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Abstract

The aim of this paper is to gain explicit information about the multi-
plicative structure of £.£, where £ is the connective Adams summand
at an odd prime p. Our approach differs from Kane’s or Lellmann’s
because our main technical tool is the MU-based Kiinneth spectral
sequence. We prove that the algebra structure on ¢.¢ is inherited
from the multiplication on a Koszul resolution of £.BP.
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1 Introduction

Our goal in this paper is to shed light on the structure, in particular on
the multiplicative structure, of £,¢, where we work at an odd prime p and ¢
is the Adams summand of the p-localization of the connective K-theory
spectrum ku. This was investigated by Kane [6] and Lellmann [9] using
Brown-Gitler spectra. Our approach is different and exploits the fact that
MU is a commutative S-algebra in the sense of Elmendorf, Kriz, Mandell
and May [5] and £ is an M U-ring spectrum. In fact it is even an M U-algebra
and has a unique F-structure [4]. As a calculational tool, we make use
of a Kiinneth spectral sequence (3.2) converging to ¢,¢, where we work
with a concrete Koszul resolution. Our approach bears some similarities to
old work of Landweber [8], who worked without the benefit of the modern
development of structured ring spectra. The multiplicative structure on
the Koszul resolution gives us control over the convergence of the spectral
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sequence and the multiplicative structure of £,¢. In particular, it sheds light
on the torsion.

From Kane’s work [6] we know that the torsion in ¢,/ is detected by the
edge homomorphism into the 0-line of the Adams spectral sequence for £,£.
Our analysis of the Kiinneth spectral sequence gives an explicit description
of the p-torsion elements in ¢, ¢ and we determine their image in the dual of
the Steenrod-algebra (see § 8).

The outline of the paper is as follows. We recall some basic facts about
complex cobordism, MU, in § 2 and describe the Kiinneth spectral sequence
in § 3. Some background on the Bockstein spectral sequence is given in § 4.
The multiplicative structure on the E2-term of this spectral sequence is
made precise in § 5 where we introduce the Koszul resolution we shall use
later in terms of its multiplicative generators. We study the torsion part in
£.¢ and the torsion-free part separately. The investigation of ordinary and
L-homology of ¢ in § 6 leads to the identification of the p-torsion in ¢, ¢ with
the u-torsion where £, = Z,[u] with u being in degree 2p — 2. In § 7 we
show how to exploit the cofibre sequence

(20— 1t/p

to analyse the Kiinneth spectral sequence and relate the simpler spectral
sequence for ¢/p to that for £. To that end we prove an auxiliary result
on connecting homomorphisms in the Kiinneth spectral sequence, which
is analogous to the well-known geometric boundary theorem (see for in-
stance [15, Chapter 2, §3]). We use the fact that the p- and wu-torsion is
all simple to show that the Kiinneth spectral sequence for £,¢ collapses at
the E2-term and that there are no extension issues. We summarize our
calculation of ¢, ¢ at the end of that section.

In § 8 we use classical tools from the Adams spectral sequence in order
to study torsion phenomena in /,f. We can describe the torsion in £,£
in terms of familiar elements which are certain coaction-primitives in the
HTF,-homology of £.

We summarize our results on the multiplicative structure on £,/ at the
end of § 9, where we establish congruence relations in the zero line of the
Kiinneth spectral sequence and describe the map from the torsion-free part
of 1,0 to Q ® £,£. Taking this together with the explicit formulae of the
multiplication in the torsion part in £,/ gives a rather comprehensive, though
not complete, description of the multiplicative structure of ¢,¢.

In the appendices we give some results on regular sequences in Hopf
algebroids that we find useful in several places in our work, and also an ac-
count of the convergence of Massey products in spectral sequences required
in our proof of Theorem 7.3.
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2 Recollections on MU and /¢

Throughout, we shall assume all spectra are localized at p for some odd
prime p.

Let ku denote connective complex K-theory and let ¢ be the Adams
summand, also known as BP (1), so that

/{iU(p) ~ \/ 221[.

0<i<p—2

We have (., = m{ = Zy)[u] with u € ly(,_1). We shall denote the Adams
summand of KU, by L; then L, =/, [u=1].

Let us recall some standard facts for which convenient sources are [1, 17].
Since ¢ is complex oriented,

MU = L m), :n > 1],

where m/, € l, MU agrees with the m’ of Adams [1]. By the Hattori-
Stong theorem, the Hurewicz homomorphism MU, — ¢, MU is a split
monomorphism, so we shall view MU, as a subring of £, MU. Now

MU, = Z[zn : n > 1],

where z,, € MUs, and using Milnor’s criterion for polynomial generators of
MU, we can arrange that

/!

{pm;k_l mod decomposables if n = p* — 1 for some k,
Ty =
n

m mod decomposables otherwise.

In fact, we can take x,x_; = vi to be the Hazewinkel generator which lies
in BP, C MU,. The following formula recursively determines the Hurewicz
image of vy, in H.MU = Zgy[my : k > 1]:

_ -
U = Pk _q — E Mypi 1V} - (2.1)
1<j<k—1

In H.BP with Ay = m,k_,, this corresponds to the familiar formula

ve =P\ — Y )\j'UZijw (2.2)

1< <k—1

We note that

MU/ (L(x,) :n # pF — 1 for any k) = [ty : k > 1] = £, BP, (2.3)



36 A. Baker, B. Richter

where ty € fo,x_oBP is the image of the standard polynomial generator
tr € BP.BP of [1].
Now recall that the natural complex orientation of ¢ factors as

c: MU — BP — /¢

and we can choose the generators z,, so that

() u ifn=p-—1,
o.(zn) =
0 otherwise.

In particular, the kernel of the map BP, — {, is the ideal generated by
the Hazewinkel generators vg, vs, .. ..

We can also find useful expressions for Hurewicz images £(v,,) of the v,, in
£,BP and ¢, MU. Using standard formulae for the right unit ng: BP, —
BP,BP which can be found in [17], we have for n > 2,

U(vy) = pto +ut? | —uP" ty_1 + ps, + us’, (2.4)

where s, € Z)[u,t1,...,t,_1] and 8], € Z)[u,ty,. .., ty—2]. We also have
L(vr) = pt1 + u.

We now make some useful deductions.
Proposition 2.1. In the ring Q ® ¢, BP, the sequence
0(va), £(vs), -, (v0), -
is regular and
Q®L.BP/(L(vn) :n 2> 2) = QR L[] =Q® Lfv1].

Proof. For each n > 1, pt, is a polynomial generator for Q ® ¢/, BP =
Q® Lft; : i = 1] over Q ® ¢,. For an alternative approach to this, see
Remark A.3. Q.E.D.

Proposition 2.2. In the ring L,BP, the sequence

L(v2),L(v3), ..., L(vp),. ..

is regular and

L.BP/({(v,):m >2) =
Lty ok = 1]/(t8 —u?" =Y, +putsl g+ siy +pu g 0 > 1).
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In the ring L.BP/(p), the sequence

L(va), L(v3)y ..., L(Vp),. ..
is regular and
L.BP/(p,L(vy) :n>2) = Lo/ (D)t + b = 1]/(th =" "M+ 55,0 :m > 1).
Proof. These results follow from Theorem A.1 and Corollary A.2. Q.E.D.

3 A Kiinneth spectral sequence for 7,/

We shall describe a calculation of £, = m.(¢ A £) that makes use of the
Kiinneth spectral sequence of [5] for MU-modules. This is different from
the approach taken by Kane [6], and we feel it offers some insight into the
form of answer, especially with regard to multiplicative structure.

For any M U-module spectrum F' and any spectrum E there is a Kiinneth
(or universal coefficient) spectral sequence [5, IV.4.5]

EZ, = Tori,\?tU* (me(EAMU), m. F)
— . (EAMU) Ayo F) 2 m(EAF) = E.F. (3.1)

Note that in certain cases this spectral sequence is actually multiplica-
tive ([3, Lemma 1.3], see also Appendix B); in particular for E = F = £ we
obtain a multiplicative spectral sequence

E2, = Tor)\"* (m.(¢ A MU), m,0) = (L. (3.2)

Now consider the MU,-module ¢,. We can assume that the complex
orientation gives rise to a ring isomorphism

MU, /(2 in#p—1) — {,.
There is a Koszul resolution of ¢, as a module over MU,,
Apu, (e :0<r#p—1) — £, — 0,

where Ay, (e 1 0 < 7 # p—1) is the exterior algebra generated by elements
e, of bidegree (1,2r) whose differential d is the derivation which satisfies
d(e) = xp.

For arbitrary E and F = /, the E2-term of the spectral sequence (3.1)
is the homology of the complex

E.MU@pu, Ay, (er:0<r#p—1)=Ap yule,:0<r#p—1)
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with differential id ® d which corresponds to the differential d taking values
in the latter complex. From (2.3) we find that the homology of this complex
is

H*(AE*MU(er 0<r 75 p— 1),d) = H*(AE*Bp(é‘r r = 2),d), (33)
where &, has bidegree (1,2p" — 2) and d(&,) = v,.

Proposition 3.1. Suppose that the E-theory Hurewicz images e(vy) with
k > 2 form a regular sequence in F,BP. Then the complex

Ag.gp(er:r>2) — E.BP/(e(v,) :r>2) =0
is acyclic and

E.BP/(e(vy):7>2) ifs=0,

) (3.4)
0 otherwise.

Toré\?*U* (E.MU,L,) = {

Therefore the Kiinneth spectral sequence of (3.1) degenerates to give an
isomorphism
E.BP/(e(v,): 17 > 2) — E,L.

The regularity condition of this result applies for each of the cases F =
£Q, L/p by Propositions 2.2 and 2.1. We do not have a proof that it holds
for the case F = L, however the following provides a substitute.

Proposition 3.2. Suppose that E is a p-local Landweber exact spectrum.
Then the complex

Ag.gp(er:r>2) — E.BP/(e(v,) :r>2) — 0
is acyclic and the conclusion of Proposition 3.1 is valid.

Proof. There are isomorphisms of complexes
E*MU®MU* AMU*(GT 0<r #p— 1)
~F, Quu, MUMU @pu, Ay, (er:0<r#p—1)
=F, Quu, Avu.mu(er :0<r#p—1)

=FE, Qmu. Avu.pp(er 7 2 2).

The sequence v, vs, ... is regular in MU, so mu(vs), mu(vs),... is also
regular in MU,BP, by Theorem A.1. Therefore

Ayu,p(er:r 2 2) — MUBP/(mu(v,) : 7 >2) — 0
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is an exact complex of MU,BP-modules. The differentials in the com-
plex Ayu,Bp(er : ¥ = 2) are coproducts of multiplication by mu(v,) on
MU,BP = MU, MU ®puy, BPx, and these are all MU, MU-comodule mor-
phisms by Theorem A.1(i). The hypothesis on F means that the functor
E. ®@ymu, (—) is exact on the category of left MU, MU-comodules, hence
the complex

E.®mu, Amu.gp(er i1 2 2) — E,@ymu, MU.BP/(mu(v,) : r = 2) — 0,
is exact. From this we obtain the result. Q.E.D.

Of course, this result applies when E' = L. Later we shall also consider
some cases where these regularity conditions do not hold.

4 Bockstein spectral sequences

We follow [16, p. 158] in this account. Let R be a graded commutative ring
and suppose that we have an exact couple of graded R-modules

A0 z A0
N
BO

where 0° is a map of degree —|z| — 1 and - is multiplication by = € R.
Then there are inductively defined exact couples

T

T
AT T A

N,

and an associated spectral sequence (B",d") with BT*1 = H(B”,d"). For
each r > 1, there are exact sequences

0— A0/ (A0, +.rAD) o Br 25 A0 T A

— 0,

(4.1)

n—|z|—1—r|z|

where
x’A = ker( AO - An+r\x\) :E‘X’A?L = U JCTA%

r>1
In particular, if B} = B3® = 0 for some n, we obtain the following:
ker 6° = ker d° = im j°.
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Let ¢ denote the cofibre of the multiplication by p in the sequence

We shall make use of the following special case of this situation in our proof
of Theorem 7.3. The reader is referred to § 8 for more on the ordinary
homology of ¢.

Proposition 4.1. All u-torsion in /,/ is simple.

Proof. We make use of a Bockstein spectral sequence as above. Setting
AY = 0.0 and B? = H,.(¢;F,) (where x = u acts trivially), the differential
is essentially the Milnor operation Q' acting on

H*(€7 ]FP) = ]FP[ClaCQa . ] ® A(an’T__& . )

by
Ql(%n) = 5—1-

Hence we have

B:o = Bi = FP[ChCZ? .- ]/(Cva; .- )

The composition BP,BP — (. — H.((;F),) maps t; to ¢;. As u does not
annihilate ¢; the maps j" for all 7 > 1 are surjective. In particular, from (4.1)
the u-torsion in ¢, ¢ intersected with the multiples of u is trivial. Q.E.D.

5 Generalized Koszul complexes and Bockstein
spectral sequences

Let R be a commutative ring and x € R a non-zero divisor which is also
not a unit. Let wq,ws,ws,... be a (possibly finite) regular sequence in R
which reduces to a regular sequence in R/(x).

The Koszul complex (Agr(e,. : v > 1),d) whose differential is the R-
derivation determined by d(e,) = w, provides a resolution

Ar(er:r21) — R/(wp:7>21)—0

of R/(wy : 7 > 1) by R-modules.
Now consider the sequence zwy, xws, zws, ... which is not regular in R
since for s > r,
wy(zws) = ws(TW,).
The Koszul complex (Ag(el : r > 1),d’) with differential satisfying d’(e.) =
zw, is no longer exact but does augment onto R/(xw, : r > 1). Notice that
there is a monomorphism of differential graded R-algebras

j:Agr(el :r>1) — Agr(e, : 7> 1); j(el) = ze,,

T
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and this covers the reduction map R/(zw, : r > 1) — R/(w, : 7 > 1).
Using this, we shall view Ag(e]. : 7 > 1) as a subcomplex of Ag(e, : r > 1).
We want to determine the homology of (Ag(e] : r > 1),d').

Suppose that z € Ag(el. : 7 > 1), with n > 0 and d'(z) = 0. Then
working in Ag(e, : 7 > 1) we have d(j(z)) = 0, so by exactness of the latter
complex, there is an element

y = § y’il,iz,...,in+1e’ilei2 e e’in+1 6 AR(eT . r > 1)7’L+1
1<y <ip< - <lpg1

for which d(y) = j(z). But

d(y) - (_1) Wiy, Yiy in,... int1 Gl Cio €y, Cipgr-
1< <t < <bpi1
1<k<n+1

Since we have

. _ n
Jj(z) = ) T Ziy i, in €ir Cig * " " €y
1< <ia <+ <in

using the regularity assumption we find that each y;, ;... has the form

Sin4l
_.n,/
yilai27~~~:in+1 =T yil,iQ,.u,in+1
/
for some y;, ;. ;. € R and therefore
z= (—1)*w;, v e el el el
- Zkyi17i2,...,in+1 11 “to 1k Tnt1”
161 <iz <+ <ing1
1<k<n+1

Notice that
oy / Lol el
rz=d ( g Yisin,...sing1Ci1 Cia e%n+1> :
1< <t < <bn41

Therefore z annihilates the n-th homology of Ag(el. : r > 1) for n > 0, and
hence it is an R/(z)-module spanned by the elements

Aglin,in, . yingr) = Y (=D wief e, - eliy e (5.1)
1<k<n+1

for collections of distinct integers i1, 42, ...,in4+1 = 1. Clearly, for a permu-
tation o € Sp41,

Aplio(1)sia(2), - > lont1)) = signo Ag(ir, iz, .-, iny1)-
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Thus we shall often restrict attention to indexing sequences satisfying
1<t <ig <o <lipy1.
These elements satisfy some further additive and multiplicative relations.

Proposition 5.1. Let r,s > 2 and suppose that i1,49,...,7, = 1 and
j1,72,-.-,Js = 1 are sequences of distinct integers. Let

t= #{i17i27 cee 7ir} U {jlaj?a v ajs}
and write
{klqua o '7kt} = {ilui2>‘ .. 7ir} U {j17j27 cee 7j5}

with 1 < k1 < kg < -+ < k;. Then the following identities are satisfied in
each of Ag(el. : 7 > 1) and Hy(Ag(el. : 7 > 1),d'):

Az<i1ai27' . '7ir)Aw<jl7j2a cee 7js) -
0 ift<r+s—2,

m:ia:jb

=9 (=1)%wg, Ay (k1, ka, ..., k) if{ff’“ﬂ—l}, (5.2a)

by ift=r+s,
> (1w, Ag(in,ia, ..y ig, . ip) =0, (5.2b)
j=1

where

r
~

Y= Z(_l)j+s+1wi_]‘Az(ilvi23 v 7ija s ir7j17j27 v 7js)‘
j=1

Theorem 5.2. The homology of (Ag(e] : r > 1),d’) is given by

H,(Ag(e.:r >1),d)
{R/(xw,:r}l) ifn=0,

R/(2){Az (11,02, .. ing1) 1 1 <y <idg < -+ <ipg1} ifn >0,

where in the second case, the R/(x)-module is generated by the elements
A, (i1,19,...,1,41) indicated, subject to relations given in (5.2b).
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Proof. Consider the long exact sequence obtained by taking homology of
the exact sequence
0— R®rARg(e.:r>1)— RogrAgr(e,. :r > 1)
— R/(z) ®g Ag(el. : 7 >1) — 0.

The associated exact couple has

A =H,(Agr(e. :r>1),d),

BY =H.(Ap)@)(e. 7> 1),d) = Apj)(e, 17 > 1).
Making use of the formula d’e!. = w, we find that

B! = R/(z,w1,wy,...).

As z is not a zero divisor, the maps j" for » > 1 are all surjective and

therefore the z-torsion in A? is all simple. Q.E.D.

Notice that the quotient R-module R/(zw, : r > 1) has a-torsion, as
does the higher homology, at least if the sequence of w,’s has at least two
terms.

We end this section with a result on Massey products in the homology
determined in Theorem 5.2, and this will used in the proof of Theorem 7.3.

Proposition 5.3. In the algebra H.(Ag(e. : 7 > 1),d), for a sequence of

distinct natural numbers ¢, j, k1, ..., k, with n > 2, the Massey product
<AI(7’7])7 z, Aw(klv ceey kn)>
is defined and contains A, (i, 4, k1, ..., kn) with indeterminacy

Ha(AR(e;’ T2 1)7d/) Az(za]) + Hb(AR(e; iz 1),d/) Az(kla ceey kn)
for suitable degrees a, b.

Proof. We follow the usual conventions for defining Massey products, see [7,
§5.4] or [12] for details.

We have
d'(eje}) = 22, (1, ),
d'(€), - €h,) = xDg(k1, ... kn),
hence a representative of the Massey product (A, (¢,7), 2, Az (k1,. .., kn)) is
ege;Am(kl, N Az(i,j)e;cl .- ~e§€n

n

n
= T elel .l -..e el o.eh —wiee e
= E (=1)"wy, eejey, €k, ey Fwieier e —wjeel e
r=1

= Ai(ihjaklw"vkn)y

as claimed. Q.E.D.
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6 Ordinary and L-homology of ¢

We can compute H./ making use of the spectral sequence (Ef ,(H),d")
obtained from (3.1) by taking £ = H = HZ,, and F' = (. This can be
compared with the spectral sequence (E ,(HQ),d") for HQ.¢ making use
of the morphism of spectral sequences

EL(H) — E[(HQ)

induced by the natural map H — HQ. We shall also consider the spectral
sequence (EL  (H),d") associated with H = HF,,.

By (2.2), in the polynomial ring HQ.BP = Q[\; : ¢ > 1], the sequence
V2, V3, ..., Up,... s regular. So by Proposition 3.1 we have

Q\i:i=1]/(vk 1 k>2) if s=0,

) (6.1)
0 otherwise.

B2 (1Q) - {

Hence this spectral sequence collapses at E? and we have

HQ.L = Q[M] = Q[vy],

where v1 = pA;. The image of )\, in HQ,/ can be recursively computed
with the aid of the following formula derived from (2.2):

’Up A -1
Ay = —— 6.2
) (6.2)
So we have
(p"—1)/(p—1) o n
A, = Y1 :pp" 4p" TP 4ptlon /\gp =1/p=1) (6.3)

pn

Notice that for a monomial in the A;’s in HQg,y,(,—1)¢, we have

vy
1 Tn o _
)\1 o >\" - p7"1+27"2+"'+"7"n’
for which
2 1 n_ 1
r1+2r2+~«+nrn§r1+r2p +~'+rnp =m
p—1 p—1

This calculation shows that the images of the monomials in the A;’s in
HQjp(p—1)¢ are contained in the cyclic Z,)-module generated by A" =
vi"/p™. Turning to the spectral sequence Ef ,(H), we see that

EZ.(H) = H.BP/(v; : j > 2)
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and the natural map
Hopm(p—1)BP/(vj 1 j 2 2) — HQomp-1)BP/(v; : j > 2)

has image equal Z;)AT". In [1], the analogous result for ku was obtained
using the Adams spectral sequence.

Proposition 6.1. For m > 0,

m

. m v
1m[H2m(p—1)£ - HQQm(p—l)a - Z(P)/\l = Z(P)]ﬁ'

Hence,
1m[H*€ I HQ*Z] = Z(p) [)\1] = Z(p) [’Ul/p].

The spectral sequence (E] ,(H),d") is easy to determine. As for all k
v = 0 in H’*BP, we find that

EX.(H) =EZ (H) = Ag,pp(er 7> 2).
Thus we recover the well-known result that
FI*E = Fp[tk k> 1] ®]F,, A]Fp(gr = 2),

where ¢, has degree 2p* — 2 and &, has degree 2p” — 1.

From Propositions 2.2 and 3.1 we have

Tori‘/,f*U* (L.MU,{,) = L.BP/({(v,) : 7 > 2),
TorMU(L.MU, () = L.BP/({(v,) : 7 > 2),

where L = L/p denotes the spectrum L smashed with the mod p Moore
spectrum. As a consequence, the Kiinneth spectral sequences for L./ and
L./ degenerate to give

L.BP/({(v,):r>2)= L., L.BP/({(v,):1>2)= L./

Since L, MU is a free Zy)-module, multiplication by p gives an exact se-
quence of right MU,-modules
0— L.MU % L.MU — L.MU — 0
MU,

which induces a long exact sequence on the functor Tor,”“*( ,£,) and this
collapses to the short exact sequence

0 — Tory'”* (L. MU, () 2 Tory ' (L. MU, £,)
— Tory"V* (L. MU, (,) — 0.
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From this we see that there is a short exact sequence

0— Lt -2 L0 —Lt—0.
On tensoring with Q we easily see that Q ® £,/ — Q ® L,/ is a monomor-
phism. Hence we have

Proposition 6.2. The ring L.¢ has no p-torsion and the natural map
l.{ — L.¢ induces an exact sequence

0 — poo (bsl) — L4 — L L.
Corollary 6.3. We have
p> (é*é) = uce (Z*é)

Proof. Since ¢, — L, = £,[u™!] is a localization, we have L.{ = {,{[u~!]
and
ker(£, 0 — L) = yoo (£,0),

hence yoo (il) = poo (L,4). Q.E.D.

7 Connecting homomorphisms in the Kiinneth
spectral sequence

In order to gain control over the p-torsion in Torf*U* (L. MU, L), we shall
exploit the cofibre sequence

¢ 20278y (7.1)

To this end we shall relate the geometric connecting morphisms of cofibre
sequences to morphisms of Kiinneth spectral sequences. The method of
proof we use in this part is analogous to that of the geometric boundary
theorem in [15, IL.3].

Suppose that R is a commutative S-algebra and let W be a cofibrant
R-module which we fix from now on. Then for any R-module Z there is a
Kiinneth spectral sequence with

E2,(Z) = TorY; (Z.,W.) = m.(Z Ag W).
Lemma 7.1. Let
xLy%zhyx
be a cofibre sequence of R-modules with X ~ \//", ¥" R and ., f surjective.
Then there is a map of Kiinneth spectral sequences

B, (V)5S B L(57'2) (r22),
such that ? is the connecting homomorphism

Tor; (Y., W) — Torl™, (7' 2),, W.).
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Proof. Since 7, f is surjective, there is a short exact sequence

m
0—(27'2), —EPr"R. — Y. -0
i=1
This induces a long exact sequence of Tor-groups, in which every third term
is trivial, because @:’;1 Y™ R, is R4-free. Therefore we have an isomorph-
ism

Torll; (Yo, W.) — Torl, (£7'2),, W.).

On the level of projective resolutions, we can splice a resolution F, . for Y,
together with a resolution @, . of (X71Z), to obtain a trivial split resolution
for @;11 ¥™ R,. Thus we obtain a map between exact couples and so obtain
the desired map of spectral sequences. Q.E.D.

Theorem 7.2. Let

xLy%zhsx
be a cofibre sequence of R-modules with 7, f surjective. Then there is an
induced map of Kiinneth spectral sequences

ELL(Y) £S5 B, ,(2712) (r>2)

S

such that (? is the connecting homomorphism
Torl; (Yi, W) — Torl) ,(87'2),, W.).

Proof. Choose a map f': \/|~; "R — Y with 7, f’ surjective and con-
sider the cofibre sequence

\/ smr v 4 cone(f").
i=1

By Lemma 7.1 there is a map of Kiinneth spectral sequences
T wT ‘s —
Es,t(Y) — s—1,t(2 ! cone(f')).

As 7, f is surjective, the composition g o f is trivial and there is a factor-
ization g = £ o j.

X Y 7 nX
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Now we may define " to be (371€), o ". Q.E.D.

For the connective Adams summand ¢, we shall consider the cofibre
sequence

CAMU S TAMU S SeA MU 22 508 MU (7.2)

obtained from (7.1) by smashing with MU. The reduction map p is surjec-
tive in homotopy and therefore we can apply Theorem 7.2 to obtain a map
of Kiinneth spectral sequences

r

El,({AMU) £ El_ ,(tLAMU) (r>2).
In particular, this yields a connecting homomorphism
@*: Tor}”" (€. MU, £,) — Tor - (¢, MU, (,).

The following result is crucial for understanding the Kiinneth spectral se-
quence for £,4.

Theorem 7.3. Each p-torsion element of Torgj[U* (L. MU, L,) is the image

of an element of Tori\f_[{f* (.MU, ¢,) under the connecting homomorphism

©? and is an infinite cycle.

Before giving the proof, we need some preliminaries. We shall apply the
ideas of § 5 in the context of the ring R = ¢,BP. Consider the sequence

L(v2),£(v3), ... in £,BP. By (2.4), we have for n > 2,

— n—1

Lvy) =uth | —uP t,_1 +us)
where s € Fplu,tq,...,th—2]; thus for n > 1 we set
Wy =18 —uP" "M, s, (7.3)
so that £(v,11) = uw,. This gives a sequence wy, Wa, ... in ?.BP. Now to

apply Propositions 3.1 and 3.2 in the case F = ¢, we require a lemma.
Lemma 7.4. The sequence wy,ws, . .. is regular in ¢, BP.

Proof. Recall that £, BP = Fplu,t1,ts,...] is a polynomial algebra over F,
and so it is an integral domain. Thus w; is not a zero divisor. Now suppose
that for some n > 2, we have established that wy,ws, ..., w,_1 is regular.

We shall set
A(TL) = Fp[u,tl, .. .,tn_l]/(wl,wg, .. .,wn_l).

Then -
K*BP/(wl, wa, ... ,wn,1) = A(’n)[tn,tn+1, .. .},
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i.e., this is a polynomial ring over A(n). The image of s/, in £, BP lies
in A(n). Now it is clear from (7.3) that w, cannot be a zero divisor in
A(n)[tn, tnt1,- -] since it has highest monomial term ¢2. Q.E.D.

Finally we can prove our theorem.

Proof of Theorem 7.3. Making use of the long exact sequence on Tor-groups
associated with the short exact sequence

0— MU L 0, MU 25 0,MU — 0

induced from (7.2), the claim about the p-torsion in Tori\ff*U* (L. MU, L)
follows.

We shall prove that the elements A, (i1, ..., %4my) with i1,. .., 4, distinct
are infinite cycles in the Kiinneth spectral sequence for ¢,¢, then it follows
that the elements gozAu(il, ...,im) must also be a infinite cycles in the
spectral sequence for £, £.

Our proof will show that E? , = EZ% by induction on total degree s + t.
Clearly this is true in total degree 0. So assume that it holds for total degree
less than n > 0, say. To establish the inductive step, it suffices to show that
each A, (41,...,%,) with total degree n is an infinite cycle (we only need
consider the case where the i; are distinct, and such elements of lower total
degree are already assume to be infinite cycles). If m = 2,3, elements of
form A, (i1,i2) or Ay(i1,i9,43) are infinite cycles for degree reasons. If
m > 4, then by Proposition 5.3, we know that A, (i1,...,4,) lives in the
Massey product (A, (i1,42),u, Ay(is, ..., im)) whose indeterminacy consists
of infinite cycles which are decomposable in the algebra structure. Using the
fact that the elements A, (i1,i2), u, and Ay (is, . .., im) represent homotopy
classes, together with Proposition 4.1, we may form the analogous Toda
bracket in £,£ = (¢ A £), and this must be represented in the spectral
sequence by (A, (i1,%2),u, Ay(is, ..., %m)). This situation is similar to that
discussed in [7, Proposition 5.4.5] and its following paragraph on homology
spectral sequences. As we shall see in the following discussion, Kochman’s
crossing condition 5.4.5(d) is a consequence of our inductive assumption,
thus A, (é1,...,4,) must be an infinite cycle as is required to verify the
inductive step. The reader is referred to Appendix B, where we give an
exposition of the ingredients required for this argument.

In order to see that the crossing condition holds, we note that the in-
duction in the proof of Kochman’s proposition 5.4.5 for a triple product
(x1, z9, x3) only involves the terms X 1, X2 3 in the defining system. Cross-
ing differentials that might occur for (A, (i1,42),u, Ay(is, ..., 4m)) would
involve domains corresponding to total degrees equal to those of the el-
ements A, (i1,i2)u and uA,(i3,...,%n). But both of these degrees are
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less than n, so all such differentials are trivial by our inductive assump-
tion. Q.E.D. (Theorem 7.3)

Corollary 7.5. Since the elements p?A,, (i1, ... ,i,) generate the torsion in
the Kiinneth spectral sequence for ¢,¢ as a module over the ring ¢, BP, this
spectral sequence collapses at the E2-page.

Remark 7.6. To summarize: The calculation of the rational homology of ¢
in (6.1) tells us that the torsion-free part of £,¢ has to have its origin in the
zero-line of the Kiinneth spectral sequence. Theorem 7.3 gives an explicit
description of the p-torsion classes in Torff*U* (L. MU, £,) as the image of the
elements Ay (i1,...,4,) in Tori\ff*U* (,MU,¢,) under the geometric bound-
ary, so the torsion part is imported from the Kiinneth spectral sequence for
0,0. The Kiinneth spectral sequence for £,¢ collapses at the E2-page.

Later, we need to know that there are no extension problems. From
Corollary 6.3 we know that the p-torsion and wu-torsion in ¢,¢ agree. We
recall a result from [6, Proposition 9.1].

Proposition 7.7. All torsion in £,/ is simple, i.e., for every torsion-class
x € £, we have pr = 0 which is equivalent to ux = 0.

Corollary 7.8. The Kiinneth spectral sequence for ¢,¢ collapses at the
E2-page and there are no non-trivial extensions.

8 Detecting homotopy in the Adams spectral
sequemnce

In this section we recall some results about the classical Adams spectral

sequence for ¢,£. We make heavy use of standard facts about Hopf algebras

and the Steenrod algebra [14, 13]. In the following we generically write I

for identity morphisms, ¢ for products and actions, ¢ for coproducts and

coactions, 7 for units and ¢ for counits and we use = for the antipode on an

element z. Undecorated tensor products are taken over the ground field.
We write H.(—) for H.(—;F,) and A, for the dual Steenrod algebra,

A =Fp[¢ :n 21 @ AT, :n > 0),
where the coaction is given by
Y(Gn) =D GO, () =107+ mad .
i=0 i=0

The generators ¢, € Agpn_o and 7, € Aopn_1 are related to the Milnor
generators &,, 7, by the antipode:

Cn = X(fn)u Tn = X(Tn)'
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The sub-comodule algebra

B =Tyl :n =1 @A, :n>2)
gives rise to a quotient Hopf algebra

&v = As/]Bs = Ma, B),
where «, 3 are the residue classes of 7y, 7; respectively. Then
B, = A0 Fp.
Now the natural map ¢ — H induces an isomorphism
H. () = B, C A,
and there are isomorphisms of A,-comodule algebras
H, (A0 = H (0) ® H,(f) = B, ® B, —> A,O¢_B,. (8.1)

The Es-term of the Adams spectral sequence converging to m.(¢ A £) = £,
has the form

E2, = Cotor}; (Fp, Hi (£ A ) = Cotory; (Fp, A.Oe. B.)
and so by making use of a standard change of rings result, we have
E2, = Cotor®;(F,, B..). (8.2)

Note that by results of [6], the torsion in £.¢ is detected by the edge
homomorphism (which is essentially the Hurewicz homomorphism) into the
0-line

E} . = Cotorf, (F,, B.) = F,0¢. B..

The map involved here is obtained by composing the following A ,-comodule
algebra homomorphisms and suitably restricting the codomain:

(AL — H.(0) ® H.(0) = B, 9B, 2% B, ® (4.0, B.)

8 4,0 B, — €,0¢. B, — B,.

Here, the second to last map is induced by the natural projection map
A, — A.//B, = &, and the final isomorphism is the composition

e0:.8, 2L e, @8, 2LF,®B, — B,.



52 A. Baker, B. Richter

A careful check of what the composition does on primitives shows that it
can be expressed as

(vAid)«
—_—

T (CA L) — H (CAD) H,(0), (8.3)

where v: HA¢ — H is the natural pairing. In particular, this implies that
the image of the Hurewicz map for ¢ A £ maps monomorphically into H., ().
It will be useful to have an explicit version of the isomorphism

F,04, (B, ® B,) 2F,04, (A0, By) = F,0e, B..
This is just
incl

F,0:. B, 2L F, 8, 224 F, ® (4, ® B,),

whose image is in fact contained in F,004, (B, ® B.).

Given these results, we can use them to detect elements of ¢,¢ in B,, in
particular we can detect the torsion this way. To do this, we need to under-
stand B, as an €,-comodule, in particular the non-trivial €,-parallelograms
of the form

x (8.4)

in which the €.-coaction satisfies

P(E)=1r+axr —@2" + Bax 2",
v =100 +foa"
w(z//) :1®z//+a®x///'

Then z" is an element of F,¢, B, which corresponds to an HF, wedge
summand in ¢ A ¢ and a correponding torsion element. Of course, these
elements can be expressed in terms of the homology action of @y and @1,
i.e.,

' =Qox, 2" =-Qiz, 2" =Q1Quz.

Now Margolis [10, Chapter 18, Theorem 5] dualized to a homology ver-
sion for & ,-comodules tells us that B, uniquely decomposes into a coproduct
of comodules isomorphic (up to grading) to €., together with a comodule
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containing no free summand and isomorphic to a coproduct of lightning
flash comodules. The latter summand does not concern us for now since
all the torsion in £,¢ comes from the HIF, wedge summands as above cor-
responding to the free summand. In fact, Adams and Priddy [2, proof of
Proposition 3.12] determine the stable type of the lightning flash comodules,
in particular, the stable class of the €,-comodule B, is shown to be

QU+ L+ L2+ + L2, (8.5)

r>0
where
Ly =% a(r) +b(r) =2p = 1)p", b(r)=p 4 4p+ 1.

Here J = &, /F, is the coaugmentation coideal of &, represented by the

following diagram
B
«

and X is the trivial comodule IF,, assigned degree 1. Furthermore, all prod-
ucts are tensor products over I, taken in the stable comodule category of
E..

Now the most obvious candidates for the tops of €,-parallelograms are
the elements

7_—1'17__1'2”'7_—75714-1 (1<Z‘1<Z.2<"'<Z.n+1, n}l)
These can be multiplied by monomials in the (; to obtain others.

Theorem 8.1. Consider the [F)-vector subspace V C F,[¢, B spanned by
F,[¢i : i > 1]-scalar multiples of the elements 1 and

QIQO(%il’Fiz"'%in+1) (1<Zl <lg < - -- <7;n+1, n = 1) (86)

Then V consists of all the elements in F,0¢, B, which are the images of
torsion elements under the composition of the Hurewicz homomorphism
m((ANE) — H, (¢ A L) and the identification of the homology H, (¢ A¢) with
F,0O¢, B..

Proof. Clearly Fy[¢; : ¢ > 1] C F,O¢, B... Now we know that the Kiinneth
spectral sequence for ¢,¢ collapses and there are no additive extension
problems. We need to understand the mod p Hurewicz images of ele-
ments represented by the elements arising from the A, (i1,...,4512) in
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Tori\f{j* (£.MU,(,), since these will give an additive basis for the p-torsion
in ¢,0.

Tor ", (6. MU, L,)
5
TorMV (0, MU, {,) =——=m.({ N {)

T

TorMV (H N ) MU, £,) == 1, (H NN ) <——TF,04, H(( N E)

| |

Tor)'V (H, MU, {,) =—— H.({) <—— F,0¢, H.(()

The Kiinneth spectral sequence (3.1) for F.¢ is natural for maps of ring
spectra E — F. Therefore the map (8.3) corresponds in the spectral
sequence to the composition of the two vertical maps in the left column in
the diagram above. As the Hurewicz homomorphism has its image in the
primitives of H,(¢ A £), it follows that the elements A, (iy,...,is12) Up to
a unit map to

QoQ1(Tiy -+ Tion) =
S ()G = G ) T T Ty T T
1<t<r<s+2
Q.E.D.
Remark 8.2. The torsion in 7, (¢Af) maps injectively into F,004, (B.®B.),
which in turn is identified with F,O¢, B., therefore Theorem 8.1 shows

that the elements Q1Qo(7:,Ti, - - - T4, ) With n > 3 correspond to nilpotent
elements; only elements of the form @Q1Qo(77s) are not nilpotent.

Example 8.3. For every prime p, the first torsion class in Torff* (L.BP, L)
occurs in degree 2(p3 + p? —p — 1) and this class survives to £,£. The lowest
degree element appearing as the bottom of a parallelogram is

Q1Qo(ToT3) = T — (V.

The coaction map ¢ sends this element to the Hurewicz image of the cor-
responding torsion element of £,.¢ in H,.(¢ A 0).
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9 Multiplicative structure of ¢,/

In this section we establish congruence relations in the zero line of the
Kiinneth spectral sequence. These are derived in BP,BP and mapped
under the natural map. In fact they are first produced in Q ® BP,BP then
interpreted in the subring BP,BP.

We describe the map from the torsion-free part of £,¢ to 4,4 ® Q and
summarize our results about the multiplicative structure of ¢,¢ at the end
of this section.

It will be useful to have the following straightforward generalization of
a well-known result (which corresponds to the case where ¢t = 1).

Lemma 9.1. Let R be a commutative ring, p a prime and t € R. If
x,y,z € R satisfy z = pz + ty mod (pt), then for all k > 0,

= ppkmpk + tpkyplc mod (p"*1t).

We shall work with the Hazewinkel generators v, of (2.2). The following
standard formula for the right unit ng: Q ® BP, — Q ® BP,BP can be

found in [17, p. 24]:
= > Mt i (9.1)
o<jsn

On combining this with (2.2) we obtain

nr(vn) = Z 2% tn i~ Z )\jtfj_jnR(vnfi)p

i

0<i<n 1<i<n—1
0<j<i
and hence
nr(vn) =
7
5 PA; tn i E )\tn 1—inr(v1)?P E )\jtl 7773 Up—i)? .
o<isn o<i<n—1 1<i<n—2

0sy<e

9.2)

Remark 9.2. The left hand side of equation (9.2) lies in BP,.BP C Q®
BP,BP, therefore so does the right hand side. However, because of the
presence of denominators in the terms involving the A,, care needs to be
exercised when using this equation.
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For example, since cp, = [CPP' '] = p"\, € BP,, we can certainly
deduce that in BP,BP modulo the ideal (ng(vs),...,nr(vn—1)) < BP.BP,

P R (vn) =
n—1
Z pn sz - Z p - sz n 1— an(Ul)p
0<ikn 0<i<n—1

mod (nr(v2), - .., Nr(Vn-1))-
We shall see later that similar phenomena in ¢, BP give rise to congruences
in ¢,/0.

We shall now derive some formulae in ¢, BP. The natural map of ring
spectra BP — ¢ is determined on homotopy by

u ifr=1,
Vp — { ) (9.3)

0 otherwise.

Recalling (6.3), we see that in im[H,.{ — HQ./], the logarithm series for
the factor of ¢ is

B !

log! T = Z A\ TP = Z TTP“.

n=0 n>0

We can project (9.2) into £,BP, with ng being replaced by the ¢-theory
Hurewicz homomorphism £: BP, — ¢, BP. This yields

U(vy) = pty — tn_1l(v)?"

i—1 i—1 k3 n
up ot +p+1t1’ Pt p1yP 1—:‘£(U1)p

+Z i—1 ni_zu ;‘_

1<ign p

=1 ... J
wr g g

g 17—U"—i)pi
- Z til(vn—i)" — > P

and the equivalent formula

n—

Uvn) = o+ (uth_y — (1) to1)

i1, i il
+ Z N ey (i t;:)z 1)
i

1<ig<n—1

. up AL vy )P
SN e - Y 0 o)

p]
1<i<n—2 1<i<n—2
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Thus we have
p
=pts + (1 —pp_l)ut’f — L(v1)Pty — Z (Z;)pi_lum—l_iti-

1<i<p—1

L(vg) = pto + (ut] — L(v1)Pt1) +

By the Hattori-Stong theorem, the element £(v,,) € ¢, BP is not divisible
by p, but notice that on multiplying by p™~2 we have

n—1
P T (on) = P e A+ " (uth = L(01)P )
pi*1+---+}7+1(upitf:rll_i — ﬁ(vl)pniltﬁl_l—i)

+ Z - pifn+2

1<i<n—1
n—2 : n—2—7j, p 14 fpt1,p’ i
- E P il (v )P — E D TuP P il (vn—i)?
1<ig<n—2 1<i<n—2
1<G<i
and so

n—1
P " TR (uth = L(01)P 1)

i—1 i pitl n—1 pt
+edp+1 P p
P PRl ity —Lw)? t

(7 nflfi)
+ Z pifn+2

1<i<n—1

= 0 mod (£(v2),...,Lvy)).

Using the identity £(v1) = w + pt; and the resulting congruences (see
Lemma 9.1),
Lo)P" =u? mod (p"T)  (m=1),

we deduce that when n > 2,

n—1 n—1 n—1
Lop) = (pty, —pP & tpo1) + (uth _y —uP ty_q)

i i il n—1 i
P pt L (0P — PP
+ Z u (U' tnflfi u tnflfi)
Pt
1<ig<n—2
J—1, ... J i
i ub’ +p+1t§7_j£(vnii)p
- Y ) = Y ; mod (pu).
1<i<n—2 1<i<n—2 p

(9.5)



58 A. Baker, B. Richter

Thus when n = 2 we have

L(v2) = (pte — pPtity) + (ut] —uPt;)  mod (pu)

= ut] —uPt;  mod (p).

When working in the image of the rationalization map H,.({ A {) —
HQ. (¢ N ?), we shall denote by u and v the images of u € £5,_o under the
left and right units for £ A £.

Reinterpreting (9.2) in HQ. (£ A L), for each n > 2 we have nr(v,) — 0
and so

u(pll+p’L71+'"+p+1)tph+]j
n

ptn + Utfz—l + Z

1<h<n—1

= tn,ﬂ)pnil + Z

1<k<n—1

ph

c— : — k n—1
(P 4 TP p 1) 4P P
u )tn_l_kv

pk

On rearranging this, we obtain

Pty = v”Wltn,l —ut?

n—1
k=1 k-2 . n—1 pk k  pkt+l
R L T T Y
+ > - . (9.6)
1<k<n—1 p
For small values of n we have
pt1 = v — u,
p , u(v? —uP)

pto = VPt — ut) + ——=,

p

2 2 2 2

w(vP t? — uPt? uPt(pP” — P
pt3:1}p2t2—ut§+ (vP" 1y 1)+ ( _ )’
p V%
3 2 3 2 2 3
3 w(vP 5 — uPth uPTL (P 7 — P
oty 3 MO ) o )
p p
Y ARy
+

p3

We want to draw some general conclusions about these expressions.

Lemma 9.3. In /.4, for n > 1, we have the congruences

Tty — ut? | mod (pu), (9.7)
Ctpo1 —ut? | mod (pu). (9.8)
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Proof. We shall prove this by induction on n, the case n = 1 being noted
above. So suppose that

pty = vpkfltk,l —ut}_; mod (pu).
whenever 1 < k < n for some n. Then for every such k£ we have
k—1
P tp_q = wuth_; mod (p).

By Lemma 9.1, for every m > 1,

k—1 m m
0" )P = ()" mod (p ),
i.€e.,
/Up7n+k'71ti’i1 = upnltz"ii’l mod (pm+1)

Now when 1 <k <n—1,
n—1 pk k pk+1 _ k41
o th = uP it =0mod (p"T),

hence in the formula for pt, in (9.6), the summand

_ k k k41
P lp PR
v tnflfk U tnfkfl)

pk

WP TP T ) (

must be divisible by pu. Therefore we have the congruence

Pty = vpn_ltn_l —utl _, mod (pu).

Using the expansion

n—1 n—1 p"fl nel_ . . =
oP — P+ ( _ )up dpit]
1< ;n—l J '
IIXP
we obtain
pnfl pn—l p 1 P
ptp,—pP t)  =uP t,—1 —uth_; mod (pu).

Q.E.D.
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10 Summary

Kane [6, (19:6:1)], using Adams’ criterion [1, III, 17.6], worked out what

the image of the torsion-free part of £,£ is on passage to Q ® £,£. As a

mf-module the torsion-free part of £, is generated by the elements
uvw—(p—1u)--(v—(n—1)(p—1)u)

tni = . (0 <i < wp(nl)).
pl

Obviously, the relation ut, ; = pty, ;41 holds and it is clear how to multiply
elements of that form.

To summarize our results on the multiplicative structure of £,¢, we have
the following;:

e Starting with two non-torsion elements in ¢,¢, we can consider their
images in Q® ¢,.£, take their product there and interpret the result as
a non-torsion element in ¢.¢.

e Any two elements coming from the zero-line of the Kiinneth spectral
sequence multiply according to the congruence relations we specified
Lemma 9.3. These elements might be torsion or non-torsion, but there
is no non-torsion in higher filtrations.

e Torsion elements in non-zero filtration have their origin in the gener-
ators A, and for these we spelled out the multiplication in (5.2a).

e Asthe A,-expressions allow coefficients from ¢, BP, the multiplication
of non-torsion elements in the zero-line with torsion elements in higher
filtration is determined as well.

We agree that the recursive nature of the congruences for £, BP ®pp, L.
might hamper the calculation, but our approach leads to more information
about the multiplication in #,¢ than the known sources.
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Appendix

A Regular sequences in Hopf algebroids

In this appendix we give some results on regular sequences in Hopf alge-
broids that we make use of in several places. Although these may be well
known, we feel that it is convenient to highlight them as we do not know
any convenient appearance of them in the literature.

Let R be a commutative ring and let (A4,T) be a Hopf algebroid over R
(see for instance [15, Appendix Al]). We can view I' as a commutative
A-algebra using the left unit A — I', and the right unit provides a second
ring homomorphism 77: A — I" which we use to give I' a right A-module
structure; together these make I' into an A-bimodule. These two homomor-
phisms A — T are interchanged by the antipode x: I' — I and equalised
by the counit e: ' — A. If T is flat as a left (or equivalently right) A-
module, we shall say that the Hopf algebroid (A4,T") is flat.

Given a left A-module M, we can define the A-bimodule tensor product
I’ ® 4 M which has a natural left I'-comodule structure with coproduct

b:Toa MDY o, T o, M.

This construction is natural in the A-module M.

Recall from [11] that an element a € A is said to be M-reqular if the
multiplication by a map on M has trivial kernel. More generally, a (possibly
infinite) sequence aq, as, ... in A is M -reqular if a1 is M-regular and for each
n > 1 where a, exists, a, is M/(a1,...,a,_1)M-regular. When M = A,
we say that such a sequence is regular.

Let A — B be a homomorphism of commutative R-algebras. We say
that B is Landweber exact with respect to (A,T) if B®4 (—) is an exact
functor on I'-comodules.

Theorem A.1l. Assume that (A,T") is a flat Hopf algebroid and that M is
a left A-module.

(i) Let @ € A. Then multiplication by a on M induces a morphism of
I'-comodules

Po4 M98 P e, M.

If @ is M-regular, then there is a short exact sequence of I'-comodules

0-Tos M- Te,s M—=T &) M/aM — 0.
In particular, when M = A there is an isomorphism of I'-comodules

I'/(n(a)) 2T ®4 A/(a).
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(ii) If a,aq,... is a regular sequence in A, then each of aq,as,... and
n(a1),n(az),... is a regular sequence in I'. For each n for which a,, exists,
there is a short exact sequence of I'-comodules

0= T/(nar).-n(an—1)) 2 T/ (n(as). .- n(an-1))
—T/(n(a), - nlan)) = 0.

(iii) Let A — B be a homomorphism of commutative R-algebras for which
B ®4 (—) is exact on I'-comodules. If aq,as,... is a regular sequence in A,
then 1 ® n(ay),...,1®n(a,) is a regular sequence in B ®4 I.

Proof. (i) The first statement is clear since the tensor product satisfies
y®am="n(a)@m (yel',meM),
and since 7(a) is primitive,

Y(yn(a)) = (v)(1 @n(a)).

When a acts regularly, on applying the functor ' ® 4 (=) to the short exact
sequence of A-modules

0— M- M-— M/aM —0

and using the flatness of I as a right A-module, we obtain the desired exact
sequence. Parts (ii) and (iii) follow from (i). Q.E.D.

Corollary A.2. Suppose that ag,a,... is a regular sequence in A and
that n(ag) = ag. Then (4/(a),T'/(a)) is a flat Hopf algebroid and the
sequence aj,ds,... in A/(a) is regular, hence the sequences ag,ay,... and

n(@1),n(az), ... are regular in I'/(a) = T'/(n(a)).
Proof. The flatness is easily verified and the rest follows from (ii).  q.E.p.

Remark A.3. As a particular example of the phenomenon described in
(iii), we have the case of a Landweber exact complex oriented commutative
ring spectrum E whose the homology theory satisfies

E*(—) = FE. Qumu, MU*(—)

Then for a regular sequence x1, o, ... in MU,, the sequence of Hurewicz
images e(x1),e(x2),... is regular in E,MU. For example we might take
each x,, € MU, to be a polynomial generator.
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B Toda brackets in Kiinneth spectral sequences

As the details of the argument we require for convergence of certain triple
Massey products to Toda brackets in the Kiinneth spectral sequence are
not in the literature, we follow the referee’s suggestion and give an account
of what is needed, making allowances for differences in gradings, etc. This
is based on [7, Proposition 5.4.5] and its following paragraph on homology
spectral sequences, as well as [7, § 5.7]. This material fits into the more
general framework of [12, Theorem 4.1]. For completeness we begin by dis-
cussing Massey products and Toda brackets in Kiinneth spectral sequences
of the type we are using, thus refining a result on multiplicative structure
of [3].

The following observation is well known: If B is a commutative ring
and if C' is a B-algebra, then there is a quasi-isomorphism of non-negatively
graded differential graded B-algebras (B-dgas) Py — C, where C is re-
garded as a differential graded algebra concentrated in degree 0 and each
P, is a free B-module.

Suppose that R is a connective commutative S-algebra and that A, B are
two connective R-algebras. If B is g-cofibrant, then the Kiinneth spectral
sequence converging to A®B = 7,(A Ar B) is constructed by taking a free
resolution P, , — A, over R, and realising each P; ., as m,Ps, where P
is a wedge of sphere R-modules, with the boundaries induced from maps of
R-modules P; — P;_;. It was pointed out in [3, Lemma 1.3] that it was
always possible to produce a product structure on P, with product maps
P, Ap P — P;1;. However, we need to do this in a more precise way by
ensuring that P, . is actually a R.-dga.

Proposition B.1. For a connective commutative S-algebra R and two con-
nective R-algebras A, B where B is g-cofibrant as an R-module, the Kiinneth
spectral sequence (Ej ;, d") is a spectral sequence of R.-dgas

E2, = Torl; (A., B,) = AR,B = m,1(A AR B), (KSS)

with differentials d": Ef , — E{_, ., ;.

Proof. Since we need details in considering Massey products and Toda
brackets in the spectral sequence, we recall its construction, in particular
emphasising the multiplicative aspects.

Take an R,-dga resolution P, . of A, as above and realise each P,
as the homotopy of a wedge of R-spheres Ps, so P, , = m.Ps. From the
construction in the proof of [3, Lemma 1.3], there is a directed system of
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cofibrations of R-modules

Aé%w -4
A

where hocolimg A, is equivalent to A, and for which there are associated
cofibre sequences

./
;) st
S

A A sep,
These are multiplicative in the sense that there are maps puf, o, : A% Ar

A, — A, ., and commutative diagrams in the homotopy category

!
Hsq,s
/ / 1,52 /
Asl AR A82 ——> A 4,

flm‘%i lfl“?

ANg A A

in which unlabelled maps are the evident ones. Writing W = A’ Ar B, we
obtain further cofibre sequences

Wo_1 5 W, 25 S°P, Ag B,

and on applying homotopy we obtain long exact sequences with boundary
maps
O0s: Tu(X°Ps AR B) — m 1 Wi

We also have that W, = hocolimg Wy is equivalent to A Ag B.
The spectral sequence is set up by setting

El, = 1 t(3°Ps AR B) = m(Ps Ag B)

and taking d! to be the composition

d": EL, = 1oy s(S°Py Ar B) 2wy i Wi
L e (5P AR B) =EL_,.

As the maps i,: W,_1 — Wy are cofibrations, E;yt can be identified with
a relative homotopy group,

E;t - 7r8+t(WS7 stl)7
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where for a cofibration Y — X, 7,(X,Y) denotes the homotopy classes
of maps of pairs (D", S"~!) — (X,Y); here we abuse notation by writing
(D", 8™71) for the pair of R-modules (FrRD™ FrS™ ') consisting of the
free R-modules on the disc and sphere spectra, respectively. Guided by the
discussion in [7, § 5.7], in the following we shall make systematic use of this
interpretation.

There is a product structure on the directed system of Wy'’s, giving
homotopy commutative diagrams

Hsq,sq

WSl AR W52 W81+82

l l

Woo Af Wog —————— Wi

giving rise to a product in the spectral sequence compatible with the dga
structure on the resolution P, .. Q.E.D.

We recall some facts about the spectral sequence (KSS), all of which
can be deduced by analogy with the case considered in [7]. This spectral
sequence is homologically graded and its target has an increasing filtration

0C RARBC FARBC ... C F,ARB = ARB

for which
F,ARB/F, |ARB~EX®

s,n—s*
For r > 1,
My Tt W /Weeyp — Tt W /W1

EL, = B.1
St imo: 7Ts+t+1Ws+r71/Ws — 7rs+th/stl ’ ( )

where the maps are the evident ones obtained by composing maps between
Wy’s and associated boundaries. Similarly,

o My mstWs — mept Ws /Wi

EX = . B.2
&t lma 7rs+t+1Woo/Ws — 7Ts+th/Ws—1 ( )

We recall from Kochman’s definition 5.4.1 what it means for a Massey
product (x1,z2,23) to be defined in EQ:’;l = H(E] ,, d"~1), where x1, 22, 23
are elements of Ef ,. The following conditions must hold: there is a defining
system for (xy, za,x3)

Xo,1 X192 Xa3
Xo,2 Xi3
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consisting of elements X; ; of E:,*v where X1, X1,2, X2,3 are cycles repre-

senting x1 = [Xo,1], z2 = [X1 2], 23 = [X23] and
d"Xo2=X01X12, d"Xi13=X12X23.

Here Z = (—1)*""*'Z if Z € E,. Then (x1,x2,23) C E[! is the subset
consisting of all homology classes [Xo,lX 1,3 + X1’2X2’3] obtained from all
possible defining systems of (1, xa, z3).

Given u € Eg ,_, and the relation d"u = z, then a differential of the
form d” w = y with w € Eg:n_b and a < b is said to be a crossing differential
ofdu=zxifa+r>b+r.

" - (bn—b)
[ ]

S

Guided by Kochman’s account [7, § 5.7], we recall the definition of a Toda
bracket of the form (a, 3,7) in the homotopy of an R ring spectrum E. We
can make use of the monoidal smash product on the category of R-modules
to simplify some of the details. Suppose that

a=lgo1] €mE, B=lg12] €mME, v=][g23]€nE,
and
af =0=py.
If we choose null-homotopies gg2: D****t — E and gy 3: D'*etl — F
for go,191,2 and g1,292,3, then
go,1 gi,2 g2.3
go,2 91,3

is a defining system for (a, 3,7) C matp+etr1 and using Kochman’s notation,
we denote the homotopy classes that constitute the Toda bracket by

[90.292,3 U §0,191,3]
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obtained from all choices of null-homotopies, where we glue two copies of
Detbtetl glong their boundaries to form a sphere, and also use the above
sign convention to determine g as +g.

Theorem B.2. Assume that the following conditions hold in the spectral
sequence (KSS).

e The elements z1, 22,23 in Ef ,

the elements &, &, &3 in ARB.

are infinite cycles which converge to

e The Massey product (1,2, x3) is defined in Ef;l.
e The Toda bracket (&1, &s,&3) is defined in AFB.

o If X;; is a defining system for (z1,x2,x3), then there are no cross-
ing differentials for the differentials d" Xy o = X01X1,2 and d"X; 3 =
X12X23.

Then (x1,2z2,x3) is a set of infinite cycles which converge to elements of
(€1,&,63) in ARB.

Proof. We adapt the ideas in the proof of [7, Proposition 5.7.5] in the sim-

plest case of a triple Toda bracket, making necessary changes to accom-

modate differences in gradings and signs. We use the notation established

above, in particular we write W, = hocolimgs Wy ~ A Ar B. Of course, the

argument can be extended to work for Toda brackets of arbitrary length.
For each pair (i, 7) and fixed r, let

Vi, * (Ws(i,j)>Ws(i,j)fr) I (Ws(i,j)a Ws(i,j)fl)

be the obvious map of pairs.
Let X;; € E:(i7j)7t(i7j) be a defining system for (x1,x2,z3). We shall
produce a defining system

0,1 §1,2 £2.3
0,2 &1,3

for (£1,£2,€3), so that each &; ; represents X; ; in the spectral sequence.

3 . . T
Since &; represents z; € Es(i—l,i),t(i—l,i)’ we may choose an element

DCmLFE=LD) (Ge(mLOFE=LO=Y) o (W ) W1, —r)

Eic1i (
for which

i 1Bt (Ds(i—l,i)—i-t(i—l,i), Ss(i—l,i)—&-t(i—l,i)—l)

- (Ws(i—l,i)7 Ws(i—l,i)—l)
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represents X;_1; € EZ(ij) tirj) where we make use of the isomorphism
of (B.1). Now choose maps
56,2: (DS(0’2)+t(0’2),55(0’2)+t(0’2)_1) N (Ws

= . (Ds(1,3)+t(1,3)755(1,3)+t(1,3)—1) 0

0,2)s Ws0,2)=r);
1,3)s We(1,3)-r)
to represent X 2, X1,3, respectively. By assumption on the X 2, X1 3, each
of the precompositions
(Ei—Q,i—lai—l,i v 752—2,1')|Ss(ifz,i)th(ifz,i)f1vss(172,i)+t(i72,i)71
with the pinch map

V. G2 Ht(i=2,0) =1 | gs(i=2,)+t(i=2,0)—1 \, gs(i=2,i)+t(i=2,i)—1

factors (up to homotopy) through a map
N gsli=2,)+e(i=2,)-1 __, Woa(i—2.i)—r—1-

Since the increasing filtration on m, W satisfies F_im,W = 0, there must
be two maps

ag: (DUT2OFHEm2) ga(im2 =201y (Wii—2,)—1, Wis(i—2,i)—r—1)
such that in each case one of the following possibilities has to occur:
* (ai)|Ss(i—2,7‘,)+t(i—2,i)—1 = /\Iiv
o (ALV 7041-)‘55(1,7271_)“(1_72’”71Vss(l_72’1_>4rt<l_72ﬂ_)71 precomposed with the
pinch map V factors through a map
A s G20 HI=20) -1 Woa(ie2.)—r—m
with m > 2 as large as possible.

If the latter case occurred, \; would bound since £1&; = 0 = £3€3, implying
the existence of a map

G (Ds(i72,i)+t(i72,i)’Ss(i72,i)+t(i72,i)71) . (Ws(i—2,i)—k7Ws(i—2,i)—r—m)

with k& minimal. But this defines a non-trivial d"t™~* boundary, which is a
crossing differential for d"X;_2; = )_(i,g,i,lXi,l,i. Since no such crossing
differentials can exist, the first possibility must occur in each case and we
set 51’—2,2’ = 5272&- U—aq,.

Thus we can construct a defining system &; ; for (&1, &2,&3) which lifts
the defining system X; ; for (z1,z2, 3). Q.E.D.



