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Abstract. We study a polyhedron with n vertices of fixed volume having the min-

imum surface area. Completing the proof of Fejes Tóth, we show that all faces of a

minimum polyhedron are triangles, and further prove that a minimum polyhedron does

not allow deformation of a single vertex. We also present possible minimum shapes for

na 12. Some of them are quite unexpected, in particular n ¼ 8.

1. Introduction

Let X be a closed set in Rd . Denote by VdðX Þ the d-dimensional

Lebesgue measure of X and by AdðXÞ the surface area of X , i.e., d � 1

dimensional Lebesgue measure of qðXÞ. For a non-empty set A in Rd , we

denote by DðAÞ the convex hull of A. A convex body in Rd is a compact

convex set with a non-empty interior. For a convex body X , we recall the

isoperimetric inequality:

AdðXÞ
VdðX Þðd�1Þ=d b

AdðBdÞ
VdðBdÞðd�1Þ=d ; ð1Þ

where Bd is the d-dimensional unit ball (c.f. [12]). The equality is attained

only when X is a d-dimensional ball. Note that if X is a planar convex set,

then in the plain language, V2ðXÞ is the area and A2ðX Þ is the perimeter of X .

Let d ¼ 3 and nb 4. We are interested in minimizing A3ðXÞ=V3ðXÞ2=3
among all polyhedra X with n vertices. Clearly we may assume that X is

convex. Denote by Dn ¼ Dðp1; . . . ; pnÞ the convex hull of n points p1; p2; . . . ;

pn A R3. We say Dn is non-degenerate if V3ðDnÞ > 0. Therefore our problem

is to minimize A3ðDnÞ=V3ðDnÞ2=3 among all non-degenerate convex hull Dn’s of

n points in R3. We are of course interested in the shape Dn which attains its

minimum as well. Since A3ðDnÞ=V3ðDnÞ2=3 is invariant under similitudes, our

problem is equivalent to find the minimum A3ðDnÞ under V3ðDnÞ ¼ 1. Thus

our problem is a discrete variant of the isoperimetric inequality (1), i.e., a
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discrete ‘minimum surface’. For a similar minimization problem with a given

number of faces, we find several references. Lindelöf [10] and Minkowski [11]

proved in di¤erent intriguing ways that the minimum polyhedron must be

circumscribed about a sphere, and Fejes Tóth [6] proved that the minimum is

attained when the number of faces are 4, 6 and 12 by the regular tetrahedron,

cube and dodecahedron, respectively. Note that minimization with a given

number of vertices is a totally di¤erent and more di‰cult problem; e.g., the

cube is not a solution for n ¼ 8 (see Theorems 1 and 3).

Fejes Tóth claimed in [5] and [7, Chapter 5, § 7] that every face of the

minimum n-hedron must be a triangle. However his proof contains a gap due

to the fact that the corresponding equi-area piecewise di¤erentiable surface has

singular points (see the description around Example 1 for details). We shall

classify such singularities (Lemma 3) and complete the proof along his idea in

Theorem 1. All the same, digesting his idea, we can further prove that the

minimum n-hedron does not allow a deformation of a single vertex, by showing

that the equi-area body is strictly convex. Finally we give a list of possible

shapes of minimum n-hedron for na 12 by extensive random numerical search

together with heavy algebraic computation using Gröbner basis. Conjectural

shapes for n ¼ 8 and n ¼ 11 may be beyond our imagination.

Added in revision: One of the referees of this paper pointed out that

Böröczky and Böröczky Jr [2] gave a proof of Theorem 1 and its generaliza-

tion. Their proof also rely on the same idea of Fejes Tóth but went in a

di¤erent way.

2. Every face is a triangle

In this section, we prepare basic properties of this minimization problem

in Propositions 1 and 2. Then we point out a gap in the proof of Fejes Tóth

[5, 7] which asserts that every face of the minimum n-hedron is triangular.

Then we complete the proof after the classification of singular points of the

equi-area surface.

Lemma 1. Let Y be a planar polygon in R3 and g : R3 ! R2 be an

orthogonal projection to some plane (e.g., the one along z-axis to xy-plane).

Then we have V2ðgðYÞÞaV2ðYÞ and A2ðgðY ÞÞaA2ðYÞ.

Proof. This is clear from the property kgðxÞ � gðyÞka kx� yk for any

x, y. r

Proposition 1. For a fixed integer nb 4, the minimum of A3ðDnÞ=
V3ðDnÞ2=3 exists where Dn varies among non-degenerate convex hulls of n points

in R3.
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Proof. Let R be the diameter of Dðp1; . . . ; pnÞ attained by kp1 � p2k ¼
R. Let S be the plane passing through p1 which is orthogonal to the segment

½p1; p2� and g be the orthogonal projection to S. Then gðDnÞ is a convex

polygon in S with vertices q1; . . . ; ql with la n� 1, arranged in the clock-

wise order with respect to the centroid of gðDnÞ. Choose q 0
1; . . . ; q

0
l in Dn such

that gðq 0
i Þ ¼ qi for i ¼ 1; . . . ; l. If the segment ½p1; p2� lies within qðDðp1; . . . ;

pnÞÞ, we choose q 0
1 ¼ ðp1 þ p2Þ=2. Since Dn is contained in gðDnÞ � ½0;R�, we

have

V3ðDnÞaV2ðgðDnÞÞR: ð2Þ

We claim that

A3ðDnÞb
1

2
A2ðgðDnÞÞR: ð3Þ

Since X � Y implies A3ðXÞbA3ðY Þ for convex bodies X , Y , considering the

surface area of the convex hull Y ¼ Dðp1; p2; q 0
1; q

0
2; . . . ; q

0
lÞ, it is enough to

prove that

V2ðp1; q 0
i ; q

0
iþ1Þ þ V2ðp2; q 0

i ; q
0
iþ1Þb

1

2
kqi � qiþ1kR;

where V2ðx; y; zÞ :¼ V2ðDðx; y; zÞÞ, the area of the triangle of vertices x, y, z.

The index i of qi is considered modulo l. Take a plane P containing p1 and

p2 parallel to the segment ½q 0
i ; q

0
iþ1� and use the orthogonal projection g2 to P.

Noting that the directions of the two projections g and g2 are orthogonal, we

have gðq 0
i Þ � gðq 0

iþ1Þ ¼ gðg2ðq 0
i ÞÞ � gðg2ðq 0

iþ1ÞÞ. By Lemma 1, we see

V2ðp1; q 0
i ; q

0
iþ1Þ þ V2ðp2; q 0

i ; q
0
iþ1Þ

bV2ðp1; g2ðq 0
i Þ; g2ðq 0

iþ1ÞÞ þ V2ðp2; g2ðq 0
i Þ; g2ðq 0

iþ1ÞÞ;

which is not less1 than kgðq 0
i Þ � gðq 0

iþ1ÞkR=2. This shows the claim.

Using (2) and the isoperimetric inequality (1) for d ¼ 2, that is,

A2ðgðDnÞÞ2 b 4pV2ðgðDnÞÞ, we see A2ðgðDnÞÞb 2

ffiffiffiffiffiffiffiffiffiffiffiffi
pV3ðDnÞ

R

q
. Let us fix V3ðDnÞ ¼

1. Then we have A3ðDnÞb
ffiffiffiffiffiffiffi
pR

p
from (3). This shows that A3ðDnÞ ! y as

R ! y under the assumption V3ðDnÞ ¼ 1. Since we are interested in mini-

mizing A3ðDnÞ=V3ðDnÞ2=3, we may assume that R is bounded by some constant

K . This shows that parameters p1; . . . ; pn are in a closed ball of radius K with

the prescribed property V3ðDnÞ ¼ 1. Therefore the set of parameters are in a

compact set in R3 and we find the minimum of A3ðDnÞ as desired. r

1This holds even when ½g2ðq 0
i Þ; p1� and ½g2ðq 0

iþ1Þ; p2� intersect.
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Therefore we define an ¼ minDn
A3ðDnÞ=V3ðDnÞ2=3 where Dn runs over all

non-degenerate convex hulls of n points. A minimum n-hedron is the shape Dn

which attains an. It may not be unique but we expect that it is unique up to

similitudes in R3.

Proposition 2. We have an > anþ1 for nb 4 and limn!y an ¼ ð36pÞ1=3A
4:83598.

Proof. Choose Dn which attains an and its face T � qðDnÞ. We take a

point pnþ1 on a outward normal emanating from an inner point p of T whose

distance from T is e > 0, which is small enough that Dnþ1 is the union of Dn

and the pyramid of base T and the apex pnþ1. Denote by ei the edge of T

and ri be the height of p from the edge ei for i ¼ 1; 2; . . . ; t. Note that ri > 0.

Then we see

V3ðDnþ1Þ ¼ V3ðDnÞ þ
1

3
eV2ðTÞ

and

A3ðDnþ1Þ ¼ A3ðDnÞ � V2ðTÞ þ 1

2

Xt

i¼1

ei

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 þ r2i

q
:

Using V2ðTÞ ¼ 1
2

P t
i¼1 eiri, we have

A3ðDnþ1Þ
V3ðDnþ1Þ2=3

¼ A3ðDnÞ
V3ðDnÞ2=3

1þ 1
2A3ðDnÞ

P t
i¼1 eiri

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð e

ri
Þ2

q
� 1

� �

1þ eV2ðTÞ
3V3ðDnÞ

� �2=3

¼ A3ðDnÞ
V3ðDnÞ2=3

1þ C1e
2 þOðe3Þ

1þ C2eþOðe2Þ

with C1 ¼ 1
4A3ðDnÞ

P t
i¼1

ei
ri
and C2 ¼ 2V2ðTÞ

9V3ðDnÞ . Taking small e > 0, we have

an ¼
A3ðDnÞ

V3ðDnÞ2=3
>

A3ðDnþ1Þ
V3ðDnþ1Þ2=3

b anþ1:

By the isoperimetric inequality (1) for d ¼ 3, we have

A3ðDnÞ=V3ðDnÞ2=3 b ð36pÞ1=3

and the minimum is su‰ciently approximated by points on the sphere, provided

n is large. r

Theorem 1. Every face of a minimum n-hedron is a triangle.
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The statement is intuitively quite natural, because we want a round shape

and bending non-triangular faces by pulling outward their diagonals does not

increase the number of vertices. We shall prove Theorem 1 after Lemma 3.

Here we quote a paragraph on Theorem 1 in page 58 of Fejes Tóth [5] (see also

[4, 7]).

Greifen wir um dies einzusehen eine beliebige Ecke E des als extremal

vorausgesetzten Polyeders heraus und bewegen es so, dass erstens der Inhalt,

zweitens die Oberfläche der kleinsten konvexen Hülle H von E und der Übrigen

Ecken des Polyeders konstant bleiben. Im ersten Fall durchläuft E den Rand

eines konvexen Polyeders P, im zweiten Fall dagegen den Rand eines singular-

itätenfreien Eikörpers E, der im Falle eines Extremalen Polyeders o¤enkundig

keinen Punkt ausserhalb P haben kann. Währe nun E die Ecke einer mehr als

dreiseitigen Fläche des ursprünglichen Polyeders, so liege E -wie eine einfache

Überlegung zeigt- auf einer Kante von P. Mithin könnte P nicht die singular-

itätenfreie Fläche E enthalten.

(English Translation) In order to see this, let us take an arbitrary vertex E

of the polyhedron, which is supposed to be extremal. We can move it keeping

firstly the volume, and secondly the surface area, of the smallest convex hull H of

E and the remaining vertices of the polyhedron. In the first case, E passes

through the boundary of a convex polyhedron P, and in the second case, it passes

the boundary of a singularity-free egg-shaped body E, which is obviously not a

point outside P in the case of an extremal polyhedron. If E is the vertex of

a more than three-sided face of the polyhedron, then, it is on an edge of P by a

simple discussion. Thus P cannot contain the singularity-free surface E.

Let us try to understand this description and then show where the gap

is. A point x in a convex set X is visible from a point y A R3nX , if the

segment ½x; y� intersects X only at x. A subset V of X is visible from y if

each element of V is visible from y. A face plane of a polyhedron X is a

hyperplane containing a codimension one face of X . Let us fix p1; p2; . . . ;

pn�1. Define

C ¼ fv A R3 jV3ðDðp1; . . . ; pn�1; vÞÞa vg ð4Þ

and

S ¼ fv A R3 jA3ðDðp1; . . . ; pn�1; vÞÞa hg ð5Þ

with v > V3ðDðp1; . . . ; pn�1ÞÞ and h > A3ðDðp1; . . . ; pn�1ÞÞ. Clearly

V3ðDðp1; . . . ; pn�1; vÞÞ and A3ðDðp1; . . . ; pn�1; vÞÞ are continuous functions of

v. The boundary qðCÞ is a contour of the volume function of the convex hull

of v and visible faces from v of Dðp1; . . . ; pn�1Þ. Visible faces change when

and only when v passes a face plane of Dðp1; . . . ; pn�1Þ and that makes a visible
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face F into a non-visible one, or the other way round. Note that this change

happens only when a non-triangular face with a vertex v appears in Dðp1; . . . ;
pn�1; vÞ. This volume is an a‰ne function on the coordinates of v determined

by visible faces from v. Therefore C is the intersection of half-spaces defined

by visible faces, i.e., a convex polyhedron. If there exists a non-triangular

face, then v must be on the edge of qðCÞ.
The surface qðSÞ is determined by visible edges from v which contribute

the surface of the convex hull. Locally qðSÞ is defined as a contour of sum of

square roots of quadratic polynomials of its coordinates, which implies that

qðSÞ is piecewise smooth. While v moves around, visible edges will switch to

new ones when the visible faces change. Note that this change happens when

v is on a face plane of Dðp1; . . . ; pn�1Þ. Assume that Dn ¼ Dðp1; . . . ; pn�1; pnÞ
is a minimum n-hedron and pn is a vertex of a non-triangular face. Then pn
must be on the edge of qðCÞ. Put v ¼ V3ðDnÞ and h ¼ A3ðDnÞ. If pn is a

totally di¤erentiable point of S, then the surface qðSÞ penetrates qðCÞ and

we must have a point of qðSÞ outside C, which contradicts the minimality of

Dðp1; . . . ; pnÞ. Therefore in this view, if qðSÞ is totally di¤erentiable every-

where, the proof is done (see [2, Lemma 4.4]).

This idea is very insightful but does not work as it is. Here is a counter

example for n ¼ 5 such that qðSÞ has a singular point.

Example 1. Let p1 ¼ ð0; 1; 0Þ, p2 ¼ ð0; 0; 0Þ, p3 ¼ ð1; 0; 0Þ, p4 ¼ ð0; 0; 1Þ.
The surface S with h ¼ 4 consists of 14 algebraic surfaces, and the black

point ð0; 2; 0Þ is a common point of four surfaces depicted in Figure 1. We

claim that this point ð0; 2; 0Þ is singular. Indeed it is on the boundary of four

surfaces

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2 þ ðyþ z� 1Þ2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ z� 1Þ2 þ 2y2

q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ y� 1Þ2 þ 2z2

q
þ 3 ¼ 8; ð6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ z� 1Þ2 þ 2y2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
þ 1 ¼ 8;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x2 þ ðyþ z� 1Þ2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ z� 1Þ2 þ 2y2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ z2

p
þ 2 ¼ 8;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ z� 1Þ2 þ 2y2

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxþ y� 1Þ2 þ 2z2

q
þ 2 ¼ 8;

whose domains and visible edges which contribute to A3ðDðp1; p2; p3; p4; vÞÞ
are

fðx; y; zÞ j xb 0; yb 0; zb 0; xþ yþ zb 1g; ffp4; p1g; fp3; p4g; fp1; p3gg;

fðx; y; zÞ j xa 0; yb 0; za 0; xþ yþ zb 1g; ffp2; p4g; fp4; p3g; fp3; p2gg;
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fðx; y; zÞ j xb 0; yb 0; za 0; xþ yþ zb 1g;

ffp4; p1g; fp2; p1g; fp3; p4g; fp3; p2gg;

fðx; y; zÞ j xa 0; yb 0; zb 0; xþ yþ zb 1g;

ffp2; p4g; fp2; p1g; fp3; p4g; fp3; p1gg;

respectively. For example, (6) follows from

V2ðp4; p1; vÞ þ V2ðp3; p4; vÞ þ V2ðp1; p3; vÞ

þ V2ðp1; p2; p3Þ þ V2ðp1; p2; p4Þ þ V2ðp2; p3; p4Þ ¼ 4:

For the first two surfaces, outer normals at ð0; 2; 0Þ approaching from the cor-

responding domains are ð1; 5; 1Þ, ð�1; 10;�1Þ, which are mutually inconsistent,

and the tangent plane at ð0; 2; 0Þ cannot be defined. For the remaining two sur-

faces, the situation is worse that ð0; 2; 0Þ becomes a singular point by the e¤ect

of the term
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
, whose partial derivatives on x, z vary by the ratio x : z.

Fig. 1. The surface qðSÞ with singular points
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We shall see in Lemma 3 that this type of singularity never vanishes regardless

of the choice of h.

A polyhedral cell is a closed convex set with a non-empty interior whose

boundary consists of finite number of convex subsets of hyperplanes of codi-

mension 1. Hereafter we use a partition of R3 into polyhedral cells by face

planes Wi of a convex hull D. For v A R3nD, consider a plane W separating

D and v. Then the union of visible faces from v is homeomorphically mapped

to a figure of W by a projection sending a point y on the union to the point

y 0 A W if y, y 0, v are collinear. We say that the resulting figure is the planar

projection. Planar projections are a‰ne equivalent under the change of sep-

arating planes. We prepare an important property of visibility.

Lemma 2. The planar projection of the union of visible faces fQigk
i¼1 from

v is convex.

Proof. This follows immediately from the convexity of D. r

We first confirm that Fejes Tóth’s idea is almost valid, but the surface qðSÞ
must have a singular point.

Lemma 3. Assume that Dðp1; . . . ; pn�1Þ is non-degenerate and fix a positive

constant h > A3ðDðp1; p2; . . . ; pn�1ÞÞ. The surface

qðSÞ ¼ fv A R3 jA3ðDðp1; . . . ; pn�1; vÞÞ ¼ hg

is totally di¤erentiable except at most 2e points, where e is the number of edges

of Dðp1; . . . ; pn�1Þ. The surface qðSÞ is not totally di¤erentiable at v A qðSÞ if

and only if the prolongation of an edge of Dðp1; . . . ; pn�1Þ penetrates v.

Proof. We prove that qðSÞ is totally di¤erentiable at a switching point

contained in exactly one face plane of Dðp1; . . . ; pn�1Þ. This switching occurs

at several contiguous edges forming a broken line which are the edges of the

changing face. A crucial point is that the initial and the final vertices of this

broken line do not change by the switching. For example, consider a (planar)

convex quadrangle KLMN with K ¼ p1, L ¼ p2, M ¼ p3. This could be

divided into two triangles in two di¤erent ways, like KLN, LMN or KLM,

KNM. Edge switching occurs when v passes transversally through N. First

the area of triangles KLv and LMv contributes to A3, and later, the triangles

KLM and KvM do. In this case, the related edges are KL, LM at the

beginning and are switched to KM (see Figure 2).

To see that qðSÞ admits a tangent plane at the switching point v, as-

sume that the switching of edges happens on the plane z ¼ 0 to simplify the
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computation. Let

ðai; bi; 0Þ; ðaiþ1; biþ1; 0Þ ði ¼ 1; . . . ; k � 1Þ

be the end points of the switching edges, and ðx; y; zÞ A qðSÞ. Then the surface

qðSÞ on one side of the switching plane is defined locally by an equation of the

form f ðx; y; zÞ þmðx; y; zÞ ¼ h:

f ¼
Xk�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððbi � biþ1Þ2 þ ðai � aiþ1Þ2Þz2 þ ððbi � biþ1Þx� ðai � aiþ1Þyþ aibiþ1 � biaiþ1Þ2

q
2

;

where mðx; y; zÞ is the contribution from non-switching edges. The equation

and the value k change when v passes the switching plane. At a switching

point ðx0; y0; 0Þ, we have

qð f þmÞ
qx

¼
Xk�1

i¼1

bi � biþ1

2

ðbi � biþ1Þx0 � ðai � aiþ1Þy0 þ aibiþ1 � biaiþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððbi � biþ1Þx0 � ðai � aiþ1Þy0 þ aibiþ1 � biaiþ1Þ2

q þ qm

qx
;

qð f þmÞ
qy

¼
Xk�1

i¼1

aiþ1 � ai

2

ðbi � biþ1Þx0 � ðai � aiþ1Þy0 þ aibiþ1 � biaiþ1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððbi � biþ1Þx0 � ðai � aiþ1Þy0 þ aibiþ1 � biaiþ1Þ2

q þ qm

qy

and

qð f þmÞ
qz

¼ qm

qz
:

From Lemma 2, we see that ðai; bi; 0Þ ði ¼ 1; . . . ; kÞ and ðx0; y0; 0Þ form

vertices of a planar convex ðk þ 1Þ-gon. Consequently

ðbi � biþ1Þx0 � ðai � aiþ1Þy0 þ aibiþ1 � biaiþ1

Fig. 2. Switching visible edges
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have the same sign for all i, and the normal vector of qðSÞ at ðx0; y0; 0Þ is

ðb1 � bk; ak � a1; 0ÞG 2m 0, where m 0 is the contribution from mðx; y; zÞ. The

vector ðb1 � bk; ak � a1; 0Þ is orthogonal to the segment joining two end points

of the switching broken line, i.e., the segment between ða1; b1; 0Þ and ðak; bk; 0Þ.
As these two end points are invariant under switching, even at the switching

point ðx0; y0; 0Þ the tangent plane is well-defined. Therefore the surface qðSÞ is
totally di¤erentiable at any switching point contained in exactly one face plane

of Dðp1; . . . ; pn�1Þ.
Let us study the possible singularities. The switching points lying on two

or more face planes are on the intersection lines of face planes. Assume that

a point v is lying on face planes Wj ð j ¼ 1; . . . ; lÞ with lb 2. The face plane

Wj induces switching of edges e
ð jÞ
1 ; . . . ; e

ð jÞ
kj

ðkj b 2Þ to e 0ð jÞ or the other way

round.2 Of course e 0ð jÞ ð j ¼ 1; . . . ; lÞ are distinct. If the set of edges Ej ¼
feð jÞi j i ¼ 1; . . . ; kjg are mutually disjoint for j ¼ 1; . . . ; l, then qðSÞ is totally

di¤erentiable at v by the same proof. The singularity happens only when there

exist j1 0 j2 for which Ej1 \ Ej2 0q. We claim that this is also su‰cient.

In fact, such an intersection must be a single edge and its prolongation must

pass through the point v. This means that around v, there is a polyhedral cell

K such that if u A K then there is a visible edge from u penetrating v, that

contributes the sum of the surface area of Dðp1; . . . ; pn�1; uÞ. This contribution

is the square root of a positive semi-definite quadratic form over three variables

x� a, y� b, z� c with v ¼ ða; b; cÞ, which vanishes3 when and only when u is

on the line passing the visible edge penetrating v. Such a term corresponds

exactly to two visible faces and gives a conic singularity. In most cases, such a

term is unique and it produces a singularity at v. For special cases, there may

be several terms of this type, so that each term vanishes on di¤erent prolon-

gations of edges of Dðp1; . . . ; pn�1Þ penetrating v. If there are more than one

such terms, then all partial derivatives of the terms at v with respect to vari-

ables x� a, y� b, z� c are zero. Therefore the singularity at v becomes

removable after the summation only when this algebraic function becomes

locally a constant. However then the sum is constant everywhere, by alge-

braicity. This cannot happen because every term diverges to positive infinity

by taking limit in all directions except the vanishing line. Therefore qðSÞ
cannot be totally di¤erentiable at v. This shows the claim and finishes the

proof. r

2 In the above proof, the face plane is z ¼ 0, and e
ð jÞ
i ¼ ½ðai ; bi ; 0Þ; ðaiþ1; biþ1; 0Þ�, e 0ð jÞ ¼

½ða1; b1; 0Þ; ðak ; bk ; 0Þ�.
3 In Example 1, this is the term

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ z2

p
; which vanishes on the line through the edge

fp1; p2g.
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Proof of Theorem 1. If there exists a non-triangular face and pn is a

vertex on this face, then v ¼ pn must be on an edge of qðCÞ. Here C and S

are defined by (4) and (5) respectively. By the discussion before Example 1, if

v ¼ pn is non-singular then we get a contradiction. Let v ¼ pn be one of the

singular points of qðSÞ in Lemma 3. Then there is an edge of Dðp1; . . . ; pn�1Þ
penetrating pn. However this implies that one of the vertices of Dðp1; . . . ;
pn�1Þ is in the relative interior of an edge of Dðp1; . . . ; pn�1; pnÞ. In this case

the number of vertices of Dðp1; . . . ; pnÞ is less than n. Since Dðp1; . . . ; pn�1; pnÞ
is a minimum n-hedron, this does not happen by Proposition 2, giving a

contradiction for this case. r

It is possible to give a geometric (but more technical) alternative proof of

Theorem 1 without using the last characterization of the singularity in Lemma

3. We give a rough sketch of it. The singular point of v ¼ pn of qðSÞ in the

above proof is defined by piecewise smooth surfaces. Take polyhedral cells

K1, K2 defined by the face planes Wj ð j ¼ 1; . . . ; lÞ with the maximum and

minimum number of visible faces. It is clear that on Ki ði ¼ 1; 2Þ we see no

visible edges passing v, and therefore the tangent planes approaching from Ki

are well defined. This tangent plane must coincide with the corresponding face

planes of qðCÞ (otherwise one can prolong a tangent plane which penetrates

qðCÞ giving a smaller A3ðDÞ=V3ðDÞ2=3 by a non-convex D). On the other

hand, approaching to v from other polyhedral cells surrounding v, the point v is

singular. Partial derivatives of the singular terms which appear in this inter-

mediate terms are the function on the ratio of x� a : y� b : z� c with v ¼
ða; b; cÞ. Take a slice of qðSÞ by a plane which passes an inner point of C

close to v and intersects all Wj. This gives a piecewise smooth planar curve

that has two ‘almost’ linear parts and other parts with positive curvature.

Shifting the slice plane parallel and closer to p, the shape converges to a single

curve up to similitude, which encircles a convex planar region. On the other

hand, since tangent planes exist within Ki, the parts of the curve in Ki con-

verge to line segments. Recalling S � C, this causes an inconsistency at their

end points.

3. One vertex deformation is impossible

In this section, we further develop the idea of Fejes Tóth and show that

the minimum n-hedron does not allow a deformation of a single vertex.

Let X be a convex set in Rd . A function F : X ! R is convex if for any

u; v A X and any l A ½0; 1�, we have

F ðð1� lÞuþ lvÞa ð1� lÞFðuÞ þ lFðvÞ: ð7Þ
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It is strictly convex if for any u; v A X with u0 v and any l A ð0; 1Þ,

Fðð1� lÞuþ lvÞ < ð1� lÞF ðuÞ þ lF ðvÞ:

Take a convex subset Y � X . If F : X ! R is convex and the equality of

(7) with l A ð0; 1Þ holds only when u; v A Y , then we say X is strictly convex

except Y .

The next lemma gives a method to paste together convex functions defined

in polyhedral cells to obtain a global convex function. Related general criteria

are found in [1] using convex analysis.

Lemma 4. Let Rd be partitioned into a finite number of polyhedral cells

fDig whose interiors are disjoint. Let Z be the set of points of Rd that belong

to more than two Di. Assume that Fi is a convex function on Di so that FiðvÞ ¼
FjðvÞ holds for each v A Di \Dj. Then the function F : Rd ! R is naturally

defined by the values of Fi. We see that F is convex if and only if the following

condition holds
� If v A ðDi \DjÞnZ, v� o A Di and vþ o A Dj for o0 0, then there exists

a positive t A ð0; 1Þ such that F ðvÞa ðFiðv� toÞ þ Fjðvþ toÞÞ=2.
If each Fi is strictly convex, then F is strictly convex.

Noting that o can be chosen arbitrarily small, the condition in Lemma 4

is a local property around Di \Dj.

Proof. The condition is clearly necessary. We prove the su‰ciency.

Note that since Z is of dimension d � 2 or less, if the condition is valid

for v A ðDi \DjÞnZ then it is also valid for Di \Dj by continuity of con-

vex functions. Let us show the simplest case that Rd ¼ D1 [D2 and

D1 \D2 is a hyperplane. Take x A D1, v A D2 and find w A ½x; v� \D1 \D2.

By the assumption, if 00o is a positive multiple of v� x, there exists t > 0

such that

FðwÞa 1

2
ðF1ðw� toÞ þ F2ðw� toÞÞ ð8Þ

where w� to A ðx;wÞ and wþ to A ðw; vÞ. Therefore we find m1; m2 A ð0; 1Þ
such that w� to ¼ ð1� m1Þxþ m1w and wþ to ¼ ð1� m2Þwþ m2v. Using con-

vexity of Fi, we have

F1ðw� toÞa ð1� m1ÞF1ðxÞ þ m1FðwÞ ð9Þ

and

F2ðwþ toÞa ð1� m2ÞF ðwÞ þ m2F2ðvÞ: ð10Þ
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Using (8), (9) and (10), we deduce

F ðwÞa 1� m1
1� m1 þ m2

F1ðxÞ þ
m2

1� m1 þ m2
F2ðvÞ:

Because we can take arbitrarily small t, the required convexity inequality holds

for all x A D1, v A D2 and w A ðx; vÞ \D1 \D2. Take u; x A D1, w A D1 \D2,

v A D2 so that x, w are within the open segment ðu; vÞ. Take l; m A ð0; 1Þ such

that w ¼ ð1� lÞxþ lv and x ¼ ð1� mÞuþ mw. By the above discussion, we

have

F ðwÞa ð1� lÞF1ðxÞ þ lF2ðvÞ: ð11Þ

By the convexity of F1,

F1ðxÞa ð1� mÞF1ðuÞ þ mF ðwÞ: ð12Þ

From (11) and (12), we obtain

F1ðxÞa
1� m

1� mþ ml
F1ðuÞ þ

ml

1� mþ ml
F2ðvÞ:

Summing up, we know that any pair of two points u A D1 and v A D2, the

required convexity inequality is valid for any point x A ðu; vÞ. Therefore we

can merge domains of convexity and the proof for the case Rd ¼ D1 [D2

is finished. If each Fi is strictly convex, then the resulting inequality is strict.

One can easily extend this discussion to the general case. We simply repeat

the merging process for adjacent domains sharing a codimension one face.

The set Z does not disturb this merging process because fDig are chain con-

nected by the adjacency relation induced by codimension one faces. r

A convex body X is strictly convex, if x; y A X with x0 y, then

ð1� lÞxþ ly A InnðXÞ for l A ð0; 1Þ, where InnðX Þ is the interior of X . It

is easy to see that a non-empty set of the form fv jFðvÞa hg for some h > 0 is

strictly convex if F is strictly convex except Y with a convex Y � InnðX Þ.

Theorem 2. S is strictly convex.

Proof. As in the proof of Theorem 1, considering pn as a variable v,

the surface qðSÞ is a contour of the sum of V2ðqi; qiþ1; vÞ, where ½qi; qiþ1�
ði ¼ 0; . . . ; l� 1Þ are the related visible edges. Here qi A fp1; . . . ; pn�1g and

the index i is considered modulo l. The hyperplanes which contain a face of

Dðp1; . . . ; pn�1Þ gives a partition fDigib1 of Rd into a finite number of poly-

hedral cells, and the set of visible faces is invariant within each Di outside

Dðp1; . . . ; pn�1Þ. Let Fi be the function A3ðp1; . . . ; pn�1; vÞ restricted to Di, and

define a constant function F0ðvÞ ¼ A3ðDðp1; . . . ; pn�1ÞÞ for v A D0 :¼ Dðp1; . . . ;
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pn�1Þ. Then FiðvÞ ¼ FjðvÞ for v A Di \Dj is clear. Let Z be as in Lemma 4,

which is a finite set of R3. We claim that the condition of Lemma 4 is also

satisfied. Indeed in the same way as in the proof of Theorem 1, A3ðDðp1; . . . ;
pn�1; vÞÞ is totally di¤erentiable at v A ðDi \DjÞnZ with 1a i < j, i.e.,

FðuÞ ¼ FðvÞ þ ‘FðvÞ � ðu� vÞ þ oðku� vkÞ ð13Þ

with ‘FðvÞ0 ð0; 0; 0Þ. Take o0 0 such that v� o A Di, vþ o A Dj . If

Fiðv� t0oÞ < FðvÞ þ ‘FðvÞ � ð�t0oÞ for some t0 A ð0; 1Þ, then ðFiðv� toÞ �
FiðvÞÞ=ta ðFiðv� t0oÞ � FiðvÞÞ=t0 aM for all t A ð0; t0Þ with a constant M <

‘FðvÞ � ð�oÞ by convexity of Fi. This contradicts (13) and we see Fiðv� t0oÞ
bF ðvÞ þ ‘FðvÞ � ð�t0oÞ. In the same way, we have Fjðvþ t0oÞbF ðvÞ þ
‘FðvÞ � ðt0oÞ and thus FðvÞa ðFiðv� t0oÞ þ Fjðvþ t0oÞÞ=2. For v A D0 \Dj

with jb 1, the condition is trivial because A3ðDðp1; . . . ; pn�1; vÞÞb
A3ðDðp1; . . . ; pn�1ÞÞ. It remains to show that each Fi ðib 1Þ is strictly convex

to apply Lemma 4.

Clearly lb 3. We claim that V2ðqi; qiþ1; xÞ is a convex function.

Indeed, consider a plane Pi passing qi perpendicular to ½qi; qiþ1� and the orthog-

onal projection g to Pi. Then we have V2ðqi; qiþ1; xÞ ¼ kgðxÞ � qik kqiþ1 � qik=
2. Since g is linear and gðqiÞ ¼ qi, the triangle inequality implies

kgðð1� lÞxþ lyÞ � qika ð1� lÞkgðxÞ � qik þ lkgðyÞ � qik ð14Þ

for l A ½0; 1�, which proves the claim. As the sum of convex function is

convex, we know
Pl�1

i¼0 V2ðqi; qiþ1; xÞ and F are convex. The equality for

l A ð0; 1Þ in (14) occurs only if gðxÞ � qi and gðyÞ � qi are linearly dependent.

This happens only when x, y, qi, qiþ1 are in the same plane. However we can

find an index i such that x, y, qi, qiþ1 are not in the same plane. Indeed, by

our implicit assumption on visibility, the lþ 2 points fx; yg [ fqi j i ¼ 0; . . . ;

l� 1g cannot be in the same plane. Therefore, we always have

Xl�1

i¼0

V2ðqi; qiþ1; ð1� lÞxþ lyÞ < ð1� lÞ
Xl�1

i¼0

V2ðqi; qiþ1; xÞ þ l
Xl�1

i¼0

V2ðqi; qiþ1; xÞ

for l A ð0; 1Þ. This proves that F is strictly convex except Dðp1; . . . ; pn�1Þ.
Since S ¼ fv A R3 jF ðvÞa hg for some h > 0, we have shown the theorem.

r

Corollary 1. A minimum n-hedron Dn ¼ Dðp1; . . . ; pnÞ does not allow

deformation of a single vertex, i.e., there exists a positive r so that if Dðp1; . . . ;
pn�1; xÞ is a minimum n-hedron with kx� pnk < r, then x ¼ pn.

Proof. Let Dn ¼ Dðp1; . . . ; pnÞ be the minimum n-hedron. By the proof

of Theorem 1, pn is on the boundary of the convex polyhedron C as well as on
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the surface qðSÞ which is a boundary of the strictly convex set S by Theorem 2

and S is contained in C. Take a small ball B around pn with the property

that B \ qðCÞ is contained in a single face of C. If B contains a point v A
qðCÞ \ qðSÞ other than pn, then the segment ½v; pn� is in qðCÞ \ S by convexity.

However since S is strictly convex, ðvþ pnÞ=2 A InnðSÞ holds, which contradicts

S � C. r

4. Possible shapes of minimum n-hedron for na 12

By numerical experiments and Gröbner bases computation, one can give

a list of possible shapes of minimum n-hedron for na 12.

Lemma 5. Let X be a tetrahedron of vertices K, L, M, N and g be

the orthogonal projection to the plane P containing L, M, N. Let K move in

the plane parallel to P, keeping its volume V3ðXÞ invariant. Among such K, the

minimum surface area A3ðX Þ is attained when gðPÞ is the incenter of the triangle

LMN.

Proof. Let h1, h2, h3 be the signed height4 of the point gðKÞ from the

edge MN, NL, LM respectively in the plane P and h is the length of the

segment ½K ; gðKÞ�. Denote by e1, e2, e3 the length of the edge MN, NL,

LM respectively. Then we have V2ðL;M;NÞ ¼ ðe1h1 þ e2h2 þ e3h3Þ=2 and if

V2ðL;M;NÞ is fixed, ðh1; h2; h3Þ gives a coordinate system of points in P under

this constraint, i.e., two of fh1; h2; h3g determine the remainder through this

relation. Our problem is to minimize

A3ðK ;L;M;NÞ ¼ V2ðL;M;NÞ þ 1

2
ðe1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h2

q
þ e2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h22 þ h2

q
þ e3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h23 þ h2

q
Þ

under V2ðL;M;NÞ ¼ ðe1h1 þ e2h2 þ e3h3Þ=2. Since jhij ! y for some i im-

plies A3ðK ;L;M;NÞ ! y, we may assume that ðh1; h2; h3Þ are in a compact

set of R3. Therefore the minimum of A3ðK ;L;M;NÞ exists. Using Lagrange

multiplier, we see that the minimum is attained when

q

qhi
ðA3ðK ;L;M;NÞ � lðV2ðL;M;NÞ � ðe1h1 þ e2h2 þ e3h3Þ=2ÞÞ ¼ 0;

for i ¼ 1; 2; 3. This implies h1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h21 þ h2

q
¼ h2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h22 þ h2

q
¼ h3=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h23 þ h2

q
and

consequently h1 ¼ h2 ¼ h3. Therefore the minimum is attained when gðPÞ is

the incenter of the triangle LMN. r

4 It is positive in direction to the interior of the triangle DðL;M;NÞ.
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This may be a well-known result. One of the referees informed me of a

similar discussion in an encyclopedia on elementary geometry, ‘‘Kikagaku Dai

Jiten’’ vol. 5, page 440, ed. Shikou Iwata, in Japanese.

Similarly if a pyramid X whose base k-gon B is circumscribed about a

circle and its apex K moves in the plane parallel to B, then A3ðXÞ is minimized

when the orthogonal projection of the apex to B is the center of the circle. In

fact, let us define ei, hi in a similar manner. Though lengths hi are determined

by two parameters, say h1 and h2, we minimize the surface area function in a

less constrained domain

0a hi aC
���X eihi ¼ 2A3ðBÞ

n o
� Rk

with a su‰ciently large C > 0. Then the condition h1 ¼ h2 ¼ � � � ¼ hk is

attained at the center of the circle under the assumption.

Lemma 6. Any d þ 2 points in Rd is partitioned into two non-empty dis-

joint sets U and V such that DðUÞ \ DðVÞ0q.

Proof. This is due to Radon ([12, Theorem 1.1.5] or [8]). It is an easy

consequence of the linear dependence of vi � vdþ2 for i ¼ 1; . . . ; d þ 1 for any

point set fv1; v2; . . . ; vdþ2g. r

A k bi-pyramid is a polygon composed of two pyramids sharing the same

k-gon base joined base to base. A regular k bi-pyramid is a bi-pyramid com-

posed of two congruent regular pyramids sharing the regular k-gon base. Its

main diagonal is the segment joining two apexes vertically passing the center

of the base.

Lemma 7. Among k bi-pyramids D whose convex bases are circumscribed

about a circle of radius h, the minimum

A3ðDÞ
V3ðDÞ2=3

¼ 37=2k cot
ðk � 2Þp

2k

� �� �1=3

is attained when it is a regular bi-pyramid whose main diagonal has lengthffiffiffi
8

p
h.

Proof. The minimization problem is divided into two pyramids, say, an

upper pyramid and a lower pyramid. Let B be the common base polygon.

Letting yi ði ¼ 1; . . . ; kÞ be the vertex angles of B, we obtain A2ðBÞ ¼ hr with

r ¼ 2
Pk

i¼1 cotðyi=2Þ and V2ðBÞ ¼ hA2ðBÞ=2. Let H1 be the height of the apex

of the upper pyramid D 0 to the base B, and H2 is the one for the lower pyramid

D 00. Then we have V3ðD 0Þ ¼ V2ðBÞH1=3 ¼ h2rH1=6. By the discussion after

Lemma 5, A3ðD 0Þ is minimized when the orthogonal projection of the apex to B
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is the center of the circle and

A3ðD 0Þ � V2ðBÞ ¼
1

2
A2ðBÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þH 2

1

q
¼ 1

2
hr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þH 2

1

q
:

Let us fix r and minimize A3ðDÞ by selecting H1, H2 and h keeping V3ðDÞ
invariant. Fixing h2ðH1 þH2Þ=6, the minimum of hð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þH 2

1

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þH 2

2

q
Þ=

2 is attained when H1 ¼ H2 ¼
ffiffiffi
2

p
h. Now we have A3ðDÞ ¼

ffiffiffi
3

p
h2r and

V3ðDÞ ¼
ffiffiffi
2

p
h3r=3. Thus

A3ðDÞ
V3ðDÞ2=3

¼ 37=62�1=3r1=3:

Since cotðx=2Þ is convex for x A ð0; pÞ, by Jensen’s inequality, the minimum

of r is achieved by the regular k-gon when y1 ¼ y2 ¼ � � � ¼ yk ¼ p� 2p=k and

r ¼ 2k cot
ðk�2Þp

2k

� �
. r

Theorem 3. We have5

a4 ¼ 6 � 31=6A7:20562;

a5 ¼ 35=3A6:24025;

a6 a h6 ¼ 37=622=3A5:71911;

a7 a h7 ¼ 37=655=12ð
ffiffiffi
5

p
� 2Þ1=6A5:53841;

a8 a h8A5:42118;

a9 a h9A5:31637;

a10 a h10A5:2533;

a11 a 5:20713;

a12 a h12 ¼ 37=6ð70� 30
ffiffiffi
5

p
Þ1=3A5:14835;

where h8, h9, h10 are algebraic numbers of degree 72, 78, 36 respectively.

The value a4 is attained by a regular tetrahedron and a5 by a regular 3 bi-

pyramid.

Our experiments suggest that all the inequalities are equalities, though we

did not identify the exact value for a11. Several specialists working on com-

puter science told me that brute force optimization does not seem feasible as

it has too much free variables for now.

5For the case n ¼ 6, see § 5 (2).
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Proof. The case n ¼ 4 may belong to a folklore. At least a written

proof is found in Hadwiger [9, p. 273, (187)] using the Steiner symmetrization.

Here we give a direct proof. Let KLMN be the minimum 4-hedron. By

Lemma 5, projections of K , L, M, N to the corresponding basis triangle

must be their incenters respectively. Let KH be the perpendicular from K to

DðL;M;NÞ, and HI , HJ be the perpendiculars from H to LM and LN

respectively. Since H is the incenter of DðL;M;NÞ, we have HI ¼ HJ,

KI?LM, KJ?LN. From KI ¼ KJ and IL ¼ JL, we see that ffKLM ¼ ffKLN .

By cyclic discussion, we see ffKLM ¼ ffKLN ¼ ffMLN ¼: ffL. Similarly, we

see three angles at each vertex of DðK;L;M;NÞ are identical for all vertices,

which are denoted by ffK , ffL, ffM, ffN. Since the sum of angles of triangular

faces are all equal to 2p, we deduce that ffK ¼ ffL ¼ ffM ¼ ffN. Therefore

all the faces are regular triangles. This proves the case of the minimum

4-hedron.

For minimum 5-hedron, in light of Lemma 2 we may assume that

none of vertices is contained in the convex hull of remaining four vertices.

Therefore by Lemma 6, five vertices are divided into two sets fK ;L;Mg
and fN;Og which satisfy DðK;L;MÞ \ DðN;OÞ0q. The problem is there-

fore reduced to Lemma 7 for k ¼ 3. This case was also shown in [2, Theorem

5.5].

For nb 6, we performed a random search of the minimum. A rough

sketch of the empirical method is

(1) Choose random n points in R3 and determine the combinatorial

structure of the convex hull, in particular the valency vector, that is,

the multi-set of valencies of vertices.

(2) Iterate process 1, until we find a valency vector of small variance.

Experimentally, we know that A3ðDÞ=V3ðDÞ2=3 cannot be small if this

variance is large.

(3) Select a vertex, an edge or a face of D and minimize A3ðDÞ=V3ðDÞ2=3
by moving its extremities, keeping the valency vector invariant. If

the valency vector changes, then we skip this minimization.

(4) Find two points v1, v2 which give the diameter of D, and apply an

a‰ne transformation to make the diameter a little smaller but keeping

the plane orthogonal to v1 � v2 invariant.

(5) Repeat several times these processes 2, 3 and 4 at random.

Until na 12 it seems the above iteration leads us to a possible minimum

for a fixed valency vector. Trying many valency vectors, we can guess the

target shape. Then we perform algebraic computation to obtain the exact

minimum configuration. Taking into account the expected symmetry of the

target shape, we set up a system of algebraic equations with a small number

of variables. Then we eliminate variables by using some program equipped
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with Gröbner basis computation. We used Mathematica, PARI-GP, and Risa-

Asir appealing to each advantage. Gröbner basis computation has a lot of

subtleties. Successful computation depends heavily on the number of vari-

ables, their imposed order, and degree of polynomials. Hereafter we describe

our computation but skipping such technical details, giving necessary informa-

tion to reconfirm the computation.

By our experiments, the target shapes for h6 and h7 are attained by regular

bi-pyramids as in Lemma 7. The most di‰cult and interesting shape appears

when n ¼ 8, see Figures 3 and 4. It is combinatorially equivalent to the

Siamese dodecahedron, one of the deltahedra.

Fig. 3. Minimum 8-hedron
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Fig. 4. Origami diagram

130 Shigeki Akiyama



By using numerical minimization, we could guess that 8 points are of the

form:

ðz; 0;GwÞ; ðx;G1; 0Þ; ð�z;Gw; 0Þ; ð�x; 0;G1Þ

with

wA2:0428; xA1:53525; zA0:476614:

Let us consider w, x, z as variables and obtain their exact algebraic repre-

sentations. We have

A3ðDÞ ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ ðx� zÞ2

q
þ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw� 1Þ2w2 þ w2ðxþ zÞ2 þ ðwðx� zÞ þ 2zÞ2

q

and

V3ðDÞ ¼ 4wðxþ wxþ zÞ=3:

We view A3=V
2=3
3 as the function of three variables. Basically our task is to

eliminate valuables from

qx
A3

3

V 2
3

� �
¼ qw

A3
3

V 2
3

� �
¼ qz

A3
3

V 2
3

� �
¼ 0:

First transfer problems into the one on polynomials with integer coe‰cients,

by putting

u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ ðx� zÞ2

q
; v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðw� 1Þ2w2 þ w2ðxþ zÞ2 þ ðwðx� zÞ þ 2zÞ2

q
:

Then eliminate u, v to find an ideal over x, w, z and perform primary ideal

decomposition (this was indispensable for this computation). We obtain the

minimal polynomials6 of w, x2, z2:

8� 40t� 32t2 þ 268t3 � 14t4 þ 378t5 � 916t6 þ 874t7

� 265t8 � 314t9 þ 374t10 � 150t11 þ 21t12;

� 1500625þ 246891400t� 6498924184t2 þ 197676252320t3 � 549916476544t4

þ 9593743607488t5 � 37068998078592t6 þ 43451585720832t7

þ 6412940883200t8 � 47369088623616t9 þ 34505601388544t10

� 10887830962176t11 þ 1413638553600t12;

6Minimal polynomials of x and z are the ones subject to substitution t ! t2.
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� 881721þ 14088624t� 507815656t2 þ 22228266304t3 � 345876361600t4

þ 2163078191936t5 � 5229062814592t6 þ 2885777661952t7 þ 604100406528t8

þ 284044459008t9 � 1111813844992t10 þ 65086242816t11 þ 157070950400t12:

The minimal polynomial of A3ðDÞ6=ðV3ðDÞÞ4 is

846253032058341803633618097683156083357246027504784634537836544

� 145765911302088136407360046924472940590350227969907327078760448t

þ 44739094836549297939345827315732094525400511681413644681216t2

� 5444218664651134627342263572192722894788633799480098816t3

þ 381929202246269536064619254896305729053865712762224t4

� 23215968331655851588483378342178431615039134384t5

þ 908544689594387775769635417411363042641304t6

� 26376155703404842068063899980163109720t7

þ 639590587552165626186327476412759t8

� 9114814042610279966292752064t9 þ 144758783681628174471168t10

� 130494391161126912t11 þ 4980736000t12:

A non-trivial coincidence of two angles indicated in Figure 4 is confirmed by

algebraic computation of cosine values of the angles. One can also confirm

numerically that this minimum shape is rigid, see Section 5.

For h9, consider a regular triangular prism and put three identical

4-pyramids to each of rectangular side faces whose centroid is the foot of

the perpendicular from the apex of the pyramid, see Figure 5 (a). Let the edge

length of the regular triangle be 1. Then the height of the prism b, and the

height of the 4-pyramid h are expected to be

bA1:04725; hA0:413823:

We have

A3ðDÞ ¼
ffiffiffi
3

p

2
þ 3b

ffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 1

4

r
þ 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ b2

4

r

and

V3ðDÞ ¼
ffiffiffi
3

p
b

4
þ bh:
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We treat A3ðDÞ=V3ðDÞ2=3 as a function of two variables b and h, and apply the

elimination of variables as we did in n ¼ 8. Note that in order to treat
ffiffiffi
3

p
, we

also introduce another variable s and the polynomial s2 � 3 to be added in the

ideal. The minimal polynomials of b2 and h2 are

� 3600� 9384tþ 157415t2 þ 1871849t3 � 3005515t4 � 3048555t5

þ 7100157t6 � 716904t7 � 5370867t8 þ 3887865t9 � 810945t10

� 53622t11 þ 17415t12 þ 2187t13;

and

� 27� 216t� 5688t2 þ 99268t3 þ 2629424t4 � 11859776t5 � 198587904t6

þ 641098752t7 þ 2269974528t8 þ 3790651392t9 � 43985534976t10

þ 74140876800t11 � 37371248640t12 þ 5435817984t13;

respectively. The minimal polynomial of A6
3=V

4
3 is

� 8741200275671730192755167246352564248392781977833773782269952

þ 5692272790315788765597663433429575175625193067065671949484032t

þ 1663401637275489431763071207791450034909825698981382756499456t2

þ 205636897183575223972130099822721877708248944269405343514624t3

� 29496333327693613396843751515776856015704029599701614592t4

� 58714195329202332973530206007453465620049796957569024t5

� 13596161545396297014562622838466932898374596846592t6

� 847586880386300377059351613641377507384112384t7

� 58377287904203791631778906263194550638656t8

þ 3993703760487214498878732921512576256t9

� 12610065164386918027558684269276t10

þ 4281392126518694452576397473t11 � 20704119330241635606528t12

þ 21761395104153600t13:

For h10, prepare an anti-prism, a convex hull of a square and its parallel

square rotated by p=4, and put two identical regular 4-pyramids on the two
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parallel squares, see Figure 5 (b). We introduce a coordinate of 10 points:

ðG1; 0;�hÞ; ð0;G1;�hÞ; G
1ffiffiffi
2

p ;G
1ffiffiffi
2

p ; h

� �
; ð0; 0;GzÞ

with

hA0:541397; zA1:02619;

and minimize

A3
3

V 2
3

¼ 36ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2

ffiffiffi
2

p
þ 8h2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2h2 � 4hzþ 2z2

p
Þ3

ðhþ
ffiffiffi
2

p
hþ zÞ2

:

The minimal polynomials of h2, z2, A6
3=V

4
3 are

1þ 48tþ 144t2 � 16128t3 � 31296t4 þ 273408t5 þ 28672t6;

47089þ 1130960t� 1729392t2 þ 2846464t3 � 1889856t4 � 277504t5 þ 28672t6;

and

� 9592639401335565227088041861971968þ 362253880325110957404812476416t

� 4924615865029090098020352t2 þ 462296427139672731648t3

� 713296009601244t4 þ 274678452t5 þ t6;

respectively. We also obtained the conjectural shape for n ¼ 11 by experi-

ments. It is a convex hull of

ðx1; 0;G1Þ; ðx2;Gy1; 0Þ; ð�x3;Gy2; 0Þ; ð�x4;Gy3;GzÞ; ð�x5; 0; 0Þ

Fig. 5. Minimum polyhedron
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with

x1A1:15135; x2A0:617047; x3A0:91681; x4A0:550702; x5A1:98113;

y1A1:4264; y2A1:34059; y3A0:845054; zA1:38959

and

A3=V
2=3
3 A5:207134373504469;

see Figures 6 and 7. It has 18 faces, which follows from Euler’s formula and

the fact that all faces are triangles. The shape is combinatorially equivalent

to a polyhedron obtained by merging two adjacent vertices of the regular

icosahedron into one.

Fig. 7. Minimum 11-hedron

Fig. 6. n ¼ 11: From y-axis direction
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We could not make the coordinates algebraic, because the expected sym-

metry group ðZ=2ZÞ2 is too small, and the number of valuables is too large.

The minimum 12-hedron is of course expected to be the regular icosahe-

dron with

A3=V
2=3
3 ¼ 37=6ð70� 30

ffiffiffi
5

p
Þ1=3A5:14835:

5. Problems

We give a list of intriguing problems.

(1) Can we give an asymptotic estimate for the convergence of ðanÞ?
(2) Prove our candidates minimum for i ¼ 6; 7; 8; 9; 10; 12. (Added in

Revision: the validity for i ¼ 6 is confirmed in [3]).

(3) Is the minimum n-hedron Dðp1; . . . ; pnÞ rigid? We say that Dðp1; . . . ;
pnÞ is rigid if it does not allow deformation of n� 3 vertices, i.e., there

exists a positive r so that for any subset I of f1; . . . ; ng of cardinality

n� 3, if Dðx1; . . . ; xnÞ is a minimum n-hedron with kxi � pik < r for

i A I and xi ¼ pi for i B I , then xi ¼ pi holds for all i.

(4) Is the symmetry group of the minimum n-hedron non-trivial for all

n? Can it have a chirality, i.e., can its symmetry group in Oð3Þ and

that in SOð3Þ be di¤erent?

(5) Is qðSÞ in Theorem 2 defined by strongly convex functions?
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