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Abstract

The purpose of this paper is to prove the quadruple coincidence point theorems for a mixed

g-monotone mapping satisfying nonlinear contractions in partially ordered G-metric spaces.

Our results generalize some results on the topics in the literature.
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1 Introduction

Fixed point theory is a very popular tool in solving existence problems in many branches of math-

ematical analysis. Metric spaces are used as an important tools used in the modeling of day-to-day

life problems and provide a more general setting for mathematicians in various fields such as op-

timization, mathematical modelling and economic theories. Generalizations of metric spaces were

proposed by Gahler ([11], [12]) (called 2-metric spaces) and Dhage ([8], [9], [10]) (called D-metric

spaces) to extend known metric space theorems in more general setting, but different authors proved

that these attempts are invalid (for detail see [13], [24], [27]). In 2005, Mustafa and Sims [25] intro-

duced a new structure of generalized metric spaces called G-metric spaces, to develop and introduce

a new fixed point theory for various mappings in this new structure.

In recent times, there has been an increasing interest in studying the existence of fixed points

for contractive mappings satisfying monotone properties in ordered metric spaces. The first fixed

point result on a partially ordered metric space was given by Turinici [33]. Further, Ran and

Reurings [30] presented some applications of Turinici’s theorem to matrix equations. Subsequently,

Nieto and López [28] extended the result of Ran and Reurings [30] for nondecreasing mappings and

used these results to obtain a unique solution for a first order ordinary differential equation with

periodic boundary conditions. Later, Agarwal et al. [1] established some new results for generalized

contractions in partially ordered metric spaces, and have shown that the results of [28, 30] follow

from their results as particular cases.

Bhaskar and Lakshmikantham [4] introduced the concept of coupled fixed point for contractive

mappings F : X ×X → X satisfying the mixed monotone property, where X is a partially ordered
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metric space and proved some interesting coupled fixed point theorems. Whereas Lakshmikantham

and Ćirić [20] introduced the concept of a mixed g-monotone mapping and proved coupled coinci-

dence and coupled common fixed point theorems and thereby extending theorems due to Bhaskar

and Lakshmikantham [4]. There after, many authors have obtained number of coupled coincidence

and coupled fixed point theorems in ordered metric spaces (see ([2], [7], [6], [21], [29], [31]) as ex-

amples). In [3], Berinde and Borcut introduced the concept of tripled fixed point and established

fixed point results for mappings having a monotone property and satisfying a contractive condition

in ordered metric spaces. Very recently, Karapinar [19] introduced the concept of quadruple fixed

point and establish some related fixed point theorems. Further, work related to Quadruple fixed

point is developed and related fixed point theorems are obtained (see [16, 17, 18, 19, 23]).

In the present work, we establish quadruple coincidence point theorems for a mixed g-monotone

mapping satisfying nonlinear contractions in partially ordered G-metric spaces. Our theorems gen-

eralize the very recent results of Karapinar [15], Karapinar and Berinde [18] and various other

related results in the literature. Before stating and proving our results, we shall recall some math-

ematical preliminaries.

2 Preliminaries

Throughout this paper, a partially ordered set with the partial order ”�” is denoted by (X,�).

Further, ”x � y holds” means that ”y � x holds” and ”x ≺ y holds” means ”x � y holds and

x 6= y”. Throughout the manuscript we denote X ×X ×X ×X by X4.

Definition 2.1. (G-Metric space [25]) Let X be a nonempty set and let G : X ×X ×X → R+ be

a function satisfying the following properties:

(1) G(x, y, z) = 0 if x = y = z,

(2) 0 < G(x, x, y) for all x, y ∈ X with x 6= y,

(3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z 6= y,

(4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ...( symmetry in all three variables).

(5) G(x, y, z) ≤ G(x, a, a) + G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality),

Then the function G is called a G-metric on X, and the pair (X,G) is called a G-metric space.

Definition 2.2. ([25]) Let (X,G) be a G-metric space and let {xn} be a sequence of points of X,

a point x ∈ X is said to be the limit of the sequence {xn} if lim
n,m→∞

G(x, xn, xm) = 0 and we say

that the sequence {xn} is G-convergent to x. Thus, if {xn} → x in a G-metric space (X,G), then

for any ε > 0, there exists a positive integer N such that G(x, xn, xm) < ε, for all n,m ≥ N .

It has been shown in [25] that the G-metric induces a Hausdorff topology and the convergence

described in the above definition is relative to this topology. The topology being Hausdorff, a

sequence can converge at most to one point.
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Definition 2.3. ([25]) Let (X,G) be a G-metric space, a sequence {xn} is called G-Cauchy if for

every ε > 0, there is a positive integer N such that G(xn, xm, xl) < ε, for all n,m, l ≥ N , that is,

if G(xn, xm, xl)→ 0, as n,m, l→∞.

Lemma 2.1. ([25]) Let (X,G) be a G-metric space, then the following are equivalent:

(1) {xn} is G-convergent to x.

(2) G(xn, xn, x)→ 0, as n→∞.

(3) G(xn, x, x)→ 0, as n→∞.

(4) G(xm, xn, x)→ 0, as m,n→∞.

Lemma 2.2. ([25]). If (X,G) is a G-metric space then G(x, y, y) ≤ 2G(y, x, x) for all x, y ∈ X.

Lemma 2.3. ([7]) If (X,G) is a G-metric space then {xn} is a G-Cauchy sequence if and only if

for every ε > 0, there exists a positive integer N such that G(xn, xm, xm) < ε, for all m > n ≥ N .

Definition 2.4. ([25]) Let (X,G), (X
′
, G
′
) be two G-metric spaces. Then a function f : X → X

′

is G-continuous at a point x ∈ X if and only if it is G sequentially continuous at x, that is, whenever

{xn} is G-convergent to x, {f(xn)} is G-convergent to f(x).

Definition 2.5. ([25]) A G-metric space (X,G) is called symmetric G-metric space if G(x, y, y) =

G(y, x, x) for all x, y ∈ X.

Definition 2.6. ([25]) A G-metric space (X,G) is said to be G-complete (or complete G-metric

space) if every G-Cauchy sequence in (X,G) is convergent in X.

The following concept of a mixed monotone property has been introduced by Bhaskar and

Lakshmikantham [4]

Definition 2.7. Let (X,�) be a partially ordered set and F : X × X → X be a mapping. The

mapping F is said to have the mixed monotone property if F is monotone non-decreasing in its

first argument and is monotone non-increasing in its second argument, that is, for any x1, x2 ∈ X,

x1 � x2 implies F (x1, y) � F (x2, y) for y ∈ X and for all y1, y2 ∈ X, y1 � y2 implies F (x, y1) �
F (x, y2), for x ∈ X.

Definition 2.8. ([4] Coupled Fixed Point) An element (x, y) ∈ X ×X, when X is any non-empty

set, is called a coupled fixed point of the mapping F : X ×X → X if F (x, y) = x and F (y, x) = y.

Definition 2.9. ([7]) Let (X,G) be a G-metric space. A mapping F : X ×X → X is said to be

continuous if for any two G-convergent sequences {xn} and {yn} converging to x and y respectively,

{F (xn, yn)} is G-convergent to F (x, y).

Lakshmikantham and Ćirić [20] introduced the following concept of a g-mixed monotone map-

ping.
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Definition 2.10. Let (X,�) be a partially ordered set. Let us consider mappings F : X×X → X

and g : X → X. The map F is said to have mixed g-monotone property if F (x, y) is monotone

g-non-decreasing in x and is monotone g-non-increasing in y; that is, for any x, y ∈ X,

x1, x2 ∈ X, gx1 � gx2 implies F (x1, y) � F (x2, y),

y1, y2 ∈ X, gy1 � gy2 implies F (x, y2) � F (x, y1).

Definition 2.11. ([20]) An element (x, y) ∈ X × X is called a coupled coincidence point of the

mappings F : X ×X → X and g : X → X if F (x, y) = gx and F (y, x) = gy.

Definition 2.12. ([20]) We say that mappings F : X ×X → X and g : X → X are commutative

if g(F (x, y)) = F (gx, gy) for all x, y ∈ X.

Just recently, Karapinar [19] has introduced the following partial order on the product space

X4 :

(u, v, r, t) � (x, y, z, w) if and only if x � u, y � v, z � r, w � t, where (u, v, r, t), (x, y, z, w) ∈ X4.

Regarding this partial order, we have the following definitions from [19, 18]:

Definition 2.13. ([19]) Let (X,�) be a partially ordered set and F : X4 → X. We say that F

has the mixed monotone property if F (x, y, z, w) is monotone non-decreasing in x and z, and is

monotone non-increasing in y and w, that is, for any x, y, z, w ∈ X,

x1, x2 ∈ X, x1 � x2 implies F (x1, y, z, w) � F (x2, y, z, w),

y1, y2 ∈ X, y1 � y2 implies F (x, y1, z, w) � F (x, y2, z, w),

z1, z2 ∈ X, z1 � z2 implies F (x, y, z1, w) � F (x, y, z2, w)

and

w1, w2 ∈ X, w1 � w2 implies F (x, y, z, w1) � F (x, y, z, w2).

Definition 2.14. ([19] Quadruple fixed point) An element (x, y, z, w) ∈ X4 is called a quadruple

fixed point of F : X4 → X if F (x, y, z, w) = x, F (x,w, z, y) = y, F (z, y, x, w) = z and F (z, w, x, y) =

w.

Definition 2.15. ([18]) Let (X,�) be a partially ordered set and F : X4 → X. We say that F

has the mixed g-monotone property if F (x, y, z, w) is monotone g-non-decreasing in x and z, and

is monotone g-non-increasing in y and w, that is, for any x, y, z, w ∈ X,

x1, x2 ∈ X, g(x1) � g(x2) implies F (x1, y, z, w) � F (x2, y, z, w),

y1, y2 ∈ X, g(y1) � g(y2) implies F (x, y1, z, w) � F (x, y2, z, w),

z1, z2 ∈ X, g(z1) � g(z2) implies F (x, y, z1, w) � F (x, y, z2, w)

and

w1, w2 ∈ X, g(w1) � g(w2) implies F (x, y, z, w1) � F (x, y, z, w2).

Definition 2.16. ([18]) An element (x, y, z, w) ∈ X4 is called a quadruple coincidence point of

F : X4 → X and g : X → X if F (x, y, z, w) = g(x), F (x,w, z, y) = g(y), F (z, y, x, w) = g(z) and

F (z, w, x, y) = g(w).
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Definition 2.17. ([18]) We say that mappings F : X4 → X and g : X → X are commutative if

g(F (x, y, z, w)) = F (gx, gy, gz, gw), for all x, y, z, w ∈ X.

We denote by ψ the set of functions ϕ : [0,+∞)→ [0,+∞) satisfying

(a) ϕ(t) < t for all t > 0,

(b) lim
r→t+

ϕ(r) < t for all t > 0.

The aim of this paper is to extend the results concerning partially ordered metric spaces of

Karapinar and Berinde [18] to partially ordered G-metric spaces. For this purpose, we give the

following definition:

Definition 2.18. Let (X,G) be a G-metric space. A mapping F : X4 → X is said to be contin-

uous if for any four G-convergent sequences {xn}, {yn}, {zn} and {wn} converging to x, y, z and w

respectively, {F (xn, yn, zn, wn)} is G-convergent to F (x, y, z, w).

3 Main result

Our first main result is the following coincidence point theorem.

Theorem 3.1. Let (X,�) be a partially ordered set and G be a G-metric on X such that (X,G)

is a complete G-metric space. Suppose that there exists ϕ ∈ ψ, F : X4 → X and g : X → X such

that

G(F (x1, y1, z1, w1), F (x2, y2, z2, w2), F (x3, y3, z3, w3))

≤ ϕ
(
G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3)

4

)
(3.1)

for all xi, yi, zi, wi ∈ X where 1 ≤ i ≤ 3 for which gx3 � gx2 � gx1, gy1 � gy2 � gy3, gz3 �
gz2 � gz1 and gw1 � gw2 � gw3. Suppose also that F is continuous and has the mixed g-

monotone property, F (X4) ⊆ g(X) and g is continuous and commutes with F . If there exist x0,

y0, z0, w0 ∈ X such that gx0 � F (x0, y0, z0, w0), gy0 � F (x0, w0, z0, y0), gz0 � F (z0, y0, x0, w0) and

gw0 � F (z0, w0, x0, y0), then F and g have a quadruple coincidence point in X.

Proof. Let x0, y0, z0, w0 ∈ X be such that gx0 � F (x0, y0, z0, w0), gy0 � F (x0, w0, z0, y0), gz0 �
F (z0, y0, x0, w0) and gw0 � F (z0, w0, x0, y0). Since F (X4) ⊆ g(X), choose x1, y1, z1, w1 ∈ X such

that

gx1 = F (x0, y0, z0, w0), gy1 = F (x0, w0, z0, y0), gz1 = F (z0, y0, x0, w0) and gw1 = F (z0, w0, x0, y0).

For the same reason, we can again choose x2, y2, z2, w2 ∈ X as

gx2 = F (x1, y1, z1, w1), gy2 = F (x1, w1, z1, y1), gz2 = F (z1, y1, x1, w1) and gw2 = F (z1, w1, x1, y1).

Using the mixed g-monotone property, we have
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gx0 � gx1 � gx2, gy2 � gy1 � gy0, gz0 � gz1 � gz2 and gw2 � gw1 � gw0.

By continuing this process, we can define sequences (xn), (yn), (zn) and (wn) in X in such a manner

that

gxn = F (xn−1, yn−1, zn−1, wn−1) � gxn+1 = F (xn, yn, zn, wn),

gyn+1 = F (xn, wn, zn, yn) � gyn = F (xn−1, wn−1, zn−1, yn−1),

gzn = F (zn−1, yn−1, xn−1, wn−1) � gzn+1 = F (zn, yn, xn, wn)

and

gwn+1 = F (zn, wn, xn, yn) � gwn = F (zn−1, wn−1, xn−1, yn−1).

If (gxn+1, gyn+1, gzn+1, gwn+1) = (gxn, gyn, gzn, gwn) for some n, then F and g have a quadruple

coincidence point.

So, we assume

(gxn+1, gyn+1, gzn+1, gwn+1) 6= (gxn, gyn, gzn, gwn) for all n ∈ N.

For n ∈ N, let

tn = G(gxn+1, gxn+1, gxn)+G(gyn+1, gyn+1, gyn)+G(gzn+1, gzn+1, gzn)+G(gwn+1, gwn+1, gwn).

(3.2)

Since for a G-metric, G(x, x, y) > 0 for all x, y ∈ X with x 6= y, so tn > 0 for all n ∈ N. Using

inequality (3.1), we have

G(gxn+1, gxn+1, gxn) = G(F (xn, yn, zn, wn), F (xn, yn, zn, wn), F (xn−1, yn−1, zn−1, wn−1))

≤ ϕ
(
G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1) +G(gzn, gzn, gzn−1) +G(gwn, gwn, gwn−1)

4

)
(3.3)

G(gyn+1, gyn+1, gyn) = G(F (xn, wn, zn, yn), F (xn, wn, zn, yn), F (xn−1, wn−1, zn−1, yn−1))

≤ ϕ
(
G(gxn, gxn, gxn−1) +G(gwn, gwn, gwn−1) +G(gzn, gzn, gzn−1) +G(gyn, gyn, gyn−1)

4

)
(3.4)

G(gzn+1, gzn+1, gzn) = G(F (zn, yn, xn, wn), F (zn, yn, xn, wn), F (zn−1, yn−1, xn−1, wn−1))

≤ ϕ
(
G(gzn, gzn, gzn−1) +G(gyn, gyn, gyn−1) +G(gxn, gxn, gxn−1) +G(gwn, gwn, gwn−1)

4

)
(3.5)

and

G(gwn+1, gwn+1, gwn) = G(F (zn, wn, xn, yn), F (zn, wn, xn, yn), F (zn−1, wn−1, xn−1, yn−1))

≤ ϕ
(
G(gzn, gzn, gzn−1) +G(gwn, gwn, gwn−1) +G(gxn, gxn, gxn−1) +G(gyn, gyn, gyn−1)

4

)
(3.6)
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Adding (3.3)-(3.6), we get

tn ≤ 4ϕ
(

tn−1

4

)
(3.7)

Since ϕ(t) < t for all t > 0, it follows that (tn) is monotone decreasing. Therefore, there is some

δ ≥ 0 such that lim
n→+∞

tn = δ+.

We now assert that δ = 0. However, contradictorily let us suppose that δ > 0.

Taking the limit as n→ +∞ on both sides of (3.7) and using the properties of the map ϕ, we get

δ = lim
n→+∞

tn ≤ 4 lim
n→+∞

ϕ

(
tn−1

4

)
= 4 lim

t→( δ4 )+
ϕ(t) < δ,

which is a contradiction. Thus δ = 0.

Therefore, from (3.2), we have

lim
n→+∞

tn = 0. (3.8)

Next, we prove that (gxn), (gyn), (gzn) and (gwn) are Cauchy sequences in the G-metric space

(X,G). Suppose on the contrary that at least one of (gxn), (gyn), (gzn) and (gwn) are not a

Cauchy sequence in (X,G). Then there exist ε > 0 and sequences of natural numbers (p(r)) and

(q(r)) such that for every natural number r, p(r) > q(r) ≥ r and

lr = G(gxp(r), gxp(r), gxq(r)) +G(gyp(r), gyp(r), gyq(r))+G(gzp(r), gzp(r), gzq(r))

+G(gwp(r), gwp(r), gwq(r)) ≥ ε. (3.9)

Now, corresponding to q(r) choose p(r) to be the smallest for which equation (3.9) holds.

So,

G(gxp(r)−1, gxp(r)−1, gxq(r)) +G(gyp(r)−1, gyp(r)−1,gyq(r)) +G(gzp(r)−1, gzp(r)−1, gzq(r))

+G(gwp(r)−1, gwp(r)−1, gwq(r)) < ε. (3.10)

Making use of the rectangle inequality property of a G-metric, we have

ε ≤ lr

≤ G(gxp(r), gxp(r), gxp(r)−1) +G(gxp(r)−1, gxp(r)−1, gxq(r)) +G(gyp(r), gyp(r), gyp(r)−1)

+G(gyp(r)−1, gyp(r)−1, gyq(r)) +G(gzp(r), gzp(r), gzp(r)−1) +G(gzp(r)−1, gzp(r)−1, gzq(r))

+G(gwp(r), gwp(r), gwp(r)−1) +G(gwp(r)−1, gwp(r)−1, gwq(r))

= G(gxp(r)−1, gxp(r)−1, gxq(r)) +G(gyp(r)−1, gyp(r)−1, gyq(r)) +G(gzp(r)−1, gzp(r)−1, gzq(r))

+G(gwp(r)−1, gwp(r)−1, gwq(r)) + tp(r)−1.
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Using equation (3.8), (3.10) and letting r → +∞ in the above inequality, we get

lim
r→+∞

lr = ε+

(3.11)

Again using the rectangle inequality property, we have

lr = G(gxp(r), gxp(r), gxq(r)) +G(gyp(r), gyp(r), gyq(r)) +G(gzp(r), gzp(r), gzq(r))

+G(gwp(r), gwp(r), gwq(r))

≤ G(gxp(r), gxp(r), gxp(r)+1) +G(gxp(r)+1, gxp(r)+1, gxq(r)+1) +G(gxq(r)+1, gxq(r)+1, gxq(r))

+G(gyp(r), gyp(r), gyp(r)+1) +G(gyp(r)+1, gyp(r)+1, gyq(r)+1) +G(gyq(r)+1, gyq(r)+1, gyq(r))

+G(gzp(r), gzp(r), gzp(r)+1) +G(gzp(r)+1, gzp(r)+1, gzq(r)+1) +G(gzq(r)+1, gzq(r)+1, gzq(r))

+G(gwp(r), gwp(r), gwp(r)+1) +G(gwp(r)+1, gwp(r)+1, gwq(r)+1)

+G(gwq(r)+1, gwq(r)+1, gwq(r))

= tq(r) +G(gxp(r), gxp(r), gxp(r)+1) +G(gyp(r), gyp(r), gyp(r)+1) +G(gzp(r), gzp(r), gzp(r)+1)

+G(gwp(r), gwp(r), gwp(r)+1) +G(gxp(r)+1, gxp(r)+1, gxq(r)+1)

+G(gyp(r)+1, gyp(r)+1, gyq(r)+1) +G(gzp(r)+1, gzp(r)+1, gzq(r)+1)

+G(gwp(r)+1, gwp(r)+1, gwq(r)+1)

Using lemma 2.2, we obtain

lr ≤ tq(r) + 2G(gxp(r), gxp(r)+1, gxp(r)+1) + 2G(gyp(r), gyp(r)+1, gyp(r)+1)

+2G(gzp(r), gzp(r)+1, gzp(r)+1) + 2G(gwp(r), gwp(r)+1, gwp(r)+1)

+G(gxp(r)+1, gxp(r)+1, gxq(r)+1) +G(gyp(r)+1, gyp(r)+1, gyq(r)+1)

+G(gzp(r)+1, gzp(r)+1, gzq(r)+1) +G(gwp(r)+1, gwp(r)+1, gwq(r)+1)

= tq(r) + 2tp(r) +G(gxp(r)+1, gxp(r)+1, gxq(r)+1)

+G(gyp(r)+1, gyp(r)+1, gyq(r)+1) +G(gzp(r)+1, gzp(r)+1, gzq(r)+1)

+G(gwp(r)+1, gwp(r)+1, gwq(r)+1).

(3.12)

Making use of the inequality (3.1), we have

G(gxp(r)+1, gxp(r)+1, gxq(r)+1)

= G(F (xp(r), yp(r), zp(r), wp(r)), F (xp(r), yp(r), zp(r), wp(r)), F (xq(r), yq(r), zq(r), wq(r)))
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≤ ϕ
(

G(gxp(r),gxp(r),gxq(r))+G(gyp(r),gyp(r),gyq(r))+G(gzp(r),gzp(r),gzq(r))+G(gwp(r),gwp(r),gwq(r))

4

)
,

G(gyp(r)+1, gyp(r)+1, gyq(r)+1)

= G(F (xp(r), wp(r), zp(r), yp(r)), F (xp(r), wp(r), zp(r), yp(r)), F (xq(r), wq(r), zq(r), yq(r)))

≤ ϕ
(

G(gxp(r),gxp(r),gxq(r))+G(gwp(r),gwp(r),gwq(r))+G(gzp(r),gzp(r),gzq(r))+G(gyp(r),gyp(r),gyq(r))

4

)
,

G(gzp(r)+1, gzp(r)+1, gzq(r)+1)

= G(F (zp(r), yp(r), xp(r), wp(r)), F (zp(r), yp(r), xp(r), wp(r)), F (zq(r), yq(r), xq(r), wq(r)))

≤ ϕ
(

G(gzp(r),gzp(r),gzq(r))+G(gyp(r),gyp(r),gyq(r))+G(gxp(r),gxp(r),gxq(r))+G(gwp(r),gwp(r),gwq(r))

4

)
and

G(gwp(r)+1, gwp(r)+1, gwq(r)+1)

= G(F (zp(r), wp(r), xp(r), yp(r)), F (zp(r), wp(r), xp(r), yp(r)), F (zq(r), wq(r), xq(r), yq(r)))

≤ ϕ
(

G(gzp(r),gzp(r),gzq(r))+G(gwp(r),gwp(r),gwq(r))+G(gxp(r),gxp(r),gxq(r))+G(gyp(r),gyp(r),gyq(r))

4

)
.

Summing up the above four inequalities, we get

G(gxp(r)+1, gxp(r)+1, gxq(r)+1) +G(gyp(r)+1, gyp(r)+1, gyq(r)+1) +G(gzp(r)+1, gzp(r)+1, gzq(r)+1)

+G(gwp(r)+1, gwp(r)+1, gwq(r)+1) ≤ 4ϕ
(
lr
4

)
. (3.13)

Now, it follows from inequalities (3.12) and (3.13) that

lr ≤ tq(r) + 2tp(r) + 4ϕ
(
lr
4

)
. (3.14)

Utilizing the properties of the function ϕ, inequalities (3.8),(3.11), and letting r → +∞ in the above

inequality, we have

ε ≤ 4 lim
r→+∞

ϕ

(
lr
4

)
= 4 lim

t→(ε/4)+
ϕ(t) < ε,

which is a contradiction. Therefore, the sequences (gxn), (gyn), (gzn) and (gwn) are Cauchy se-

quences in the G-metric space (X,G). Moreover, since (X,G) is a complete G-metric space, there

exists x, y, z, w ∈ X such that (gxn), (gyn), (gzn) and (gwn) are G-convergent to x, y, z and w

respectively, that is, from lemma 2.1, we have
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lim
n→+∞

G(gxn, gxn, x) = lim
n→+∞

G(gxn, x, x) = 0

lim
n→+∞

G(gyn, gyn, y) = lim
n→+∞

G(gyn, y, y) = 0 (3.15)

lim
n→+∞

G(gzn, gzn, z) = lim
n→+∞

G(gzn, z, z) = 0

lim
n→+∞

G(gwn, gwn, w) = lim
n→+∞

G(gwn, w, w) = 0

Now, using the continuity of g, we get from definition 2.4

lim
n→+∞

G(g(gxn), g(gxn), gx) = lim
n→+∞

G(g(gxn), gx, gx) = 0

lim
n→+∞

G(g(gyn), g(gyn), gy) = lim
n→+∞

G(g(gyn), gy, gy) = 0 (3.16)

lim
n→+∞

G(g(gzn), g(gzn), gz) = lim
n→+∞

G(g(gzn), gz, gz) = 0

lim
n→+∞

G(g(gwn), g(gwn), gw) = lim
n→+∞

G(g(gwn), gw, gw) = 0

Since gxn+1 = F (xn, yn, zn, wn), gyn+1 = F (xn, wn, zn, yn), gzn+1 = F (zn, yn, xn, wn)

and gwn+1 = F (zn, wn, xn, yn). So, the commutativity of F and g yields that

g(gxn+1) = g(F (xn, yn, zn, wn)) = F (gxn, gyn, gzn, gwn)

g(gyn+1) = g(F (xn, wn, zn, yn)) = F (gxn, gwn, gzn, gyn) (3.17)

g(gzn+1) = g(F (zn, yn, xn, wn)) = F (gzn, gyn, gxn, gwn)

g(gwn+1) = g(F (zn, wn, xn, yn)) = F (gzn, gwn, gxn, gyn)

Now we show that F and g have a quadruple coincidence point. Since the sequences (gxn),

(gyn), (gzn) and (gwn) are respectively G-convergent to x, y, z and w, so by using the defini-

tion 2.18, the sequence (F (gxn, gyn, gzn, gwn)) is G-convergent to F (x, y, z, w). Therefore, from

(3.17), (g(gxn+1)) is G-convergent to F (x, y, z, w). By uniqueness of the limit and using (3.16),

we have F (x, y, z, w) = gx. Similarly, we can show that F (x,w, z, y) = gy, F (z, y, x, w) = gz and

F (z, w, x, y) = gw. Hence, (x, y, z, w) is a quadruple coincidence point of F and g. q.e.d.

Theorem 3.2. Let (X,�) be a partially ordered set and (X,G) be a G-metric space such that X

satisfies the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n, (3.18)

(ii) if a non-increasing sequence {yn} → y, then y � yn for all n, (3.19)

Suppose that there exists ϕ ∈ ψ and mappings F : X4 → X and g : X → X such that

G(F (x1, y1, z1, w1), F (x2, y2, z2, w2), F (x3, y3, z3, w3))

≤ ϕ
(
G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3)

4

)
(3.20)

for all xi, yi, zi, wi ∈ X where 1 ≤ i ≤ 3 with gx3 � gx2 � gx1, gy1 � gy2 � gy3, gz3 � gz2 � gz1

and gw1 � gw2 � gw3. Suppose also that (g(X), G) is complete, F has the mixed g-monotone
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property and F (X4) ⊆ g(X). If there exists x0, y0, z0, w0 ∈ X such that gx0 � F (x0, y0, z0, w0),

gy0 � F (x0, w0, z0, y0), gz0 � F (z0, y0, x0, w0) and gw0 � F (z0, w0, x0, y0), then F and g have a

quadruple coincidence point.

Proof. Proceeding exactly as in Theorem 3.1, we have that (gxn), (gyn), (gzn) and (gwn) are Cauchy

sequences in the complete G-metric space (g(X), G). Then, there exists x, y, z, w ∈ X such that

gxn → gx, gyn → gy, gzn → gz and gwn → gw. Since (gxn), (gzn) are non-decreasing and (gyn),

(gwn) are non-increasing, using equations (3.18) and (3.19), we have gxn � gx, gyn � gy, gzn � gz
and gwn � gw for all n ≥ 0. If gxn = gx, gyn = gy, gzn = gz and gwn = gw for some n ≥ 0, then

gx = gxn � gxn+1 � gx = gxn,

gy � gyn+1 � gyn = gy,

gz = gzn � gzn+1 � gz = gzn

and

gw � gwn+1 � gwn = gw,

which implies that (xn, yn, zn, wn) is a quadruple coincidence point of F and g. Then, we suppose

that (gxn, gyn, gzn, gwn) 6= (gx, gy, gz, gw) for all n ≥ 0. Using the rectangle inequality, (3.20) and

the property ϕ(t) < t for all t > 0, we get

G(F (x, y, z, w), g(x), g(x)) = G(F (x, y, z, w), g(xn+1), g(xn+1)) +G(g(xn+1), g(x), g(x))

= G(F (x, y, z, w), F (xn, yn, zn, wn), F (xn, yn, zn, wn)) +G(g(xn+1), g(x), g(x))

≤ϕ
(
G(gx, gxn, gxn)+G(gy, gyn, gyn)+G(gz, gzn, gzn)+G(gw, gwn, gwn)

4

)
+G(g(xn+1), g(x), g(x))

<

(
G(gx, gxn, gxn)+G(gy, gyn, gyn)+G(gz, gzn, gzn)+G(gw, gwn, gwn)

4

)
+G(g(xn+1), g(x), g(x)).

Letting n→∞ implies that G(F (x, y, z, w), g(x), g(x)) ≤ 0. Hence, g(x) = F (x, y, z, w).

Analogously we can get that

g(y) = F (x,w, z, y), g(z) = F (z, y, x, w) and g(w) = F (z, w, x, y).

Thus, we proved that (x, y, z, w) is a quadruple coincidence point of F and g. q.e.d.

Corollary 3.3. Let (X,�) be a partially ordered set and G be a G-metric on X such that (X,G)

is a complete G-metric space. Suppose that there exist k ∈ [0, 1), F : X4 → X and g : X → X

such that

G(F (x1, y1, z1, w1), F (x2, y2, z2, w2), F (x3, y3, z3, w3)) ≤ k

4
[G(gx1, gx2, gx3) +G(gy1, gy2, gy3)

+G(gz1, gz2, gz3) +G(gw1, gw2, gw3)]
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(3.21)

for all xi, yi, zi, wi ∈ X where 1 ≤ i ≤ 3 for which gx3 � gx2 � gx1, gy1 � gy2 � gy3, gz3 � gz2 �
gz1 and gw1 � gw2 � gw3. Suppose also that F is continuous, has the mixed g-monotone property,

F (X4) ⊆ g(X) and g is continuous and commutes with F . If there exist x0, y0, z0, w0 ∈ X such that

gx0 � F (x0, y0, z0, w0), gy0 � F (x0, w0, z0, y0), gz0 � F (z0, y0, x0, w0) and gw0 � F (z0, w0, x0, y0),

then F and g have a quadruple coincidence point in X.

Proof. Taking ϕ(t) = kt with k ∈ [0, 1) in Theorem 3.1, we obtain Corollary 3.3. q.e.d.

Corollary 3.4. Let (X,�) be a partially ordered set and (X,G) be a G-metric space such that X

satisfies the following property:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n, (3.22)

(ii) if a non-increasing sequence {yn} → y, then y � yn for all n. (3.23)

Suppose that there exists k ∈ [0, 1), F : X4 → X and g : X → X such that

G(F (x1, y1, z1, w1), F (x2, y2, z2, w2), F (x3, y3, z3, w3))

≤ k

4
[G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3)] (3.24)

for all xi, yi, zi, wi ∈ X where 1 ≤ i ≤ 3 with gx3 � gx2 � gx1, gy1 � gy2 � gy3, gz3 � gz2 � gz1

and gw1 � gw2 � gw3. Suppose also that (g(X), G) is complete, F has the mixed g-monotone

property and F (X4) ⊆ g(X). If there exists x0, y0, z0, w0 ∈ X such that gx0 � F (x0, y0, z0, w0),

gy0 � F (x0, w0, z0, y0), gz0 � F (z0, y0, x0, w0) and gw0 � F (z0, w0, x0, y0), then F and g have a

quadruple coincidence point.

Proof. Taking ϕ(t) = kt with k ∈ [0, 1) in Theorem 3.2, we obtain Corollary 3.4. q.e.d.

Remark 3.1. [5] It is to be noted that some of the fixed point theorems on G-metric spaces can

be deduced from fixed point theorems on metric spaces (see, e.g., [14, 32]). But these results are

quite clear due to the strong connection between the usual metric and G-metric space (see, e.g.,

[22, 25, 26]). The originality of a G-metric space comes from the fact that the G-metric space tells

us about the distance of three points instead of distance between two points. We also accentuate

that the methods used in [14, 32] cannot be applied to our main result since we are considering the

nonlinear contractive condition.

We present the following example to illustrate our main result.

Example 3.1. Let X = R with a usual ordering. Define G : X × X × X → X by G(x, y, z) =

max{|x− y|, |y − z|, |x− z|}. Let g : X → X and F : X ×X ×X ×X → X be defined by

g(x) =
5

6
x, F (x, y, z, w) =

x− y + z − w
24
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for all x, y, z, w ∈ X. Take ϕ ∈ ψ be given by ϕ(t) =
4

5
t for all t ∈ [0,+∞). Clearly, (X,G,≤) is

a complete ordered G-metric space. Let x1, x2, x3, y1, y2, y3, z1, z2, z3, w1, w2, w3 ∈ X with gx1 ≥
gx2 ≥ gx3, gy3 ≥ gy2 ≥ gy1, gz1 ≥ gz2 ≥ gz3 and gw3 ≥ gw2 ≥ gw1. Then

|F (x1, y1, z1,w1)− F (x2, y2, z2, w2)| = 1

24
((x1 − x2) + (y2 − y1) + (z1 − z2) + (w2 − w1))

≤ 125

1296
(max{|x1 − x2|, |x2 − x3|, |x3 − x1|}+ max{|y1 − y2|, |y2 − y3|, |y3 − y1|}

+ max{|z1 − z2|, |z2 − z3|, |z3 − z1|}+ max{|w1 − w2|, |w2 − w3|, |w3 − w1|})

=
4

5
.
1

4
.(

5

6
max{|x1 − x2|, |x2 − x3|, |x3 − x1|}+

5

6
max{|y1 − y2|, |y2 − y3|, |y3 − y1|}

+
5

6
max{|z1 − z2|, |z2 − z3|, |z3 − z1|}+

5

6
max{|w1 − w2|, |w2 − w3|, |w3 − w1|})

=
4

5
.
1

4
(G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3))

≤ ϕ
(
G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3)

4

)
Similarly,

|F (x2, y2, z2, w2)− F (x3, y3, z3, w3)|

≤ ϕ
(
G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3)

4

)
and

|F (x3, y3, z3, w3)− F (x1, y1, z1, w1)|

≤ ϕ
(
G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3)

4

)
.

Therefore,

max{|F (x1, y1, z1, w1)− F (x2, y2, z2, w2)|, |F (x2, y2, z2, w2)− F (x3, y3, z3, w3)|,

|F (x3, y3, z3, w3)− F (x1, y1, z1, w1)|}

≤ ϕ
(
G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3)

4

)
Hence,

G(F (x1, y1, z1, w1), F (x2, y2, z2, w2), F (x3, y3, z3, w3))

≤ ϕ
(
G(gx1, gx2, gx3) +G(gy1, gy2, gy3) +G(gz1, gz2, gz3) +G(gw1, gw2, gw3)

4

)
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Now, we proceed to show that F has the mixed g-monotone property. Let x, y, z, w ∈ X. To show

that F (x, y, z, w) is g-monotone non-decreasing in x, let x1, x2 ∈ X with gx1 ≤ gx2. Then x1 ≤ x2,

and so x1−y+z−w ≤ x2−y+z−w. Hence, F (x1, y, z, w) ≤ F (x2, y, z, w). Therefore, F (x, y, z, w)

is g-monotone non-decreasing in x. Similarly, we can show that F (x, y, z, w) is g-monotone non-

decreasing in z.

Now, we have to prove that F (x, y, z, w) is g-monotone non-increasing in y, let y1, y2 ∈ X

with gy1 ≤ gy2, then y1 ≤ y2. Hence, x − y2 + z − w ≤ x − y1 + z − w, so F (x, y2, z, w) ≤
F (x, y1, z, w). Therefore, F (x, y, z, w) is g-monotone non-increasing in y. Similarly, we can also

show that F (x, y, z, w) is g-monotone non-increasing in w.

Let x0 = y0 = z0 = w0 = 0. Obviously, all the other hypothesis of Theorem 3.1 are satis-

fied. Thus, F and g have a quadruple coincidence point in X. Here, (0, 0, 0, 0) is the quadruple

coincidence point.
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