Some results on p-calculus

A. Neamaty ${ }^{1, *}$ and M. Tourani ${ }^{2}$
1,2 Department of Mathematics, University of Mazandaran, Babolsar, Iran.
E-mail: namaty@umz.ac.ir ${ }^{1}$, mehdi.tourani1@gmail.com ${ }^{2}$

Abstract

Our aim is to present some new properties of functions in p-calculus. The effects of a convex or monotone function on the p-derivative and vice versa and also the behavior of p-derivative in a neighborhood of a local extreme point are expressed. Moreover, mean value theorems for p-derivatives and p-integrals are proved.

2010 Mathematics Subject Classification. 05A30. 34A25
Keywords. p-derivative, p-integral, mean value theorem..

1 Introduction and preliminaries

Quantum calculus is usually known as "calculus without limit". There are several types of quantum calculus such as h-calculus, q-calculus and Hahn calculus. The following three expressions,

$$
\begin{aligned}
D_{q} f(x) & =\frac{f(q x)-f(x)}{(q-1) x} \\
D_{h} f(x) & =\frac{f(x+h)-f(x)}{h} \\
D_{q, h} f(x) & =\frac{f(q x+h)-f(x)}{(q-1) x+h}
\end{aligned}
$$

are called the q-derivative, the h-derivative and q, h-derivative, respectively, of the function $f(x)$, where q is a fixed number different from 1 , and h a fixed number different from 0 . The h-derivative of the function $f(x)$ is also known as finite difference operator. Taylor's "Methods Incrementorum" is considered the first reference of the h-calculus or the calculus of finite differences 14], but it is Jacob Stirling who is considered the founder of the h-calculus 13]. In 1750 Euler proved the pentagonal number theorem which was the first example of a q-series and, in some sense, he introduced the q calculus. The q-derivative was (re)introduced by Jackson in the early twentieth century [7]. Another type of quantum calculus is the Hahn quantum calculus which can be seen as a generalization of both q-calculus and h-calculus. Although Hahn defined this operator in 1949, only in 2009 Aldwoah constructed its inverse operator [1,2]. For more details about quantum calculus, we refer the readers to $[3,4,6,8,12$. Applications of q-calculus to problems in physics and chemical physics abound [6, 9, 10. Also, it has developed into an interdisciplinary subject and has a lot of applications in different mathematical areas such as orthogonal polynomials, analytic number theory, basic hyper-geometric functions, combinatorics, etc. A history of the q-calculus was given by T.Ernst [5].

Throughout this paper, we assume that p is a fixed number different from 1 and domain of function $f(x)$ is $[0,+\infty)$. In this section, we recall some definitions and fundamental results on p-calculus that is needed to prove our results (see [11]).

Definition 1.1. Consider an arbitrary function $\mathrm{f}(\mathrm{x})$. Its p-derivative is defined as

$$
D_{p} f(x)=\frac{f\left(x^{p}\right)-f(x)}{x^{p}-x}, \quad \text { if } \quad x \neq 0,1
$$

and

$$
D_{p} f(0)=\lim _{x \rightarrow 0^{+}} D_{p} f(x), \quad D_{p} f(1)=\lim _{x \rightarrow 1} D_{p} f(x)
$$

Corollary 1.2. If $f(x)$ is differentiable, then $\lim _{p \rightarrow 1} D_{p} f(x)=f^{\prime}(x)$, and also if $f^{\prime}(x)$ exists in a neighborhood of $x=0, x=1$ and is continuous at $x=0$ and $x=1$, then we have

$$
D_{p} f(0)=f_{+}^{\prime}(0), \quad D_{p} f(1)=f^{\prime}(1)
$$

Definition 1.3. The p-derivative of higher order of function $f(x)$ is defined by

$$
\left(D_{p}^{0} f\right)(x)=f(x), \quad\left(D_{p}^{n} f\right)(x)=D_{p}\left(D_{p}^{n-1} f\right)(x), n \in N
$$

Notice that the p-derivative is a linear operator, i.e., for any constants a and b, and arbitrary functions $f(x)$ and $g(x)$, we have

$$
D_{p}(a f(x)+b g(x))=a D_{p} f(x)+b D_{p} g(x)
$$

Also, the p-derivative of the product and the quotient of $f(x)$ and $g(x)$ are computed as follows.

$$
\begin{aligned}
D_{p}(f(x) g(x)) & =\frac{f\left(x^{p}\right) g\left(x^{p}\right)-f(x) g(x)}{x^{p}-x} \\
& =\frac{f\left(x^{p}\right) g\left(x^{p}\right)-f(x) g\left(x^{p}\right)+f(x) g\left(x^{p}\right)-f(x) g(x)}{x^{p}-x} \\
& =\frac{\left(f\left(x^{p}\right)-f(x)\right) g\left(x^{p}\right)+f(x)\left(g\left(x^{p}\right)-g(x)\right)}{x^{p}-x},
\end{aligned}
$$

thus

$$
\begin{equation*}
D_{p}(f(x) g(x))=g\left(x^{p}\right) D_{p} f(x)+f(x) D_{p} g(x) . \tag{1.1}
\end{equation*}
$$

Similarly, we can interchange f and g, and obtain

$$
\begin{equation*}
D_{p}(f(x) g(x))=g(x) D_{p} f(x)+f\left(x^{p}\right) D_{p} g(x) \tag{1.2}
\end{equation*}
$$

by changing $f(x)$ to $\frac{f(x)}{g(x)}$ in 1.1, we have

$$
D_{p} f(x)=D_{p}\left(\frac{f(x)}{g(x)} g(x)\right)=g\left(x^{p}\right) D_{p}\left(\frac{f(x)}{g(x)}\right)+\frac{f(x)}{g(x)} D_{p} g(x)
$$

then,

$$
D_{p}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) D_{p} f(x)-f(x) D_{p} g(x)}{g(x) g\left(x^{p}\right)}
$$

using 1.2 with functions $\frac{f(x)}{g(x)}$ and $g(x)$, we obtain

$$
D_{p}\left(\frac{f(x)}{g(x)}\right)=\frac{g\left(x^{p}\right) D_{p} f(x)-f\left(x^{p}\right) D_{p} g(x)}{g(x) g\left(x^{p}\right)} .
$$

Now let us define the definite p-integral. We consider the following three cases. Then, the definite p-integral related to each case is given.

Case 1. Let $1<a<b$ and $p \in(0,1)$. Notice that for any $j \in\{0,1,2,3, \ldots\}$, we have $b^{p^{j}} \in(1, b]$. We now define the definite p-integral of $f(x)$ on interval $(1, b]$.

Definition 1.4. The definite p-integral of $f(x)$ on the interval $(1, b]$ is defined as

$$
\begin{equation*}
\int_{1}^{b} f(x) d_{p} x=\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right)=\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right) \tag{1.3}
\end{equation*}
$$

and

$$
\int_{a}^{b} f(x) d_{p} x=\int_{1}^{b} f(x) d_{p} x-\int_{1}^{a} f(x) d_{p} x
$$

Note 1.5. Geometrically, the integral in (1.3) corresponds to the area of the union of an infinite number of rectangles. On $[1+\varepsilon, b]$, where ε is a small positive number, the sum consists of finitely many terms, and is a Riemann sum. Therefore, as $p \rightarrow 1$, the norm of partition approaches zero, and the sum tends to the Riemann integral on $[1+\varepsilon, b]$. Since ε is arbitrary, provided that $f(x)$ is continuous in the interval $[1, b]$, thus we have

$$
\lim _{p \rightarrow 1} \int_{1}^{b} f(x) d_{p} x=\int_{1}^{b} f(x) d x
$$

Case 2. Let $0<b<1$ and $p \in(0,1)$. It should be noted that for any $j \in\{0,1,2,3, \ldots\}$, we have $b^{p^{j}} \in[b, 1)$ and $b^{p^{j}}<b^{p^{j+1}}$. We will define the definite p-integral of $f(x)$ on interval $[b, 1)$ as follows.

Definition 1.6. The definite p-integral of $f(x)$ on the interval $[b, 1)$ is defined as

$$
\int_{b}^{1} f(x) d_{p} x=\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(b^{p^{j+1}}-b^{p^{j}}\right) f\left(b^{p^{j}}\right)=\sum_{j=0}^{\infty}\left(b^{p^{j+1}}-b^{p^{j}}\right) f\left(b^{p^{j}}\right) .
$$

Note 1.7. The above two definite p-integrals are also denoted by

$$
\int_{1}^{b} f(x) d_{p} x=I_{p^{+}} f(b), \quad \int_{b}^{1} f(x) d_{p} x=I_{p^{-}} f(b)
$$

Case 3. Let $0<a<b<1$ and $p \in(0,1)$. For any $j \in\{0,1,2,3, \ldots\}$, we have $b^{p^{-j}} \in(0, b]$ and $b^{p^{-j-1}}<b^{p^{-j}}$. We will define the definite p-integral of $f(x)$ on interval $(0, b]$ as follows.

Definition 1.8. The definite p-integral of $f(x)$ on the interval $(0, b](b<1)$ is defined as

$$
I_{p} f(b)=\int_{0}^{b} f(x) d_{p} x=\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left(b^{p^{-j}}-b^{p^{-j-1}}\right) f\left(b^{p^{-j-1}}\right)=\sum_{j=0}^{\infty}\left(b^{p^{-j}}-b^{p^{-j-1}}\right) f\left(b^{p^{-j-1}}\right),
$$

and

$$
\int_{a}^{b} f(x) d_{p} x=\int_{0}^{b} f(x) d_{p} x-\int_{0}^{a} f(x) d_{p} x
$$

Note 1.9. We can also apply Note 1.5 for the p-integrals defined in the cases 2 and 3 on the intervals $[b, 1-\varepsilon]$ and $[\varepsilon, b]$ respectively, and by it define the Riemann integral.

Remark 1.10. If $p \in(0,1)$, then for any $j \in\{0, \pm 1, \pm 2, \ldots\}$, we have $p^{p^{j}} \in(0,1), p^{p^{j}}<p^{p^{j+1}}$ and

$$
\int_{0}^{1} f(x) d_{p} x=\sum_{j=-\infty}^{\infty} \int_{p^{p^{j}}}^{p^{p^{j+1}}} f(x) d_{p} x=\sum_{j=-\infty}^{\infty}\left(p^{p^{j+1}}-p^{p^{j}}\right) f\left(p^{p^{j}}\right)
$$

Property 1.11. Suppose $0 \leq a<1<b$. Then by Note 1.5 and Note 1.9, we have

$$
\int_{a}^{b} f(x) d_{p} x=\int_{a}^{1} f(x) d_{p} x+\int_{1}^{b} f(x) d_{p} x .
$$

Corollary 1.12. Suppose $0 \leq a<1<b$ and function $f(x)$ is continuous on $[a, b]$. Then by Note 1.5 and Note 1.9 and also property 1.11 , we have
$\lim _{p \rightarrow 1} \int_{a}^{b} f(x) d_{p} x=\lim _{p \rightarrow 1}\left(\int_{a}^{1} f(x) d_{p} x+\int_{1}^{b} f(x) d_{p} x\right)=\int_{a}^{1} f(x) d x+\int_{1}^{b} f(x) d x=\int_{a}^{b} f(x) d x$.
Definition 1.13. The p-integral of higher order of function $f(x)$ is given by

$$
\left(I_{p}^{0} f\right)(x)=f(x), \quad\left(I_{p}^{n} f\right)(x)=I_{p}\left(I_{p}^{n-1} f\right)(x), \quad n \in N
$$

2 Mean value theorems for p-derivatives

In this section we establish and prove some p-mean value theorems. Before we get p-mean value theorems, we describe the behavior of p-derivative in a neighborhood of a local extreme point.

Theorem 2.1. Let $0<a<b$ and $f(x)$ be a continuous function on $[a, b]$. If f assumes a local maximum at $c \in(a, b)$ with $c \neq 1$, then there exists $p^{\prime} \in(0,1)$, such that for every $p \in\left(p^{\prime}, 1\right) \cup\left(1, \frac{1}{p^{\prime}}\right)$ there exists $\delta \in(a, b)$ such that $\left(D_{p} f\right)(\delta)=0$.

Proof. We consider the following three cases.
Case 1. Suppose $1<a<b$. Since c is a point of local maximum of the function $f(x)$, there exists $\varepsilon>0$, such that $f(c) \geq f(x)$, for all $x \in(c-\varepsilon, c+\varepsilon)$. Let $p_{0} \in(0,1)$ such that $c^{p_{0}} \in(c-\varepsilon, c)$. Thus, for all $p \in\left(p_{0}, 1\right)$, we have $c^{p}<c$ and $f\left(c^{p}\right) \leq f(c)$. Therefore, $\left(D_{p} f\right)(c) \geq 0$. Similarly, there exists $p_{1} \in(0,1)$, such that for all $p \in\left(1, \frac{1}{p_{1}}\right)$, we have $c^{p} \in(c, c+\varepsilon)$ and $f(c) \geq f\left(c^{p}\right)$ and thus, $\left(D_{p} f\right)(c) \leq 0$. Now let us choose $p^{\prime}=\max \left\{p_{0}, p_{1}\right\}$. Suppose $p \in\left(p^{\prime}, 1\right)$. If $\eta=c^{p^{-1}}$, then
$f(c) \geq f(\eta)$ and $\left(D_{p} f\right)(\eta) \leq 0$. On the other hand, in this case we have $\left(D_{p} f\right)(c) \geq 0$ and by the continuity $\left(D_{p} f\right)(x)$ on (a, b), it implies that there exists $\delta \in(c, \eta) \subset(a, b)$, such that $\left(D_{p} f\right)(\delta)=0$. Now suppose $p \in\left(1, \frac{1}{p^{\prime}}\right)$. If $\eta=c^{p^{-1}}$, then $\eta \in(c-\varepsilon, c)$ and thus $\left(D_{p} f\right)(\eta) \geq 0$. On the other hand, in this case we have $\left(D_{p} f\right)(c) \leq 0$ and by the continuity $\left(D_{p} f\right)(x)$ on (a, b), it implies that there exists $\delta \in(c, \eta) \subset(a, b)$, such that $\left(D_{p} f\right)(\delta)=0$.
Case 2. Suppose $0<a<b<1$. Let $p_{0} \in(0,1)$ such that $c^{p_{0}} \in(c, c+\varepsilon)$. Thus, for all $p \in\left(p_{0}, 1\right)$, we have $c^{p} \in(c, c+\varepsilon)$ and $f(c) \geq f\left(c^{p}\right)$. Therefore, $\left(D_{p} f\right)(c) \leq 0$. Similarly, there exists $p_{1} \in(0,1)$, such that for all $p \in\left(1, \frac{1}{p_{1}}\right)$, we have $c^{p} \in(c-\varepsilon, c)$ and thus $\left(D_{p} f\right)(c) \geq 0$. Let $p^{\prime}=\max \left\{p_{0}, p_{1}\right\}$. Suppose $p \in\left(p^{\prime}, 1\right)$. If $\eta=c^{p^{-1}}$, then $\left(D_{p} f\right)(\eta) \geq 0$. On the other hand, in this case we have $\left(D_{p} f\right)(c) \leq 0$ and by the continuity $\left(D_{p} f\right)(x)$ on (a, b), it implies that there exists $\delta \in(c, \eta) \subset(a, b)$, such that $\left(D_{p} f\right)(\delta)=0$. If $p \in\left(1, \frac{1}{p^{\prime}}\right)$, then the proof is similar to the above process.
Case 3. Suppose $0<a<1<b$. If $a<1<c<b$, then the proof is similar to the proof of case 1 and if $a<c<1<b$, then the proof is similar to the proof of case 2 .
Note 2.2. If in Theorem 2.1. $f^{\prime}(x)$ exists in a neighborhood of $x=1$ and is continuous at $x=1$ and also if $c=1$ is a point of local maximum of the function $f(x)$ on (a, b), then for every $p \in(0,1)$, we have $\left(D_{p} f\right)(1)=f^{\prime}(1)=0$.
Note 2.3. Theorem 2.1 is also true if c is a point of local minimum of the function $f(x)$.
Remark 2.4. Suppose $0<a<b$ and $f(x)$ is differentiable on (a, b). If c is a point of local extreme of $f(x)$, then by Corollary 1.2 , we have $\lim _{p \rightarrow 1} D_{p} f(c)=f^{\prime}(c)=0$.
Example 2.5. Consider $f(x)=-x^{2}+5 x-4$. Its maximum is at $c=2.5$ and

$$
\left(D_{p} f\right)(x)=\frac{f\left(x^{p}\right)-f(x)}{x^{p}-x}=\frac{-x^{2 p}+5 x^{p}+x^{2}-5 x}{x^{p}-x} .
$$

If $\varepsilon=0.5$ and $p_{0}=\frac{1}{1.2}$, then $c^{p} \in(c-\varepsilon, c)$ for all $p \in\left(p_{0}, 1\right)$ and also, if $p_{1}=\frac{1}{1.1}$, then $c^{p} \in(c, c+\varepsilon)$ for all $p \in\left(1, \frac{1}{p_{1}}\right)$. Let $p^{\prime}=\max \left\{p_{0}, p_{1}\right\}=\frac{1}{1.1}$. For $p=\frac{1}{1.01}$, we have $\left(D_{\frac{1}{1.01}} f\right)(c)=$ $\left(D_{\frac{1}{1.01}} f\right)(2.5)=\frac{4}{3}>0$. If $\eta=c^{p^{-1}}=2.52$, then we have $\left(D_{\frac{1}{1.01}} f\right)(\eta)=-0.043<0$. Therefore, there exists $\delta \in(2.5,2.52)$, such that $\left(D_{p} f\right)(\delta)=0$.

We now are in position to state and prove some p-mean value theorems.
Theorem 2.6. Let $0<a<b$ and $f(x)$ be a continuous function on $[a, b]$ satisfying $f(a)=f(b)$ and also $f^{\prime}(x)$ exists in a neighborhood of $x=1$ and be continuous at $x=1$. Then there exists $p^{\prime} \in(0,1)$, such that for every $p \in\left(p^{\prime}, 1\right) \cup\left(1, \frac{1}{p^{\prime}}\right)$, there exists $\delta \in(a, b)$ such that $\left(D_{p} f\right)(\delta)=0$.
Proof. If $f=$ const, then the result is obvious. If f is not a constant function on $[a, b]$, then it attains its extreme value in some point in (a, b). If $c=1$ is a point of local extreme of $f(x)$, then by Note 2.2, the result holds, and if the point of local extreme of $f(x)$ is different from 1 , then by Theorem 2.1 and Note 2.3 the statement follows.
Theorem 2.7. Let $0<a<b$ and $f(x)$ be a continuous function on $[a, b]$ and also $f^{\prime}(x)$ exists in a neighborhood of $x=1$ and be continuous at $x=1$. Then there exists $p^{\prime} \in(0,1)$, such that for every $p \in\left(p^{\prime}, 1\right) \cup\left(1, \frac{1}{p^{\prime}}\right)$, there exists $\delta \in(a, b)$ such that $f(b)-f(a)=\left(D_{p} f\right)(\delta)(b-a)$.

Proof. Let $g(x)$ be a function defined on $[a, b]$ by $g(x)=f(x)-x \frac{f(b)-f(a)}{b-a}$. Clearly, $g(x)$ is a continuous function on $[a, b]$ with $g(a)=g(b)$ and also $g^{\prime}(x)$ exists in a neighborhood of $x=1$ and is continuous at $x=1$. Hence, by Theorem 2.6, the statement follows.

3 Monotone or convex function and its p-derivative

In this section we study relations between monotone or convex function and p-derivatives.
Definition 3.1. A function $f(x)$ is called increasing on an interval I if $f(b) \geq f(a)$ for all $b>a$, whenever $a, b \in I$. Also, a function $f(x)$ is called decreasing on an interval I if $f(b) \leq f(a)$ for all $b>a$ with $a, b \in I$.

Theorem 3.2. Let $p \in R^{+}-\{1\}$ and $f(x)$ be a function defined on $I=(0,+\infty)$. Then,
(i) If $f(x)$ is an increasing function on I, then $\left(D_{p} f\right)(x) \geq 0$, for all $x \in I-\{1\}$.
(ii) If $f(x)$ is a decreasing function on I, then $\left(D_{p} f\right)(x) \leq 0$, for all $x \in I-\{1\}$.

Proof. Since the proofs of (i) and (ii) are very similar, we will expose only the first one. Since $f(x)$ is increasing function on I, hence for every $x \in I-\{1\}$, if $x^{p}<x$, then $f\left(x^{p}\right) \leq f(x)$ and thus, $\left(D_{p} f\right)(x) \geq 0$, and if $x^{p}>x$, then $f\left(x^{p}\right) \geq f(x)$ and we conclude $\left(D_{p} f\right)(x) \geq 0$.

Note 3.3. We can generalize the results of Theorem 3.2 to interval $I=(0,+\infty)$ if $f^{\prime}(x)$ exists in a neighborhood of $x=1$ and is continuous at $x=1$, because in this case if $f(x)$ is an increasing function, then $\left(D_{p} f\right)(1)=f^{\prime}(1) \geq 0$, and if $f(x)$ is a decreasing function, then $\left(D_{p} f\right)(1)=f^{\prime}(1) \leq$ 0 .

Theorem 3.4. Let $0<a<b$ and $p \in R^{+}-\{1\}$ and $f(x)$ be a continuous function on $[a, b]$ such that for every $p \in R^{+}-\{1\}$, we have $\left(D_{p} f\right)(x) \geq 0$ on (a, b). Then $f(x)$ is an increasing function on (a, b).

Proof. Suppose $a<x_{1}<x_{2}<b$. By Theorem 2.7, there exists $p \in R^{+}-\{1\}$ and $\delta \in\left(x_{1}, x_{2}\right)$ such that $f\left(x_{2}\right)-f\left(x_{1}\right)=\left(D_{p} f\right)(\delta)\left(x_{2}-x_{1}\right)$. Since the right side of equality is nonnegative, we have $f\left(x_{2}\right) \geq f\left(x_{1}\right)$. Hence, the proof is complete.

Theorem 3.5. Let $0<a<b$ and $p \in R^{+}-\{1\}$ and $f(x)$ be a continuous function on $[a, b]$ such that for every $p \in R^{+}-\{1\}$, we have $\left(D_{p} f\right)(x) \leq 0$ on (a, b). Then $f(x)$ is a decreasing function on (a, b).

Proof. The proof is similar to the proof of Theorem 3.4 .
Definition 3.6. Let $f(x)$ be a real value function defined on (a, b) where $-\infty \leq a<b \leq \infty$. Then, $f(x)$ is called convex if for any two point x and y in (a, b) and any λ where $0 \leq \lambda \leq 1$,

$$
f(\lambda x+(1-\lambda) y) \leq \lambda f(x)+(1-\lambda) f(y)
$$

Lemma 3.7. If $f(x)$ is a convex function on (a, b) and $a<s<t<u<b$, then we have

$$
\frac{f(t)-f(s)}{t-s} \leq \frac{f(u)-f(s)}{u-s} \leq \frac{f(u)-f(t)}{u-t}
$$

Theorem 3.8. Let $p \in R^{+}-\{1\}$ and $f(x)$ be a convex function on $I=(0,+\infty)$. Then $\left(D_{p} f\right)(x)$ is increasing on $I-\{1\}$.
Proof. We prove the result only for the case $p \in(0,1)$. The proof for the case $p>1$ is similar. We consider the following three cases.
Case 1. Let $0<x<y<1$. Thus, we have $0<x<x^{p}<y^{p}<1$ and $0<x<y<y^{p}<1$. By Lemma 3.7, we have

$$
\frac{f\left(x^{p}\right)-f(x)}{x^{p}-x} \leq \frac{f\left(y^{p}\right)-f(x)}{y^{p}-x} \leq \frac{f\left(y^{p}\right)-f(y)}{y^{p}-y} .
$$

Therefore, $\left(D_{p} f\right)(x) \leq\left(D_{p} f\right)(y)$.
Case 2. Let $1<x<y<\infty$. Thus, we have $1<x^{p}<x<y<\infty$ and $1<x^{p}<y^{p}<y<\infty$. By Lemma 3.7, we have

$$
\frac{f(x)-f\left(x^{p}\right)}{x-x^{p}} \leq \frac{f(y)-f\left(x^{p}\right)}{y-x^{p}} \leq \frac{f(y)-f\left(y^{p}\right)}{y-y^{p}} .
$$

Therefore, $\left(D_{p} f\right)(x) \leq\left(D_{p} f\right)(y)$.
Case 3. Let $0<x<1<y<\infty$. Thus, we have $0<x<x^{p}<y^{p}<y<\infty$ and

$$
\frac{f\left(x^{p}\right)-f(x)}{x^{p}-x} \leq \frac{f\left(y^{p}\right)-f\left(x^{p}\right)}{y^{p}-x^{p}} \leq \frac{f(y)-f\left(y^{p}\right)}{y-y^{p}} .
$$

Therefore, $\left(D_{p} f\right)(x) \leq\left(D_{p} f\right)(y)$. This complete the proof.
Corollary 3.9. Let $p \in R^{+}-\{1\}$ and $f(x)$ be a convex function on $I=(0,+\infty)$. Then $D_{p}^{2} f(x) \geq 0$ for all $x \in I-\{1\}$.

Proof. (The first way). By Theorem 3.8 and also Theorem 3.2 the statement follows.
(The second way). We prove the result only the case $p \in(0,1)$. The case when $p>1$ can be proved in a similar way. By the definition of p-derivative, we have

$$
D_{p}^{2} f(x)=D_{p}\left(D_{p} f\right)(x)=\frac{D_{p} f\left(x^{p}\right)-D_{p} f(x)}{x^{p}-x}=\frac{1}{x^{p}-x}\left(\frac{f\left(x^{p^{2}}\right)-f\left(x^{p}\right)}{x^{p^{2}}-x^{p}}-\frac{f\left(x^{p}\right)-f(x)}{x^{p}-x}\right) .
$$

If $0<x<1$, then $0<x<x^{p}<x^{p^{2}}<1$ and by Lemma 3.7. we have

$$
\frac{f\left(x^{p}\right)-f(x)}{x^{p}-x} \leq \frac{f\left(x^{p^{2}}\right)-f\left(x^{p}\right)}{x^{p^{2}}-x^{p}}
$$

and it implies, $D_{p}^{2} f(x) \geq 0$. If $x>1$, then $1<x^{p^{2}}<x^{p}<x$ and

$$
\frac{f\left(x^{p}\right)-f\left(x^{p^{2}}\right)}{x^{p}-f\left(x^{p^{2}}\right)} \leq \frac{f(x)-f\left(x^{p}\right)}{x-x^{p}}
$$

and therefore, $D_{p}^{2} f(x) \geq 0$.
Definition 3.10. Let $0<a<b$ and $p \in R^{+}-\{1\}$ and $f(x)$ be a real value function defined on (a, b). Then,
(i) Operator $D_{p} f$ is increasing respect to p on (a, b) if $D_{p_{1}} f(x) \leq D_{p_{2}} f(x)$ for all $p_{1}<p_{2}$.
(ii) Operator $D_{p} f$ is decreasing respect to p on (a, b) if $D_{p_{1}} f(x) \geq D_{p_{2}} f(x)$ for all $p_{1}<p_{2}$.

Theorem 3.11. Let $p \in R^{+}-\{1\}$ and $f(x)$ be a convex function on $I=(1,+\infty)$. Then $D_{p} f$ is increasing respect to p on $(1,+\infty)$.

Proof. We prove the result only the case $0<p_{1}<p_{2}<1$. Cases when $1<p_{1}<p_{2}$ or $p_{1}<1<p_{2}$, can be proved in a similar way. For every $x>1$, we have $1<x^{p_{1}}<x^{p_{2}}<x$, and by Lemma 3.7, we have $\frac{f(x)-f\left(x^{p_{1}}\right)}{x-x^{p_{1}}} \leq \frac{f(x)-f\left(x^{p_{2}}\right)}{x-x^{p_{2}}}$, and it implies $D_{p_{1}} f(x) \leq D_{p_{2}} f(x)$.

Theorem 3.12. Let $p \in R^{+}-\{1\}$ and $f(x)$ be a convex function on $I=(0,1)$. Then $D_{p} f$ is decreasing respect to p on $(0,1)$.
Proof. The proof is similar to the proof of Theorem 3.11.

4 Mean value theorems for p-integrals

In this section we present mean value theorems for p-integrals.
Theorem 4.1. Let $f(x)$ be a continuous function on $[0, b](b>0)$. Then for every $p \in(0,1)$, there exists $\delta \in[0, b]$ such that $\frac{1}{b} \int_{0}^{b} f(x) d_{p} x=f(\delta)$.

Proof. It is sufficient to prove the result for the case $b>1$. Since $f(x)$ is a continuous function $[0, b]$, there exist m and M such that for each $x \in[0, b], m \leq f(x) \leq M$. Let $p \in(0,1)$. Then, for any $j \in\{0, \pm 1, \pm 2, \pm 3, \ldots\}$, we have $p^{p^{j}} \in(0,1)$ and $m \leq f\left(p^{p^{j}}\right) \leq M$, and also for any $j \in\{0,1,2,3, \ldots\}$, we have $b^{p^{j}} \in(1, b]$ and $m \leq f\left(b^{p^{j}}\right) \leq M$. Hence,

$$
\begin{aligned}
\sum_{j=-\infty}^{\infty}\left(p^{p^{j+1}}-p^{p^{j}}\right) f\left(p^{p^{j}}\right)+\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right) & \leq \sum_{j=-\infty}^{\infty}\left(p^{p^{j+1}}-p^{p^{j}}\right) M+\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) M \\
& =M+M(b-1)=M b
\end{aligned}
$$

also,

$$
\begin{aligned}
\sum_{j=-\infty}^{\infty}\left(p^{p^{j+1}}-p^{p^{j}}\right) f\left(p^{p^{j}}\right)+\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) f\left(b^{p^{j}}\right) & \geq \sum_{j=-\infty}^{\infty}\left(p^{p^{j+1}}-p^{p^{j}}\right) m+\sum_{j=0}^{\infty}\left(b^{p^{j}}-b^{p^{j+1}}\right) m \\
& =m+m(b-1)=m b .
\end{aligned}
$$

Now by Remark 1.10 and Property 1.11 , we have $m \leq \frac{1}{b} \int_{0}^{b} f(x) d_{p} x \leq M$. By the intermediate value theorem, there exists $\delta \in[0, b]$ such that $\frac{1}{b} \int_{0}^{b} f(x) d_{p} x=f(\delta)$.

Theorem 4.2. Let $f(x)$ be a continuous function on $[a, b](a>0)$. Then, there exists $p^{\prime} \in(0,1)$ such that for every $p \in\left(p^{\prime}, 1\right)$ there exists $\delta \in(a, b)$ such that $\frac{1}{b-a} \int_{a}^{b} f(x) d_{p} x=f(\delta)$.

Proof. By Note 1.5 and Note 1.9 and also Corollary 1.12 we have $\lim _{p \rightarrow 1} \int_{a}^{b} f(x) d_{p} x=\int_{a}^{b} f(x) d x$. Thus, for every $\varepsilon>0$, there exists $p_{0} \in(0,1)$ such that for all $p \in\left(p_{0}, 1\right)$, we have

$$
\int_{a}^{b} f(x) d x-\varepsilon<\int_{a}^{b} f(x) d_{p} x<\int_{a}^{b} f(x) d x+\varepsilon
$$

By the mean value theorem for integrals, there exists $c \in(a, b)$ such that $\frac{1}{b-a} \int_{a}^{b} f(x) d x=f(c)$. Let $\varepsilon \leq(b-a) \min \{M-f(c), f(c)-m\}$, where m and M are the minimum, and maximum of $f(x)$ on $[a, b]$, respectively. Hence, there exists $p^{\prime} \in(0,1)$ such that for all $p \in\left(p^{\prime}, 1\right)$,

$$
f(c)-\frac{\varepsilon}{b-a}<\frac{1}{b-a} \int_{a}^{b} f(x) d_{p} x<f(c)+\frac{\varepsilon}{b-a} .
$$

It implies, $m<\frac{1}{b-a} \int_{a}^{b} f(x) d_{p} x<M$ and therefore, there exists $\delta \in(a, b)$ such that

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d_{p} x=f(\delta)
$$

proving the intended result.
Theorem 4.3. Let $f(x)$ and $g(x)$ be some continuous functions on $[a, b](a \geq 0)$. Then, there exists $p^{\prime} \in(0,1)$ such that for all $p \in\left(p^{\prime}, 1\right)$ there exists $\delta \in(a, b)$ such that

$$
\int_{a}^{b} f(x) g(x) d_{p} x=g(\delta) \int_{a}^{b} f(x) d_{p} x
$$

Proof. Suppose f is not constant function zero. By the second mean value theorem for integrals, there exists $c \in(a, b)$ such that $\int_{a}^{b} f(x) g(x) d x=g(c) \int_{a}^{b} f(x) d x$. Hence, we have

$$
\lim _{p \rightarrow 1} \int_{a}^{b} f(x) g(x) d_{p} x=g(c) \lim _{p \rightarrow 1} \int_{a}^{b} f(x) d_{p} x
$$

or

$$
\lim _{p \rightarrow 1} \frac{\int_{a}^{b} f(x) g(x) d_{p} x}{\int_{a}^{b} f(x) d_{p} x}=g(c)
$$

Thus, for every $\varepsilon>0$, there exists $p_{0} \in(0,1)$ such that for $p \in\left(p_{0}, 1\right)$, we have

$$
g(c)-\varepsilon<\frac{\int_{a}^{b} f(x) g(x) d_{p} x}{\int_{a}^{b} f(x) d_{p} x}<g(c)+\varepsilon .
$$

Since $g(x)$ is a continuous function on $[a, b]$, there exist m_{g} and M_{g} such that for each $x \in[a, b]$, $m_{g} \leq g(x) \leq M_{g}$. Let $\varepsilon \leq \min \left\{M_{g}-g(c), g(c)-m_{g}\right\}$. Hence, there exists $p^{\prime} \in(0,1)$ such that for all $p \in\left(p^{\prime}, 1\right), m_{g}<\frac{\int_{a}^{b} f(x) g(x) d_{p} x}{\int_{a}^{b} f(x) d_{p} x}<M_{g}$. Therefore, there exists $\delta \in(a, b)$ such that

$$
\int_{a}^{b} f(x) g(x) d_{p} x=g(\delta) \int_{a}^{b} f(x) d_{p} x
$$

References

[1] K.A. Aldwoah, Generalized time scales and associated difference equations, Ph.D. thesis, Cairo University, 2009.
[2] K.A. Aldwoah, A.E. Hamza, Difference time scales, Int. J. Math. Stat. 9, no. A11, 106125, 2011.
[3] M.H. Annaby, Z.S. Mansour, q-Fractional Calculus and Equations, Springer-Verlag, Berlin Heidelberg, 2012.
[4] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, New York, Springer, 2013.
[5] T. Ernst, The history of q-calculus and a new method, Thesis, Uppsala University, 2001.
[6] T. Ernst, A comprehensive treatment of q-calculus, Springer Science, Business Media, 2012.
[7] F.H. Jackson, On q-functions and a certain difference operator, Trans. Roy Soc. Edin. 46, (1908), 253-281.
[8] V. Kac, P. Cheung, Quantum calculus, Springer Science, Business Media, 2002.
[9] E. Koelink, Eight lectures on quantum groups and q-special functions, Revista colombiana de Matematicas. 30, (1996), 93-180.
[10] T.H. Koornwinder, R.F. Swarttow, On q-analogues of the Fourier and Hankel transforms, Trans. Amer. Math. Soc. 333, (1992), 445-461.
[11] A. Neamaty, M.Tourani, The presentation of a new type of quantum calculus, Tbilisi Mathematical Journal-De Gruyter, (2017), 15-28
[12] K.R. Parthasarathy, An introduction to quantum stochastic calculus, Springer Science, Business Media, 2012.
[13] J. Stirling, Methodus Differentialis, London, 1730.
[14] B. Taylor, Methods Incrementorum, London, 1717.

