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Abstract

In this paper we define a subclass of bi-univalent functions. Further, we find the estimates
on the bounds |a2| and |a3|, the Fekete-Szegö inequalities and the second Hankel determinant
inequality for defined class of bi-univalent functions.
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1 Introduction

Let A denote the class of functions of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

which are analytic in the open unit disc ∆ = {z : z ∈ C and |z| < 1} and let S denote the
class of functions in A that are univalent in ∆. It is well known (e.g. see Duren [17]) that every
function f ∈ S has an inverse map f−1, defined by f−1(f(z)) = z, z ∈ ∆ and f(f−1(w)) = w,
(|w| < r0(f); r0(f) = 1

4 ), where

f−1(w) = w − a2w2 + (2a22 − a3)w3 − (5a32 − 5a2a3 + a4)w4 + . . . . (1.2)

A function f ∈ A is said to be bi-univalent in ∆ if both f and f−1 are univalent in ∆.We let σ denote
the class of bi-univalent functions in ∆ given by (1.1). For a further historical account of functions
in the class σ, see the work by Srivastava et al. [47]. In fact, judging by the remarkable flood of
papers on non-sharp estimates on the first two coefficients a2 and a3 of various subclasses of the
bi-univalent function class σ (see, for example, [3–8,10–13,15,16,19,22,23,31–36,38–45,48–54] and
references therein), the above-cited recent pioneering work of Srivastava et al. [47] has apparently
revived the study of analytic and bi-univalent functions in recent years.

We say that a function ϕ : ∆ → C is subordinate to a given function ψ : ∆ → C and write
ϕ(z) ≺ ψ(z) (or simply ϕ ≺ ψ), if there exists a complex-valued function w which maps ∆ into
itself, w(0) = 0 and ϕ(z) = ψ(w(z)); z ∈ ∆. In particular, if ψ is univalent in ∆, then ϕ(0) = ψ(0)
and ϕ(∆) ⊂ ψ(∆).
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For integers n = 1 and q = 1, the q−th Hankel determinant, defined as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1
an+1 an+2 · · · an+q−2

...
...

...
...

an+q−1 an+q−2 · · · an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1).

The Hankel determinants H2(1) = a3−a22 and H2(2) = a2a4−a32 are well-known as Fekete-Szegö
and second Hankel determinant functionals respectively. Further Fekete and Szegö [18] introduced
the generalized functional a3 − δa22, where δ is some real number. In 1969, Keogh and Merkes [25]
studied the Fekete-Szegö problem for the classes S∗ and K. In 2001, Srivastava et al. [46] solved
completely the Fekete-Szegö problem for the family C1 := {f ∈ A : <

(
eiηf ′(z)

)
> 0, −π2 < η <

π
2 , z ∈ D} and obtained improvement of |a3 − a22| for the smaller set C1. Recently, Kowalczyk et
al. [26] discussed the developments involving the Fekete-Szegö functional |a3−δa22|, where 0 ≤ δ ≤ 1
as well as the corresponding Hankel determinant for the Taylor-Maclaurin coefficients {an}n∈N\{1}
of normalized univalent functions of the form (1.1). Similarly, several authors have investigated
upper bounds for the Hankel determinant of functions belonging to various subclasses of univalent
functions [1,2,14,27,29,30] and the references therein. On the other hand, Zaprawa [53,54] extended
the study on Fekete-Szegö problem to some specific classes of bi-univalent functions. Following
Zaprawa [53, 54], the Fekete-Szegö problem for functions belonging to various subclasses of bi-
univalent functions were obtained in [4, 23, 32, 50]. Very recently, the upper bounds of H2(2) for
the classes S∗σ(β) and Kσ(β) were discussed by Deniz et al. [16]. Later, the upper bounds of H2(2)
for various subclasses of σ were obtained by Altınkaya and Yalçın [6, 7], Çağlar et al. [12], Kanas
et al. [24] and Orhan et al. [34] (see also [35]).

Motivated by the recent publications (especially [5, 8, 16, 34]), we define the following subclass
of σ.

For 0 5 λ 5 1 and 0 5 β < 1, a function f ∈ σ given by (1.1) is said to be in the class Gλσ (ϕ), if
the following conditions are satisfied:

(1− λ)f ′(z) + λ

(
1 +

zf ′′(z)

f ′(z)

)
≺ ϕ(z), 0 5 λ 5 1, z ∈ ∆

and for g = f−1 given by (1.2)

(1− λ)g′(w) + λ

(
1 +

wg′′(w)

g′(w)

)
≺ ϕ(w), 0 5 λ 5 1, w ∈ ∆,

where ϕ is an analytic and univalent function with positive real part in ∆, ϕ(0) = 1, ϕ′(0) > 0 and
ϕ maps the unit disk ∆ onto a region starlike with respect to 1 and symmetric with respect to the
real axis. The Taylor’s series expansion of such function is

ϕ(z) = 1 +B1z +B2z
2 +B3z

3 + . . . , (1.3)

where all coefficients are real and B1 > 0. Throughout this paper, we assume that the function ϕ
satisfies the above conditions unless otherwise stated.

It is interesting to note that the classes

G0σ(ϕ) := Hσ(ϕ) and G1σ(ϕ) := Kσ(ϕ)
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were introduced and studied by Ali et al. [3],

Gλσ
(

1 + (1− 2β)z

1− z

)
:= Gλσ (β) (0 5 β < 1)

was introduced by Azizi et al. [8],

G0σ
(

1 + (1− 2β)z

1− z

)
:= Hβσ (0 5 β < 1) and G0σ

((
1 + z

1− z

)β)
:= Hσ(β) (0 < β 5 1)

were introduced by Srivastava et al. [47] and

G1σ
(

1 + (1− 2β)z

1− z

)
:= Kσ(β) (0 5 β < 1)

was introduced by Brannan and Taha [9].
In this paper, we shall obtain the Fekete-Szegö inequalities for Gλσ (ϕ) as well as its special classes.

Further, we obtain the second Hankel determinant for functions in the class Gλσ (β).

2 Initial Coefficient Bounds

Theorem 2.1. If f given by (1.1) is in the class Gλσ (ϕ), then

|a2| 5
B1

√
B1√

4B1 + |(3− λ)B2
1 − 4B2|

(2.1)

and

|a3| 5


(

1− 4
3(1+λ)B1

)
B3

1

4B1+|(3−λ)B2
1−4B2| + B1

3(1+λ) , if B1 = 4
3(1+λ) ;

B1

3(1+λ) , if B1 <
4

3(1+λ) .

(2.2)

Proof. Suppose that u(z) and v(z) are analytic in the unit disk ∆ with u(0) = v(0) = 0, |u(z)| < 1,
|v(z)| < 1 and

u(z) = b1z +

∞∑
n=2

bnz
n, v(z) = c1z +

∞∑
n=2

cnz
n, |z| < 1. (2.3)

It is well known that

|b1| 5 1, |b2| 5 1− |b1|2, |c1| 5 1, |c2| 5 1− |c1|2. (2.4)

By a simple calculation, we have

ϕ(u(z)) = 1 +B1b1z + (B1b2 +B2b
2
1)z2 + . . . , |z| < 1 (2.5)

and
ϕ(v(w)) = 1 +B1c1w + (B1c2 +B2c

2
1)w2 + . . . , |w| < 1. (2.6)
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Let f ∈ Gλσ (ϕ). Then there are analytic functions u, v : ∆→ ∆ given by (2.3) such that

(1− λ)f ′(z) + λ

(
1 +

zf ′′(z)

f ′(z)

)
= ϕ(u(z)) (2.7)

and

(1− λ)g′(w) + λ

(
1 +

wg′′(w)

g′(w)

)
= ϕ(v(w)). (2.8)

It follows from (2.5), (2.6), (2.7) and (2.8) that

2a2 = B1b1 (2.9)

3(1 + λ)a3 − 4λa22 = B1b2 +B2b
2
1 (2.10)

−2a2 = B1c1 (2.11)

2(λ+ 3)a22 − 3(1 + λ)a3 = B1c2 +B2c
2
1. (2.12)

From (2.9) and (2.11), we get
b1 = −c1. (2.13)

By adding (2.10) to (2.12), further, using (2.9) and (2.13), we have

(2(3− λ)B2
1 − 8B2)a22 = B3

1(b2 + c2). (2.14)

In view of (2.13) and (2.14), together with (2.4), we get

|(2(3− λ)B2
1 − 8B2)a22| 5 2B3

1(1− |b1|2). (2.15)

Substituting (2.9) in (2.15) we obtain

|a2| 5
B1

√
B1√

4B1 + |(3− λ)B2
1 − 4B2|

. (2.16)

By subtracting (2.12) from (2.10) and in view of (2.13), we get

6(1 + λ)a3 = 6(1 + λ)a22 +B1(b2 − c2). (2.17)

From (2.4), (2.9), (2.13) and (2.17), it follows that

|a3| 5 |a2|2 +
B1

6(1 + λ)
(|b2|+ |c2|)

5 |a2|2 +
B1

3(1 + λ)
(1− |b1|2)

=

(
1− 4

3(1 + λ)B1

)
|a2|2 +

B1

3(1 + λ)
. (2.18)

Substituting (2.16) in (2.18) we obtain the desired inequality (2.2). q.e.d.

Remark 2.2. For λ = 0, the results obtained in the Theorem 2.1 are coincide with results in [36,
Theorem 2.1, p.230].
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Corollary 2.3. Let f ∈ Kσ(ϕ). Then

|a2| 5
B1

√
B1√

4B1 + |2B2
1 − 4B2|

(2.19)

and

|a3| 5


(

1− 2
3B1

)
B3

1

4B1+|2B2
1−4B2| + B1

6 ;B1 = 2
3 ;

B1

3(1+λ) ;B1 <
2
3 .

(2.20)

3 Fekete-Szegö inequalities

In order to derive our result, we shall need the following lemma.

Lemma 3.1. (see [17] or [21]) Let p(z) = 1 + p1z + p2z
2 + · · · ∈ P, where P is the family of all

functions p, analytic in ∆, for which <{p(z)} > 0, z ∈ ∆. Then

|pn| 5 2; n = 1, 2, 3, ...,

and ∣∣∣∣p2 − 1

2
p21

∣∣∣∣ 5 2− 1

2
|p1|2.

Theorem 3.2. Let f of the form (1.1) be in Gλσ (ϕ). Then

|a2| 5


√

B1

3−λ , if |B2| 5 B1;

√
|B2|
3−λ , if |B2| = B1

(3.1)

and

∣∣∣∣a3 − 4λ

3 + 3λ
a22

∣∣∣∣ 5


B1

3+3λ , if |B2| 5 B1;

|B2|
3+3λ , if |B2| = B1.

(3.2)

Proof. Since f ∈ Gλσ (ϕ), there exist two analytic functions r, s : ∆→ ∆, with r(0) = 0 = s(0), such
that

(1− λ)f ′(z) + λ

(
1 +

zf ′′(z)

f ′(z)

)
= ϕ(r(z)) (3.3)

and

(1− λ)g′(w) + λ

(
1 +

wg′′(w)

g′(w)

)
= ϕ(s(w)). (3.4)

Define the functions p and q by

p(z) =
1 + r(z)

1− r(z)
= 1 + p1z + p2z

2 + p3z
3 + . . .
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and

q(w) =
1 + s(w)

1− s(w)
= 1 + q1w + q2w

2 + q3w
3 + . . .

or equivalently,

r(z) =
p(z)− 1

p(z) + 1
=

1

2

(
p1z +

(
p2 −

p21
2

)
z2 +

(
p3 +

p1
2

(
p21
2
− p2

)
− p1p2

2

)
z3 + . . .

)
(3.5)

and

s(w) =
q(w)− 1

q(w) + 1
=

1

2

(
q1w +

(
q2 −

q21
2

)
w2 +

(
q3 +

q1
2

(
q21
2
− q2

)
− q1q2

2

)
w3 + . . .

)
. (3.6)

Using (3.5) and (3.6) in (3.3) and (3.4), we have

(1− λ)f ′(z) + λ

(
1 +

zf ′′(z)

f ′(z)

)
= ϕ

(
p(z)− 1

p(z) + 1

)
(3.7)

and

(1− λ)g′(w) + λ

(
1 +

wg′′(w)

g′(w)

)
= ϕ

(
q(w)− 1

q(w) + 1

)
. (3.8)

Again using (3.5) and (3.6) along with (1.3), it is evident that

ϕ

(
p(z)− 1

p(z) + 1

)
= 1 +

1

2
B1p1z +

(
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1

)
z2 + . . . (3.9)

and

ϕ

(
q(w)− 1

q(w) + 1

)
= 1 +

1

2
B1q1w +

(
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1

)
w2 + . . . . (3.10)

It follows from (3.7), (3.8), (3.9) and (3.10) that

2a2 =
1

2
B1p1

3(1 + λ)a3 − 4λa22 =
1

2
B1

(
p2 −

1

2
p21

)
+

1

4
B2p

2
1 (3.11)

−2a2 =
1

2
B1q1

2(λ+ 3)a22 − 3(1 + λ)a3 =
1

2
B1

(
q2 −

1

2
q21

)
+

1

4
B2q

2
1 . (3.12)

Dividing (3.11) by 3 + 3λ and taking the absolute values we obtain∣∣∣∣a3 − 4λ

3 + 3λ
a22

∣∣∣∣ 5 B1

6 + 6λ

∣∣∣∣p2 − 1

2
p21

∣∣∣∣+
|B2|

12 + 12λ
|p1|2.

Now applying Lemma 3.1, we have



Fekete-Szegö problem and Second Hankel Determinant for a class of bi-univalent functions 147

∣∣∣∣a3 − 4λ

3 + 3λ
a22

∣∣∣∣ 5 B1

3 + 3λ
+
|B2| −B1

12 + 12λ
|p1|2.

Therefore

∣∣∣∣a3 − 4λ

3 + 3λ
a22

∣∣∣∣ 5


B1

3+3λ , if |B2| 5 B1;

|B2|
3+3λ , if |B2| = B1.

Adding (3.11) and (3.12), we have

(6− 2λ)a22 =
B1

2
(p2 + q2)− (B1 −B2)

4
(p21 + q21). (3.13)

Dividing (3.13) by 6− 2λ and taking the absolute values we obtain

|a2|2 5
1

6− 2λ

[
B1

2

∣∣∣∣p2 − 1

2
p21

∣∣∣∣+
|B2|

4
|p1|2 +

B1

2

∣∣∣∣q2 − 1

2
q21

∣∣∣∣+
|B2|

4
|q1|2

]
.

Once again, apply Lemma 3.1 to obtain

|a2|2 5
1

6− 2λ

[
B1

2

(
2− 1

2
|p1|2

)
+
|B2|

4
|p1|2 +

B1

2

(
2− 1

2
|q1|2

)
+
|B2|

4
|q1|2

]
.

Upon simplification we obtain

|a2|2 5
1

6− 2λ

[
2B1 +

|B2| −B1

2

(
|p1|2 + |q1|2

)]
.

Therefore

|a2| 5


√

B1

3−λ , if |B2| 5 B1;

√
|B2|
3−λ , if |B2| = B1

which completes the proof. q.e.d.

Remark 3.3. Taking

ϕ(z) =

(
1 + z

1− z

)β
= 1 + 2βz + 2β2z2 + . . . , 0 < β 5 1 (3.14)

the inequalities (3.1) and (3.2) become

|a2| 5
√

2β

3− λ
and

∣∣∣∣a3 − 4λ

3 + 3λ
a22

∣∣∣∣ 5 2β

3 + 3λ
. (3.15)

For

ϕ(z) =
1 + (1− 2β)z

1− z
= 1 + 2(1− β)z + 2(1− β)z2 + . . . , 0 5 β < 1 (3.16)
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the inequalities (3.1) and (3.2) become

|a2| 5
√

2(1− β)

3− λ
and

∣∣∣∣a3 − 4λ

3− λ
a22

∣∣∣∣ 5 2(1− β)

3 + 3λ
. (3.17)

4 Bounds for the second Hankel determinant of Gλσ(β)
Next we state the following lemmas to establish the desired bounds in our study.

Lemma 4.1. [37] If the function p ∈ P is given by the series

p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · , (4.1)

then the following sharp estimate holds:

|pn| 5 2, n = 1, 2, · · · . (4.2)

Lemma 4.2. [20] If the function p ∈ P is given by the series (4.1), then

2c2 = c21 + x(4− c21)

4c3 = c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z

for some x, z with |x| 5 1 and |z| 5 1.

The following theorem provides a bound for the second Hankel determinant of the functions in
the class Gλσ (β).

Theorem 4.3. Let f of the form (1.1) be in Gλσ (β). Then

|a2a4 − a23| 5



(1−β)2
2(1+2λ)

[
(2− λ)(1− β)2 + 1

]
;

β ∈
[
0, 1− (1+2λ)+

√
(1+2λ)2+18(1+λ)2(2−λ)
6(1+λ)(2−λ)

]

(1−β)2
72(1+2λ)


36[8(1 + 2λ)(2− λ)− (1 + 2λ)2](1− β)2

−324(1 + λ)(1 + 2λ)(1− β) + 288(1 + 2λ)− 729(1 + λ)2

9(1 + λ)2(2− λ)(1− β)2 − 6(1 + λ)(1 + 2λ)(1− β)

+8(1 + 2λ)− 18(1 + λ)2

 ;

β ∈
(

1− (1+2λ)+
√

(1+2λ)2+18(1+λ)2(2−λ)
6(1+λ)(2−λ) , 1

)
.

Proof. Let f ∈ Gλσ (β). Then

(1− λ)f ′(z) + λ

(
1 +

zf ′′(z)

f ′(z)

)
= β + (1− β)p(z) (4.3)

and

(1− λ)g′(w) + λ

(
1 +

wg′′(w)

g′(w)

)
= β + (1− β)q(w), (4.4)
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where p, q ∈ P and defined by

p(z) = 1 + c1z + c2z
2 + c3z

3 + . . . (4.5)

and
q(z) = 1 + d1w + d2w

2 + d3w
3 + . . . . (4.6)

It follows from (4.3), (4.4), (4.5) and (4.6) that

2a2 = (1− β)c1 (4.7)

3(1 + λ)a3 − 4λa22 = (1− β)c2 (4.8)

4(1 + 2λ)a4 − 18λa2a3 + 8λa32 = (1− β)c3 (4.9)

and

−2a2 = (1− β)d1 (4.10)

2(3 + λ)a22 − 3(1 + λ)a3 = (1− β)d2 (4.11)

2(10 + 11λ)a2a3 − 4(5 + 3λ)a32 − 4(1 + 2λ)a4 = (1− β)d3. (4.12)

From (4.7) and (4.10), we find that
c1 = −d1 (4.13)

and

a2 =
1− β

2
c1. (4.14)

Now, from (4.8), (4.11) and (4.14), we have

a3 =
(1− β)2

4
c21 +

1− β
6(1 + λ)

(c2 − d2). (4.15)

Also, from (4.9) and (4.12), we find that

a4 =
5λ(1− β)3

16(1 + 2λ)
c31 +

5(1− β)2

24(1 + λ)
c1(c2 − d2) +

1− β
8(1 + 2λ)

(c3 − d3). (4.16)

Then, we can establish that

|a2a4 − a23| =

∣∣∣∣ (λ− 2)(1− β)4

32(1 + 2λ)
c41 +

(1− β)3

48(1 + λ)
c21(c2 − d2)

+
(1− β)2

16(1 + 2λ)
c1(c3 − d3)− (1− β)2

36(1 + λ)2
(c2 − d2)2

∣∣∣∣ . (4.17)

According to Lemma 4.2 and (4.13), we write

c2 − d2 =
(4− c21)

2
(x− y) (4.18)

c3 − d3 =
c31
2

+
c1(4− c21)(x+ y)

2
− c1(4− c21)(x2 + y2)

4

+
(4− c21)[(1− |x|2)z − (1− |y|2)w]

2
(4.19)
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for some x, y, z and w with |x| 5 1, |y| 5 1, |z| 5 1 and |w| 5 1. Using (4.18) and (4.19) in (4.17),
we have

|a2a4 − a23| =

∣∣∣∣ (λ− 2)(1− β)4c41
32(1 + 2λ)

+
(1− β)3c21(4− c21)(x− y)

96(1 + λ)
+

(1− β)2c1
16(1 + 2λ)

×
[
c31
2

+
c1(4− c21)(x+ y)

2
− c1(4− c21)(x2 + y2)

4

+
(4− c21)[(1− |x|2)z − (1− |y|2)w]

2

]
− (1− β)2(4− c21)2

144(1 + λ)2
(x− y)2

∣∣∣∣
5

(2− λ)(1− β)4

32(1 + 2λ)
c41 +

(1− β)2c41
32(1 + 2λ)

+
(1− β)2c1(4− c21)

16(1 + 2λ)

+

[
(1− β)3c21(4− c21)

96(1 + λ)
+

(1− β)2c21(4− c21)

32(1 + 2λ)

]
(|x|+ |y|)

+

[
(1− β)2c21(4− c21)

64(1 + 2λ)
− (1− β)2c1(4− c21)

32(1 + 2λ)

]
(|x|2 + |y|2)

+
(1− β)2(4− c21)2

144(1 + λ)2
(|x|+ |y|)2.

Since p ∈ P, so |c1| 5 2. Letting c1 = c, we may assume without restriction that c ∈ [0, 2]. Thus,
for γ1 = |x| 5 1 and γ2 = |y| 5 1, we obtain

|a2a4 − a23| 5 T1 + T2(γ1 + γ2) + T3(γ21 + γ22) + T4(γ1 + γ2)2 = F (γ1, γ2),

T1 = T1(c) =
(2− λ)(1− β)4

32(1 + 2λ)
c4 +

(1− β)2c4

32(1 + 2λ)
+

(1− β)2c(4− c2)

16(1 + 2λ)
= 0

T2 = T2(c) =
(1− β)3c2(4− c2)

96(1 + λ)
+

(1− β)2c2(4− c2)

32(1 + 2λ)
= 0

T3 = T3(c) =
(1− β)2c2(4− c2)

64(1 + 2λ)
− (1− β)2c(4− c2)

32(1 + 2λ)
5 0

T4 = T4(c) =
(1− β)2(4− c2)2

144(1 + λ)2
= 0.

Now we need to maximize F (γ1, γ2) in the closed square S := {(γ1, γ2) : 0 5 γ1 5 1, 0 5 γ2 5 1}
for c ∈ [0, 2]. We must investigate the maximum of F (γ1, γ2) according to c ∈ (0, 2), c = 0 and
c = 2 taking into account the sign of Fγ1γ1Fγ2γ2 − (Fγ1γ2)2.

Firstly, let c ∈ (0, 2). Since T3 < 0 and T3 + 2T4 > 0 for c ∈ (0, 2), we conclude that

Fγ1γ1Fγ2γ2 − (Fγ1γ2)2 < 0.

Thus, the function F cannot have a local maximum in the interior of the square S. Now, we
investigate the maximum of F on the boundary of the square S.
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For γ1 = 0 and 0 5 γ2 5 1 (similarly γ2 = 0 and 0 5 γ1 5 1) we obtain

F (0, γ2) = G(γ2) = T1 + T2γ2 + (T3 + T4)γ22 .

(i) The case T3 + T4 = 0 : In this case for 0 < γ2 < 1 and any fixed c with 0 < c < 2, it is
clear that G′(γ2) = 2(T3 +T4)γ2 +T2 > 0, that is, G(γ2) is an increasing function. Hence, for fixed
c ∈ (0, 2), the maximum of G(γ2) occurs at γ2 = 1 and

maxG(γ2) = G(1) = T1 + T2 + T3 + T4.

(ii) The case T3 + T4 < 0 : Since T2 + 2(T3 + T4) = 0 for 0 < γ2 < 1 and any fixed c with
0 < c < 2, it is clear that T2 + 2(T3 + T4) < 2(T3 + T4)γ2 + T2 < T2 and so G′(γ2) > 0. Hence for
fixed c ∈ (0, 2), the maximum of G(γ2) occurs at γ2 = 1 and also for c = 2 we obtain

F (γ1, γ2) =
(1− β)2

2(1 + 2λ)

[
(2− λ)(1− β)2 + 1

]
. (4.20)

Taking into account the value (4.20) and the cases i and ii, for 0 5 γ2 < 1 and any fixed c with
0 5 c 5 2 we have

maxG(γ2) = G(1) = T1 + T2 + T3 + T4.

For γ1 = 1 and 0 5 γ2 5 1 (similarly γ2 = 1 and 0 5 γ1 5 1), we obtain

F (1, γ2) = H(γ2) = (T3 + T4)γ22 + (T2 + 2T4)γ2 + T1 + T2 + T3 + T4.

Similarly, to the above cases of T3 + T4, we get that

maxH(γ2) = H(1) = T1 + 2T2 + 2T3 + 4T4.

Since G(1) 5 H(1) for c ∈ (0, 2), maxF (γ1, γ2) = F (1, 1) on the boundary of the square S. Thus
the maximum of F occurs at γ1 = 1 and γ2 = 1 in the closed square S.
Let K : (0, 2)→ R

K(c) = maxF (γ1, γ2) = F (1, 1) = T1 + 2T2 + 2T3 + 4T4. (4.21)

Substituting the values of T1, T2, T3 and T4 in the function K defined by (4.21), yields

K(c) =
(1− β)2

288(1 + λ)2(1 + 2λ)

{[
9(1− β)2(1 + λ)2(2− λ)

−6(1− β)(1 + λ)(1 + 2λ)− 18(1 + λ)2 + 8(1 + 2λ)
]
c4

+
[
24(1− β)(1 + λ)(1 + 2λ) + 108(1 + λ)2 − 64(1 + 2λ)

]
c2

+128(1 + 2λ)} .

Assume that K(c) has a maximum value in an interior of c ∈ (0, 2), by elementary calculation, we
find

K ′(c) =
(1− β)2

72(1 + λ)2(1 + 2λ)

{[
9(1− β)2(1 + λ)2(2− λ)

−6(1− β)(1 + λ)(1 + 2λ)− 18(1 + λ)2 + 8(1 + 2λ)
]
c3

+
[
12(1− β)(1 + λ)(1 + 2λ) + 54(1 + λ)2 − 32(1 + 2λ)

]
c
}
.

After some calculations we concluded the following cases:
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Case 4.4. Let

[9(1− β)2(1 + λ)2(2− λ)− 6(1− β)(1 + λ)(1 + 2λ)− 18(1 + λ)2 + 8(1 + 2λ)] = 0,

that is,

β ∈

[
0, 1−

(1 + 2λ) +
√

(1 + 2λ)2 + (2− λ)[18(1 + λ)2 − 8(1 + 2λ)]

3(1 + λ)(2− λ)

]
.

Therefore K ′(c) > 0 for c ∈ (0, 2). Since K is an increasing function in the interval (0, 2), maximum
point of K must be on the boundary of c ∈ [0, 2], that is, c = 2. Thus, we have

max
0<c<2

K(c) = K(2) =
(1− β)2

2(1 + 2λ)

[
(2− λ)(1− β)2 + 1

]
.

Case 4.5. Let

[9(1− β)2(1 + λ)2(2− λ)− 6(1− β)(1 + λ)(1 + 2λ)− 18(1 + λ)2 + 8(1 + 2λ)] < 0,

that is,

β ∈

[
1−

(1 + 2λ) +
√

(1 + 2λ)2 + (2− λ)[18(1 + λ)2 − 8(1 + 2λ)]

3(1 + λ)(2− λ)
, 1

]
.

Then K ′(c) = 0 implies the real critical point c01 = 0 or

c02 =

√
−12(1 + λ)(1 + 2λ)(1− β)− 54(1 + λ)2 + 32(1 + 2λ)

9(1− β)2(1 + λ)2(2− λ)− 6(1− β)(1 + λ)(1 + 2λ)− 18(1 + λ)2 + 8(1 + 2λ)
.

When

β ∈
(

1− (1+2λ)+
√

(1+2λ)2+(2−λ)[18(1+λ)2−8(1+2λ)]

3(1+λ)(2−λ) , 1− (1+2λ)+
√

(1+2λ)2+18(1+λ)2(2−λ)]
6(1+λ)(2−λ)

]
.

We observe that c02 = 2, that is, c02 is out of the interval (0, 2). Therefore, the maximum value
of K(c) occurs at c01 = 0 or c = c02 which contradicts our assumption of having the maximum value
at the interior point of c ∈ [0, 2]. Since K is an increasing function in the interval (0, 2), maximum
point of K must be on the boundary of c ∈ [0, 2] that is c = 2. Thus, we have

max
05c52

K(c) = K(2) =
(1− β)2

2(1 + 2λ)
[1 + (2− λ)(1− β)2].

When β ∈
(

1− (1+2λ)+
√

(1+2λ)2+18(1+λ)2(2−λ)]
6(1+λ)(2−λ) , 1

)
, we observe that c02 < 2, that is, c02 is an

interior of the interval [0, 2]. Since K ′′(c02) < 0, the maximum value of K(c) occurs at c = c02 .
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Thus, we have

max
05c52

K(c) = K(c02)

=
(1− β)2

72(1 + 2λ)


36[8(1 + 2λ)(2− λ)− (1 + 2λ)2](1− β)2

−324(1 + λ)(1 + 2λ)(1− β) + 288(1 + 2λ)− 729(1 + λ)2

9(1 + λ)2(2− λ)(1− β)2

−6(1 + λ)(1 + 2λ)(1− β) + 8(1 + 2λ)− 18(1 + λ)2

 .

This completes the proof. q.e.d.

Corollary 4.6. Let f of the form (1.1) be in Hβσ . Then

|a2a4 − a23| 5


(1−β)2[1+2(1−β)2]

2 ; β ∈
[
0, 11−

√
37

12

]
(1−β)2[60β2−84β−25]

16(9β2−15β+1) ; β ∈
(

11−
√
37

12 , 1
)
.

Corollary 4.7. Let f of the form (1.1) be in Hσ. Then

|a2a4 − a23| 5
3

2
.

Remark 4.8. For λ = 1, the result obtained in the Theorem 4.3 coincides with results in [16,
Theorem 2.3, p.305].
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subclass of analytic and bi-univalent functions, Filomat 27 (5) (2013), 831–842.

[40] H. M. Srivastava, S. S. Eker and R. M. Ali, Coefficient bounds for a certain class of analytic
and bi-univalent functions, Filomat 29 (8) (2015), 1839–1845.

[41] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some subclasses of
M -fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. No. 41 (2015),
153–164.

[42] H. M. Srivastava, S. Gaboury and F. Ghanim, Initial coefficient estimates for some subclasses
of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36 (3) (2016),
863–871.

[43] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses
of analytic and bi-univalent functions, Afr. Mat. 28 (5-6) (2017), 693–706.

[44] H. M. Srivastava,S. B. Joshi, S. Joshi and H. Pawar, Coefficient estimates for certain subclasses
of meromorphically bi-univalent functions, Palest. J. Math. 5 (2016), Special Issue, 250–258.

[45] H. M. Srivastava, N. Magesh and J. Yamini, Initial coefficient estimates for bi-λ-convex and
bi-µ-starlike functions connected with arithmetic and geometric means, Electron. J. Math.
Anal. Appl. 2 (2) (2014), 152–162.

[46] H. M. Srivastava, A. K. Mishra and M. K. Das, The Fekete-Szegő problem for a subclass of
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