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The problem of recovery of an unknown regression function f{(x), x € R' from noisy data is
considered. The function £( -} is assumed to belong to a class of functions analytic in 2 strip of the
complex plane around the real axis. The performance of an estimator is measured either by its
deviation at a fixed point, or by its maximal error in the L..-norm over a bounded interval. Itis shown
that in the case of equidistant observations, with an increasing design density, asymptotically
minimax estimators of the unknown regression function can be found within the class of linear
estimators. Such best linear estimators are explicitly obtained.
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1. Introduction

Nonparametric regression models are widely studied in the statistical literature, since they
are mathematically attractive and have many useful applications. Recent results by
Ibragimov and Hasminskii (1981; 1982a; 1984a) and Stone (1980; 1982) marked a new
approach to these models, with the emphasis on optimal (minimax) rates of convergence in
estimating an unknown regression function in various functional classes.

In some remarkable cases not only minimax rates of convergence, but also exact
asymptotic constants have been found, and the corresponding asymptotically minimax
estimators have been derived. Pinsker (1980) was the first to do this in the problem of
regression estimation in continuous-time Gaussian white noise. He obtained asymptotically
minimax estimators of the regression function in the L,norm, with the underlying
functional classes defined as ellipsoids in L;. These classes include as special cases Sobolev’s
classes as well as the classes of periodic analytic functions. In the ensuing papers of
Nussbaum (1985) and Golubev and Nussbaum (1992), this study was extended to
regression models in discrete time and Sobolev’s classes of functions.

Another example of asymptotically efficient nonparametric regression estimators was
given by Ibragimov and Hasminskii (1984b) for the problem of estimating the unknown
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regression function at a single fixed point, if the underlying class consists of periodic
functions, analytic in the strip {{(x +iy) : | | < v}, ¥ > 0, of the complex plane.

The third, and last, example is due to Korostelev (1993). It relates to the problem of
asymptottcally efficient nonparametric regression estimation in the L_.-norm, on Lipschitz
classes C7. Korostelev (1993} solved this problem for 3 < 1. The extension to 8> | was
established by Donoho (1994).

In this paper we provide new examples of asymptotically minimax nonparametric
regression estimation. We consider the following nonparametric regression model:

=f(jh) + &, j=0,=£1,£2,...,

where 4 > 0, the unknown function /(x), x € R', is assumed to belong to a class A (L) of
functions admitting analytic continnation into the strip {(x +1iy) : {y| < v} (for a precise
definition, see Section 2) and {¢;} is a Gaussian white noise sequence. Clearly, this model
presents a certain idealization of a real observation process. It approximates the practical
situation where the observations are available on a large (but finite) interval. For
mathematical convenience we consider here the infinite observation interval,

The classes of functions related to A, (L) featured quite prominently in earljer studies of
the statistical estimation problems for stationary time series (see Parzen 1958 and references
therein) and later in nonparametric density estimation (Watson and Leadbetter 1963). It
was shown, by that time, that the rate of convergence {(n~' logn)'/? is achievabie for such
classes, where » is the length of the observation period. In the paper by Ibragimov and
Hasminskii (1983), whose definition of the class A, (L) we are using here, it was shown that
this rate 15 optimal in the minimax sense.

The functional classes such as A4, (L) provide a representative alternative to the classes of
functions which are only finitely smooth. They are much broader than, for example, the
class of entire functions of an exponential type {¢f. Ibragimov and Hasminskii 1982b) and
contain curves such as the normal, Cauchy and Student densities, as well as their mixtures.

What makes such classes even more attractive from the statistical point of view, is that in
estimating an unknown function f{x) € A,(L), at any given point x, one can find
asymptotically efficient (1o be precise, locally asymptotically minimax) estimators (cf. our
Theorem 2.1, where the corresponding lower bound actualily has a local character). In that
sense statistical properties of functionals ®( /) = f(x) resemble those of the differentiable
functionats, as defined in Koshevnik and Levit {1976) (see also the recent monograph by
Bickel et al. 1993). However, these functionals are not differentiabie in the above sense. The
difference manifests itself in our Theorem 2.2. where estimating f(x) in the uniform norm
gives rise to another rate of convergence: (n~! lognloglog m)!/2, Such discrepancy typically
does not occur in the case of differentiable functions (cf. Levit 1978; Ibragimov and
Hasminskii 1991; or Bickel er al. 1993, Chapter 5). The above rate has been shown already
to be optimal, for the classes closely related to A, (L), in Ibragimov and Hasminskii (1993).
Our Theorem 2.2. provides the exact constant for this rate.

Two different kinds of result are discussed below. First, we consider the asymptotically
minimax estimation of analytic regression functions at a fixed point x. We present an
estimator f,(x) of f(x) such that, for any x and m=0,1,..., the denvatlvef,! Hx) is
asymptotically minimax in estimating the derivative f m) {x) for a large variety of loss
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functions. The property of f;(x) that in a sense dominates and facilitates this kind of
result is the asymptotic negligibility of the bias of f,{x), as compared to its variance.
These results are in the spirit of the earlier work of Golubev and Levit (1954), dealing with
asymptotically minimax estimation of anmalytic probability densities and distribution
functions.

Second, we study the problem of estimating an analytic regression function f{ - } if the
quality of an estimator is measured in L., [0, 1]. We show that the asymptotically minimax
solution to this problem is given by a slightly modified estimator f,(x). This result
represents, within its scope of normally distributed equidistant observations, a noticeable
sharpening of the result due to Ibragimov and Hasminskii (1982a) concerning the optimal
rates of convergence in L, for the classes of analytic functions.

2. Main results

Suppose that we are given the following observations:
y=fUh+&,  j=0=%1,%£2,..., (2.1

where £; are independent Gaussian N(0, ¢°) random variables.

It is assumed that the unknown real-valued function f{ - ) belongs to the functional class
A, (L) of analytic functions. This class has been used in the context of statistical estimation
problems by Ibragimov and Hasminskii (1983). The class .4, (L) consists of all functions
F(x) in R' admitting analytic continuation into the strip S, = {(x +iy) : |y| <~} of the
complex plane C such that f{x + iy} is analytic inside §.,, bounded up to its boundary and

jlf(x-i-i*r)lzdx <L  (y>0, L>0).

Equivalently, A,(L) can be defined as the set of functions f(x) satisfying the assumption
(see, for example, Golubev and Levit 1994)

—;T—Jcoshz('yr)[ flPdr<L, (2.2)

where /(1) is the Fourier transform of a real-valued function /(x) € L,(R"). In particular, if
f{x) € LR) N LR,

7o) = [ o dn
Our goal is to estimate the unknown function f(x) € A,(L), based on the vector
y=1(...,¥_1,yp,,---} of observations in (2.1), using as the quality criterion one of the

two risk functions described below.
Let W, be the class of loss functions w(x) > 0, x € R, such that

wlx) =w(-x),  wlx)Zw(y), |xlz][y,

Je'“"zw(x) dx < oc.



170 Y.X. Golubev, B.Y. Levit and A_B. Tsybakov

Forwe W,, & < 1/2, denote

1 - w{x) dx.
Ew(€) =WJE A u(x)

For convenience, we also define
L
0 ==
a*h
Let f,(x; ») be an arbitrary estimator of the unknown regression function f{x), based on

the observations (2.1), and let Py, E, respectively be the distribution of the vector y and the
expectation, corresponding to a given f(-) in (2.1).

Let
U.} _ 02h10g2m+lgh 1/2
BT \mm+ D2y

Our first risk function is related to estimating the unknown regression function (in the case
of m = 0), or its derivative of orders m, at a given point x € R’

Rl Jie 1Y = Epw{( 7 (x,3) = £ (x0) /4 m)-

Below we also consider asymptotically minimax estimators of the unknown f, with
respect to the L, -norm on a bounded interval which, without loss of generality, we assume
to be [0, 1]:

R 1) = B sup | ) = 001/ ),

where

s 1/2
\a ohlog O, loglog Oy,
Yy = Ty :

Let us describe the estimators, which will be shown to be asymptotically minimax. Define
the family of kernels

k(x, 4) = sin(xcosh"(fo + 13/(2)) ? _—
27(1 + 4=1)? sinh(nx/(27))

This kernei was derived in Golubev and Levit (1994), where it was shown, in the density

estimation set-up, to provide asymptotically minimax estimators of an unknown density

f € A, (L}, at any given point. The Fourier transform of (x, 4), with respect io x, is given

by (see Gradshtein and Ryzhik 1980), formuta (3.983.1)):

k(t, 4) = (1 + A7 cosh®¢) ™. (2.3)
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Our estimator of the unknown function f{( - ) at a given point x is defined by
oc

Silxp) =0 Y k(x—jh.Qh)y;.

= o

Below int}- denotes infimum over all estimators.

Theorem 2.1. Let w € W, for some 0 < a < 1/2. Then forany x € R and m=0.1,...,

lim inf sup R, ,(f, f)=lim sup Ry .(fi /) =Ew).
A=0 f feafl) B0 red (L)

When we deal with the L -norm, the following estimator is used:

e S\,
fi(xy)=h Z k( _Jh’ZIOgloth)yy

f=—0a

Theorem 2.2. Let w(-) be continuous at x =1 and w € W,, for some a > 0. Then

lim inf sup RE{f, N =1lim sup RF(S™ f)=w(l).
=0 f re AL k=0 re A (L)

Remark 2.1. The definition of A, (L) in terms of (2.2) shows that this functional class is
closely related to ellipsoids in L, with exponential coefficients. In fact, results analogous to
Theorems 2.1 and 2.2 can be obtained for the probiem of estimating a periodic regression
on [0, 1], whose Fourier coefficients belong to such an ellipsoid.

Remark 2.2. As compared to the previous exact asymptotically minimax results, mentioned
in Section 1, Theorem 2.2 has a peculiarity: it deals with the case of ‘non-matched’ norms.
While the loss is measured in the L -norm, the class of functions .4,(L) is defined by the
L,-type restriction (2.2).

Remark 2.3. Theorem 2.1 presents a result of quite a different type than Theorem 2.2.
Theorem 2.1 has a form typical of asymptotically minimax statements in parametric
estimation, with Gaussian limiting distribution (cf. Ibragimov and Hasminskii 19%81), In
Theorem 2.2, however, we encounter a type of behaviour characterized by a degenerate
limiting distrtbution. The results of Korostelev (1993) and Donoho (1994) are of this type.
It can be shown that Pinsker’s (1980) theorem is also a result on degenerate asymptotics
(Tsybakov 1994).

Remark 2.4, In proving Theorems 2.1, 2.2 we extensively exploit the fact that £; are assumed
Gaussian. Assuming any other form of distribution with a finite second moment would
overload the derivation with technicalities, which — while apparently standard — might
greatly overshadow the main ideas; cf. Ibragimov and Hasminskii {(1983). Another possible
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— nonparametric — approach would apparently be much easier to implement, This will be
treated elsewhere.

3. Proofs of the theorems

We first state the well-known formula due to Poisson, which will be used below on several
occasions.

Lemmas 3.1. For real-vatued functions f, g such that f, f' g™ g™+ ¢ L,(RY),

BY SURgO = 5 | Fogt-otinnar
j=—oc

1 : 2wy | o
+ EE;#O Jf(t - —;!—-) g{—o){in™ ds. (3.1)
In particular, with f € A(L} and g(y) = k(x —y,4), 4 >3,

B> K (x i, A) F(jh) = ;_ﬂje-"*(i:)'";é(z,A) Far

j=—0c

+0(VAe ™ log™ 4) (J cosh? (v} £ (D)1 dt)m‘ (3.2)

Proof. Equation (3.1) directly follows from Titchmarsh (1962, Chapter II, Theorem 45).
For completeness we provide the reader with a sketch of its proof. Inverting Fourier
transforms and using the weli-known formula in the theory of distributions {(see, for
example, Antosik et al. 1973, Chapter 9.6),

Z e?x = Z é(x — ),
5o =
one easily obtains
=, . . > —igh 7 —igih s . m
h g™ (i) = Je“tdtle‘s—mds
;Z‘mm Y™ (jh) (2n)2j;m f) $(s)(—is)

This proves (3.1).
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To prove (3.2), apply the Cauchy—Schwarz inequality to the integrals
. . . Ini
Je"”‘(ir)"’k(r, A f (: _ %) dt

on the right-hand side of (3.1) and note that, according to (2.3),

Jr”"pé(:,A)i? cosh™2(~(t — 2nj/k)) df = O(e-”ﬂf'f’"’)j e (1 4+ (24) e P de
0
= log™™(14)

dt = O(A e~ T/ A [og? 4y, 0
T ( g A)

= O(Ae~2m/M J
Lemma 3.2, Let
1,  jxl<(2y)'log4,
0, |x|>(2y) " logA.
Then, for A — oo,

jtl"'ué(:, A) — x{t, A)| dt = O(log*™ 4). (3.3)

Indeed, (3.3) follows from relations (see also (2.3))

M, A) — x(h, A)| dr < 4AJ 127 &= 4y = O(log? A),

t
J (27} log £ {297 log 4

{2v) " log 4

271, A) ~ x (1, A)] dit < A‘lj (2" &7 4t = O(log™" A).

(29" log 4
J |

a

We turn now to the theorems stated in Section 2.

Proof of Tl l:eorem 2.1, We deal first with the upper bound on the risk. According to (2.1},
one can split fh Nx)y =y }x) into two parts:

)E;("“J(x) _f(m)(x) =h Z k{m)(x - Jjh, Qﬁ)éj'

f=-

+h i K7 (e~ jhy Q) £ GR) = £ (x) € o(x) + bp(x),  (3.4)

j=—00

where v(x) is a zero-mean stochastic term and b,(x) is the bias term.
Due to Lemma 3.1, for & — 0,

brlx) = 5 [ €K 1,0 /(1) ~ (1) dt + 0™ /i Llog™ 0,

-5 J ()" (B(r, 04) ~ )f () de + O™ /G Llog” ).
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Applying the Cauchy-Schwarz inequality, Lemma 3.2, (2.2) and (2.3), one can show that

the squared absolute value of the leading term on the right-hand side of the above equation
is bounded by

L j 2 (cosh(v2)) 2 (k(t, 0s) ~ 1) de

2n
L [ gy -
= g | P 081~ K1, ) a
L 2m 7 _ Llog™ 0,
< 2thJf |k(t, @4) — x(1, Qh)| di = O(T)
Thus we have
2m

sup sup (by(x))’ = O(I:M), 0. (3.5)

feAL) x Oy

To evaluate the variance of the stochastic term
= u]
7 (x) Evaro(x) = 21 Y (K™ (x - jh, 0.)),
j=—x

one can again apply equality (3.2) of Lemma 3.1, with () = " (x — y, 0,). To evaluate
the last term appearing in (3.2), note that

J'rl'" cosh2(yA) (L @) dit = O(1) j:o 1271 4 (20,)7" )2 dy
.
= 0(Q) L OEZMT(E:{%) du = 0(Q;log™ Q).

Thus, by using Lemmas 3.1, 3.2, one obtains:

2
() = ‘;_ﬂué(r, 0,2 d1 + O(h)
oth
TS

_ haz IOth mtl 2m
= O T ( > ) +0{(c*hlog®™ 0,). (3.6}

According to (3.4)-(3.6), the distribution of (/™ (x) — 7% (x)) /4  is N{us, 03), where
pp = 0(1), 07 = 1 + 0(1), and the terms o(1) are small uniformly in f € A,{L). Therefore,
by virtue of the dominated convergence term, uniformly in £ € A, (L),

jﬁmué(m}(f, 00 dt + O(c?h)

. R _ 1 (x— py)?
Jm Ry (S f) = JEEOW-[CXP (‘#) wix)dx = Ew(§).
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Turning now to the lower bound on the risk, denote
simx 1% .
i === e 7dt
sinc(x) p 3 J']

Consider the family of functions denoted by
f;:(z) = Cg(Z - X),

where
glz)= ———(_l)miim + 1)sir.lc('")(az}» lo;O_;.
Note that
£ () = ey = E2mE D J (i (3.7)
-1
and

j 18(0)|* cosh?(+yt) dt < const. Q,a™ "+ 2.

Therefore f,( - ) € A,(L), for all ¢ such that || < c(k), where (k) = pQ5"' log”"*? O, for
some sufficiently small p > 0.
Note that (see, for example, Kuo 1975, Section 11.2)

dr,
A exv{ 3 UZJ_Z:W(ch,gUh) g’ (Jh))}
where P.(-) = Py.(-). Clearly the statistic

Z?‘; — 0 ng{.}h)
Y- 8 UA)

is sufficient for the parameter ¢ of the family of distributions P.{-) and is normally
distributed,

T=

02
T~y ( Z,?‘;-mgzum)‘

where, according to Lemma 3.1, for all sufficiently small 4,

- e . o 2 2m+ 1Y 0
0 Y fUm =" [ a0 (5)

i=-=
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Let

_ 1 5 TC
)«(C) —WCOS m

be the prior density on the interval (—c(h), c(h)).
Due to the sufficiency of T and (3.7}, (3.8), the initial problem is reduced to estimation of
the parameter ¢ based on observation

T=c+ E'wh.m:

where £ ~ N(0, 1). More precisely, we have

inf sup Ry n(f,f)zinf sup R,.{(f /o) Zinf sup Ew((¢~c)/¥hm)
I reaw 7 ld<eth et

fA)
> inf j oy BT DN de

¢ Ty

()
~inf | Bwl(E(T) - O mN@) de

Finally, according to Levit (1980, p. 565),

c(h)
_inrj Ew((2(T) — )/t m)INC) de = Ew(E) + O}, /P (k)
T ) =clh)

= Ew{£) + o(1), h—0,
This completes the proof of the lower bound. ad

Proof of Theorem 2.2, Again we look first at the upper bound on the risk. Similar to (3.4)-
(3.6), one obtains

S0 — £x) € v(x) + by (x),

where
sup sup (b(x))* = O(2Lloglog(Q4)/ 4}, (3.9)
feAfly x
def _ho’ Qs 2

*{x) £ varv(x) = i—alog (——2 iogloz Q;) + O(c*h). (3.10)

By using Lemma 3.2, one obtains similarly:

2

2200) & var v (x) = (1 + 0(1)) —°— log O (3.11)

3n(29)°

To evaluate the supremum of »(x) we use a well-known result describing the behaviour of
the extremes of a differentiable Gaussian process (see Cramér and Leadbetter 1967,
Chapter 13.5). This result and (3.9)—(3.11) show that for any &> 0, uniformly in
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f € A(L), and for z 2 0,

Pf{(w?f)'l e | A2 (0 ¥) = f(x)] > 1+ 6+z}

= Pf{ sup M

172
o<x<1 o(x} > (1+o(1))(1 + 6+ z)}(2loglog 0) }

1
< U+—11imexp(»(l +o(IN(1+6+ z)2 loglog Q) L ?((;3)
(1+o(1))

" 2(3)
< O(log™® Q;,) exp(—2* loglog Q). (3.12)

(log @y)! (1 +oW+0 exp( (1 + 0(1))z? loglog Q)

Denote

p= sup | i (x, p) — F /W5

0xx<

Integrating by parts, one obtains
R, ) sw+8)+ [~ Ptz 2wz, (3.13)
+
Using (3.12) and again integrating by parts gives

Jiépf{PEZ}dW(z) :J:Pf{#22+1+6}dw(z+1+5)

gusl
< Olog™* Qh)J =" 0818 qyy(7 1 64 1) = o{1)w(1 + 8)
0
=4 x — e loglog Gy
+0(log™ Qi) loglog Qs | ze w(z+1+8)dz. (3.14)
Finally note that, since w € W, for some ¢ > 0, we have

J ze~7 loglog Qs wiz+1+68)dz g max xexp{—x*loglog @) + a(l + &+ x)%)
a x

x r w(z)e™ dz < const. (loglog ;)™
0

This inequality, together with (3.13} and (3.14), completes the proof of the upper bound.
Turning now to the lower bound on the risk, consider the family of functions denoted by

N
Je(x) = Z agi(x),  e={c,... o),
k=1
where

gr(x) = oy sinc{ W ( Q) (x ~ x)), W(0s) = (log O — 2loglog 0;)/(2),
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and
e =1k/W(Qs), N=|W(@/2], lal<l, k=1,...,N
Denote for brevity P.(+) = Pr (), E.(+) = E.(+).

Note that
Jelxe) = i
and
2
1707 ostre) ae = ) j e (00)) cost)
2N2(¢, ) (Ow) 5
: WLW o)
N )

=< WCXPU% 0, — 2loglog G»)

= O(Lloglog @, log™" @) = o(1).

Therefore f,(x) € A,(L), for all sufficiently small 4.
Next, according to Lemma 3.1, for all sufficiently small A and k, 7 = 1,..., N,

o0y2 LAY
Z g jh ] jh} __MJ e“(xk_xl) dt

j==w 2rhW Q) J-wigy)
PPY
- ht;(f;(g;h) §u = 280" (loglog @4)(1 + 0(1)), (3.15)

where 8y, is the Kronecker delta.
Due to (3.15), the likelihood ratio associated with the observations y can be written as (cf,
Kuo 1975, Section 11.2)

N o
g% —e"P{ > Zﬁ(fk)(Zchk—c%)}, (3.16)

k=]; -

where

2= Yigk(Jh)
35— oo 82 (A
Note that due 1¢ (3.15) and (3.16), for all k = 1,..., N the statistic T}, is sufficient for the
corresponding parameter ¢, of the family P.(-). Morec)ver Ty,..., Ty are independent and
normally distributed, Ty ~ N{cg, $*), where
2 _1+oll)
2loglog Q)

Tk=
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For all sufficiently small 4 and arbitrary & > 0, one obtains:

inf sup RP(f, f)=inf sup RP(S, S
J feAll) Foelelg]

> inf sup E,w( max 16 — ckf)

E olaigl <k<

w(l — &) inf sup P{ max tck—ckj>1~§},

< el <1 1<k« N

where &, = f(x) /9y, €= (¢1,...,Cx).

To evaluate from below the last expression, we use the method of Korostelov (1993), with
suitable modifications. Denote by ¢,(x) the density of normal distribution N{(0,c?). It is
not difficult to see (cf. Korostelev 1993), that for any o* > 0, 6 € (0,1),

zeR!

max j da{x—)x{lz—¢c| < 1-8}de _J bo(x — cIx{|z*(x) =~ ] < 1 ~&}de, (3.18)

where

x, x| < ¢,
7 (x) =

ésign(x), |x| > é.
LetC={e:le|<1,k=1,...,N}. Then

inf sup P{ max |c,—c—ck|>1—6}

¥ oelalet 1€k<

>27N ir;fj P,{ max |Z — ] = 1—6} de
¢ e 1<k<N

< 1—2_Nsupj P,_.{ max |ck——ck1< 1—6}dc
z Jc 1€k

= l—Z‘qupJCE,Hx{iE;,—ck| < 1-4é}de. (3.19)

k=]

Using sufficiency of Ty, k = 1,..., N, one obtains, according to (3.16) and (3.18):

”
27N sgp Jc E, 1;[ x{lex — ;] <1 ~6}de

- supajcn%)ﬂﬁx{m-cudw}dc
k=

N os(7,
< 27¥E, H squ &-——x{lck ] <148} de
k=1 =1 ¢ (T
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N
Hjsupj b5(Ti — c)x{lze — el < 1~ 6} dey dT,

N
(‘2‘” T—o)x{I=(T)—cl < 1-6) dch)
N
( ¢s(T—c x{|z7(T) - | 21 -6} dch) , (3.20)
where
i
%”_1 ¢s(T — )x{lz’(T) ~¢c| 21 -8} dedT
> ‘J‘” ’ .
T2)sp J1—55[I~c|51-5;2 ¢s(T — ¢)dedT
1-6/2 68(1 + o(1)} (1- 6)2
5 —
2 JI—J QSS( ) ‘/_(] —6) exp 2S2 .
Noting that N = O(logQ,), this, together with (3.17) and (3.19), (3.20), completes the
proof. e
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