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Abstract

The aim of this paper is to gain explicit information about the multi-
plicative structure of `∗`, where ` is the connective Adams summand
at an odd prime p. Our approach differs from Kane’s or Lellmann’s
because our main technical tool is the MU -based Künneth spectral
sequence. We prove that the algebra structure on `∗` is inherited
from the multiplication on a Koszul resolution of `∗BP .
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1 Introduction

Our goal in this paper is to shed light on the structure, in particular on
the multiplicative structure, of `∗`, where we work at an odd prime p and `
is the Adams summand of the p-localization of the connective K-theory
spectrum ku. This was investigated by Kane [6] and Lellmann [9] using
Brown-Gitler spectra. Our approach is different and exploits the fact that
MU is a commutative S-algebra in the sense of Elmendorf, Kriz, Mandell
and May [5] and ` is an MU -ring spectrum. In fact it is even an MU -algebra
and has a unique E∞-structure [4]. As a calculational tool, we make use
of a Künneth spectral sequence (3.2) converging to `∗`, where we work
with a concrete Koszul resolution. Our approach bears some similarities to
old work of Landweber [8], who worked without the benefit of the modern
development of structured ring spectra. The multiplicative structure on
the Koszul resolution gives us control over the convergence of the spectral

∗We would like to thank Iain Gordon, John Rognes, Steffen Sagave and Sarah White-
house for their comments. We also thank the referee for his/her many detailed and helpful
remarks. The first author was supported by the Max-Planck Institute for Mathematics,
Bonn, and the Yngre Femregande Forskere (YFF) of the Norwegian Research Council;
the second author was supported by the Strategisk Universitetsprogram i Ren Matem-
atikk (SUPREMA) of the Norwegian Research Council. We also thank the Universities
of Bern, Bonn, and Oslo for their hospitality.

Tbilisi Mathematical Journal 1 (2008), pp. 33–70.
Tbilisi Centre for Mathematical Sciences & College Publications.

Received by the editors: 20 March 2007; 18 March 2008.
Accepted for publication: 1 May 2008.



34 A. Baker, B. Richter

sequence and the multiplicative structure of `∗`. In particular, it sheds light
on the torsion.

From Kane’s work [6] we know that the torsion in `∗` is detected by the
edge homomorphism into the 0-line of the Adams spectral sequence for `∗`.
Our analysis of the Künneth spectral sequence gives an explicit description
of the p-torsion elements in `∗` and we determine their image in the dual of
the Steenrod-algebra (see § 8).

The outline of the paper is as follows. We recall some basic facts about
complex cobordism, MU , in § 2 and describe the Künneth spectral sequence
in § 3. Some background on the Bockstein spectral sequence is given in § 4.
The multiplicative structure on the E2-term of this spectral sequence is
made precise in § 5 where we introduce the Koszul resolution we shall use
later in terms of its multiplicative generators. We study the torsion part in
`∗` and the torsion-free part separately. The investigation of ordinary and
L-homology of ` in § 6 leads to the identification of the p-torsion in `∗` with
the u-torsion where `∗ = Z(p)[u] with u being in degree 2p − 2. In § 7 we
show how to exploit the cofibre sequence

`
p−→ ` −→ `/p

to analyse the Künneth spectral sequence and relate the simpler spectral
sequence for `/p to that for `. To that end we prove an auxiliary result
on connecting homomorphisms in the Künneth spectral sequence, which
is analogous to the well-known geometric boundary theorem (see for in-
stance [15, Chapter 2, §3]). We use the fact that the p- and u-torsion is
all simple to show that the Künneth spectral sequence for `∗` collapses at
the E2-term and that there are no extension issues. We summarize our
calculation of `∗` at the end of that section.

In § 8 we use classical tools from the Adams spectral sequence in order
to study torsion phenomena in `∗`. We can describe the torsion in `∗`
in terms of familiar elements which are certain coaction-primitives in the
HFp-homology of `.

We summarize our results on the multiplicative structure on `∗` at the
end of § 9, where we establish congruence relations in the zero line of the
Künneth spectral sequence and describe the map from the torsion-free part
of `∗` to Q ⊗ `∗`. Taking this together with the explicit formulae of the
multiplication in the torsion part in `∗` gives a rather comprehensive, though
not complete, description of the multiplicative structure of `∗`.

In the appendices we give some results on regular sequences in Hopf
algebroids that we find useful in several places in our work, and also an ac-
count of the convergence of Massey products in spectral sequences required
in our proof of Theorem 7.3.
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2 Recollections on MU and `

Throughout, we shall assume all spectra are localized at p for some odd
prime p.

Let ku denote connective complex K-theory and let ` be the Adams
summand, also known as BP 〈1〉, so that

ku(p) ∼
∨

06i6p−2

Σ2i`.

We have `∗ = π∗` = Z(p)[u] with u ∈ `2(p−1). We shall denote the Adams
summand of KU(p) by L; then L∗ = `∗[u−1].

Let us recall some standard facts for which convenient sources are [1, 17].
Since ` is complex oriented,

`∗MU = `∗[m′n : n > 1],

where m′n ∈ `2nMU agrees with the m`
n of Adams [1]. By the Hattori-

Stong theorem, the Hurewicz homomorphism MU∗ −→ `∗MU is a split
monomorphism, so we shall view MU∗ as a subring of `∗MU . Now

MU∗ = Z(p)[xn : n > 1],

where xn ∈MU2n and using Milnor’s criterion for polynomial generators of
MU∗ we can arrange that

xn ≡

{
pm′pk−1 mod decomposables if n = pk − 1 for some k,
m′n mod decomposables otherwise.

In fact, we can take xpk−1 = vk to be the Hazewinkel generator which lies
in BP∗ ⊆MU∗. The following formula recursively determines the Hurewicz
image of vk in H∗MU = Z(p)[mk : k > 1]:

vk = pmpk−1 −
∑

16j6k−1

mpj−1v
pj

k−j . (2.1)

In H∗BP with λk = mpk−1, this corresponds to the familiar formula

vk = pλk −
∑

16j6k−1

λjv
pj

k−j . (2.2)

We note that

`∗MU/(`(xn) : n 6= pk − 1 for any k) = `∗[tk : k > 1] = `∗BP, (2.3)
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where tk ∈ `2pk−2BP is the image of the standard polynomial generator
tk ∈ BP∗BP of [1].

Now recall that the natural complex orientation of ` factors as

σ : MU −→ BP −→ `

and we can choose the generators xn so that

σ∗(xn) =

{
u if n = p− 1,
0 otherwise.

In particular, the kernel of the map BP∗ −→ `∗ is the ideal generated by
the Hazewinkel generators v2, v3, . . ..

We can also find useful expressions for Hurewicz images `(vn) of the vn in
`∗BP and `∗MU . Using standard formulae for the right unit ηR : BP∗ −→
BP∗BP which can be found in [17], we have for n > 2,

`(vn) = ptn + utpn−1 − up
n−1

tn−1 + ps′n + us′′n, (2.4)

where s′n ∈ Z(p)[u, t1, . . . , tn−1] and s′′n ∈ Z(p)[u, t1, . . . , tn−2]. We also have
`(v1) = pt1 + u.

We now make some useful deductions.

Proposition 2.1. In the ring Q⊗ `∗BP , the sequence

`(v2), `(v3), . . . , `(vn), . . .

is regular and

Q⊗ `∗BP/(`(vn) : n > 2) = Q⊗ `∗[t1] = Q⊗ `∗[v1].

Proof. For each n > 1, ptn is a polynomial generator for Q ⊗ `∗BP =
Q ⊗ `∗[ti : i > 1] over Q ⊗ `∗. For an alternative approach to this, see
Remark A.3. q.e.d.

Proposition 2.2. In the ring L∗BP , the sequence

`(v2), `(v3), . . . , `(vn), . . .

is regular and

L∗BP/(`(vn) : n > 2) =

L∗[tk : k > 1]/(tpn − up
n−1tn + pu−1s′n+1 + s′′n+1 + pu−1tn+1 : n > 1).
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In the ring L∗BP/(p), the sequence

`(v2), `(v3), . . . , `(vn), . . .

is regular and

L∗BP/(p, `(vn) : n > 2) = L∗/(p)[tk : k > 1]/(tpn−up
n−1tn + s′′n+1 : n > 1).

Proof. These results follow from Theorem A.1 and Corollary A.2. q.e.d.

3 A Künneth spectral sequence for `∗`

We shall describe a calculation of `∗` = π∗(` ∧ `) that makes use of the
Künneth spectral sequence of [5] for MU -modules. This is different from
the approach taken by Kane [6], and we feel it offers some insight into the
form of answer, especially with regard to multiplicative structure.

For anyMU -module spectrum F and any spectrum E there is a Künneth
(or universal coefficient) spectral sequence [5, IV.4.5]

E2
s,t = TorMU∗

s,t (π∗(E ∧MU), π∗F )

=⇒ π∗((E ∧MU) ∧MU F ) ∼= π∗(E ∧ F ) = E∗F. (3.1)

Note that in certain cases this spectral sequence is actually multiplica-
tive ([3, Lemma 1.3], see also Appendix B); in particular for E = F = ` we
obtain a multiplicative spectral sequence

E2
s,t = TorMU∗

s,t (π∗(` ∧MU), π∗`) =⇒ `∗`. (3.2)

Now consider the MU∗-module `∗. We can assume that the complex
orientation gives rise to a ring isomorphism

MU∗/(xn : n 6= p− 1)
∼=−−→ `∗.

There is a Koszul resolution of `∗ as a module over MU∗,

ΛMU∗(er : 0 < r 6= p− 1) −→ `∗ → 0,

where ΛMU∗(er : 0 < r 6= p−1) is the exterior algebra generated by elements
er of bidegree (1, 2r) whose differential d is the derivation which satisfies
d(er) = xr.

For arbitrary E and F = `, the E2-term of the spectral sequence (3.1)
is the homology of the complex

E∗MU ⊗MU∗ ΛMU∗(er : 0 < r 6= p− 1) ∼= ΛE∗MU (er : 0 < r 6= p− 1)
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with differential id⊗ d which corresponds to the differential d taking values
in the latter complex. From (2.3) we find that the homology of this complex
is

H∗(ΛE∗MU (er : 0 < r 6= p− 1), d) = H∗(ΛE∗BP (εr : r > 2), d), (3.3)

where εr has bidegree (1, 2pr − 2) and d(εr) = vr.

Proposition 3.1. Suppose that the E-theory Hurewicz images e(vk) with
k > 2 form a regular sequence in E∗BP . Then the complex

ΛE∗BP (εr : r > 2) −→ E∗BP/(e(vr) : r > 2)→ 0

is acyclic and

TorMU∗
s,∗ (E∗MU, `∗) =

{
E∗BP/(e(vr) : r > 2) if s = 0,

0 otherwise.
(3.4)

Therefore the Künneth spectral sequence of (3.1) degenerates to give an
isomorphism

E∗BP/(e(vr) : r > 2)
∼=−−→ E∗`.

The regularity condition of this result applies for each of the cases E =
`Q, L/p by Propositions 2.2 and 2.1. We do not have a proof that it holds
for the case E = L, however the following provides a substitute.

Proposition 3.2. Suppose that E is a p-local Landweber exact spectrum.
Then the complex

ΛE∗BP (εr : r > 2) −→ E∗BP/(e(vr) : r > 2)→ 0

is acyclic and the conclusion of Proposition 3.1 is valid.

Proof. There are isomorphisms of complexes

E∗MU ⊗MU∗ ΛMU∗(er : 0 < r 6= p− 1)
∼=E∗ ⊗MU∗ MU∗MU ⊗MU∗ ΛMU∗(er : 0 < r 6= p− 1)
∼=E∗ ⊗MU∗ ΛMU∗MU (er : 0 < r 6= p− 1)
∼=E∗ ⊗MU∗ ΛMU∗BP (εr : r > 2).

The sequence v2, v3, . . . is regular in MU∗, so mu(v2),mu(v3), . . . is also
regular in MU∗BP , by Theorem A.1. Therefore

ΛMU∗BP (εr : r > 2) −→MU∗BP/(mu(vr) : r > 2)→ 0
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is an exact complex of MU∗BP -modules. The differentials in the com-
plex ΛMU∗BP (εr : r > 2) are coproducts of multiplication by mu(vr) on
MU∗BP = MU∗MU⊗MU∗BP∗, and these are all MU∗MU -comodule mor-
phisms by Theorem A.1(i). The hypothesis on E means that the functor
E∗ ⊗MU∗ (−) is exact on the category of left MU∗MU -comodules, hence
the complex

E∗⊗MU∗ ΛMU∗BP (εr : r > 2) −→ E∗⊗MU∗MU∗BP/(mu(vr) : r > 2)→ 0,

is exact. From this we obtain the result. q.e.d.

Of course, this result applies when E = L. Later we shall also consider
some cases where these regularity conditions do not hold.

4 Bockstein spectral sequences

We follow [16, p. 158] in this account. Let R be a graded commutative ring
and suppose that we have an exact couple of graded R-modules

A0
∗

x· // A0
∗

j0~~~~
~~

~~
~

B0
∗

δ0

``@@@@@@@

where δ0 is a map of degree −|x| − 1 and x· is multiplication by x ∈ R.
Then there are inductively defined exact couples

Ar∗
x· // Ar∗

jr

~~}}
}}

}}
}}

Br∗

δr

``AAAAAAAA

and an associated spectral sequence (Br, dr) with Br+1
∗ = H(Br∗, d

r). For
each r > 1, there are exact sequences

0→ A0
n/(xA

0
n−|x| + xrA0

n)
j̄r

−→ Brn
δr

−→ xA
0
n−|x|−1 ∩ x

rA0
n−|x|−1−r|x| → 0,

(4.1)
where

xrA0
n = ker(xr : A0

n −→ A0
n+r|x|), x∞A

0
n =

⋃
r>1

xrA0
n.

In particular, if B1
n = B∞n = 0 for some n, we obtain the following:

x∞An = xAn, (4.2)

ker δ0 = ker d0 = im j0. (4.3)
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Let ¯̀ denote the cofibre of the multiplication by p in the sequence

`
p−→ `

%−→ ¯̀= `/p.

We shall make use of the following special case of this situation in our proof
of Theorem 7.3. The reader is referred to § 8 for more on the ordinary
homology of `.

Proposition 4.1. All u-torsion in ¯̀∗` is simple.

Proof. We make use of a Bockstein spectral sequence as above. Setting
A0
∗ = ¯̀∗` and B0

∗ = H∗(`; Fp) (where x = u acts trivially), the differential
is essentially the Milnor operation Q1 acting on

H∗(`; Fp) = Fp[ζ1, ζ2, . . .]⊗ Λ(τ̄2, τ̄3, . . .)

by
Q1(τ̄n) = ζpn−1.

Hence we have

B∞∗ = B1
∗ = Fp[ζ1, ζ2, . . .]/(ζp1 , ζ

p
2 , . . .).

The composition BP∗BP −→ ¯̀∗` −→ H∗(`; Fp) maps ti to ζi. As u does not
annihilate ti the maps j̄r for all r > 1 are surjective. In particular, from (4.1)
the u-torsion in ¯̀∗` intersected with the multiples of u is trivial. q.e.d.

5 Generalized Koszul complexes and Bockstein
spectral sequences

Let R be a commutative ring and x ∈ R a non-zero divisor which is also
not a unit. Let w1, w2, w3, . . . be a (possibly finite) regular sequence in R
which reduces to a regular sequence in R/(x).

The Koszul complex (ΛR(er : r > 1), d) whose differential is the R-
derivation determined by d(er) = wr provides a resolution

ΛR(er : r > 1) −→ R/(wr : r > 1)→ 0

of R/(wr : r > 1) by R-modules.
Now consider the sequence xw1, xw2, xw3, . . . which is not regular in R

since for s > r,
wr(xws) = ws(xwr).

The Koszul complex (ΛR(e′r : r > 1), d′) with differential satisfying d′(e′r) =
xwr is no longer exact but does augment onto R/(xwr : r > 1). Notice that
there is a monomorphism of differential graded R-algebras

j : ΛR(e′r : r > 1) −→ ΛR(er : r > 1); j(e′r) = xer,
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and this covers the reduction map R/(xwr : r > 1) −→ R/(wr : r > 1).
Using this, we shall view ΛR(e′r : r > 1) as a subcomplex of ΛR(er : r > 1).
We want to determine the homology of (ΛR(e′r : r > 1), d′).

Suppose that z ∈ ΛR(e′r : r > 1)n with n > 0 and d′(z) = 0. Then
working in ΛR(er : r > 1) we have d(j(z)) = 0, so by exactness of the latter
complex, there is an element

y =
∑

16i1<i2<···<in+1

yi1,i2,...,in+1ei1ei2 · · · ein+1 ∈ ΛR(er : r > 1)n+1

for which d(y) = j(z). But

d(y) =
∑

16i1<i2<···<in+1
16k6n+1

(−1)kwikyi1,i2,...,in+1ei1ei2 · · · êik · · · ein+1 .

Since we have

j(z) =
∑

16i1<i2<···<in

xnzi1,i2,...,inei1ei2 · · · ein ,

using the regularity assumption we find that each yi1,i2,...,in+1 has the form

yi1,i2,...,in+1 = xny′i1,i2,...,in+1

for some y′i1,i2,...,in+1
∈ R and therefore

z =
∑

16i1<i2<···<in+1
16k6n+1

(−1)kwiky
′
i1,i2,...,in+1

e′i1e
′
i2 · · · ê′ik · · · e

′
in+1

.

Notice that

xz = d′

( ∑
16i1<i2<···<in+1

y′i1,i2,...,in+1
e′i1e

′
i2 · · · e

′
in+1

)
.

Therefore x annihilates the n-th homology of ΛR(e′r : r > 1) for n > 0, and
hence it is an R/(x)-module spanned by the elements

∆x(i1, i2, . . . , in+1) =
∑

16k6n+1

(−1)kwike
′
i1e
′
i2 · · · ê′ik · · · e

′
in+1

(5.1)

for collections of distinct integers i1, i2, . . . , in+1 > 1. Clearly, for a permu-
tation σ ∈ Sn+1,

∆x(iσ(1), iσ(2), . . . , iσ(n+1)) = signσ∆x(i1, i2, . . . , in+1).
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Thus we shall often restrict attention to indexing sequences satisfying

1 6 i1 < i2 < · · · < in+1.

These elements satisfy some further additive and multiplicative relations.

Proposition 5.1. Let r, s > 2 and suppose that i1, i2, . . . , ir > 1 and
j1, j2, . . . , js > 1 are sequences of distinct integers. Let

t = #{i1, i2, . . . , ir} ∪ {j1, j2, . . . , js}

and write

{k1, k2, . . . , kt} = {i1, i2, . . . , ir} ∪ {j1, j2, . . . , js}

with 1 6 k1 < k2 < · · · < kt. Then the following identities are satisfied in
each of ΛR(e′r : r > 1) and H∗(ΛR(e′r : r > 1), d′):

∆x(i1, i2, . . . , ir)∆x(j1, j2, . . . , js) =

=


0 if t 6 r + s− 2,

(−1)awkm∆x(k1, k2, . . . , kt) if

{
t = r + s− 1
km = ia = jb

}
,

Σ if t = r + s,

(5.2a)

r∑
j=1

(−1)jwij ∆x(i1, i2, . . . , îj , . . . ir) = 0, (5.2b)

where

Σ :=
r∑
j=1

(−1)j+s+1wij ∆x(i1, i2, . . . , îj , . . . ir, j1, j2, . . . , js).

Theorem 5.2. The homology of (ΛR(e′r : r > 1), d′) is given by

Hn(ΛR(e′r : r > 1), d′)

=

{
R/(xwr : r > 1) if n = 0,

R/(x){∆x(i1, i2, . . . , in+1) : 1 6 i1 < i2 < · · · < in+1} if n > 0,

where in the second case, the R/(x)-module is generated by the elements
∆x(i1, i2, . . . , in+1) indicated, subject to relations given in (5.2b).
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Proof. Consider the long exact sequence obtained by taking homology of
the exact sequence

0→ R⊗R ΛR(e′r : r > 1) −→ R⊗R ΛR(e′r : r > 1)
−→ R/(x)⊗R ΛR(e′r : r > 1)→ 0.

The associated exact couple has

A0
∗ = H∗(ΛR(e′r : r > 1), d′),

B0
∗ = H∗(ΛR/(x)(e′r : r > 1), d′) = ΛR/(x)(e′r : r > 1).

Making use of the formula d0e′r = wr we find that

B1
∗ = R/(x,w1, w2, . . .).

As x is not a zero divisor, the maps j̄r for r > 1 are all surjective and
therefore the x-torsion in A0

∗ is all simple. q.e.d.

Notice that the quotient R-module R/(xwr : r > 1) has x-torsion, as
does the higher homology, at least if the sequence of wr’s has at least two
terms.

We end this section with a result on Massey products in the homology
determined in Theorem 5.2, and this will used in the proof of Theorem 7.3.

Proposition 5.3. In the algebra H∗(ΛR(e′r : r > 1), d′), for a sequence of
distinct natural numbers i, j, k1, . . . , kn with n > 2, the Massey product

〈∆x(i, j), x,∆x(k1, . . . , kn)〉
is defined and contains ∆x(i, j, k1, . . . , kn) with indeterminacy

Ha(ΛR(e′r : r > 1), d′) ∆x(i, j) + Hb(ΛR(e′r : r > 1), d′) ∆x(k1, . . . , kn)

for suitable degrees a, b.

Proof. We follow the usual conventions for defining Massey products, see [7,
§5.4] or [12] for details.
We have

d′(e′ie
′
j) = x∆x(i, j),

d′(e′k1
· · · e′k2

) = x∆x(k1, . . . , kn),

hence a representative of the Massey product 〈∆x(i, j), x,∆x(k1, . . . , kn)〉 is

e′ie
′
j∆x(k1, . . . , kn) + ∆x(i, j)e′k1

· · · e′kn

=
n∑
r=1

(−1)rwkr
e′ie
′
je
′
k1
· · · ê′kr

· · · e′kn
+ wie

′
je
′
k1
· · · e′kn

− wje′ie′k1
· · · e′kn

= ∆x(i, j, k1, . . . , kn),

as claimed. q.e.d.
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6 Ordinary and L-homology of `

We can compute H∗` making use of the spectral sequence (Er∗,∗(H), dr)
obtained from (3.1) by taking E = H = HZ(p) and F = `. This can be
compared with the spectral sequence (Er∗,∗(HQ), dr) for HQ∗` making use
of the morphism of spectral sequences

Er∗,∗(H) −→ Er∗,∗(HQ)

induced by the natural map H −→ HQ. We shall also consider the spectral
sequence (Er∗,∗(H̄), dr) associated with H̄ = HFp.

By (2.2), in the polynomial ring HQ∗BP = Q[λi : i > 1], the sequence
v2, v3, . . . , vn, . . . is regular. So by Proposition 3.1 we have

E2
s,∗(HQ) =

{
Q[λi : i > 1]/(vk : k > 2) if s = 0,
0 otherwise.

(6.1)

Hence this spectral sequence collapses at E2 and we have

HQ∗` = Q[λ1] = Q[v1],

where v1 = pλ1. The image of λn in HQ∗` can be recursively computed
with the aid of the following formula derived from (2.2):

λn =
vp

n−1

1 λn−1

p
. (6.2)

So we have

λn =
v

(pn−1)/(p−1)
1

pn
= pp

n−1+pn−2+···+p+1−n λ
(pn−1)/(p−1)
1 . (6.3)

Notice that for a monomial in the λj ’s in HQ2m(p−1)`, we have

λr11 · · ·λrn
n =

vm1
pr1+2r2+···+nrn

,

for which

r1 + 2r2 + · · ·+ nrn 6 r1 + r2
p2 − 1
p− 1

+ · · ·+ rn
pn − 1
p− 1

= m.

This calculation shows that the images of the monomials in the λj ’s in
HQ2m(p−1)` are contained in the cyclic Z(p)-module generated by λm1 =
vm1 /p

m. Turning to the spectral sequence Er∗,∗(H), we see that

E2
0,∗(H) = H∗BP/(vj : j > 2)
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and the natural map

H2m(p−1)BP/(vj : j > 2) −→ HQ2m(p−1)BP/(vj : j > 2)

has image equal Z(p)λ
m
1 . In [1], the analogous result for ku was obtained

using the Adams spectral sequence.

Proposition 6.1. For m > 0,

im[H2m(p−1)` −→ HQ2m(p−1)`] = Z(p)λ
m
1 = Z(p)

vm1
pm

.

Hence,
im[H∗` −→ HQ∗`] = Z(p)[λ1] = Z(p)[v1/p].

The spectral sequence (Er∗,∗(H̄), dr) is easy to determine. As for all k
vk = 0 in H̄∗BP , we find that

E∞∗,∗(H̄) = E2
∗,∗(H̄) = ΛH̄∗BP (εr : r > 2).

Thus we recover the well-known result that

H̄∗` = Fp[tk : k > 1]⊗Fp ΛFp(εr : r > 2),

where tk has degree 2pk − 2 and εr has degree 2pr − 1.
From Propositions 2.2 and 3.1 we have

TorMU∗
∗,∗ (L∗MU, `∗) = L∗BP/(`(vr) : r > 2),

TorMU∗
∗,∗ (L̄∗MU, `∗) = L̄∗BP/(`(vr) : r > 2),

where L̄ = L/p denotes the spectrum L smashed with the mod p Moore
spectrum. As a consequence, the Künneth spectral sequences for L∗` and
L̄∗` degenerate to give

L∗BP/(`(vr) : r > 2) ∼= L∗`, L̄∗BP/(`(vr) : r > 2) ∼= L̄∗`.

Since L∗MU is a free Z(p)-module, multiplication by p gives an exact se-
quence of right MU∗-modules

0→ L∗MU
p−→ L∗MU −→ L̄∗MU → 0

which induces a long exact sequence on the functor TorMU∗
∗ ( , `∗) and this

collapses to the short exact sequence

0→ TorMU∗
0,∗ (L∗MU, `∗)

p−→ TorMU∗
0,∗ (L∗MU, `∗)

−→ TorMU∗
0,∗ (L̄∗MU, `∗)→ 0.
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From this we see that there is a short exact sequence

0→ L∗`
p−→ L∗` −→ L̄∗`→ 0.

On tensoring with Q we easily see that Q⊗ `∗` −→ Q⊗L∗` is a monomor-
phism. Hence we have

Proposition 6.2. The ring L∗` has no p-torsion and the natural map
`∗` −→ L∗` induces an exact sequence

0→ p∞(`∗`) −→ `∗` −→ L∗`.

Corollary 6.3. We have

p∞(`∗`) = u∞(`∗`).

Proof. Since `∗ −→ L∗ = `∗[u−1] is a localization, we have L∗` = `∗`[u−1]
and

ker(`∗` −→ L∗`) = u∞(`∗`),

hence u∞(`∗`) = p∞(`∗`). q.e.d.

7 Connecting homomorphisms in the Künneth
spectral sequence

In order to gain control over the p-torsion in TorMU∗
∗,∗ (`∗MU, `∗), we shall

exploit the cofibre sequence

`
p−→ `

%−→ ¯̀ δ−→ Σ`. (7.1)

To this end we shall relate the geometric connecting morphisms of cofibre
sequences to morphisms of Künneth spectral sequences. The method of
proof we use in this part is analogous to that of the geometric boundary
theorem in [15, II.3].

Suppose that R is a commutative S-algebra and let W be a cofibrant
R-module which we fix from now on. Then for any R-module Z there is a
Künneth spectral sequence with

E2
s,t(Z) = TorR∗s,t (Z∗,W∗) =⇒ π∗(Z ∧RW ).

Lemma 7.1. Let
X

f−→ Y
g−→ Z

h−→ ΣX

be a cofibre sequence of R-modules with X '
∨m
i=1 ΣniR and π∗f surjective.

Then there is a map of Künneth spectral sequences

Ers,t(Y )
ψr

−−→ Ers−1,t(Σ
−1Z) (r > 2),

such that ψ2 is the connecting homomorphism

TorR∗s,t (Y∗,W∗) −→ TorR∗s−1,t((Σ
−1Z)∗,W∗).
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Proof. Since π∗f is surjective, there is a short exact sequence

0→ (Σ−1Z)∗ −→
m⊕
i=1

ΣniR∗ −→ Y∗ → 0.

This induces a long exact sequence of Tor-groups, in which every third term
is trivial, because

⊕m
i=1 ΣniR∗ is R∗-free. Therefore we have an isomorph-

ism
TorR∗s,t (Y∗,W∗)

∼=−−→ TorR∗s−1,t((Σ
−1Z)∗,W∗).

On the level of projective resolutions, we can splice a resolution P•,∗ for Y∗
together with a resolution Q•,∗ of (Σ−1Z)∗ to obtain a trivial split resolution
for
⊕m

i=1 ΣniR∗. Thus we obtain a map between exact couples and so obtain
the desired map of spectral sequences. q.e.d.

Theorem 7.2. Let
X

f−→ Y
g−→ Z

h−→ ΣX

be a cofibre sequence of R-modules with π∗f surjective. Then there is an
induced map of Künneth spectral sequences

Ers,t(Y )
ϕr

−−→ Ers−1,t(Σ
−1Z) (r > 2)

such that ϕ2 is the connecting homomorphism

TorR∗s,t (Y∗,W∗) −→ TorR∗s−1,t((Σ
−1Z)∗,W∗).

Proof. Choose a map f ′ :
∨m
i=1 ΣniR −→ Y with π∗f

′ surjective and con-
sider the cofibre sequence

m∨
i=1

ΣniR
f ′−→ Y

j−→ cone(f ′).

By Lemma 7.1 there is a map of Künneth spectral sequences

Ers,t(Y )
ψr

−−→ Ers−1,t(Σ
−1 cone(f ′)).

As π∗f is surjective, the composition g ◦ f ′ is trivial and there is a factor-
ization g = ξ ◦ j.

cone(f ′)
ξ

$$
X

f // Y
g //

j

OO

Z
h // ΣX

∨m
i=1 ΣniR

f ′

OO



48 A. Baker, B. Richter

Now we may define ϕr to be (Σ−1ξ)∗ ◦ ψr. q.e.d.

For the connective Adams summand `, we shall consider the cofibre
sequence

` ∧MU
%−→ ¯̀∧MU

δ−→ Σ` ∧MU
Σp−−→ Σ` ∧MU (7.2)

obtained from (7.1) by smashing with MU . The reduction map % is surjec-
tive in homotopy and therefore we can apply Theorem 7.2 to obtain a map
of Künneth spectral sequences

Ers,t(¯̀∧MU)
ϕr

−−→ Ers−1,t(` ∧MU) (r > 2).

In particular, this yields a connecting homomorphism

ϕ2 : TorMU∗
s,t (¯̀∗MU, `∗) −→ TorMU∗

s−1,t(`∗MU, `∗).

The following result is crucial for understanding the Künneth spectral se-
quence for `∗`.

Theorem 7.3. Each p-torsion element of TorMU∗
s,∗ (`∗MU, `∗) is the image

of an element of TorMU∗
s+1,∗(¯̀∗MU, `∗) under the connecting homomorphism

ϕ2 and is an infinite cycle.

Before giving the proof, we need some preliminaries. We shall apply the
ideas of § 5 in the context of the ring R = ¯̀∗BP . Consider the sequence
¯̀(v2), ¯̀(v3), . . . in ¯̀∗BP . By (2.4), we have for n > 2,

¯̀(vn) = utpn−1 − up
n−1

tn−1 + us′′n

where s′′n ∈ Fp[u, t1, . . . , tn−2]; thus for n > 1 we set

wn = tpn − up
n−1tn + s′′n+1, (7.3)

so that ¯̀(vn+1) = uwn. This gives a sequence w1, w2, . . . in ¯̀∗BP . Now to
apply Propositions 3.1 and 3.2 in the case E = ¯̀, we require a lemma.

Lemma 7.4. The sequence w1, w2, . . . is regular in ¯̀∗BP .

Proof. Recall that ¯̀∗BP = Fp[u, t1, t2, . . .] is a polynomial algebra over Fp
and so it is an integral domain. Thus w1 is not a zero divisor. Now suppose
that for some n > 2, we have established that w1, w2, . . . , wn−1 is regular.
We shall set

A(n) = Fp[u, t1, . . . , tn−1]/(w1, w2, . . . , wn−1).

Then
¯̀∗BP/(w1, w2, . . . , wn−1) = A(n)[tn, tn+1, . . .],
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i.e., this is a polynomial ring over A(n). The image of s′′n+1 in ¯̀∗BP lies
in A(n). Now it is clear from (7.3) that wn cannot be a zero divisor in
A(n)[tn, tn+1, . . .] since it has highest monomial term tpn. q.e.d.

Finally we can prove our theorem.

Proof of Theorem 7.3. Making use of the long exact sequence on Tor-groups
associated with the short exact sequence

0→ `∗MU
p−→ `∗MU

%∗−→ ¯̀∗MU → 0

induced from (7.2), the claim about the p-torsion in TorMU∗
∗,∗ (`∗MU, `∗)

follows.
We shall prove that the elements ∆u(i1, . . . , im) with i1, . . . , im distinct

are infinite cycles in the Künneth spectral sequence for ¯̀∗`, then it follows
that the elements ϕ2∆u(i1, . . . , im) must also be a infinite cycles in the
spectral sequence for `∗`.

Our proof will show that E2
s,t = E∞s,t by induction on total degree s+ t.

Clearly this is true in total degree 0. So assume that it holds for total degree
less than n > 0, say. To establish the inductive step, it suffices to show that
each ∆u(i1, . . . , im) with total degree n is an infinite cycle (we only need
consider the case where the ij are distinct, and such elements of lower total
degree are already assume to be infinite cycles). If m = 2, 3, elements of
form ∆u(i1, i2) or ∆u(i1, i2, i3) are infinite cycles for degree reasons. If
m > 4, then by Proposition 5.3, we know that ∆u(i1, . . . , im) lives in the
Massey product 〈∆u(i1, i2), u,∆u(i3, . . . , im)〉 whose indeterminacy consists
of infinite cycles which are decomposable in the algebra structure. Using the
fact that the elements ∆u(i1, i2), u, and ∆u(i3, . . . , im) represent homotopy
classes, together with Proposition 4.1, we may form the analogous Toda
bracket in ¯̀∗` = π∗(¯̀∧ `), and this must be represented in the spectral
sequence by 〈∆u(i1, i2), u,∆u(i3, . . . , im)〉. This situation is similar to that
discussed in [7, Proposition 5.4.5] and its following paragraph on homology
spectral sequences. As we shall see in the following discussion, Kochman’s
crossing condition 5.4.5(d) is a consequence of our inductive assumption,
thus ∆u(i1, . . . , im) must be an infinite cycle as is required to verify the
inductive step. The reader is referred to Appendix B, where we give an
exposition of the ingredients required for this argument.

In order to see that the crossing condition holds, we note that the in-
duction in the proof of Kochman’s proposition 5.4.5 for a triple product
〈x1, x2, x3〉 only involves the terms X0,1, X2,3 in the defining system. Cross-
ing differentials that might occur for 〈∆u(i1, i2), u,∆u(i3, . . . , im)〉 would
involve domains corresponding to total degrees equal to those of the el-
ements ∆u(i1, i2)u and u∆u(i3, . . . , im). But both of these degrees are
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less than n, so all such differentials are trivial by our inductive assump-
tion. q.e.d. (Theorem 7.3)

Corollary 7.5. Since the elements ϕ2∆u(i1, . . . , in) generate the torsion in
the Künneth spectral sequence for `∗` as a module over the ring `∗BP , this
spectral sequence collapses at the E2-page.

Remark 7.6. To summarize: The calculation of the rational homology of `
in (6.1) tells us that the torsion-free part of `∗` has to have its origin in the
zero-line of the Künneth spectral sequence. Theorem 7.3 gives an explicit
description of the p-torsion classes in TorMU∗

∗,∗ (`∗MU, `∗) as the image of the
elements ∆u(i1, . . . , in) in TorMU∗

∗,∗ (¯̀∗MU, `∗) under the geometric bound-
ary, so the torsion part is imported from the Künneth spectral sequence for
¯̀∗`. The Künneth spectral sequence for `∗` collapses at the E2-page.

Later, we need to know that there are no extension problems. From
Corollary 6.3 we know that the p-torsion and u-torsion in `∗` agree. We
recall a result from [6, Proposition 9.1].

Proposition 7.7. All torsion in `∗` is simple, i.e., for every torsion-class
x ∈ `∗` we have px = 0 which is equivalent to ux = 0.

Corollary 7.8. The Künneth spectral sequence for `∗` collapses at the
E2-page and there are no non-trivial extensions.

8 Detecting homotopy in the Adams spectral
sequence

In this section we recall some results about the classical Adams spectral
sequence for `∗`. We make heavy use of standard facts about Hopf algebras
and the Steenrod algebra [14, 13]. In the following we generically write I
for identity morphisms, ϕ for products and actions, ψ for coproducts and
coactions, η for units and ε for counits and we use x̄ for the antipode on an
element x. Undecorated tensor products are taken over the ground field.

We write H̄∗(−) for H∗(−; Fp) and A∗ for the dual Steenrod algebra,

A∗ = Fp[ζn : n > 1]⊗ Λ(τ̄n : n > 0),

where the coaction is given by

ψ(ζn) =
n∑
i=0

ζi ⊗ ζp
i

n−i, ψ(τ̄n) = 1⊗ τ̄n +
n∑
i=0

τ̄i ⊗ ζp
i

n−i.

The generators ζn ∈ A2pn−2 and τ̄n ∈ A2pn−1 are related to the Milnor
generators ξn, τn by the antipode:

ζn = χ(ξn), τ̄n = χ(τn).



Cooperation algebra of the connective Adams summand 51

The sub-comodule algebra

B∗ = Fp[ζn : n > 1]⊗ Λ(τ̄n : n > 2)

gives rise to a quotient Hopf algebra

E∗ = A∗//B∗ = Λ(α, β),

where α, β are the residue classes of τ̄0, τ̄1 respectively. Then

B∗ = A∗�E∗Fp.

Now the natural map ` −→ H̄ induces an isomorphism

H̄∗(`)
∼=−−→ B∗ ⊆ A∗

and there are isomorphisms of A∗-comodule algebras

H̄∗(` ∧ `)
∼=−−→ H̄∗(`)⊗ H̄∗(`)

∼=−−→ B∗ ⊗B∗
∼=−−→ A∗�E∗B∗. (8.1)

The E2-term of the Adams spectral sequence converging to π∗(` ∧ `) = `∗`
has the form

E2
s,t = CotorA∗

s,t (Fp, H̄∗(` ∧ `)) ∼= CotorA∗
s,t (Fp,A∗�E∗B∗)

and so by making use of a standard change of rings result, we have

E2
s,t
∼= CotorE∗

s,t(Fp,B∗). (8.2)

Note that by results of [6], the torsion in `∗` is detected by the edge
homomorphism (which is essentially the Hurewicz homomorphism) into the
0-line

E2
0,∗
∼= CotorE∗

0,∗(Fp,B∗) = Fp�E∗B∗.

The map involved here is obtained by composing the following A∗-comodule
algebra homomorphisms and suitably restricting the codomain:

π∗(` ∧ `) −→ H̄∗(`)⊗ H̄∗(`)
∼=−−→ B∗ ⊗B∗

I⊗ψ−−−→ B∗ ⊗ (A∗�E∗B∗)
ϕ⊗I−−−→ A∗�E∗B∗ −→ E∗�E∗B∗

∼=−−→ B∗.

Here, the second to last map is induced by the natural projection map
A∗ −→ A∗//B∗ = E∗ and the final isomorphism is the composition

E∗�E∗B∗
incl−−−→ E∗ ⊗B∗

ε⊗I−−→ Fp ⊗B∗
∼=−−→ B∗.
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A careful check of what the composition does on primitives shows that it
can be expressed as

π∗(` ∧ `) −→ H̄∗(` ∧ `)
(ν∧id)∗−−−−−→ H̄∗(`), (8.3)

where ν : H̄ ∧ ` −→ H̄ is the natural pairing. In particular, this implies that
the image of the Hurewicz map for `∧ ` maps monomorphically into H̄∗(`).

It will be useful to have an explicit version of the isomorphism

Fp�A∗(B∗ ⊗B∗) ∼= Fp�A∗(A∗�E∗B∗) ∼= Fp�E∗B∗.

This is just

Fp�E∗B∗
incl−−→ Fp ⊗B∗

I⊗ψ−−−→ Fp ⊗ (A∗ ⊗B∗),

whose image is in fact contained in Fp�A∗(B∗ ⊗B∗).
Given these results, we can use them to detect elements of `∗` in B∗, in

particular we can detect the torsion this way. To do this, we need to under-
stand B∗ as an E∗-comodule, in particular the non-trivial E∗-parallelograms
of the form

x
−β

ssgggggggggggggggggggggggggg

α~~~~
~~

~~
~

x′′

α

}}||
||

||
||

x′

β
ssgggggggggggggggggggggggggg

x′′′

(8.4)

in which the E∗-coaction satisfies

ψ(x) = 1⊗ x+ α⊗ x′ − β ⊗ x′′ + βα⊗ x′′′,
ψ(x′) = 1⊗ x′ + β ⊗ x′′′,
ψ(x′′) = 1⊗ x′′ + α⊗ x′′′.

Then x′′′ is an element of Fp�E∗B∗ which corresponds to an HFp wedge
summand in ` ∧ ` and a correponding torsion element. Of course, these
elements can be expressed in terms of the homology action of Q0 and Q1,
i.e.,

x′ = Q0x, x′′ = −Q1x, x′′′ = Q1Q0x.

Now Margolis [10, Chapter 18, Theorem 5] dualized to a homology ver-
sion for E∗-comodules tells us that B∗ uniquely decomposes into a coproduct
of comodules isomorphic (up to grading) to E∗, together with a comodule
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containing no free summand and isomorphic to a coproduct of lightning
flash comodules. The latter summand does not concern us for now since
all the torsion in `∗` comes from the HFp wedge summands as above cor-
responding to the free summand. In fact, Adams and Priddy [2, proof of
Proposition 3.12] determine the stable type of the lightning flash comodules,
in particular, the stable class of the E∗-comodule B∗ is shown to be⊗

r>0

(1 + Lr + L2
r + · · ·+ Lp−1

r ), (8.5)

where

Lr = Σa(r)Jb(r), a(r) + b(r) = 2(p− 1)pr, b(r) = pr−1 + · · ·+ p+ 1.

Here J = E∗/Fp is the coaugmentation coideal of E∗, represented by the
following diagram

•
β

ssggggggggggggggggggggggggg

α
����

��
��

�

• •

and Σ is the trivial comodule Fp assigned degree 1. Furthermore, all prod-
ucts are tensor products over Fp taken in the stable comodule category of
E∗.

Now the most obvious candidates for the tops of E∗-parallelograms are
the elements

τ̄i1 τ̄i2 · · · τ̄in+1 (1 < i1 < i2 < · · · < in+1, n > 1).

These can be multiplied by monomials in the ζj to obtain others.

Theorem 8.1. Consider the Fp-vector subspace V ⊆ Fp�E∗B∗ spanned by
Fp[ζi : i > 1]-scalar multiples of the elements 1 and

Q1Q0(τ̄i1 τ̄i2 · · · τ̄in+1) (1 < i1 < i2 < · · · < in+1, n > 1). (8.6)

Then V consists of all the elements in Fp�E∗B∗ which are the images of
torsion elements under the composition of the Hurewicz homomorphism
π∗(`∧ `) −→ H̄∗(`∧ `) and the identification of the homology H̄∗(`∧ `) with
Fp�E∗B∗.

Proof. Clearly Fp[ζi : i > 1] ⊆ Fp�E∗B∗. Now we know that the Künneth
spectral sequence for `∗` collapses and there are no additive extension
problems. We need to understand the mod p Hurewicz images of ele-
ments represented by the elements arising from the ∆u(i1, . . . , is+2) in
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TorMU∗
s+1,∗(¯̀∗MU, `∗), since these will give an additive basis for the p-torsion

in `∗`.

TorMU∗
s+1,∗(¯̀∗MU, `∗)

δ

��
TorMU∗

s,∗ (`∗MU, `∗)

��

+3 π∗(` ∧ `)

$$��
TorMU∗

s,∗ ((H̄ ∧ `)∗MU, `∗)

��

+3 π∗(H̄ ∧ ` ∧ `)

��

Fp�A∗H̄∗(` ∧ `)oo

��
TorMU∗

s,∗ (H̄∗MU, `∗) +3 H̄∗(`) Fp�E∗H̄∗(`)oo

The Künneth spectral sequence (3.1) for E∗` is natural for maps of ring
spectra E −→ F . Therefore the map (8.3) corresponds in the spectral
sequence to the composition of the two vertical maps in the left column in
the diagram above. As the Hurewicz homomorphism has its image in the
primitives of H̄∗(` ∧ `), it follows that the elements ∆u(i1, . . . , is+2) up to
a unit map to

Q0Q1(τ̄i1 · · · τ̄is+2) =∑
1<t<r6s+2

(−1)r+t(ζirζ
p
it−1 − ζitζ

p
ir−1) τ̄i1 τ̄i2 · · · ̂̄τ it · · · ̂̄τ ir · · · τ̄is+2 .

q.e.d.

Remark 8.2. The torsion in π∗(`∧`) maps injectively into Fp�A∗(B∗⊗B∗),
which in turn is identified with Fp�E∗B∗, therefore Theorem 8.1 shows
that the elements Q1Q0(τ̄i1 τ̄i2 · · · τ̄in) with n > 3 correspond to nilpotent
elements; only elements of the form Q1Q0(τ̄r τ̄s) are not nilpotent.

Example 8.3. For every prime p, the first torsion class in TorBP∗∗,∗ (`∗BP, `∗)
occurs in degree 2(p3 +p2−p−1) and this class survives to `∗`. The lowest
degree element appearing as the bottom of a parallelogram is

Q1Q0(τ̄2τ̄3) = ζp+1
2 − ζp1 ζ3.

The coaction map ψ sends this element to the Hurewicz image of the cor-
responding torsion element of `∗` in H̄∗(` ∧ `).
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9 Multiplicative structure of `∗`

In this section we establish congruence relations in the zero line of the
Künneth spectral sequence. These are derived in BP∗BP and mapped
under the natural map. In fact they are first produced in Q⊗BP∗BP then
interpreted in the subring BP∗BP .

We describe the map from the torsion-free part of `∗` to `∗` ⊗ Q and
summarize our results about the multiplicative structure of `∗` at the end
of this section.

It will be useful to have the following straightforward generalization of
a well-known result (which corresponds to the case where t = 1).

Lemma 9.1. Let R be a commutative ring, p a prime and t ∈ R. If
x, y, z ∈ R satisfy z ≡ px+ ty mod (pt), then for all k > 0,

zp
k

≡ pp
k

xp
k

+ tp
k

yp
k

mod (pk+1t).

We shall work with the Hazewinkel generators vn of (2.2). The following
standard formula for the right unit ηR : Q ⊗ BP∗ −→ Q ⊗ BP∗BP can be
found in [17, p. 24]:

ηR(λn) =
∑

06j6n

λjt
pj

n−j . (9.1)

On combining this with (2.2) we obtain

ηR(vn) =
∑

06i6n

pλit
pi

n−i −
∑

16i6n−1
06j6i

λjt
pj

i−jηR(vn−i)p
i

and hence

ηR(vn) =∑
06i6n

pλit
pi

n−i −
∑

06i6n−1

λit
pi

n−1−iηR(v1)p
n−1
−

∑
16i6n−2

06j6i

λjt
pj

i−jηR(vn−i)p
i

.

(9.2)

Remark 9.2. The left hand side of equation (9.2) lies in BP∗BP ⊆ Q ⊗
BP∗BP , therefore so does the right hand side. However, because of the
presence of denominators in the terms involving the λr, care needs to be
exercised when using this equation.
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For example, since cpr = [CP pr−1] = prλr ∈ BP∗, we can certainly
deduce that in BP∗BP modulo the ideal (ηR(v2), . . . , ηR(vn−1)) / BP∗BP ,

pn−1ηR(vn) ≡∑
06i6n

pn−icpit
pi

n−i −
∑

06i6n−1

pn−1−icpit
pi

n−1−iηR(v1)p
n−1

mod (ηR(v2), . . . , ηR(vn−1)).

We shall see later that similar phenomena in `∗BP give rise to congruences
in `∗`.

We shall now derive some formulae in `∗BP . The natural map of ring
spectra BP −→ ` is determined on homotopy by

vr 7−→

{
u if r = 1,
0 otherwise.

(9.3)

Recalling (6.3), we see that in im[H∗` −→ HQ∗`], the logarithm series for
the factor of ` is

log` T =
∑
n>0

λnT
pn

=
∑
n>0

up
n−1+···+p+1

pn
T p

n

.

We can project (9.2) into `∗BP , with ηR being replaced by the `-theory
Hurewicz homomorphism ` : BP∗ −→ `∗BP . This yields

`(vn) = ptn − tn−1`(v1)p
n−1

+
∑

16i6n

up
i−1+···+p+1tp

i

n−i
pi−1

−
∑

16i6n−1

up
i−1+···+p+1tp

i

n−1−i`(v1)p
n−1

pi

−
∑

16i6n−2

ti`(vn−i)p
i

−
∑

16i6n−2
16j6i

up
j−1+···+p+1tp

j

i−j`(vn−i)
pi

pj
.

and the equivalent formula

`(vn) = ptn + (utpn−1 − `(v1)p
n−1

tn−1)

+
∑

16i6n−1

up
i−1+···+p+1(up

i

tp
i+1

n−1−i − `(v1)p
n−1

tp
i

n−1−i)
pi

−
∑

16i6n−2

ti`(vn−i)p
i

−
∑

16i6n−2
16j6i

up
j−1+···+p+1tp

j

i−j`(vn−i)
pi

pj
. (9.4)
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Thus we have

`(v2) = pt2 + (utp1 − `(v1)pt1) +
u(up − `(v1)p)

p

= pt2 + (1− pp−1)utp1 − `(v1)pt1 −
∑

16i6p−1

(
p

i

)
pi−1up+1−iti1.

By the Hattori-Stong theorem, the element `(vn) ∈ `∗BP is not divisible
by p, but notice that on multiplying by pn−2 we have

pn−2`(vn) = pn−1tn + pn−2(utpn−1 − `(v1)p
n−1

tn−1)

+
∑

16i6n−1

up
i−1+···+p+1(up

i

tp
i+1

n−1−i − `(v1)p
n−1

tp
i

n−1−i)
pi−n+2

−
∑

16i6n−2

pn−2ti`(vn−i)p
i

−
∑

16i6n−2
16j6i

pn−2−jup
j−1+···+p+1tp

j

i−j`(vn−i)
pi

.

and so

pn−1tn + pn−2(utpn−1 − `(v1)p
n−1

tn−1)

+
∑

16i6n−1

up
i−1+···+p+1(up

i

tp
i+1

n−1−i − `(v1)p
n−1

tp
i

n−1−i)
pi−n+2

≡ 0 mod (`(v2), . . . , `(vn)).

Using the identity `(v1) = u + pt1 and the resulting congruences (see
Lemma 9.1),

`(v1)p
m

≡ up
m

mod (pm+1) (m > 1),

we deduce that when n > 2,

`(vn) ≡ (ptn − pp
n−1

tp
n−1

1 tn−1) + (utpn−1 − up
n−1

tn−1)

+
∑

16i6n−2

up
i−1+···+p+1(up

i

tp
i+1

n−1−i − up
n−1

tp
i

n−1−i)
pi

−
∑

16i6n−2

ti`(vn−i)p
i

−
∑

16i6n−2
16j6i

up
j−1+···+p+1tp

j

i−j`(vn−i)
pi

pj
mod (pu).

(9.5)
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Thus when n = 2 we have

`(v2) ≡ (pt2 − pptp1t1) + (utp1 − upt1) mod (pu)
≡ utp1 − upt1 mod (p).

When working in the image of the rationalization map H∗(` ∧ `) −→
HQ∗(` ∧ `), we shall denote by u and v the images of u ∈ `2p−2 under the
left and right units for ` ∧ `.

Reinterpreting (9.2) in HQ∗(`∧ `), for each n > 2 we have ηR(vn) 7−→ 0
and so

ptn + utpn−1 +
∑

16h6n−1

u(ph+ph−1+···+p+1)tp
h+1

n−h−1

ph

= tn−1v
pn−1

+
∑

16k6n−1

u(pk−1+pk−2+···+p+1)tp
k

n−1−kv
pn−1

pk
.

On rearranging this, we obtain

ptn = vp
n−1

tn−1 − utpn−1

+
∑

16k6n−1

u(pk−1+pk−2+···+p+1)(vp
n−1

tp
k

n−1−k − up
k

tp
k+1

n−k−1)
pk

. (9.6)

For small values of n we have

pt1 = v − u,

pt2 = vpt1 − utp1 +
u(vp − up)

p
,

pt3 = vp
2
t2 − utp2 +

u(vp
2
tp1 − upt

p2

1 )
p

+
up+1(vp

2 − up2
)

p2
,

pt4 = vp
3
t3 − utp3 +

u(vp
3
tp2 − upt

p2

2 )
p

+
up+1(vp

3
tp

2

1 − up
2
tp

3

1 )
p2

+
up

2+p+1(vp
3 − up3

)
p3

.

We want to draw some general conclusions about these expressions.

Lemma 9.3. In `∗`, for n > 1, we have the congruences

ptn ≡ vp
n−1

tn−1 − utpn−1 mod (pu), (9.7)

ptn − pp
n−1

tp
n−1

1 ≡ up
n−1

tn−1 − utpn−1 mod (pu). (9.8)



Cooperation algebra of the connective Adams summand 59

Proof. We shall prove this by induction on n, the case n = 1 being noted
above. So suppose that

ptk ≡ vp
k−1

tk−1 − utpk−1 mod (pu).

whenever 1 6 k < n for some n. Then for every such k we have

vp
k−1

tk−1 ≡ utpk−1 mod (p).

By Lemma 9.1, for every m > 1,

(vp
k−1

tk−1)p
m

≡ (utpk−1)p
m

mod (pm+1),

i.e.,

vp
m+k−1

tp
m

k−1 ≡ u
pm

tp
m+1

k−1 mod (pm+1).

Now when 1 6 k 6 n− 1,

vp
n−1

tp
k

n−1−k − u
pk

tp
k+1

n−k−1 ≡ 0 mod (pk+1),

hence in the formula for ptn in (9.6), the summand

u(pk−1+pk−2+···+p+1)
(vp

n−1
tp

k

n−1−k − up
k

tp
k+1

n−k−1)
pk

must be divisible by pu. Therefore we have the congruence

ptn ≡ vp
n−1

tn−1 − utpn−1 mod (pu).

Using the expansion

vp
n−1

= up
n−1

+
∑

16j6pn−1

(
pn−1

j

)
up

n−1−jpjtj1

we obtain

ptn − pp
n−1

tp
n−1

1 ≡ up
n−1

tn−1 − utpn−1 mod (pu).

q.e.d.
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10 Summary

Kane [6, (19:6:1)], using Adams’ criterion [1, III, 17.6], worked out what
the image of the torsion-free part of `∗` is on passage to Q ⊗ `∗`. As a
π∗`-module the torsion-free part of `∗` is generated by the elements

tn,i =
uiv(v − (p− 1)u) · · · (v − (n− 1)(p− 1)u)

pi
(0 6 i 6 νp(n!)).

Obviously, the relation utn,i = ptn,i+1 holds and it is clear how to multiply
elements of that form.

To summarize our results on the multiplicative structure of `∗`, we have
the following:

• Starting with two non-torsion elements in `∗`, we can consider their
images in Q⊗ `∗`, take their product there and interpret the result as
a non-torsion element in `∗`.

• Any two elements coming from the zero-line of the Künneth spectral
sequence multiply according to the congruence relations we specified
Lemma 9.3. These elements might be torsion or non-torsion, but there
is no non-torsion in higher filtrations.

• Torsion elements in non-zero filtration have their origin in the gener-
ators ∆u and for these we spelled out the multiplication in (5.2a).

• As the ∆u-expressions allow coefficients from `∗BP , the multiplication
of non-torsion elements in the zero-line with torsion elements in higher
filtration is determined as well.

We agree that the recursive nature of the congruences for `∗BP ⊗BP∗ `∗
might hamper the calculation, but our approach leads to more information
about the multiplication in `∗` than the known sources.
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Appendix

A Regular sequences in Hopf algebroids

In this appendix we give some results on regular sequences in Hopf alge-
broids that we make use of in several places. Although these may be well
known, we feel that it is convenient to highlight them as we do not know
any convenient appearance of them in the literature.

Let R be a commutative ring and let (A,Γ) be a Hopf algebroid over R
(see for instance [15, Appendix A1]). We can view Γ as a commutative
A-algebra using the left unit A −→ Γ, and the right unit provides a second
ring homomorphism η : A −→ Γ which we use to give Γ a right A-module
structure; together these make Γ into an A-bimodule. These two homomor-
phisms A −→ Γ are interchanged by the antipode χ : Γ −→ Γ and equalised
by the counit ε : Γ −→ A. If Γ is flat as a left (or equivalently right) A-
module, we shall say that the Hopf algebroid (A,Γ) is flat.

Given a left A-module M , we can define the A-bimodule tensor product
Γ⊗AM which has a natural left Γ-comodule structure with coproduct

ψ : Γ⊗AM
ψΓ⊗id−−−−→ Γ⊗A Γ⊗AM.

This construction is natural in the A-module M .
Recall from [11] that an element a ∈ A is said to be M -regular if the

multiplication by a map on M has trivial kernel. More generally, a (possibly
infinite) sequence a1, a2, . . . in A is M -regular if a1 is M -regular and for each
n > 1 where an exists, an is M/(a1, . . . , an−1)M -regular. When M = A,
we say that such a sequence is regular.

Let A −→ B be a homomorphism of commutative R-algebras. We say
that B is Landweber exact with respect to (A,Γ) if B ⊗A (−) is an exact
functor on Γ-comodules.

Theorem A.1. Assume that (A,Γ) is a flat Hopf algebroid and that M is
a left A-module.
(i) Let a ∈ A. Then multiplication by a on M induces a morphism of
Γ-comodules

Γ⊗AM
id⊗a−−−→ Γ⊗AM.

If a is M -regular, then there is a short exact sequence of Γ-comodules

0→ Γ⊗AM
id⊗a−−−−→ Γ⊗AM −→ Γ⊗AM/aM → 0.

In particular, when M = A there is an isomorphism of Γ-comodules

Γ/(η(a)) ∼= Γ⊗A A/(a).
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(ii) If a1, a2, . . . is a regular sequence in A, then each of a1, a2, . . . and
η(a1), η(a2), . . . is a regular sequence in Γ. For each n for which an exists,
there is a short exact sequence of Γ-comodules

0→ Γ/(η(a1), . . . η(an−1))
η(an)−−−→ Γ/(η(a1), . . . η(an−1))

−→ Γ/(η(a1), . . . , η(an))→ 0.

(iii) Let A −→ B be a homomorphism of commutative R-algebras for which
B ⊗A (−) is exact on Γ-comodules. If a1, a2, . . . is a regular sequence in A,
then 1⊗ η(a1), . . . , 1⊗ η(an) is a regular sequence in B ⊗A Γ.

Proof. (i) The first statement is clear since the tensor product satisfies

γ ⊗ am = γη(a)⊗m (γ ∈ Γ,m ∈M),

and since η(a) is primitive,

ψ(γη(a)) = ψ(γ)(1⊗ η(a)).

When a acts regularly, on applying the functor Γ⊗A (−) to the short exact
sequence of A-modules

0→M
a−−→M −→M/aM → 0

and using the flatness of Γ as a right A-module, we obtain the desired exact
sequence. Parts (ii) and (iii) follow from (i). q.e.d.

Corollary A.2. Suppose that a0, a1, . . . is a regular sequence in A and
that η(a0) = a0. Then (A/(a),Γ/(a)) is a flat Hopf algebroid and the
sequence ā1, ā2, . . . in A/(a) is regular, hence the sequences a0, a1, . . . and
η(ā1), η(ā2), . . . are regular in Γ/(a) = Γ/(η(ā)).

Proof. The flatness is easily verified and the rest follows from (ii). q.e.d.

Remark A.3. As a particular example of the phenomenon described in
(iii), we have the case of a Landweber exact complex oriented commutative
ring spectrum E whose the homology theory satisfies

E∗(−) ∼= E∗ ⊗MU∗ MU∗(−).

Then for a regular sequence x1, x2, . . . in MU∗, the sequence of Hurewicz
images e(x1), e(x2), . . . is regular in E∗MU . For example we might take
each xn ∈MU2n to be a polynomial generator.
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B Toda brackets in Künneth spectral sequences

As the details of the argument we require for convergence of certain triple
Massey products to Toda brackets in the Künneth spectral sequence are
not in the literature, we follow the referee’s suggestion and give an account
of what is needed, making allowances for differences in gradings, etc. This
is based on [7, Proposition 5.4.5] and its following paragraph on homology
spectral sequences, as well as [7, § 5.7]. This material fits into the more
general framework of [12, Theorem 4.1]. For completeness we begin by dis-
cussing Massey products and Toda brackets in Künneth spectral sequences
of the type we are using, thus refining a result on multiplicative structure
of [3].

The following observation is well known: If B is a commutative ring
and if C is a B-algebra, then there is a quasi-isomorphism of non-negatively
graded differential graded B-algebras (B-dgas) P• −→ C, where C is re-
garded as a differential graded algebra concentrated in degree 0 and each
Ps is a free B-module.

Suppose that R is a connective commutative S-algebra and that A,B are
two connective R-algebras. If B is q-cofibrant, then the Künneth spectral
sequence converging to AR∗ B = π∗(A ∧R B) is constructed by taking a free
resolution P•,∗ −→ A∗ over R∗ and realising each Ps,∗ as π∗Ps, where Ps
is a wedge of sphere R-modules, with the boundaries induced from maps of
R-modules Ps −→ Ps−1. It was pointed out in [3, Lemma 1.3] that it was
always possible to produce a product structure on P• with product maps
Ps ∧R Pt −→ Ps+t. However, we need to do this in a more precise way by
ensuring that P•,∗ is actually a R∗-dga.

Proposition B.1. For a connective commutative S-algebra R and two con-
nective R-algebras A,B where B is q-cofibrant as an R-module, the Künneth
spectral sequence (Ers,t, d

r) is a spectral sequence of R∗-dgas

E2
s,t = TorR∗s,t (A∗, B∗) =⇒ ARs+tB = πs+t(A ∧R B), (KSS)

with differentials dr : Ers,t −→ Ers−r,t+r−1.

Proof. Since we need details in considering Massey products and Toda
brackets in the spectral sequence, we recall its construction, in particular
emphasising the multiplicative aspects.

Take an R∗-dga resolution P•,∗ of A∗ as above and realise each Ps,∗
as the homotopy of a wedge of R-spheres Ps, so Ps,∗ = π∗Ps. From the
construction in the proof of [3, Lemma 1.3], there is a directed system of
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cofibrations of R-modules

A′0
i′1 //

i0

((PPPPPPPPPPPPPPPP A′1
i′2 //

i1

  B
BB

BB
BB

B
· · ·

i′s // A′s
i′s+1 //

is~~||
||

||
||

· · ·

A

where hocolimsA
′
s is equivalent to A, and for which there are associated

cofibre sequences

A′s−1

i′s−→ A′s
q′s−→ ΣsPs.

These are multiplicative in the sense that there are maps µ′s1,s2 : A′s1 ∧R
A′s2 −→ A′s1+s2 and commutative diagrams in the homotopy category

A′s1 ∧R A
′
s2

µ′s1,s2 //

is1∧is2

��

A′s1+s2

is1+s2

��
A ∧R A // A

in which unlabelled maps are the evident ones. Writing Ws = A′s ∧R B, we
obtain further cofibre sequences

Ws−1
is−→Ws

qs−→ ΣsPs ∧R B,

and on applying homotopy we obtain long exact sequences with boundary
maps

∂s : π∗(ΣsPs ∧R B) −→ π∗−1Ws−1.

We also have that W∞ = hocolimsWs is equivalent to A ∧R B.
The spectral sequence is set up by setting

E1
s,t = πs+t(ΣsPs ∧R B) ∼= πt(Ps ∧R B)

and taking d1 to be the composition

d1 : E1
s,t = πs+t(ΣsPs ∧R B) ∂s−−→ πs+t−1Ws−1

(qs−1)∗−−−−−→ πs+t−1(Σs−1Ps−1 ∧R B) = E1
s−1,t.

As the maps is : Ws−1 −→ Ws are cofibrations, E1
s,t can be identified with

a relative homotopy group,

E1
s,t = πs+t(Ws,Ws−1),
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where for a cofibration Y −→ X, πn(X,Y ) denotes the homotopy classes
of maps of pairs (Dn, Sn−1) −→ (X,Y ); here we abuse notation by writing
(Dn, Sn−1) for the pair of R-modules (FRDn,FRSn−1) consisting of the
free R-modules on the disc and sphere spectra, respectively. Guided by the
discussion in [7, § 5.7], in the following we shall make systematic use of this
interpretation.

There is a product structure on the directed system of Ws’s, giving
homotopy commutative diagrams

Ws1 ∧RWs2

µs1,s2 //

��

Ws1+s2

��
W∞ ∧RW∞ // W∞

giving rise to a product in the spectral sequence compatible with the dga
structure on the resolution P•,∗. q.e.d.

We recall some facts about the spectral sequence (KSS), all of which
can be deduced by analogy with the case considered in [7]. This spectral
sequence is homologically graded and its target has an increasing filtration

0 ⊆ F0A
R
nB ⊆ F1A

R
nB ⊆ · · · ⊆ FnARnB = ARnB

for which
FsA

R
nB/Fs−1A

R
nB
∼= E∞s,n−s.

For r > 1,

Ers,t =
im i∗ : πs+tWs/Ws−r −→ πs+tWs/Ws−1

im ∂ : πs+t+1Ws+r−1/Ws −→ πs+tWs/Ws−1
, (B.1)

where the maps are the evident ones obtained by composing maps between
Wk’s and associated boundaries. Similarly,

E∞s,t =
im i∗ : πs+tWs −→ πs+tWs/Ws−1

im ∂ : πs+t+1W∞/Ws −→ πs+tWs/Ws−1
. (B.2)

We recall from Kochman’s definition 5.4.1 what it means for a Massey
product 〈x1, x2, x3〉 to be defined in Er+1

∗,∗ = H(Er∗,∗, d
r−1), where x1, x2, x3

are elements of Er∗,∗. The following conditions must hold: there is a defining
system for 〈x1, x2, x3〉

X0,1 X1,2 X2,3

X0,2 X1,3
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consisting of elements Xi,j of Er∗,∗, where X0,1, X1,2, X2,3 are cycles repre-
senting x1 = [X0,1], x2 = [X1,2], x3 = [X2,3] and

drX0,2 = X̄0,1X1,2, drX1,3 = X̄1,2X2,3.

Here Z̄ = (−1)s+t+1Z if Z ∈ Ers,t. Then 〈x1, x2, x3〉 ⊆ Er+1
∗,∗ is the subset

consisting of all homology classes [X̄0,1X1,3 + X̄1,2X2,3] obtained from all
possible defining systems of 〈x1, x2, x3〉.

Given u ∈ Era,n−a and the relation dru = x, then a differential of the
form dr

′
w = y with w ∈ Er

′

b,n−b and a < b is said to be a crossing differential
of dru = x if a+ r > b+ r′.

•
(a,n−a)

dr

ddJJJJJJJJJJJJJJ

•
(b,n−b)

dr′

bb

t OO

s
//

Guided by Kochman’s account [7, § 5.7], we recall the definition of a Toda
bracket of the form 〈α, β, γ〉 in the homotopy of an R ring spectrum E. We
can make use of the monoidal smash product on the category of R-modules
to simplify some of the details. Suppose that

α = [g0,1] ∈ πaE, β = [g1,2] ∈ πbE, γ = [g2,3] ∈ πcE,

and
αβ = 0 = βγ.

If we choose null-homotopies g0,2 : Da+b+1 −→ E and g1,3 : Db+c+1 −→ E
for g0,1g1,2 and g1,2g2,3, then

g0,1 g1,2 g2,3

g0,2 g1,3

is a defining system for 〈α, β, γ〉 ⊆ πa+b+c+1 and using Kochman’s notation,
we denote the homotopy classes that constitute the Toda bracket by

[g0,2g2,3 ∪ ḡ0,1g1,3]
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obtained from all choices of null-homotopies, where we glue two copies of
Da+b+c+1 along their boundaries to form a sphere, and also use the above
sign convention to determine ḡ as ±g.

Theorem B.2. Assume that the following conditions hold in the spectral
sequence (KSS).

• The elements x1, x2, x3 in Er∗,∗ are infinite cycles which converge to
the elements ξ1, ξ2, ξ3 in AR∗ B.

• The Massey product 〈x1, x2, x3〉 is defined in Er+1
∗,∗ .

• The Toda bracket 〈ξ1, ξ2, ξ3〉 is defined in AR∗ B.

• If Xi,j is a defining system for 〈x1, x2, x3〉, then there are no cross-
ing differentials for the differentials drX0,2 = X̄0,1X1,2 and drX1,3 =
X̄1,2X2,3.

Then 〈x1, x2, x3〉 is a set of infinite cycles which converge to elements of
〈ξ1, ξ2, ξ3〉 in AR∗ B.

Proof. We adapt the ideas in the proof of [7, Proposition 5.7.5] in the sim-
plest case of a triple Toda bracket, making necessary changes to accom-
modate differences in gradings and signs. We use the notation established
above, in particular we write W∞ = hocolimsWs ∼ A∧R B. Of course, the
argument can be extended to work for Toda brackets of arbitrary length.

For each pair (i, j) and fixed r, let

γi,j : (Ws(i,j),Ws(i,j)−r) −→ (Ws(i,j),Ws(i,j)−1)

be the obvious map of pairs.
Let Xi,j ∈ Ers(i,j),t(i,j) be a defining system for 〈x1, x2, x3〉. We shall

produce a defining system

ξ0,1 ξ1,2 ξ2,3
ξ0,2 ξ1,3

for 〈ξ1, ξ2, ξ3〉, so that each ξi,j represents Xi,j in the spectral sequence.
Since ξi represents xi ∈ Ers(i−1,i),t(i−1,i), we may choose an element

Ξi−1,i : (Ds(i−1,i)+t(i−1,i), Ss(i−1,i)+t(i−1,i)−1) −→ (Ws(i−1,i),Ws(i−1,i)−r)

for which

γi−1,iΞi−1,i : (Ds(i−1,i)+t(i−1,i), Ss(i−1,i)+t(i−1,i)−1)
−→ (Ws(i−1,i),Ws(i−1,i)−1)
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represents Xi−1,i ∈ Ers(i,j),t(i,j), where we make use of the isomorphism
of (B.1). Now choose maps

Ξ′0,2 : (Ds(0,2)+t(0,2), Ss(0,2)+t(0,2)−1) −→ (Ws(0,2),Ws(0,2)−r),

Ξ′1,3 : (Ds(1,3)+t(1,3), Ss(1,3)+t(1,3)−1) −→ (Ws(1,3),Ws(1,3)−r)

to represent X0,2, X1,3, respectively. By assumption on the X0,2, X1,3, each
of the precompositions

(Ξ̄i−2,i−1Ξi−1,i ∨ −Ξ′i−2,i)|Ss(i−2,i)+t(i−2,i)−1∨Ss(i−2,i)+t(i−2,i)−1

with the pinch map

∇ : Ss(i−2,i)+t(i−2,i)−1 −→ Ss(i−2,i)+t(i−2,i)−1 ∨ Ss(i−2,i)+t(i−2,i)−1

factors (up to homotopy) through a map

λ′i : S
s(i−2,i)+t(i−2,i)−1 −→Ws(i−2,i)−r−1.

Since the increasing filtration on πnW satisfies F−1πnW = 0, there must
be two maps

αi : (Ds(i−2,i)+t(i−2,i), Ss(i−2,i)+t(i−2,i)−1) −→ (Ws(i−2,i)−1,Ws(i−2,i)−r−1)

such that in each case one of the following possibilities has to occur:

• (αi)|
Ss(i−2,i)+t(i−2,i)−1

= λ′i,

• (λ′i ∨ −αi)|Ss(i−2,i)+t(i−2,i)−1∨Ss(i−2,i)+t(i−2,i)−1
precomposed with the

pinch map ∇ factors through a map

λi : Ss(i−2,i)+t(i−2,i)−1 −→Ws(i−2,i)−r−m

with m > 2 as large as possible.

If the latter case occurred, λi would bound since ξ1ξ2 = 0 = ξ2ξ3, implying
the existence of a map

βi : (Ds(i−2,i)+t(i−2,i), Ss(i−2,i)+t(i−2,i)−1) −→ (Ws(i−2,i)−k,Ws(i−2,i)−r−m)

with k minimal. But this defines a non-trivial dr+m−k boundary, which is a
crossing differential for drXi−2,i = X̄i−2,i−1Xi−1,i. Since no such crossing
differentials can exist, the first possibility must occur in each case and we
set ξi−2,i = Ξ′i−2,i ∪ −αi.

Thus we can construct a defining system ξi,j for 〈ξ1, ξ2, ξ3〉 which lifts
the defining system Xi,j for 〈x1, x2, x3〉. q.e.d.


