Bernoulli 2(2), 1996, 109-132

Asymptotic fluctuations and critical
dimension for a two-level branching
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The high-density asymptotic behaviour of a two-level branching system in R is studied. In the finite-
variance case, a fluctuation limit process is obtained which is characterized as a generalized Ornstein-
Uhlenbeck process. In the case of critical branching at the two levels the long-time behaviour of the
fluctuation limit process is shown te have critical dimension 2¢, where « is the index of the symmetric
stable process representing the underlying particle motion. The same critical dimension has been
obtained recently for the related {but qualitatively different) two-level superprocess. The fluctuation
analysis uses different and simpler tools than the superprocess analysis.
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1. Introduction

Multilevel branching particle sysiems are mathematical models for a class of hierarchically
structured populations. In such models the particles are grouped in subcollections that can
disappear or be replicated at the different levels of the hierarchy. These models were
introduced recently by Dawson and Hochberg (1991), and some of their properties and
applications have been studied by Dawson et a/. (1990; 1994; 1995a; 1995b}, Dawson and
Wu (1995), Etheridge (1993). Gorostiza et al. (1995), Hochberg (1995), and Wu (1991;
1993; 1994a; 1994b). A different type of multilevel branching model has been considered by
Greven (1991). Examples of multilevel branching systems which arise in computer science,
molecular biology, population genetics and environmental science are mentioned in some
of the references above. The analysis of multilevel branching models is complicated by the
fact that the independence of behaviour in the particle dynamics which is present in the one-
level models no longer holds due to the higher-level branching,

An interesting feature of multilevel branching systems is the fact that in the case of
critical branching the critical dimensions which separate two different long-time qualitative
behaviours are of higher order than in the one-ievel models. For example, for the high-
density limit studied by Wu (1991; 1994a) and Gorostiza et al. (1995), known as the two-
level critical superprocess, the critical dimension for the persistence—extinciion dichociomy
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is 4 (see Remark 3.11), a result that was conjectured by Dawson, while it is 2 for the
corresponding one-level model (see, for example, Gorostiza and Wakolbinger 1991). This
result leads one to expect that the critical dimension 4 is an inherent property of the
underlying two-level critica! branching particle system, and therefore it should also appear
in other ways. Some indication of this at the particle level appears in Hochberg and
Wakolbinger (1995), and a result of related interest on clan dynamics was obtained by
Stockl and Wakolbinger (1994). In the present paper we show that 4 is also the critical
dimension for the high-density fluctuation limit process (this result being a special case of
Theorem 3.8).

While it is not surprising that the long-time behaviours of the two-level superprocess
and the fluctuation limit process of the two-level system have the same critical
dimension, it should be noted that the two processes are quite distinct in nature and
that the techniques used to obtain them and to prove the corresponding critical
dimension results are also different. One qualitative difference between the two processes
is that in the critical, equilibrium, Brownian case the two-level superprocess is self-
similar for d =4 (Wu 1994a), but the fluctuation limit process is not. Concerning the
techniques, although the fluctuation analysis involves some difficult computations, the
tools are simpler than those used for the superprocess analysts. Thus the fluctuation
analysis provides a simpler way of finding the critical dimension for the long-time
behaviour of the two-level branching system. Indeed, it reduces essentially to computing
the limit of a variance. On the other hand, the superprocess contains all the information
about the particle system (Dawson 1993). A natural question is whether the two critical
dimension results can be derived from each other. This question, which by the way is
also relevant to the one-level case, goes beyond the scope of this paper, but we comment
on it in Remark 3.11.

A two-level superprocess is a Markov process with values in a space of measures, which
is obtained as a limit of a two-level branching particle system under a hugh-density, short-
life, small-mass rescaling at the two levels simultaneously. Although this process is not the
subject of this paper, we refer to it not only in connection with the question of the
relationship between the critical dimensions raised in the previous paragraph, but also
because it provides a motivation for the present study. The motivation is the following. The
two-level superprocess can also be obtained in two steps, by first passing to the limit at
the first level and then at the second level. The first-level limit yields a system of branching
superprocesses, and it is this system which is our starting point in this paper. We note that in
the two-step approach the two-level superprocess can be regarded as a ‘super-super-
process’, following the terminology of Dynkin (1991a), and that, as a consequence, the
system of branching superprocesses is, at each time, a doubly stochastic Poisson random
field whose random intensity is the two-level superprocess. This doubly stochastic Poisson
relationship connects the critical long-time behaviours of the system of branching super-
processes and the two-level superprocess, and it shows that their persistence—extinction
dichotornies are the same. This fact was exploited by Gorostiza ef al. (1995) for the analysis
of persistence—extinction of the critical two-level superprocess for which Wu (1991, 1994a)
proved the extinction part.

Starting from the system of branching superprocesses that result from the first-level limit,
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our aim is to investigate the high-density hydrodynamic behaviour and the asymptotic
fluctuations at the second level. Results of this type yield a qualitative insight into the
collective behaviour of the two-level branching particle system which is different from that
obtained by means of the two-level superprocess. To be precise, in this paper we begin this
study for a particular two-level branching system in R?, and the process we investigate is the
aggregated (or superposition) process of the two-leve! empirical measure process deﬁned
below. The aggregated process takes values in a space of tempered measures on RY, and
therefore its ﬂuctuatlon analysis can be carried out using S'(RY), the space of tempered
distributions on R?, as a state space. Finer results should be provided by the fluctuation
analysis of the two-level empirical measure process but this requires a nuclear space of
distributions on a space of tempered measures on RY, which is not readily available. This
problem is left for further study. However, although the aggregated process is coarser than
the empirical measure process, it gives a considerable amount of information on the high-
density properties of the two-level branching system, in particular concerning the long-time
behaviour.

A point worth emphasizing about the present study is the following. The S'(R%)-
valued processes that have been studied in most papers on fluctuation limits of particle
systems concern the point measure-valued processes defined by the positions of particles
that are randomly located in R?. In contrast, here we start from a random system of
‘measure-valued particles’, or ‘superparticles’, which are states of a collection of super-
processes.

Although some of the results below can also be proved for more general two-level
branching particle systems, we restrict ourselves to a special model which is characterized
by certain parameters, because we are interested in the dependence of the behaviour of the
model on the parameter values, and in this way we can compare our results with others.
Special cases of the present results (critical finite-variance branching and Brownian particle
motion) appear without proof in Gorostiza (1995).

The paper is organized as follows. In Section 2 we define the two-level branching system
we study and we recall some necessary background. Section 3 contains the results for the
aggregated process: the law of large numbers (Theorem 3.1); fluctuation limit {Theorem
3.2); description of the fluctuation limit process as a generalized Ornstein—Uhlenbeck
process {Theorem 3.4); and leng-time behaviour of the fluctuation limit process in the
critical case (Theorem 3.8). We determine the critical dimension in this case, and we
comment on the relationship with the critical dimension of the related two-level super-
process (Remark 3.11). In addition, we note that in the case of equilibrium and supercritical
dirnensions, the high-density fluctuation limit and the long-time limit of the aggregated
process are interchangeable (Theorem 3.10), and that the long-time limit of the flucteation
limit process has a representation in terms of the equilibriumn state of a critical superprocess
and the occupation time of an independent critical superprocess (Remark 3.12). In Section
4 we present the proofs. In Section 5 we mention some possible directions for further study.
The Appendix contains the notation and the definitions of the spaces we use. A basic source
on superprocesses is the lecture notes of Dawson (1993). Background on S'(R?) can be

found in Treves (1967), and on weak convergence of &'(R?)-valued processes in Mitoma
{1983b).
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2. A system of branching superprocesses

For simplicity’s sake we include all the parameters (even those which play a secondary role)
in the name of the superprocess.

Ald, a,B,V, b, c)-superprocess B = {B(1),1 > 0} is 2 homogeneous Markov process with
values in the space of measures M;(Rd) (see Appendix) whose characteristic functional is
given by

E.(exp{i{B(2), p}}) = exp{i{u,u (D)},  1>0, pe MF(RY), pe SRY), (2.1

where E, = E[-|B(0) = ], a € (0,2], 8€(0,1], V>0, beR, cc{0,1/(1+ )], p is
any real number such that p > d/2 and in addition p < (d + o)/2 if @ < 2, and {u,(x,?),
x €R t >0} is a nonlinear semigroup which is the unique solution of the integral
equation

')
u(t) =" S0 — (—i)? VCJ U985 (u(s) TF) ds, (2.2)
]

with (S,) designating the semigroup of the spherically symmetric a-stable process in RY
(the case a = 2 corresponds to Brownian motion). The infinitesimal generator of {S,) is the
fractional power of the Laplacian A, = —(—A}*2. We denote the semigroup and the
infinitesimal generator of the (d. e, 3, ¥, b, ¢)-superprocess by (T,) and ¢, respectively. In
the study of superprocesses it is more common to work with Laplace functionals and test
functions in C;{Rd). However, since the fluctuations of measure-valued processes are
signed measure-valued and their limits are usually not signed measure-valued but they are
S'(R?)-valued, it is convenient to work with characteristic functionals and test functions in
S(R?) from the beginning.

We recall that the (d,a, 8,V b, c)-superprocess characterized by (2.1} and (2.2) is
obtained as a high-density, short-life, small-mass limit of a system of spherically symmetric
a-stable processes in RY, which in the nth rescaling consists of particles of mass n~!, initially
distributed with a density proportional to », that branch at rate ¥»° with branching law
generating function

Fizy=z+b?(z-D+c(1-2"*° 2z eC, |z <1,

(see, for example, Gorostiza and Lopez Mimbela 1993, or Dawson 1993, in the case b = 0).
Here z' 77 = exp{(1 + 8) log 2}, —1n/2 < argz < n/2, is the unique analytic continuation of
'3 for 2 > 0.

In the critical branching case, which corresponds to 5 =0, the superprocess B is
persistent in dimensions d > o/3 and it goes to local extinction as t — oc, if d < a/B.
Persistence means that if B(0) = A, then B{r) = B(oc) in M;‘(Rd) as ¢ — oG, where B(oo)
has intensity measure A. {Note that ) is invariant for the semigroup (S,).) Moreover, B(oo)
is an equilibrium state and an infinitely divisible random measure. Its canonical measure,
which we denote by R, belongs 1o M§+(Rd) (a space of measures on M;’(Rd), sec
Appendix), is invariant for the semigroup (7}, and has intensity measure X in the sense that

(R (-reh)) = (A ) (23)
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(For these results, see Dawson 1993; Dawson and Perkins 1991; Gorostiza and Wakol-
binger 1991; Wu 1991; 1994a.)

A (By, Va, ba, c)-branching (d, o, By, V|, 61, ¢|)-superprocess is a spatial branching system
in M; (]R“‘)‘ Its measure-valued particles, which we call ‘superparticles’ for short, migrate
according to a {d, e, B, V;, by, c1)-superprocess and branch at rate ¥, with branching law
generating function

Gi2)=z+b{z- ) +a(l-2'*%,  zeC, |z|<,

where 3 € (0,1], & € (=163, ¢3 € (0,(1 + 5,)/(1 + 3;)]. The offspring superparticles
start off from the branching site of their parent, and the motions, lifetimes and branchings
of different superparticles are independent of each other.

We consider a system of (5, Va2, by, ¢3)-branching (d, o, 8, ¥y, by, ¢;)-superprocesses
with initial configuration given by a realization of a Poisson random measure on M, (R 4
with intensity measure R € M,"(R?), and such that their evolutions are independent of
each other given the initial configuration. We denote by B;;(¢) the location in M“L(Rd) at
time ¢ of the jth superparticle in the ith branching superprocess.

The empirical measure process Y = {¥(1},¢ > 0} of the system is defined by

= Z Z bg,,(s)- (2.4)

Then Yisan Mﬁ*(Rd)walued Markov process, and its high-density, short-life, small-mass
limit (i.e. superprocess limit) coincides with the two-level superprocess studied by Wu
(1991; 1993; 1994a) (in the critical branching case and o = 2). As stated in the Introduction,
the fluctuation analysis of the process ¥ requires a nuclear space of distributions on
My (R?). A methodology for such an analysis has not yet been developed, and therefore we
will study instead the fluctuations of the corresponding aggregated process.

The aggregated process ¥ = {¥(),1 > 0} of ¥ (or of the system) is given by

= ZX,.(x), where X(1 ZBU(! (2.5)

The process ¥ is the aggregated process of Y in the sense that the masses By,(t) are
not dlstlngulshed but summed. Note from (2.4} and (2.5) that {{¥Y{5),{-, )} = (Y (¢}, ¥,
¢ € S(RY).

We observe that ¥ may be assumed to take values in Mg *(RY) because each X; is
M+(Rd) valued and ¥(0) has locally finite intensity, ¥ is not Markowan {even though Y is
Markov1an), the conditional characteristic functional of ¥(f) with respect to the super-
particle system Y (s) is given by

Elexp{i{Y (1), )} | ¥ ()]
= exp{({(Y(s), Jog E{exp{i{(X (1 = 5), )}))}},  s<1, o € S®Y), (26)

and Y has finite second moments if and only if 8, = 8, = 1.
We wish to study the high-density behaviour of the process ¥. Since the fluctuations of ¥



114 L.G. Gorostiza

take values in M (Rd) and M (Rd) C S'(RY), we may use available methods for the
analysis of S'(R )-valued processes.

3. High-density limits

Foralln=1,2,..., let Y"={¥"{1),¢t > 0} be the aggregated process of the system of
(B2, Va, b3, 02} branchmg (d,e, By, Vy, by, ¢;)-superprocesses described in Section 2, with
initial configuration given by a realization of a Poisson random measure on M "'(]R;d) with
intensity measure 7R, where R € MZT(R?).

Theorem 3.1 (Law of large numbers). For all t > 0 and ¢ € S(R?),
nHEIME, @) = (R (-, Sio))y e0+Vabdt in peobability as n — oo.

In the case 8, = By = | the convergence also holds in mean square.

For the fluctuation results we assume finite second-moment branching at both levels
(8, = B, = 1). The fluctuation process Z" = {Z"{1},1 > 0} of ¥" is defined by

Z°() = n VA7) — EF (). (3.1)

Theorem 3.2 (Fluctuation limit). The finite-dimensional distributions of the process Z"
converge weakly as n~ oc to those of the 8'(R%)-valued centred Gaussian process Z =
{Z(1),t 2 0} with covariance functional given by

cov ({Z(s), 0), (Z(1), %)) = cov ({Z(s), ), (Z(s), e+ V0I5 g,_
s< 1, ¥ € S(RY), (3.2}
where

cov {({Z(s), v}, {Z(s), %))

= 2Vibi+Vab) {[l+ b bz( e—Vzbzs]«R‘(.‘Ss(‘g)(.,Ssrq(_))))
L2V L VB (R (LS (S, o) (Se_ B)))) O

3
+ 2V]C] V, (2(,’3 - bz) J e“{Vlbl = Vabalr
il

[R5, (5.8 mw)))))dvdr} (3.3)
(the case by = 0 is included).

Remark 3.3. 1t is possible to prove weak convergence in the Skorokhod space D([0, o0),
S'(R%)) by standard methods. The tightness proof involves unpleasant calculations. Since



Fluctuations of a two-level branching system 115

the limit Z has continuous paths, weak convergence in D([0, o), &'(R?)) can be proved in a
simpler way by a method described by Fernandez and Gorostiza (1992}, which is based on
results due to Aldous (1989) and Cremers and Kadelka (1986).

Theorem 3.4 (£ as a generalized Ornstein—Uhlenbeck process). The fluctuation limit process
Z is a Markov process with continuous paths, and it is an Ornstein-Uhlenbeck process
governed by the Langevin equation

dZ{t) = (AL, + Viby + Vaby) Z(1) dt + AW/ (1), >0,
and with Z(0) an S'(R”)-valued centred Gaussian random variable with covariance functional
cov ((z(o)s (p>s (Z(O)! "‘f’)) = ((R: ( " QG>( " ip))):

where W is an inhomogeneous S (R%)-Wiener process with covariance functional

cov ((W(6),0), (W (0.0 = [ Culie )

with

Qn{@v "J")) = e(V]bl-FVz’sz)“{le C]((R! (' ' Su(mb)))) + V2(2cl - bz)((R ( * !Su‘p)( " !Suw)))

+ 2V, V2(2e; — by) Ee"""”«& (. 8- ((S) (S, dv}.

Remark 3.3. The generalized Langevin equation above is understood in a weak sense, i.e.
tested on functions ¢ € S(R?) and integrated in #. Moreover, in the case a < 2 the solution
to the equation is interpreted in the extended sense introduced by Dawson and Gorostiza
(1990), because A} does not map S'(R‘) into itself. (For background on &'-Wiener
processes and §'-Langevin equations, see Bojdecki and Gorostiza 1986; Bojdecki and
Jakubowski 1990; Dawson and Gorostiza 1989; 1990).

Remark 3.6. If the initial intensity measure R is given by R = b5, A(dx) (which belongs to
Mﬁ* ﬂ;]R"); see Wu 1991), then Z(0) is the standard Gaussian white noise measure on
S'(RY).

Remark 3.7. The (one-level) high-density fluctuation limit of a system of branching
processes with charactenistics e, 8, ¥, &, ¢; (and initial Poisson random measure with
intensity A) is a generalized Ornstein—Uhlenbeck process Z with Langevin equation

dZ(1) = (AL + Vb)) Z(6) dr + AW (1},
where W is the §'(R?)-Wiener process with covariance kernel
Qu(p, ) = €O (A V1 (201 — br)ow — oA, — BAL).

(this is a special case of the result in Fernandez and Gorostiza 1990). The terms in @,
involving A, represent the effect in the randomness of the limit Z cansed by the particle
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motion. The lack of similar terms in 0, in the two-level case (Theorem 3.4) is due to the
aggregation.

The next result gives the long-time behaviour of the process Z in the case of critical
branching at the two levels.

Theorem 3.8 (Long-time behavioar of Z in the critical case). Let by = b, = 0, andd > 20. If

R =R, or R =8 Mdx), then Z(t) = Z(c0) as t — oo, where Z{c0) is an &' (R?)-valued
centred Gaussian random variable with covariance functional given by

cov (Z(e0), ), (Z(60), ) = [ [ ellla(x,9) + kot ) axdy,

ki(xy) = V'C'F(d;a) L

2eqd/2T (%) lIx - yji =

where

and

Vlcl Vz(.'z]_-‘ (d 2a) 1

gogld- 2”21’( . 1) llx =yl

Jor d < 2ar, Z(1t} does not converge as t — oo.

kl(‘x':y) =

Remark 3.9. Under the hypotheses of Theorem 3.8, the covariance kernel O, of the &' (R?)-
Wiener process in Theorem 3.4 has the following limiting behaviour:

Q:(‘Pa 14'[)) = 2Vl"-‘i (’\1 (PT!II)) + Rr(‘P: ‘I'J'I))

and

d—- af)
Vie\ Voo I'| ——
‘ _ e ( 2 p(x)(¥)
im R (g, %)= = S dxdy.
r—oc 2u—lnd;‘2r'(_) R JRY ||x — yH
2

(This can be shown by the same arguments in the proof of Theorem 3.8.} Note that in the
limit the two terms correspond respectively to those in the covariance functional of Z(oo) in
Theorem 3.8. The first term, which represents a spatial white noise, is the same as in the one-
level case (Remark 3.7), and the second term involves the combined effects from the two
levels.

We now give an interchange of limits result in the case of critical branching and 4 > 2ex.
Starting from a Poisson random field with intensity measure R,,, we have ¥ (¢} = ¥ (oo)
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as ¢ - 00, where ¥(oo) is an &'(R?)-random variable with characteristic functional given
by

E(exp{i{ 7(c0), p}}) = exp{—((Rw, -9 4 Vye, j:’ ((Resy (1) dr}, (3.4)

and w,{p,1) is defined by (4.11) below. (Weak convergence is proved by means of the
Laplace functional, and the passage from the Laplace functional to the characteristic
functional is done by analytic continuation, as in Iscoe 1986.) Let ¥ "(o0) denote the limit
above corresponding to the initial Poisson intensity measure nR,,, and consider the
fluctuation random field H" defined by

H" = n"Y2(7"(00) — E(¥ n(oo))).

Theorem 3.10 (Interchange of limits  — cc and # — 00). Let d > 2a. Then
H" = Z{00) as n — oq,

where Z(00) is the long-time limit of the fluctuation limit process Z described in Theorem
38.

Remark 3.11. Theorem 3.8 shows that 2« is the critical dimension for the long-time
behaviour of the fluctuation limit process Z. For the two-level superprocess constructed
from the same critical two-level branching particle system in the case o = 2, Wu (1991;
1994a) proved that local extinction occurs in dimensions d < 4 if the initial state is R, or
85, A(dx) (for the precise meaning of local extinction of the two-level superprocess, see Wu
1991; 1994a), and from his results 1n Wu (1991) it follows that there is no extinction in
dimensions d > 4 (because the second-moment measure of the aggregated process of the
two-level superprocess has a non-zero limit as ¢ — o0). For the same two-level super-
process, Gorostiza et al. (1995) proved persistence in dimensions & > 4 if the initial state is
R, . Hence 4 is the critical dimension for the critical two-levej superprocess. These two-level
superprocess persistence—extinction results should also hold for @ < 2 and the critical
dimension should be 2e (with similar proofs to those for the case a = 2). The critical
dimensions for the two-level superprocess and for the fluctuation limit process Z have been
obtained independently of each other. Clearly, they must be related since they arise from
the same two-level branching particle system. It is natural to ask if they can be derived from
each other. The same question is relevant for the one-level case, where the critical
dimension is a. In this case one can show, using the doubly stochastic Poisson relationship
and an interchange of the t — oo and #» — oo limits, that persistence of the superprocess
for 4 > o implies existence of the long-time limit of the fluctuation limit process, and this
long-time limit can be identified this way (the limit covariance appears in Gorostiza 1983,
for & = 2). An analogous procedure could be foliowed in the two-level case for 4 > 2ex in
order to prove existence of, and identify, the long-time limit of the fluctuation limit process
for the empirical measure process (and hence for the aggregated process), but this requires
the use of Lévy’s continuity theorem, for which a nuclear space of distributions on Mp{Rd)
(which we do not have) is necessary. In any case, for both the one-level and two-level
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models, in supercritical dimensions the persistence of the superprocess implies the long-time
behaviour of the fluctuation limit process. But using superprocess persistence results to
prove long-time fluctuation results means using a more difficult class of results to prove
something which can be done directly more easily. A more interesting and non-trivial
question is whether long-time fluctuation limit results can be used to prove persistence of
superprocesses.

Remark 3.12, (A represemation of Z(oc)). Let d > 2a. From the form of the covariance
functional of Z{oo) in Theorem 3.8 it follows that Z{oo} is equal in distribution to Z, + Z,,
where Z, and Z, are independent random fields, Z, is the high-density fluctuation limit as
n — oo of the equilibrium state of a critical superprocess with intensity #), and Z, is the
long-time fluctuation limit of the occupation time of a critical superprocess with intensity A
(see Iscoe 1986, Theorem 5.5, for the second part of this representation). Thus, ¥7{t) is
distributed approximately as

'3
(mqﬂﬁﬂmwwmﬁ%qw%ﬂﬂL&mm~A+

for large n and ¢, where BT'{c0) is the equilibrium state of a (critical) (d,«,1,2,0,1/2)-
superprocess By with intensity a), and B, is an independent (critical} (d, e, 1,2,0,1/2)-
superprocess with intensity A. What is of interest in this representation is that the
asymptotic behaviour of the two-level process Y"(f) is expressed in terms of the one-
level processes By and B,. This leads one to believe that there is a relationship between the
two-level system and the occupation time of the one-level system.

Remark 3.13. In Theorems 3.8 and 3.10 the Poisson intensity R, has an associated
branching rate (the parameter V) in the (d, o, 31, V1,0, ¢ }-superprocess; see Lemma 4.6
below). However, we can choose any measure for the Poisson intensity R. In particular, we
may let B be the canonical measure of another (critical, persistent) superprocess; for
example, we can take a different value of ¥, for R_,. Having noted this point, special cases
of the previous results with no branching at the first or second levels can be obtained by
setting the branching rates V| and/or ¥; equal to 0: ¥, = V¥, = 0 (system of deterministic
S,-evolutions), ¥, =0 and V, > 0 (system of branching deterministic S,-evolutions);
V>0 and V, =0 (system of superprocesses). This observation is also relevant in
connection with Example 3.4.2 in Bojdecki and Gorostiza (1996).

4. Proofs

Lemma 4.1. Ler X ={X(),1>0} be the M;(Rd)-va!ued process defined by
X(£) =3, Bi(t), where B;(1) is the location at time t of the jth superparticle in the
(B2, Va, by, ca)-branching (d. «, By, V', by, ¢ )-superprocess. Then

CE,((X(1), ) = {1, Sppp !PT Vb, (4.1)
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and, if 5y =, =1,

E{((X(1),¢)%) = &0 "zbﬂf{ [1 + —2'“"2; b1 - e-"’=b=‘)] {1, Sup)?
2

14
+2V,¢, J e o FVabIr, S (S, )Yy dr
o

{ T
+ 2V Vo202 — bz)J e~ (Vibit V’b’)rJ. e (1, 5, _o(Simr4u0)?) dv d’}
0 0
(4.2}
(the case by = 0 1is included), and

E,({(X(5), o) (X (), %)) = E,((X(5), p}{X(5), §;_gp)) 0+ Ve0)l=9 5 <y (43

Proof. We abbreviate the proof by referring to analogous calculations in previous papers.
Computing as in Gorostiza and Roelly (1991, proof of Theorem 3.5) we have, recalling
that {T,} is the semigroup of the superprocess 5,

E.((B(t),)) = T,({+, )} (1) = {, Sp) " (4.4)
and

E,((B(5), &)") = T,({-, 0"} (1}
= {u, Syt e 12V ¢y L "N+ S, (Sweyds,  (4.5)

and, noting that X(7) is the aggregated process of 3°; 65 and calculating as in Fernandez
and Gorostiza (1990, proof of Lemma 1), we have

E,((X(1),9)) = T({-, ) (u) "> (4.6)
and

E,((X(0),9)") = (To({+, )} () '
+ 321’252‘ J:) e_VszrTr[g((Tr—r(( . (p)))Z)

- Z(Tt—r(( " ‘P))]G(Tt—r(( b (P)))

+ V226 ~ B)T, (-, o)) N p) dr. (4.7)

It is easy to verify that the generator G of the superprocess B is given as follows for the
functions F(u) = (u, ) and F(u) = (4, @)™

Gl{- D)) = (1 (Ba + Nib1)w), (4.8)
and

G{{+0) ")) = 2w @), (B + Vib1)p) + 2V 101 (1,67 (49)
From (4.4) and (4.6) we obtain (4.1), and from (4.4)-(4.9) we obtain (4.2).
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Finally, (4.3) follows from (4.1), conditioning on {X{r),7 < s}, and the Markov property
of X with respect to the filtration generated by 3°; 85()- O

Corollary 4.2. Let Y be the aggregated process of the system of (Ba, Vs, by, ¢3)-branching
(d, o, 8, V1, by, €1 )-superprocesses with initial Poisson measure with intensity R € M§+ (RY).
Then

E(T(1),9) = ({R,{+, S}y el o1+ 720, (4.10)

Proof. Since E(Y(£), ) = ({R, E.({X(1),)}}), the result follows from (4.1). O

The previous results are enough to prove the law of large numbers in the finite second-
moment case and the fluctuation limit of the one-dimensional distributions.

Proof of Theorem 3.1 (with 3, = 8, = 1). From the assumption that ¥"(0} is Poisson with
intensity #R and (4.10)} we have

Elnr {P7(1), ) — (R, (-, Sup)yy e+ Vbl
= (RE{X(), 0} =0 asn— oo,
since the assumption on R and (4.2) assure the finiteness of ((R, E.{{X (1}, )*)}). O
Lemma 4.3, For all t > 0 and all ¢ € S(RY),
Jim_E(exp{i(Z,(1),#)}) = exp{— 3 (R, E.(X (1), o) )},
and therefore Z,(1) = Z(t} as n — oc.

Proof. Since ¥"(0) is Poisson with intensity nR we have, from (3.1),

E(exp{i(Z, (1), 9)}) = exp{—in""PE(T,(1), ) + {(nR, E.(exp{in~ (X (1), £} }) — 1}

Expanding the exponential in the second term on the right-hand side and using
E({¥,(1),¢)) = ((nR,E.({X(1),2)))} and ({R, E.((X (1), [¢l)*))} < oo (which holds because
B8, = 5, = 2), we have

E(exp{K{Z,(1).0)}) = exp{—} ((R.E.((X(1),0))) + 0(1)}  asn — oo,
which by (4.2) gives the desired result. 0

In order to proceed further we must work with the nonlinear structure of the system.
Let

wo(p1) = 1 - E(expli(X(0.0)}),  p€ MR, o S®) (4.11)

Using a standard renewal argument (conditioning on the first branching) one verifies that
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w,, satisfies the nonlinear integral equation

w,(p, 1) = €T (1 — €9 (n)
!
~ Vi [| FIT, ()12 ) (4.12)
0
The following lemma will be basic:

Lemma 4.4. Let a,, n = 1,2,. .., be a sequence of positive numbers converging to oc. For each
peMiRY. e SR and 1> 0, let

un(.ruw t) = AWt (;u: I),
where w1 is defined by (4.11). Then

Ui, £) = ~i{ps, S,p) V10 ¥ Fab)

uniformly for 1 in compact sets.

as n — 0g,

Proof. By (4.12) u, satisfies
tn i 1) = €T (ay(1 — €99 Y) ()
'4
- Vzcza;ﬁzj MBI, (10, (5) ) (1) ds.
Q

Hence, by continuous dependence on initial conditions and coefficients (see, for example,
Henry 1981), , converges as n — oo, uniformly for ¢ in compact sets, to u(u, ) given by

u(p, 1) = —ie" T ((+, 0)) (1)
= —i{, §,p) N1 TR,

where we have used (4.4). O
Proof of Theorem 3.1 (general case). Since Y"(0) is Poisson with intensity aR, we have
E(exp{in”' (7"(¢),0)}) = exp{((nR, E.£ X107 _ 1)y}

= exp{—({R, mw -1 {t))}},

wtl:cr.e Wt 18 defined by (4.11). Let w,{u,t) = nw,,1 (4, t}. Then, by Lemma 4.4, we
obtain )

Jm E(explin™ (Y"(1),)}) = exp{i{(R, {-, Sypje o ik

which implies the desired result. O

Proof of Theorem 3.2. Lemma 4.3 gives weak convergence of the one-dimensional
distributions of Z”. The convergence proof for the finite-dimensional distributions of
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higher order is done by induction on the order. It suffices to do the proof for the two-
dimensional distributions, since the general argument is analogous.

Let s <7 and ¢,% € S(R”). Conditioning on {¥"(r),r < s} and using the Markov
property of ¥" with respect to the filtration of ¥ we have

E(exp{i({Z"(s), ) + (Z"(1),%))}) = E(exp{i({Z"(s), ) — E{X" (), p)n""/%)}
x Efexp{i(77(2), yn~ T (s)),
From (2.6},
Elexp{i(7"(5), v DN Y (5)] = exp{{ T (), log(1 — wypira( -, 1 — )N},
where w12 is defined by (4.11). Hence

E(exp{i({Z"(s), ) + {Z"(¢),9))}) = exp{B, (s, 1} }E(exp{4.(s,)}), {4.13)
where

Ay(s,1) = H{Z"(5), 0) + {¥7(s) ~ E(Y"(s)))n~ 2, 0 P log(1l — wypmin (=, t — 8)})) (4.14)
and

B,(s,1) = —E(F"(1), ¥))n” "7 + E({Y"(5)I0g(1 = wymin(-, 1 =5)))).  (415)

Let
valpe, ) = 1wy (o). (4.16)
By Lemma 4.4,
valp7) = —i{p, S,y eMB VR ag s 00, (4.17)
We will show that for all  and r,
' log(l — wy,-va(p, 7)) — i{p, S) eVt =ablr a5 - oo, (4.18)

Due to (4.16) and (4.17) it suffices to prove that
|n' " log(1 — Wy (it 1)) + n”zww-.;z (g, 1) — 0 as n — oo,

but this follows from the inequality |log(l —z} + z| < const. |2{% for |2} < 1, (4.16) and
(4.17). In addition, it is possible to obtain the estimate

172 (Vb + Vzbz}r|

197 log(1 = w1, 7)) = s, S, €

< const {E“«X(n,w)) Rl e A ORI ds] (4.19)

Now, since
E({{¥Y"(s) = E(Y"(s)))n "2, 0)) = n” {{nR, (E(C(X ()
= (R, (B.LLX(H))
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for any {€ C 4'(J‘Vt;,'(]le.d)), we have, by (4.18), (4.19) and the dominated convergence
theorem,

E({{(Y"(s) — E(Y"(s)))n" /%, n/ log(1 — wypin (-, 1= 8))

— (e, S, yeB =Ny g a5 — . (4.20)
Since

({(Y"(s) = B(X (N2, (- S, ) = (Z7(5), Si_ 59,

it follows from (4.15), (4.20) and Lemma 4.3 (convergence of one-dimensional distri-
butions) that

lim E(exp{B,(s,1)}) = exp{—} {(R,E.({X(5), p + S, ,pe""* =Ny (421)
On the other hand, we have
lim A(s,1) = ~H{RE(X(2),)7) — E((X(5), S, )" €100 1000, (4.22)

which is the statement of Lernma 4.5 below.

The completion of the proof follows from (4.13)-(4.15), (4.21), {4.22), (4.2) and
(4.3). ]
Lemma 4.5. The [imit in expression (4.22) holds.

Prﬂoj: Putg= V]bl + VZbZ‘

From (2.6), and using (4.11), the multiplicative property of branching systems, and (2.5),
we have

E({{Y"(s),Jog(1 — wy-in (-, 1= 5))}))

= (nrE.((( ;agj(,],log E-(exp{i(X(t - 5),un ' )P))))
= ({m.E (308 By (eoticx(0.0n71))

{{(nr, E. (108 J]Eno exolitx @, w™)) ))
{

<nR, E.(log Bs g(expliX(0).9n™/)) )>>
= {{nR, E.(log Ey(s(exp{i(X (1), g™} }))).

]

Hence B,(s,t) given by (4.15), can be written as B,(s, ) = {{R,¥,))}, with
Wb} = E[~1{X(s), S, ) €0 ~In!/?
+nlog By (exp{i(X(0), vin™'?))],  ue M(RY), (4.23)
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where we have used (4.1) and (4.10). Therefore it suffices to show that

Tu() = —HE (X (0),9)%) — B,((X(5), 5, s)) ¥ asn— o0,

and then to conclude by the dominated convergence theorem.
From (4.23) we have

Tu(tt) = By [—1{X(8), S,_ ) e~ 4 nlog(t — By ((X (), ¥))n 2 + 6,(X ()],
where
I,n’l

8,(X (5)) = By (X112
Hence, by (4.1) we have, for large a,

(1) = Eu{ nBa(X(5)) = 3 HExio (X0 9D~ 2 4 0,XOP + 6,0X(0)}, (424)

where

— 1 —i(X(), ¥yn/2).

o) k=1
X)) = Y L By (X (0,0 + 0, X )]

k=3

Now,
iEx(o (X (0, 4™ + 6,(X(s)) = By (X977 1),
and therefore, using (4.1) we have
R6,(X(s)) = 5 [Exio (X(), 902 + 6, (X ()]
= (= By (X (), )"} + G, (X(s))
= 5 BExto (X0, )™ 1 my (X))

LBy (X(0),9)%) = (X(5), S, )62~ ]

+ G X(5)) + 7 (X (5)), (4.25)
where
GHX(5)) = mEyo @O — 1 i (1), 92 4 LK (1), w0
and
M(X(5)) = =5 {Exy (X ) — 1 — By (X (0), 62,
But
16.(X ()] + 16 (X ()] + [ma(X (5))] < K(X(s))m™ "2, (4.26)

where K{.) is a non-negative function. (The estimate for §, uses the inequality
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|log(l +z}— z+ %zz| < |z|* for |z € 2/3. In the estimate for 5, the key is that, expanding
Ejx ) (exp{i{X (1), ¥)n~"/?}), the term Ey,,({X(z),%))*n™" cancels out.)

On the other hand, the function X satisfies {{R, E.(K{X(s)))}} < oo, because 8; = 5, = 1
implies (R, E.((X{s), ¥()*))} < co.

Hence, from (4.24), (4.25) and (4.26) we have

() = = LE, (X (1), %)) — E({X(5), Sy e 9] 4 00 %) asn— 0,

and the proof is complete. 0

Proof of Theorem 3.4. Continuity of the paths can be shown by the criterton of Mitoma
(1983a). Using Theorem 3.6 of Bojdecki and Gorostiza (1986} (see also Dawson and
Gorostiza 1989), it follows from the form of the covariance functional of Z, given by (3.2}
and (3.3), that Z is a Markov process and that it satisfies the stated stochastic evolution
equation, the bilinear functional @, (v, 4} being determined by the formula

d
Qu({P: “f’) = a KZ(“! 5 U, W) - KZ(“! WL U, A?."L‘} - KZ(H) AQO, i, w)a

where KZ(ua wu, T:b) = COV((Z(H), (P)s (z(“);w)) and A = Au + Vlbl + VzbZ‘
The distribution of the initial value Z(0) follows from Lemma 4.3 for t = 0. O

The proofs of Theorems 3.8 and 3.10 are based on the following lemma.

Lemma 4.6. Let b, = b, =0, and 8, = 3, = 1. For all (non-zero) ¢, € S(R?),

d—-a
Vie)!' | ——
(Reos (0} 1)) = - )j [ axay iy asa,

2nian () e Jeex -yt

(4.27)

N V,cIF(d '220‘)r(-‘§-)

Jo (RS0 St = — e

2eariglé—diopl ——
| 2
(X)) -

x LF de PR Ry i d> 2 (4.28)
(R, (-, SpY N =0t N ast >0 ifd>a (4.29)

{The integrals in (4.27) and (4.28) do not exist for d < o and d < 2x, respectively.)

Proof. The Laplace functional of the equilibrium state B{oo) for d > a is given by (see
Gorostiza and Wakolbinger 1991)

E{exp{—{B(x), v}}) = cxp{—(A, ) + Vie J: {A, uw(r)z) dt}, wE C; (Rd), (4.30)
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where u,,(¢) solves

u(t) = Sy - Vicy jﬂ 8, (u(s)) ds. (4.31)

On the other hand, the Laplace functional of B(co) is given by the canonical representation
(see Kallenberg 1983)

E(exp{~(B(c0),¢)}) = exp{~((Rw, 1 =)}, p e G (RY). (4.32)

By computing
2
E{(B(00), 9)%) = -5 E(exp{~(B(o0), 01} funo

from (4.30) (using 4.31)) and also from (4.32) and equating, we obtain
(R, () = 2ict [ 0 (5o, (433)

and we note that this result can be extended for ¢ € S(RY). The value of the integral on the
right-hand side of (4.33) can be computed using the Chapman-Kolmogorov equation and
the potential of the symmetric a-stable process (see Blumenthal and Getoor 1968):

* 2 r(f;_a) e(x)e(y)
L (X, (Sip) ") di = 2a+1ndﬂr(%) “"x ERT dxdy ifd>a.

This vields (4.27).
From (4.33) we have

J:c (R (-, Sip))dt = 2V ¢ Eo J? (X, 8s4r0)3) dsdr.

The calculation of the last integral reduces 1o computing [§° [¢° p,, .(x, v} dsds, where
p:{x, y) is the transition density of the symmetric a-stable process (see Iscoe 1986, p. 109).
One finds

- r(d 52)r(3) (o)
L E(A,(Ss+fw)2)dsdr= — ” e dxdy  ifd>2a
4a+ln(d-—2};‘21'\( > ) lx ~ ¥

This vields (4.28).
Using the scaling prO})erty of the transition function p,{x} of the symmetric a-stable
process (i.e., p,(x) =t ¥p;(t7x), t > 0, x € RY), from (4.27) we have

t{{Rees {, S:(P) )

=lfer, _ ~leag,,
=const_tx—zd;aj”J@(ﬂ‘ﬁ(“’)ﬁ'l(f lﬁx(iy”-’;)')il(t ey y)}dzdwdxdy
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/o e _ _
= const’tz-{-dfajjjjw(“ 2)50(1‘” w)pllﬁj_ax}Pl(w y)dZdexdy
xX—=y

Hence

2
!<(Rm,(-,3m)2))Sconst-f“d’“‘w"( sup Itp(t”“x)lt"”“(l+IIXII)")

t>0,xeR?

PP =Y) 44,454
|| i a s it

when n is large enough so that the integral is finite. The supremum over ¢ and x is finite
because v € S{RY). Then (4.29) follows by taking n large enough so that 2+d/a —
2nja < 0. 0

Proof of Theorem 3.8. Let R = R__. From (2.3), (3.3), and S,-invariance of X, we have
var ((Z(1), 9)) = (1 + 2V2020){(Roos { -, Si}))

+ 2V L {(Roor (-, S, (S,0))))) dr

L aVieVaey L J;F'«Rm, (- 8o Sy ) ))) dudr
= (l + 2V2¢2‘)((Rwa ( “y Sr(p)z))

']
+ 2V,clj O (Sp)) dr
a

{ (f—r
+4V,¢ ij J (A, (S, 00)) dudr,
aJo

The result then follows from the proof of Lemma 4.6. The proof for R = § A(dx) is
similar. O

Proof of Theorem 3.10. From (3.4) and {2.3) we have
E(?”(OO), (P) = <<nRom ( "y ‘P))) = (’\1 lp)ﬂ.
Hence, using (3.4},
E(exp{i{H", ©)}) = exp{—i{}, )n'*}E(exp{i{¥"(c0), en"}))
S

= exp{ —i{A, n,o)srr”2 — { Ry, n(1 ~ gl i m

47262 [ (R (0P 0)) dr}.
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But, by (2.3),

_i(/\, tp)nl'u _ ((Roc:”(l _ ei{-.p)n-uz))) - _%((Rw(_,@)z)) as n — 0o,
and, by Lemma 4.4,

1/2

W, £) —= =i, Spp) as n — cx.

Hence H" = H as n — oc, and H has characteristic functional
E(exp{l<H= (,f-’)}) = exp{— % ((Rom (' ’ @)2)) - V2C2 ,I-U ((Roou ( M S:‘{p)z)) dt}

The result follows from Lemma 4.6 and Theorem 3.8. O

5. Further study

As we have stated, more significant fluctuation limit results on the two-level branching
system involve the empirical measure process Y rather than the aggregated process ¥, and
this requires a nuclear space of distributions on M, (RY). To our knowledge no such space
has been studied. However, a nuclear space of distributions on the space of probability
measures in R has been constructed recently by Dawson and Girtner (1995, and perhaps
this construction can be extended to our case. Since MP(Rd) C §'(RY), the space of Hida
distributions (Hida et al. 1993) might be useful, but it may be too large.

In Remark 3.11 we have already addressed the question of relating the resulis on the
critical dimensions of the two-level superprocess and the two-level fluctuation limit process
in the critical case, in particular obtaining results on the former from properties of the
latter.

In Remark 3.12 we have raised the question of a relationship between the two-level
system and the occupation time of the one-level system in the critical case, which we think
should exist.

In Theorem 3.8 R is taken to be either R or §; A{dx). On the basis of Theorem 2.2 of
Gorostiza and Wakolbinger (1994), it is reasonable to expect that the result should also
hold for other elements R € M§+(Rd) such that TR — R, as 1 — 0.

Fluctuation limits for the cases where 3, < 1 andfor 3; < 1 lead to non-Gaussian
generalized processes. In this case it seems that the results should depend on the relation-
ship between the values of 3, and 5,.

In addition to the high-density limits studied here, other relevant limit results for the two-
level branching system could be obtained under space-time rescalings (for example, as in
Holley and Stroock 1978, for the one-level case).

Another approach to the types of questions studied in this paper would be to start from
the two-level branching particle sysiem (without taking the first-level superprocess limit),
but it seems this would involve more cumbersome calculations.

From the perspective of applications it may be of interest to prove weak convergence of
fluctuations in a Skorokhod space D({0, oc}, S;(Rd)), where S;(Rd) is a Sobolev subspace
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of &'(R%), and to find a good value of ¢. It would also be interesting to consider multitype
systems with immigration (as in Gorostiza and Lopez Mimbela 1990; Gorostiza and Roelly
1991; Gorostiza et al. 1992; Lopez Mimbela 1992), and interacting branching systems (as in
Perkins 1995).

A powerful tool in the theory of superprocesses is the historical process (Dawson and
Perkins 1991; Dynkin 1991b; LeGall 1991). It would be of interest to extend the results in
this paper to the historical process.

Appendix. Notation and spaces

C(R?): real continuous functions on RY.
epx) = (L+|x) P x e RY (p>0).
CP(R“' ): elements ¢ of C{R?) such that sup, j(x) [ep(x)| < 0.
oAy (R?): non-negative elements of CP(Rd).
S(Rdd): infinitely differentiable real functions on R rapidly decreasing at infinity.
S'(R%): tempered distributions on R?.
D([0, 00, S'(R?)): right-continuous with left limits functions from [0,00) into &'(R?).
{0} = Jge () pldx). :
M p(Rd): signed Radon measures x on R? such that {lul, wpy < 00, (|u| = variation measure
of w).
M_; (R?): non-negative elements of M L(RY).
C*(M; (R?)): non-negative continuous functions on M; (R?).
(R, ®)) = [upr sy R} R(dps).
M_§+ (R?): non-negative Radon measures v on M;’(Rd) such that {{v, (-, ,))) < 0.
A: Lebesgue measure on R?.
&,: Dirac measure at a.
= weak convergence on random elements.
More precise information on some of the spaces above is needed for superprocess limits,
but it is not necessary for this paper.
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