 0, = /0t and 4, is the Laplacian with respect to x. Let C(H) be the
set of all real-valued continuous functions on H, and C*(H) the set of all k
times continuously differentiable functions on H. A function u € C(H) is said
to be L®-harmonic if L®u =0 in the sense of distributions (for details, see
Section 2).

We describe the definition of parabolic Bloch spaces. Put m(a) =
min{1,L}. Let ¢ > —m(x). We denote by %,(s) the set of all L(*)-harmonic
functions e C'(H) which satisfy

Hi() = SUp {2\ u(x, 0|+ 1|Ou(x, 1]} < oo,

(x,)eH

[

where V, = (dy,...,0,) and §; = d/dx;. We also denote by 4,(q) the set of
all functions u € %,(c) which satisfy 1(0,1) = 0. We call %,(c) (or %,(c)) the
parabolic Bloch space. We remark that 4%,(c) is a Banach space with the
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norm || - ||, (see [2]). Furthermore, we also note that %1,>(0) coincides with
the harmonic Bloch space of Ramey and Yi [9].

Our aim of this paper is to study function spaces which consist of poly-
harmonic functions and solutions of the iterative parabolic equation (L*)"y =
0 (called poly-parabolic functions). We state the background of this study.
Pavlovi¢ [8] introduced the Almansi type decomposition for Hardy spaces
of poly-harmonic functions, and investigated several properties. Tanaka [10]
introduced bi-harmonic Bergman spaces on the unit ball in R”, and inves-
tigated the reproducing kernel, which was given by the Almansi type decom-
position. After that, Nishio and Shimomura [5] introduced an iterated
parabolic operator (L®)™ and poly-parabolic Bergman spaces b!"”. They
also gave the Almansi type decomposition with respect to poly-parabolic
Bergman functions, and characterized the reproducing kernel on the Hilbert
space bf;z’z. On the other hand, there is no similar discussion with respect
to bi-parabolic or poly-parabolic Bloch type functions. It is known that the
investigation of Bloch type spaces plays an important role for the study of
Bergman type spaces. Therefore, we introduce Bloch type spaces which consist
of bi-parabolic functions, and investigate several properties. In this paper, we
consider a kind of sum spaces which consist of two parabolic Bloch spaces,
which is based on the study of bi-parabolic or poly-parabolic function theory.
And we investigate the reproducing formula on sum spaces. After that, we
derive bi-parabolic Bloch spaces from parabolic Bloch spaces, and discuss
dualities.

Here, we describe a remark of this paper. We will be able to consider a
natural extension to a theory of poly-parabolic Bloch spaces. We just have to
introduce sum spaces which consist of several parabolic Bloch spaces. And we
can see that the investigation of poly-parabolic Bloch spaces is similar to that
of bi-parabolic Bloch spaces.

To state our result, we give some notations. We denote by dV(x,?) =
dxdt the Lebesgue volume measure on H. Also, we denote by W the
fundamental solution of L(*). Tt is well known that the fundamental solutions
of LU/ and L") are the Poisson kernel and the heat kernel, respectively. For
a real number x, we denote by 2 = (—0,)" a differential operator of fractional
order x (for the explicit definition, see Section 2).

We introduce the following function spaces which consist of parabolic
Bloch functions.

DeriNiTION 1. Let 0 <o <1, ¢ > —m(a), and p #0 be real numbers
such that o+ p > —m(a). A function space %,(a,p) consists of all functions
u on H which satisfy u(x, ) = uo(x,t) + t"u;(x, t), where uy € %,(c) and u; €

B0+ p).
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We remark that #,(o,p) is a Banach space under the norm |||,
defined by

a,p)

]

209 = [0l 00) 1ttt 1l (5

The quantity [Jul|,,
easy to show that

o.p) is independent of the choices uy and u;. In fact, it is

B (o) N {t"u;u € By(o + p)} = {0},

because u and t’u are L(*-harmonic on H if and only if u = 0.

Now, we present the main results of this paper. The first result is the
reproducing formula on %,(0,p). For a function u(x,?) = ug(x,t) + t"u;(x, 1)
on H and a real number x, we define a differential operator & by

Efu(x,t) = Dfug(x,t) + "D/ ui (x,1).

THEOREM 1. Let 0 <a <1, 6> —m(a), and p >0 such that o+ p > 0.
Also, let 1 > max{0,—c} and v >a. Then, the reproducing formula

u(x,t) = 2”“] Efu(y, ) R," P (x, t; y,s)s”‘“‘_1 dV(y,s) (L.1)
H

holds for all ue %,(0,p) and (x,t) € H, where

1
, k+00p tkp o£p s vkt
Ry (x, 15 ,8) = Cio 208050 00 (x 1y ),
k, /=0

@, (X, 8, y,8) = QJIVW(“)(x —pt+s) — @tVW(‘X)(—)/7 1 +3),

(C()‘o C()‘])( F(V—l—K) F(V+K+p))_<1 0) (12)
Cio Cii)\I'(v+r+p) I'l(v+r+2p) 0 1) ’
The second result is a characterization of dual spaces with respect to bi-
parabolic Bergman spaces. We denote by bf’l(/l) the bi-parabolic Bergman
space with a weighted Lebesgue volume measure ¢* dV, which was introduced

in [6] (for explicit definition, see Section 5). Moreover, we define the integral
pairing on b>'(1) x #,(a,1) by

and

u,vy) 5= 2“‘”2J u(x, )& (x, )" dv(x, 1), ue bi’l(i), v e By(a, 1),
0

where & = &'. We claim that a dual space of b>'(Z) is isomorphic to
%,(0,1) under a suitable integral pairing.
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THEOREM 2. Let 0 <a <1, A> —1, and ¢ > —m(a). Then, (b>'(1))* =
By(0,1) under the pairing

O, (u) = u,v), 5, ueb'(2),

where @, is the linear functional induced by v e %,(a,1). Moreover, there exists
a constant C > 0 independent of v such that

C'lel

a01) < Dol < Cllv]l g, 5.1)-

Finally, we describe the construction of this paper. In Section 2, we give
some notations, and present basic properties which are used in our argument.
In Section 3, we present the previous result with respect to parabolic Bloch
functions. And we investigate a generalization of the reproducing formula of
Lemma 5 below. In Section 4, we introduce a function space %,(o,p), and
study properties of %, (o, p)-functions. In particular, we prove the reproducing
formula on %,(a,p). As an application, we discuss dual and pre-dual spaces
of bi-parabolic Bergman spaces in Section 5.

2. Preliminaries

In this section, we present basic properties of fractional calculus of L(*-
harmonic functions. We describe the definition of L(*-harmonic functions.
Since the case « =1 is trivial, we only describe the case 0 < a < 1. Let
C*(H) be the set of all infinitely differentiable functions on H and C(H) the
set of all functions in C*(H) with compact support. For 0 < a < 1, (—4y)" is
the convolution operator defined by

lp(y’ t) _‘//(X’ Z) dy (21)

(_Ax)alp(x7 t) = —Cnu »lim J n+2a
yx>s |y — x|

" 0—0*F
for all Yy e C¥(H) and (x,t) € H, where

v ()

Cnyo = — F(—OC) > 0.

A function ue C(H) is said to be L®-harmonic on H if u satisfies the
following condition: for every ¥ € C*(H),

J lu- L?Y|dV < o and J u-L@y dv =0, (2.2)
H H

where L) = —0, + (—4,)” is the adjoint operator of L(®. By (2.1) and the
compactness of supp(y) (the support of ), there exist 0 < #; < t, < oo and
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a constant C > 0 such that supp(L™y) C S = R" x [t;, 5] and [L@Wy(x,1)| <
C(1+4|x])™ for all (x,)eS. Thus, the integrability condition of (2.2) is
equivalent to the following: for any 0 < #; < 1, < 00,

J’J}Rn (e, D) (1 + |x]) "2V (x, 1) < oo. (2.3)

15}

We introduce the fundamental solution of L. For x e R”, the funda-
mental solution W® of L® is defined by

1
W (x, 1) = WLNG"P(—tIélz“ﬂ/—_lx-f)dé, >0,

0, 1 <0,

where x - & denotes the usual inner product on R”. It is known that W® is
L™®-harmonic on H and W e C*(H).

We define fractional integral and differential operators. Let C(RR,) be the
set of all continuous functions on Ry = (0, 00). For a positive real number r,
let 7% be the set of all functions ¢ € C(IR) such that there exists a constant
>0 with ¢(f) = O(r ™) as t — c0. We remark that €' C F€ " if 0 <
Kk <v. For pe %", we can define the fractional integral of ¢ with order
by

1 0
T 75o(t) = =—| ot +1)d teR,.
t (ﬂ() F(K)J() T §D( +T) T, € +
Furthermore, let #%” be the set of all functions ¢ € C*I(IR,,) such that 6[“(0 €
F%~ K179 where [rc] is the smallest integer greater than or equal to x. Also,
we define #6° = C(R,). For pe %", we can also define the fractional
derivative of ¢ with order x by

grp) =2, "1 (=) Me(r),  reRry,

where we define @?(p = 0.

Now, we describe basic properties of fractional derivatives of the fun-
damental solution W, which were given in [1]. Let Ny = NU{0}. For
a multi-index = (B,,...,5,) e Nz, let o/ =alljoxl...oxlr, where |p] =
Br+-+ P

LemMA 1 (Theorem 3.1 of [1]). Let 0 <a <1, feNy, and x> —3.
Then, the following statements hold.

(1) The both derivatives G W) (x,1) and "W (x,1) are well-
defined and '@ W) (x,t) = ZX0P W) (x,t). Moreover, there exists a con-
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stant C > 0 such that
OFF WO (x,1)] < e )~

Sor all (x,t) e H.
(2) Let v be a real number such that x +v > —4..  Then,

PG W @ (x, 1) = P g W) (x, 1)

Sfor all (x,t) e H.
(3) g w™ is L™-harmonic on H.

We present basic properties of the function w, defined in Theorem 1.

Lemma 2 (Lemma 5.6 of [2]). Let 0<a <1, 0> —m(x), and v > —4..
If p>—1 and n:=v—p—1>—m(a), then there exists a constant C =
C(n,a,v,p) >0 such that

L 025, 5 3, 9)ls? dV(7,5) < CFyp(x,1)

for all (x,t) e H, where

1+ x| 4177, 0>7n>-m(x),
Foy(x,1) :== ¢ 1 +1log(1+ |x|) + [log #|, n=0,
1 + tiﬂa n > 0.

Lemma 3 (Lemma 5 of [7]). Let O,ceR. If0>—1and 0 —c+5+1<
0, then there exists a constant C = C(n,a,60,c) > 0 such that

0
J S — dV(y, S) _ Ctﬂfc'+iz/(2rx)+l
H(t+s5+[x—y7)

Sor all (x,t) e H.

3. A generalization of reproducing formula for parabolic Bloch functions

In this section, we give a generalization of the reproducing formula on
parabolic Bloch spaces. First, we present basic properties of parabolic Bloch
functions.

LEMMA 4 (Theorem 3.2 and Proposition 5.4 of [2]). Let 0<a<1, o>
—m(a), y € N§j, and x be a real number such that k =0 or xk > max{0,—c}.
If ue %B,(0), then the following statements hold.
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(1) There exists a constant C >0 independent of u such that
u(x, )] < Cllull g, (g Fr,0(x, 1)

Sor all (x,t) e H, where F, ,(x,t) is the function defined in Lemma 2.

(2) The derivatives 0’2/ u(x,t) and 2] 0’u(x,t) can be defined, and the
equation 029, u(x,t) = 2,°0%u(x,t) holds. Furthermore, if (y,x) # (0,0), then
there exists a constant C = C(n,a,0,y,k) > 0 such that

1017 u(x, 1)] < Com VB ||y

Sfor all (x,t) e H.
(3) 0'%9fu is L -harmonic on H.

The following lemma is the reproducing formula on parabolic Bloch
spaces.

LEMMA 5 (Theorem 5.7 of [2]). Let 0 <o <1 and ¢ > —m(a). If real
numbers k and v satisfy k > max{0,—a} and v > g, then the reproducing formula

2 K+v

u(x,t) = m

J DFu(y, ol (x,t; y,8)s" L dV(y,s) (3.1)
H

holds for all ue %,(c) and (x,t) € H. If k =0 and v > max{0,c}, then (3.1)
also holds.

LEMMA 6 (Theorem 3 of [4]). Let 0 <a <1 and a\,00 > —m(a). Then,
%N’“(J]) ~ 937'“(62) under the relation 2,7 u=9;""v for ue @a(al) and
v € By(a2), where ik > max{0,a1,0,}. Moreover, there exists a constant C > 0
such that

C71||U||;JZI(0'2) < lull g5y < Cllvll g, (0)-

Next, we introduce the following integral operator induced by w,. Let
0<a<1 and v, p be real numbers. For a function f on H, the integral
operator I1” is defined by

0= | 1)l y0)s” dV (325). (32)

We give the following two lemmas, which give some properties with respect to
the operator I7,"”. We denote by L*(H) the set of all essentially bounded
Lebesgue measurable functions on H, and |[|f1|,. ) = esssup{|f(x,?)|; (x,7) €
H}.

LEMMA 7 (Theorem 5.8 of [2]). Let 0 <a <1, > —m(x), and v> o.
Then, I1)'~°"' is a bounded operator from L*(H) onto %,(c).
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LemMa 8. Let 0 <o <1 and p> —1. Also, let k >0 and v > — 3 such
that v—p—1> —m(a). Then,

DI S (x,1) = J )2 WO (x = y i+ 5)s” dV(p,5)
H

holds for all f e L*(H) and (x,t) € H.

Proor. By (1) of Lemma 1, Lemma 2, and Lemma 3, a differentiation
under the integral sign and the Fubini theorem show the assertion, directly.
O

In order to show Theorem 1, we prepare the following lemma, which is a
generalization of Lemma 5.

LemMa 9. Let O<a <1 and o,p>—m(a). Also, let x> max{0,—o}
and v > p. Then, for any u e %,(0), the following statements hold:
(1) If p=o, then

2 P (s g u) (x, t) = (i + v)u(x, 1)
holds for all (x,t) e H. )
(2) If p <o, then there exists ve %,(p) such that
9D u = 207P gy
on H and
25 PN (s g R0 (x, £) = T+ v 40 — p)u(x, 1)
holds for all (x,t) e H.

) If p>max{0,6}, then wv(x,t):=2""(D "u(x,t) = 2/"u(0,1))
By(p) and

25PN (s g R u) (x, f) = T+ v 40 — p)o(x, 1)
holds for all (x,t) e H.

Proor. We note that the function **7%/u is in L*(H) by (2) of
Lemma 4.

(1) The assertion is the same as that of Lemma 5.

(2) By Lemma 6, there exists ve %,(p) such that @ u=20"rg """y
on H. Since k+ 0 — p > max{0,—p} and v > p, Lemma 5 implies that

2K+VH;, v—p—1 (SK+GO@;€H) (X, l)

= rites J D0y, )0} (x, 85y, 8)s" TP AV ()
H

=T'(k+v+o—puv(x,it).
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(3) By Lemmas 5 and 8, we have

2;c+v+afp

DY u(x,t) =
t u(x,) F(K+V+O’—p)

G (s g )

DK+vHa—p o . W(Q()
= Ry o) )y 7

X (x = p, t+8)s" TP qy(y)s). (3.3)

Put v(x, 1) =27"9(2! "u(x,t) — 2/ °u(0,1)). Since p— o > max{0,—ac}, (2)

and (3) of Lemma 4 imply that ve %,(p). Moreover by (3.3), we obtain
Tk +v+a—p(x, 1) =27 (790 (x, 1)

for all (x,7) e H. O

4. The reproducing formula on %,(g,p)

In this section, we show several properties of %,(o,p)-functions. We
recall the definition of a fractional differential operator &;°. Let x be a real
number. Also, let up and u; be functions on H and u(x,?) = uy(x,?)+
t’ui(x,t). Then, we define

Efu(x,t) = Dfug(x, 1) + "D uy (x,1).

THEOREM 3. Let 0 <a <1, 0> —m(a), and p # 0 be real numbers such
that o+ p > —m(a). Also, let y e N§ and x > max{0,—o,—c —p}. For ue
By(0,p), the following statements hold.

(1) There exists a constant C > 0 independent of u such that

|u(x, t)| < C(fo,a(xa t) + lch(,a+p(x7 t))HuH%,((a,p)

Sor all (x,t) € H, where F,;(x,t) is the function defined in Lemma 2.
(2) The derivative 076/ u is well-defined. ~Moreover, there exists a constant
C > 0 independent of u such that

0767 u(x, )| < Com Ve,
Sfor all (x,t) e H.
Proor. Let wue B,(0,p). Then, we can take ug egjx(o) and wuj e

%,(c + p) such that u(x, ) = uo(x,t) + t"u;(x, ).
(1) The assertion is shown by (1) of Lemma 4, directly.
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(2) By (2) of Lemma 4, the derivative 06 u is well-defined, and there
exists a constant C > 0 such that

0268 ulx, 1)] <107 uo(x, 0)] + 110} Z w (x,0)] < Co=VERSD |, (0)

This completes the proof. ]

Now, we show Theorem 1.

PROOF OF THEOREM 1. Let u € 4,(c,p). Then, we can take ug € 4,(0)
and u; € %,(o + p) such that u = ug + t”u; on H. By Lemma 2 and the proof
of Theorem 3 (2), the right-hand side of (1.1) is well-defined. Hence, we
obtain

2”"] Eru(y, )R)P(x, 65 y,5)s" 7 dV (p, )

H
1

— Z C /2V+K+(k+/)ptkp
k,/,j=0

X J s D ru(y, s)a);ﬂk”)”(x, £y, 8)s T qy(y,s)
hig

1

Ckﬁ/217+Ic+(k+/)ptkp(H;+(k+/)p, v+{p—a—1 (SK+”+'//7<@,KU/)(X, l))

k.7j=0 '

When (k,j) =(0,0) and (1,1), (1) of Lemma 9 implies that
CO,/2v+K+//)H;+//),v+//17071(Slc+09fu0)(x’ l) _ C()"/F(V +x+ /p)uo(X, l)

and

C]7/l“”2v+x+(/+1)/)H:+(/+1)/)‘ v+ (/+1)p—(o+p)—1 (SK+(7+/)@tKu1 )(X, l)
=C v +r+ (+1D)p)tlu(x,1)

hold for all /=0,1. Let (k,j)=(1,0). Then by (3) of Lemma 9, there
exists vg € %,(a + p) such that

C, 2" DR D (D= (otp) =1 (g4 iy ) ()
=C I (v+r+Lp)tlog(x,1)

for all /= 0,1, because p >0 and 6 +p > 0. Let (k,j) =(0,1). Then by (2)
of Lemma 9, there exists v; € %,(g) such that
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CO, /2 V+K+/[7HO\:+//J, v+/p—a—1 (SK+(T+[79tKu1 ) (x7 l‘)

=Co/I(v+ux+(+1)p)vi(x,1)

for all /=0,1.
Since the constants Cy o, Co.1, C1,0, Ci,1 satisfy the condition (1.2), we can
get the desired result. O

REMARK 1. Since v+x >0 and p > 0, the matrix

( I'(v+rk) F(v+K+p))
I'v+xk+p) I'(v+r+2p)

is invertible. Because the function log I'(x) is strictly convex on R, = (0, o0).
Hence, the constants Cyo, Co1, Ci0, Ci,1 in Theorem 1 can be written as
follows:

C I'(v+x+2p)

0,0 — )

’ F(v+1c)F(v—|—K—|—2p)—(F(v—|—K—|—p))2

I'v+x+

Co1=Cro= 2( P) ,

(Fr(v+u+p) —T+r)L(v+K+2p)
I'iv+x
Coi— (v+x)

)

T+ k)T (v+K+2p) — (F(v+x+p)*

Finally, we introduce an integral operator induced by the kernel function
R,°P. Let k, v, 0, and p be real numbers. For a function f on H, an
integral operator Py*"") is defined by

P @Df (1) = JH F )RS (1, 7, 5)5" dV (7, 5).

In the following theorem, we give a characterization of the operator
P;'a’(s (‘7’/’).

THEOREM 4. Let 0 <a <1, 6> —m(a), and p >0 such that o+ p > 0.
Also, let k > max{0,—a} and v > o. Then, P;" (@) is a bounded linear oper-
ator from L*(H) onto %B,(a,p).

Proor. We show that P, *") is bounded linear operator from L*(H)
to %,(a,p). Let feL*(H). Then, we have

P;""" (“’p)f(x, 1) = CO,OH;"’ vw-—lf(x7 1) + Co,lzﬂn;fﬂ?, v+pfa—1f(x’ )

+ t/’{CLOz/)H;Jr/), vftrflf(x7 l) + Cl, 14/)]7;%2/7, erp*szlf(x7 t)},
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where constants Cp g, Co 1, Ci,0, C1,1 and the operator 11 v=o-1 are defined as
(1.2) and (3.2), respectively. Put

vo(x,1) = Co oIl 77 f (x, 1) + Co 1 2P TP~ f (x, 1),
v1(x, 1) = Cp .02 I =7 f (x, £) 4+ Cy 4P TP (x ).

Then, Lemma 7 implies that vy € %,(c), v| € B,(c+p), and there exists a
constant C > 0 independent of f such that

12321 (3%, g 5.y = o0l g0 + N0 o) < CIF -

v.x,(a,p)

Namely, P, is a bounded linear operator from L*(H) to %,(o,p).

We show that the operator Py™“” is surjective. For u € %,(a,p), put
S(x,0) =25t & u(x,¢). Then, (2) of Theorem 3 implies that f e L*(H).
Moreover by Theorem 1, we obtain u = PL®”f on H. This completes the
proof. ]

As an application of Theorem 4 and (2) of Theorem 3, we give the esti-
mate of the following normal derivative norm of 4,(a, p)-functions.

COROLLARY 1. Let 0 <o <1, > —m(a), and p >0 such that o+ p > 0.
Also, let k¥ > max{0,—a}. Then there exists a constant C >0 such that for
any u € %By(a,p),

1 o
C Ml g0,y < N 65Ul Loy < Cllttl] g5,

5. Introduction to bi-parabolic Bloch spaces

In this section, we introduce bi-parabolic Bloch spaces, and investigate
several properties.

Let 0 <« <1 and ¢ > —m(x). We define #2(c) = %,(s,1). In fact, an
elementary calculation shows that for any u € 4,(q, 1), the equation (L®)%u =
0 holds on H and

sup  1°{1 2 |\Vu(x, 1)| + 1| Eu(x, )|} < 0.
(x,0)eH

We also define the norm on %2(s) by

||“Hg?3(a) = Hu”,%(a,l)'

We discuss a dual space of the bi-parabolic Bergman space bi’l()»). We
present previous results with respect to bi-parabolic Bergman spaces. Let
AV’ (x,t) =t*dV(x,t) on H. We denote by L?(H,dV*) the set of all
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Lebesgue measurable functions f on H which satisfy

. 1/p
T (jH )PV z>) <.

DEFINITION 2 (Section 1 of [6]). Let 0 <a <1, 1 <p< oo, and 4> —1.
The bi-parabolic Bergman space b>”(1) is defined by

b27(2) = {u e C*(H); (L'Y*u=0,ue LP(H,dV"),LPue LP(H,dV*7),

>0 and (B, /) e NI sup [0P07u(x, 1)| < oo}
xeR”

We present the reproducing formula on 527(2).

LemMA 10 (Theorem 4 of [6]). Let 0<oa<1, 1 <p< oo, and 1> —1.
Also, let 1k > f% and v > )%1 Then, the reproducing formula

u(, 1) = 27 J E5u(y,8) A2 (x, 15 3, 8)s™ L AV (,9)
H

holds for all ue b>?()) and (x,t) € H, where

%Z.V,K(x7 £ ”, S)

v+x+ 1 2s '
_ GWS (x — vt = gl @(x— ¢
I(v+x) ™! (r=y,14s) Irv+x) ! oyt
2t 4ts
— W (x — 1t P W I (x — y,t +5).
Torn) ! AR TRy ST onrty

Moreover, the assertion also holds when p=1 and v= 1+ 1.

Here, we remark that the kernel function %2""K(~, -3+, +) IS symmetric on
H x H, that is, %&2""’“(% L y,s) = %f‘v”((y,s; x,t) for all (x,¢),(y,s) € H.
Now, we show Theorem 2.

PrOOF OF THEOREM 2. For ve #2(c), we define 1(v) = @,. Then, it is
easy to see that 1: 4;(c) — (b7'(2)" and ||®,[| < Clv]l 42, In fact, (2) of
Theorem 3 shows that

.(u)| < Cllull s 10z

for all ueb?'(%).
We show that the mapping 7 is injective. Let v e #2(c) such that 1(v) = 0.
Then by Theorem 1, we have
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e, =277 | G )R (3, )5 AV (3,9
H

A )

Here, we have #/77"111(x 1) e b>' (1) by (1), (2), (3) of Lemma 1 and
Lemma 2. Therefore, we obtain v = 0.

We show that the mapping : is surjective. Let ® e (b>'(1))*. Since
b>'(2) c L'(H,dV"), the Hahn-Banach theorem and the Riesz representation
theorem show that there exists a function f e L*(H) with

D(u) = J u(x, 1) f(x, )" dV(x,1)
H
for all ueh'(i) and /]l = @] Put v(x,r) =PI M0V r(x, ),
Then by Theorem 4, ve #2(c) and there exists a constant C > 0 indepen-
dent of v such that |[v 5, < C|[®[. We claim @(u) = {u,v); ,. In fact, we
have

(U, 035,65 = 2”"“{ u(x, ()P EUS (e 0) 4 dY (x, ).
H

A differentiation under the integral sign shows that
E(Po L ODf (1)) = J o) A2 x 1 p,5)5" dV (y,9).
H

Since #»*T7t20(..;...) is symmetric on H x H, the Fubini theorem and
Lemma 10 imply that

(030 = j F(08)u(y. $)s* dV (y.s) = D(u).

H

This completes the proof. ]

Finally, we discuss a pre-dual space of bf’l(i). We define bi-parabolic
little Bloch spaces e@fﬁo(a). To begin with, we present the definition of par-
abolic little Bloch spaces in [2]. Let 0 <o <1 and ¢ > —m(x). A function
space %, (o) is defined by the space of functions u € %,(c) which satisfy

lim {2V u(x, 0)] 4 1|0u(x, £)|} = 0.
(x,0)—0HU{o0}

We also denote by 4,0(c) the space of functions ue 4, () such that
u(0,1) =0. We call 4,,0(0) (or %,,0(0)) the parabolic little Bloch space. We
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note that 4, (o) is a closed subspace of %,(s). The bi-parabolic little Bloch
space Qf o(0) is defined by

@570(0) = {ulx, 1) = uo(x, 1) + tu (x,1);uo € @a,o(a),ul € @%0(0 +1)}.
We note that if u e.@jio(a), then the following equality holds:

li ° ll/Zot ‘ / e . —0 51
o dm V(x4 fdux, D)l (5.1)

We claim that a pre-dual space of 52! (%) is isomorphic to %2 ,(s) under a
suitable integral pairing. In order to show our assertion, we prepare the fol-
lowing lemma. Let Cy(H) be the set of all continuous functions on H which
vanish continuously on 0H U {c0}.

LemMa 11. Let 0<a <1 and o> —m(a). Also, let k and v be real
numbers such that v>a and v+x > 0. Then,

B24(0) = {ue B2(o); 1™ S e Co(H)} = {Py™"Vf: £ e Co(H))}.
Proor. By (5.1) and Theorem 1,
B, o(0) C{ue B}(0);1"" Sue Co(H)}
and

{ueB}(c); 1" e Co(H)} C{Py~"Vf: f e Co(H)}

are trivial. We show {P)™"Vf, fe Co(H)} C A, 4(0). Let feCy(H). In
the proof of Theorem 4, we get

Py Nf (1) = Cooll 77 (x, 1) 4 Coa 201, 7f (x,1)
+ Z{C1’02H:+l’v_ﬂ_1f(x, Z) + C1~14H;+2’v_af(x, l)}
=:vo(x, 1) + to1(x, 7).
Here by Lemma 6.2 of [2], we already obtained
{11, 7"'f; f € Co(H)} = B,0(0).

Thus, we have voejﬁl_o(a) and v ee%f’mo(a—&—l). Consequently, we have
pLr@y eﬂio(a). This completes the proof. O

Now, we show the following theorem.
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THEOREM 5. Let 0 <a <1, A>—1, and ¢ > —m(a). Then, b>'(2) =
(%; 4(0))" under the pairing
dju(v) = <u7U>/1,m Uegio(")a

where @, is the linear functional induced by u € b>'(1). Moreover, there exists
a constant C > 0 independent of u such that

C M ullpsy < 1ull < Cllull -

Proor. For u e b>'(}), we define 1(u) = @,. Then, it is easy to see that
12 b)) — (.@io(a))* and [|®y| < Clful|1(;)- In fact, (2) of Theorem 3 shows
that
|Du(v)] < Cllull 1)1Vl 4,6, 1)

for all ve 937“2’0(0).
We show that the mapping ¢ is injective. Let u € b2'(1) such that 1(u) =
@, =0. Then by Lemma 10 and (2) of Lemma 1, we obtain

u(x’ Z) _ 2/1+a+2 J u(y7s)1/&2‘)»+0+2,0(x’ t y7s)s/l+a+1 dV(y,S)
H

= <I/l, F(xa L, ')>).,m
where

A+a+3
IrA+o+2)
2t
I'(A+o+2)

3
I'A+o+2)

4t , .
+m+7;+3)(9;‘+0+3 W(oc)(x —yt+s)— 9[/y+a+3 W(a)(x,[—l— ).

F(x,t;y,5) = (DWW (x =yt +5) — IO (x4 1)

(@t2+0+2 W(ac) (X — i+ S) _ gti+o+2 W(ac) (X, t+ 1))

(Z[ T2 W (x — y,t+5) — /TP WA (x, 14 1))

By (1) and (3) of Lemma 1, for every (x, ) € H, the function F(x,¢;-,-) belongs
to %2,(c). Hence, we have u = 0.

We show that the mapping : is surjective. Let & € (%73,0(0))*. We define
a mapping 4 on Cy(H) by

A(f) _ 2}L+U+2@(Pi+ﬂ+l,1,(0,1)f).

Then, Theorem 4 and Lemma 11 imply that A is a bounded linear functional
on Cy(H) and ||4|| < C||®||. Hence, the Hahn-Banach theorem and the Riesz
representation theorem show that there exists a bounded signed measure u on
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H which satisfies ||u|| = ||4]| and
AU = | st
We define a function u(y,s) such that
u(y,s) = JH A2 (1 ) du(x, 1),

Then by (1) of Lemma 1 and Lemma 3, there exists a constant C > 0 inde-
pendent of ux such that

A
s g+l
sy < €, | oo V090 b0 < €l

and

g+l

Il <] |
L'(2+1) u (Z +s+ |X |29<)n/ 200)+A+0+3

< Cllu.

dv (y.)"" dlu(x, 1)

Also, for any s >0 and (f,/) e N¢™', (1) and (2) of Lemma 1 imply that

sup |040/u(y,s)| < oo.
yeR

Moreover, it is easy to see that (L(‘“))zu =0 on H, because for fixed (x,¢) € H,
(L®)? %2 #0t2.0(x 1,.,-) =0 on H. Hence, we have ueb>'(1). Now, we
show 1(u) = ®. Let ve %2 ,(0). Since %, (o) C %;(c), Theorem 1 implies
that v = 2#ot2pitothL( 1>(t"“(5 v) holds on H. Since t°*'&ve Co(H) by
Lemma 11, we have

¢(l}) — 2}'+g+2¢(P;“+J+1'1’(0’1)(tﬂ+15)10))
— A ) = J (o, )17 du(x, 1),
H

On the other hand, the Fubini theorem, a differentiation under the integral
sign, and Theorem 1 imply that

<ua U>/1,ri

_ giros2 J u(y, $)Ew(r,5)s™ 7 dV (p,s)
H

— 2).+r7+2j J %2,i+a+2.0(x, 5y, S)t(7+l du(x, t)(o@,v(y,s)sH”H dV(y,s)
HJH
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= | 2| R ()5 V(900 duo)
H H

J

=| & (2”““ J RN (x4 p, 8) B0y, 5)s o dv (p, S)) " du(x, 1)
H H

= | G, 0 du(x, ).
H

Consequently, we obtain 1(u) = @. This completes the proof. ]
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