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Distribution of the particles of a critical
branching Wiener process

PAL REVESZ

Technische Universitar Wien, Instiut fir Statistik, Wiedner Hauptsir. 8—10, A-1040 Vienna, Austria
Consider a critical branching Wiener process in R?, Let {Fy(x),T=1,2,...,x€R} be the distribution
of the particles living at time 7. The main result of this paper tells us that any given absolutely

continuous function F(x; will be well approximated by Fy(x) with positive probability if T is big
enough and the process does not dieout up to T.
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1. Introduction

Comnsider the following model:

(i) A particle starts from position 0 € R and executes a Wiener process W () € R?
(i) Arriving at time 7 = 1 at the new location W(1), it dies.
(iii) At death it is replaced by ¥ off-springs where
P{Y=0t}=p (£=0,12,..)

and

(iv) Each offspring, siarting from where its ancestor dies, executes a Wiener process
(from its starting point) and repeats the above given steps and so on. All Wiener processes
and offspring numbers are assumed independent of one another.

A more formal definition is given in Révész (1994, p. 91).
Let 4 C RY be a Borel set and let A{4,1) (1 =0, 1,2,...) be the number of particies
located in A at time . Then

B(1) = A(R%, 1)

is the number of particles hiving at s and {B(z),1 =0, 1,2,...} is a2 branching process. From
now on we assume that

o
1§m=2kpk<oo
k=0
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and
X
0<o’= Z(k — m)’p, < oo.
k=0
It is well known (cf. Athreya and Ney 1972) that
litn & =R a.s.
f=+0 M
where
1 if m=1,
P{B=10}=
{ } {q if m>1

and ¢ < 1 depends on the distribution {p,}.
On the limit properties of A(4,1), ( — oo} in the case m > 1 we have the following
theorem:

Theorem A. (Révész 1994, Theorem 6.4, p. 107). For any x € R and e > 0

fy < 1/2
i 1Ay S f,T bT) _ pog|=0  as. (1.1)
T—o0 | nt
where
O A & yi+yi+. +yi
_ = - d .. dy,.
@(X) q’(xiaxh 'de) (211_)5;2 J—cc J—-oo exXp ( 2 }’ldyz dyd
Further, for any fixed x € R? and 0 < ¢ < 1 we have
. - AMC(x), T)
L-¢ df2 L) pl o
?h_l:.rgc T 7|(2nT) — T Bl =0 a.s. (1.2}
where
Cxy={y:lly—xll £rs}
and
271 if d=1,
re={ 7V if d=2,

T VDR + )Y i d2 3,

i.e. C(x) is the ball in R? around x of volume 1.

Theorem A tells us that in the case m > | the particles at time 7T (if T is big enough) are
distributed according to the normal law.

In the present paper we investigate the case m = 1. Hence from now on we assume that
m = 1. Since if m = 1 then B = 0 a.s., we study the limit behaviour of A{(A4, T as T — oo,
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under the condition {B(T) > 0}. In this case it turns out that the distribution of the
particles may agree to any given smooth enough distribution with positive probability. In
fact we prove the following theorem:

Theorem 1. Let F(x) {x € RY) be an arbitrary, given, absolutely continuous distribution
Sunction with bounded density. Then for any € >0 there exist ¢ 6 =8(¢) >0 and a
Ty= Tg(ﬁ) > O such that
P{sup [Fr(x) - F(x)| <¢|B(T) >0} 2§
xeR¢

if T > Ty, where
Fp(r) = My y ST T)

T B(T) |

We are also interested in studying the expectation vector of the empirical distribution
Fr(x) = Fr(xy,x3,...,%;). Let

i A = IRERE : !"(xiTUz !T
F]("}(xj)=FT(CX),...,OO,thO,...,DO)= ({y (yl }J;E)T)y — } ):

+oc
xdF¥ (x), (i=1,2,...,d)

—%

m; =m(T) = J

and
m= m(T) = (ml,mg,...,md).

Then we have the following theorem:

Theorem 2.
(i} iy, My, ..., my are i.id. random variables.
(i) Em;=0(3=1,2,...,d).
(iii) my, m,, ..., my are normally distributed.

(iv) limz_, . Em? = 6%/2.

Theorem 1 is an analogue of (1.1). We are also interested in finding an analogue of (1.2),
i.e. we intend to study the limit properties of A(C, T') where C = C(0).
First we mention the following trivial facts:

E(MC, T)|B(T)) ~ B(T)(Z:rrT)‘dfz
and 2
E(A(C, T)|B(T) > 0) ~ %{(2??T)*d”2.

Now we formulate our next theorem.

Theorem 3. (i) In the case d = 1
Jim T-YV2ENC, TG, T) > 0) = £,
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where
o2 & (' x..x 2 o 172
Ly=——— etk =2 (7T )
: 2(2—,-r)1fzgjo Jo(Z—xl...xk) dx;...dx =2 @

(ii) In the case d = 2, for any T big enough,
£logT <EXMC, T MC.T)>0) < LytogT

where

f= 8’ ~an
(i1} Jn the case d = 3, for any T big enough,
‘p’;‘ < E(A(C1 T)|A(61 T) > 0) < L3

where

o’ o?

f3= 73205 Ly = I TOTR
(iv) In the case d > 4, for any T big enough,
{d < E(A(ca T)l’\(ca T) > 0) < Ld

where the values of Ly and ¢ are not given exactly.

Since

E(MC, T)|B(T) > 0)

PRCT)>UBT) >0 = g e 1) S o)

Theorem 3 clearly implies the following result:

Theorem 4. In the case d = 1

2
. o 2
Iim P{AC, T)>0|B(T)>0}=—"—-=—.
Jim PINC.T) > O1B(T) > 0} = 22 =
In the case d > 2, for any T big enough,
r 2
g 2 .
antylogT  log T ir d=2,
2
P{MC, T) > 0| B(T) > 0} < ¢ 52;(2«1‘)"312 =PRI g3,
3
2
o°T ~df2 .
-Z >
7 (2zT) if d>4
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and .
( o 1
= if d=2,
dnl,logT logT .
2
P(C,T) > OB(T) > 0} 2 ZLnry ¥ w21 ip d=3,
3
2
a-T -dj2 .
T2 2T >4,
k2‘Ld( aT) if d>

It is also easy to see by Theorem 3 that the following result holds:

Theorem 5. Uniformly in T
!}i_ggop{,\(c,r)>KT”2[A(C,T}>0}=0 if d=1,
Jlim PXC,T) > Klog TIMC,T) >0} =0 if d=2,
Jlim P{XC, T) > KIAC,T) > 0} =0 if d23.

Remark. Theorems 3-35, in the case d = 1 (d = 2) are closely related to Theorem 3.11 (2.11)
of Fleischman (1978).

2. Lemmas on the critical hrahching process

Lemma A. Foranyt > 0

EB(1) = 1, (2.1)

and as t — 00
P{B() > 0} ~ .«.% (2.2)
Hmmﬂn>m=ﬁﬁ%;@~§i (23)
lim P{B—Etl > 2| B(t) > 0} = exp (— C%) (z>0). (2.4)

For any 0 < s < < 0, let Qfs, 1} be the number of those particles which are living at
time s and which have at least one offspring living at time ¢. Clearly

B(s) = Q(s, 1), B(1) 2 O(s,1),
{Qis. ) =0} ={B(1) =0} (0<s5<)

and as a function of 5, O(s, f) is non-decreasing. Hence on the set { B(¢) > 0} one can define
a sequence v, = 1(f) < v5 = 1y(1) £ ... L v, = v, (1) < t and a random variable p = p(?)
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as follows: )
vy =inf{s:0<s<t, Ofs,7) > k}

and y is the largest integer for which », < &.
Lemma B (Révész, 1994).

E(Q(s. )| B(Y) > 0) '

i {
T P{B() > 0} E(B(t— )| B(f—5) > 0) Pl

1+0(t—5)). (2.5)

E(Q*(s,2)| B(r) > 0) = %%ﬁ% (1 +o{t —s)) (2.6)
and for any fixed k = 2,3,...,
E((r - )| B() 2 ) ~ 1. @7
2
B0 - w1 B0) > ) ~ pe s, 28)
lim P{‘—’;‘- < x|B(t) 2 k} =x*1  (0<x<). 29)

Consider a fixed {0, T]-branch {Py, Py, ..., Pr} of the underlying branching process, i.e. Py
is the particle at 0, P, is an offspring of Py, ..., P; is an offspring of P._(i=1,2,...,T).
Clearly such a branch exists if and only if B(T') > 0. Let & = £,(T") be the first time-point
where a new [£,, T']-branch starts which lives up to time T, i.e. £ is the smallest { for which 2;
has an offspring 0., # P;,, having at least one offspring living at time 7. Let &, = £,{T) be
the second element of the fixed [0, T]-branch where a new {¢,, 7"]-branch starts which lives up
to time T, i.e. £; is the smallest j for which j > £; and P; has an offspring Q;.; # P;,, which
has an offspring living at time T'. Continuing this procedure, we get a random sequence
1 <8 <& <... <&, < T where v = v(T) is the largest integer for which ¢, < T

Now consider a partition of the B(T) — 1 particles living at time T, not considering the
terminal point P; of the fixed [0, T|-branch. The first class C; = C(T) consists of the
terminal points of those [¢,, T|-branches which branch from the fixed [0, 7]-branch at ;.
C, = C3(T )} consists of the terminal points of those [£,, T]-branches which branch from the
fixed [0, T]-branch at &;, etc.

Let U,, U, ... be a sequence of independent random variables uniformly distributed on
[0, 1] and introduce the following notation:

VI:ls

k-1

Ve=]J0-1) k=23,

=1

k k k
=Yuv=1-TJa-vy21-Tly, *=12..).
J=1 J=i i
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Then we have the following lemnma:

Lemma 1. For any k fixed and e > 0

}EP{%(JCI,%<X2,...,%<X;¢ B(T)>0}=P{L1 < X1, Ly < X3, ..
. 1 0'2
Jim (T - &) B(Cellge, B(T) > 0) =5,
. v(T) _
#_I&P{m—]‘ =€ B(T))O}—O,
. v(T) _
I!I-{EOE(IOgT1B(T) > 0) =1
and
RPN B &\ 72
Lim 771/2B ;(p?) =2,

where |Cy| is the cardinaiity of C,.
In order to prove Lemma 1, we first prove the two foillowing lemmas.

Lemma 2. Forany 0 < e < 1, let
Ay, = Ap{e) = {(x1, %3, ..., %) 1 0 < x; < Loxyxp ... X, > €}
and
I, =1I,(¢) =J (X% ... %) 2dxdx, . . . dx,.

Then we have

o0
Eme' 2y 1, =2

Proof. Let
J,=J.(e) = J (X1%7 ... %) 'dxydx; ... dx,.

Then

1
Irr = JA (x1x2 .. .xﬂ_I)_Uz (J ) x;”zdx,,)dxldxg .. .d.x,,..]
n=l Xy X5, Xy -t

69

-1Lk < Xk},

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

= 2L (x1%y . "xn-—l)-lﬂ(l - €l'fz(xl-’f:e .- -xﬂ—l)_l’{z)dxldxz RS .

=21 _, =277 .
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By a simple calculation we get

Hence, by induction,

Consequently

1

=0

20

S =22

and Lemna 2 is proved.

Lemma 3.

where

EL, =1-27%
Elog (CUk) =0,
Ellog(eUy)* =1,

— o0 < E{logel.)) < oc (r=1,2,..

n—c 1

n
lim lZlog (ely)=0 as.,
k=1

lim P{n—‘” ilog elp) < x} = &(x),

Rt =1

im O _
~olog(l/¢)

. w{e)
l‘{%E(log (1/51) =1

I
lime/2E (Z(Ul Usy... Uk)-”?) =2

0 =1

as.,

pule) =min{k: L, > 1 ~¢}.

) (5e2)

w1 | 5log= w | ~log—

L=2|1-¢n Z_k!E_ _ znflfzz_%____f___
k : k=n

')‘J

P. Reévész

(2.15)
(2.16)

(2.17)
(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)
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Proof. Expressions (2.15)~(2.18) can be obtained by trivial calculations. Equations (2.19)
and (2.20) are, respectively, consequences of (2.16) and (2.17). In order to prove (2.22),
observe that

Plu>k)=P{UU;y... Uy > ¢}

_ P{log(eUl) +log(eb;:) +...+log(ely) o1— logil/e)}‘

and for any 0 < § < 1 we have

o0
Ep=>" P{p>k}
k=1

(1-6)log (1/¢) (1+6)l0g (1/6) o
= > Pluzky+ > Pu2kt+ ). Ple2kh
k=1 k=({1-8}Tog{1/¢) k=(1+8) log {1/¢)

Clearly
H{%P{,u > k} = I uniformly in k < (1 — 8)log(1/e},
€
{}+&Ylog (1/€)

P{u> k} < 26log(1/6),
k=(1-6)log{1/¢)

m > Puzk

k=(1+8)1log{l/e)

. = log (eU,) +log (eln) + ... + log(el,) 5§\ _
<tig > o k

k=(1+8)log{1/e)
The last three relations clearly imply (2.22).
In order to prove (2.21), we note that by (2.19) we have
0U,... U, = exp(—n{l + of1)) as.,
U\Up... U, = exp(—p(1 +o(1)) < e, (2.24)
Ully... Upy=exp(~(p-1(+o(})) > & (2.25)
in the last two equations o(1) is a function of i converging to 0 a.s. as p — oo, i.e. as e — 0.
Clearly (2.24) implies (2.25).
Let
B, = {Ule.. U > E}‘
Then
e %
E(Z(m Us... Uk)"”) = ZJ
k=1 k=1 By
Hence we have (2.23) by Lemma 2 and Lemma 3 is proved.

(HU;...U) " 2dP=Y "I,
k=1
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Proof of Lemma 1. Since £; = v,, we have (2.10) for k = 1 by (2.9). When &k = 2, observe that

L_&-& (1_Q) +§_1

T T-§ T T’

where
hmsz £1<x1 é<x2 BT)>2r=x1x; (0<x,x<1)
T \T<§ T - B

and we have (2.10) for k = 2. Continuing this procedure, we complete the proof of (2.10) by
induction.

(2.11) is a simple consequence of (2.3). Equations (2.12}, (2.13) and (2.14) follow from
Lemma 3. Lemma 1 is proved. ]

3. Proofs of Theorems 1 and 2

We introduce the following notation:

@) P(s,1) = { P ,P(’) . PSL., } € R? is the set of locations of those particles at time
s which have an offspring Iwmg at time £,

(i) 2,(s, 4, 1) = {PSH, Pg-’“), ...} CRY is the set of the locations of those offspring of
P;¥ at time (0 < su < f) which have an offspring living at time ¢.
Qi)
(i) P(s,1,0) = | | Pils,u,0) = Plu, ).

=1
(iv) X5 = max, ||PY — PP,
(v} D(s,u} = max ¢icg(s X(s'u)

Clearly D(s,u) tells us how far from their ancestors the particles go during the time
interval {5, ). Note that the number of elements of P(s,u, t) is Q(x, 1).
Lemma 4. Let 0 <5 < u <t < 0. Then
K2
P{D(s,u) > K{u— 9)'72|0(u, N} < (1 +o(u—35))Q(u, t)exp (— _f)

Proof. The probability that a particle moves at Jeast K (u — 5)'/? during a time interval (s, u) is

2
P{W(u—s)> K(u—~5)"""} < (1+o(u—s))exp (_KT)

Since we have to take into consideration Q(u,t) particles, we get Lemma 4. O
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Lemma 5. For any ¢ > 0 there exists a 0 < 6 = 8(¢) < 1 such that

! 2] < 3.1
P{D(z,t)zef },6 (3.1)
forany t > 0.
Proof. Observe that
! = ¢ {
D(i,t) 521)(:—2—*,1—?—;]),
k=1
and applying Lemma 4 with
_ ! . ! _ Eatk+1)/4
S=Sk=r-_5;, u—uk—t—2T+i-, K—§2 s
we get
1/2
t ! t t
P{D(!_F’I_F)ZK(W) Q(I—Em,t)}
- t K?
< (1+0(2 kt))Q(I—EH_—],I) exp ("é‘)'
Hence

! ! € n—(k+1)/4,1/2 t _
P{D(:-ﬁ,:—ﬁ)ggz (elyia g/ Q(r—iﬁ-l,t),k—l,z,‘.‘}

2
- t €
> (l +0(2 k!))Q(f _F,I) exp (_Sﬁz{k“‘l”z)'

Since
511;2 iz—(kﬂ}m < auzr
5 k=1
and by (2.5)
o0 2
t € 1
- _E Stz 2
;Q(r 2k+1,:)exp( = 3
with positive probability, we have (3.1). O

Forany x € R let
t 2) 12
D (—) = max P _ .
N2 1<igpig P i

Clearly D.(1/2) tells us how close to x7'/? at time t/2 were located those particles which
have an offspring living at time .
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Lemma 6. For any ¢ > 0,K > 0 there exists a 6 = 8(¢,K) > 0 such that
J L2
=} < >
P{Dxx( 2) <} 2,
provided that ||x]} < 1.
Proof, Essentially the same as that of Lemma 4. O

Lemma 7. Foranyd = 1,2,...,6 > 0, K > 0 there exists an ¢ = €(6, K) > 0 such that
P{MC(x,61'%), 0 =0|B(t) > 0} > ¢,

where
Cla,r) ={x:x eR%|lx—al| < r},

Ix]} < k72,
and
C('} ) = Rd _C('1 )

Lemma 7 tells us that for any x € R? with [|x|| < K72, all particles living at time ¢ will be
located in a ball around x of radius 672 with positive probability.

Proof. The lemma is a trivial consequence of Lemmas 5 and 6. O

Proof of Theorem 1. Clearly for an e > 0 thereexista | < £ =#(¢) < 00,2 C=C(e) > 0
and a partition A, A;,..., A, of R? such that

J_dF(x)Se (i—1,2,...,¢)

and an A4; contains a ball of radius Ce.

Let
ve=mf{s:0<s<1,0(s,8) = ¢ = £(e)}

and let the locations of these £ particles at time v, be
01,02,.-, 0,

Observe that
) 172
P{max [IQ)]| <77} 2 6

and that by (2.9)
Plt—v, >t} 26

for some & = 8(e) > 0if ¢ is big enough, say £ > 1/e.
Let B;(¢ — v,) be the number of offspring of the particle located in @, at time v,. Then

_ 2
P{|g‘;§;|3"(r“ ve) = Bi{t— )| S et} 2 8
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Then by Lemma 7 all B;(t — v,) offspring of the particle located in @ at time v, will be
located in A4; with positive probability. Hence we have Theorem 1. a

In order to prove Theorem 2 we first prove the following:

Lemma8. Letd = 1 and Py, Py, ..., Pyry be the locations of the particles at time T. Then we
have

2
lim TE((Py + Py + ...+ Py I B(T) > 0) = —

Proof. Let P, be fixed and consider a point P; € C; (cf. Lemma 1}. Then
E(PPilé) = &
Hence, by (2.11),

E(Zplpj &

2
) ~ 6T - &)

jecy
and
25 f Sk x
(ZPI B(T)>0) ?T E(T( T))
e,
0'2 2
N?T E(1 -\ U,.. . U0 U, . Uy)
_0_2T2 1 1
2 26 3E)
Consequently
B(T) o2
(ZP. B(T)>0) ~—T?
4
j=2
which implies Lemrma 8. d

Proof of Theorem 2. (i)-(iii) are trivial. Hence it is enough to prove (iv)in thecase d = 1,
which is a straight consequence of Lemma 8. d

4. Proofs of Theorems 3-5
Let
b(t) = (b (1), baft), ..., ba()) (0 <1 <1)

where by (1), 5,(7),. ... bg(t) are mdependent Brownian bridges. Let { W(¢) ¢ R?, ¢ > 0} bea
Wiener process. Assurne that 5(-} and W () are independent.
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Forany 0 £ s < 1 and T > 0, define the process

TY2p(:T ) if 0<t<sT,

T(1,s,7) =T(f) =
( )= {W{r—sT)-i-T”Zb(s) if sT<t<T.

Lemma 9. The density function v{x) of T'(T) is

2
2(x) = (2n(1 = DT exp (— %T)?) (x € RY),

Proof. Consider the case d = 1. Then the density function of TV 21!7(5) is

1/2 %’
(2?1’5‘(1 - S)T)_ / exp (—m)

and the conditional density function of I'(T') given T/ B(s) =mis

(2r(1 — $)T) 2 exp (—H)

Hence
—1/2 rtoe 2
y(x) = = - J exp (—ﬁ(mTHx—mf))dm
-172 ) 2 oo 2
_ .8 s(1—s5)T x J‘ D
=V ( T+s ) exp ( 21 —sz)T) _mc"p( 7 |
2 172 X’
= {21 — - —
where
¥=_02(1-5T)".
This proves the lemma for the case 4 = 1. The general case follows immediately from the
case d = 1. O

Lemma 10. Assume that 0 <s5=35(T) < 1 and

tm (1 — s3)7T = oc.

T—oo
Then
P{[(T) € C} ~ (2n(1 — s T)™4/2
as T — x.
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Proof. This is a trivial consequence of Lemma 9. O

Proof of Theorem 3. Assume that A(C, T} > 0. Then there exists a [0, I']-branch of the
underlying branching Wiener process having a terminal point in C at time 7. Fix this
branch. Consider the time-points 0 < §, < & <... < §, < T and the sets €, Cs,...,C, of
terminal points with respect to the fixed [0, T']-branch. Then, by Lemma 10,

2 —dj2
Pf an element of C; belongs to C|&} ~ (Zr(l _ (%k) )T)

and, by (2.11),
E(# of those elements of C, which belong to C{§)

UZ(T—&) 3 0_2 T]—d,n"?

~ a2 73 an-1 472"
2(%(1_(%) )T) 1-= 1+3
Hence

21412 v _f_k 1-d/2 £ —dj2
EOC, T)IMC, T) > 0) -————2(%)”215(;(1 T) (1+-) ) (4.1)

T
Since 0 < £/T < 1, we have

Lepel=df2 v F-d/2
o°T &
7a729d 1 E(Z(l - ?) )

o214/ v £ 1-d/2
< E(AC, T)AC,T) > 0) < WE Z(l - —) . (4.2)
In the case d = |, by (4.1) and Lemma 1,

21/2 v 1/2 —1/2
E(/\(C,T)IA(C}T)>0)~%E( (1_% (1&) )
k=1

g T”Z -y XiXy.,.. X t/2
2?1_ IIZZJ' J (ﬁé—kﬁfk) dxldxz...dxk.
k=1

i

Now we prove the following identity.

w0 el 1 1/2
k=1 % 2

0 o0\2 — X1xp...x

Since

TP =%"ax  (O<x<l)

=0
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where

we have

(2 j:_ x)m: _\}_jig{ 12

Let U}, U,, ... beiid. random variables uniformly distributed on [0, 1]. Then
[ [ 2—x1..‘x;, 2—U|...Uk

] g iz 1 o~ G 1 *
- AL U= 53 5 ()

and
ot - A ) -t
p 2-U,... U, \/§E=02"k=] i+3/2 245 P2+l
o 00 e_h_ i e -1/2
=w/§J e* )y g dx:s/fre"' [ —— dx
0 ; 2 0 2
/2
1 yz 1 1
=42 [1—-= dy=2 d
.[0( 2) y L Z—yz y
]
, ¥ T
= 2arcsin | — ==,
(%)=

Hence we have (4.3) as well as Theorem 3 ford = 1.

Inthecased =2
v é 1-4/2
E(Z(I—Fk) )zEv~logT.

k=1

Hence by (4.2} we have
2 2
a 8
—_ < < —
8ﬂlog T<EMC,TAMC,T)>0) < 4ﬂ_log T

as stated in part (ii).
In the case d = 3 by (2.14) we have our statement (iii).
The general case can be treated similarly and, in turn, we have Theorem 3.

P. Reévész

O

As we mentioned in the Introduction, Theorems 4 and 5 easily follow from Theorem 3.
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3. Questions

Question 1. Fr{(x) (x € R*, T =1,2,...} of Theorem 1 for any T is a random, empirical
distribution function. Hence we have a probability measure P; on the space of the
distributions on R Very likely Pp, as T — oo, converges weakly to a limit measure.
Prove the existence of this limit measure and characterize it. This question was proposed by
O. Barndorff-Nielsen. m{T } of Theorem 2 is the random expectation of F7{x) according to
the law of Pr. Theorem 2 came about as a I tried to answer this question.

Question 2. Investigate the limit properties of
max A(C(x), T') (d=12..)
xeR

as T — oo on the set {B(T) > 0}.

Question 3. Let d = 1 and let
A (T)=max{x:x <0,A(C(x),T) =0},
AP(T)=min{x: x > 0, MC(x),T) = 0}.
Investigate the limit properties of
M (TY- 2 (T) (T — )
on the set {A(C, T} > 0}.

6. A secret

Let {W;;(1),t > 0} (i, j = 1,2,...) be an array of independent R9-valued Wiener processes.
Consider a system of non-independent Wiener processes.

wir) = w(i(1),#2),...,1(|1gT]), T, 1)
W) if 01T,
W(OEIT) + WZ.:‘(Z)(I — O.‘IT) if 23] << CtzT,

wiogT ) + Wy jyesny(t — 0, T) if T <t<opT,
where

ap=1-2"% k=12 [leT]~1,

=1, #{=12 ... ik=172,. 21

0<t<(1-27teThyr T2
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It is easy to see that the process w{-) is very similar to a critical branching Wiener process.
Hence my secret, which I share with vou, is the following: I try to solve any guestion
regarding a critical branching Wiener process by replacing it by the above model. If 1
succeed in doing so, I try to prove the same for the branching model by Lemma 1 which
essentially claims that the two models are close to each other. In fact I followed this method
in proving the above theorems. I have to confess that I could not answer the three questions
in Section 5 even in this simple situation.
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