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On Brownian disconnection exponents

WENDELIN WERNER

CNRS and University of Cambridge, Statistical Laboratory, DPMMS. 16 Mill Lane, Cambridge CB2 1SB,
UK

We derive an upper bound for the disconnection exponent ~ of two-dimensional Brownian motion. More
precisely, we show that v <1 — (log 2)?/(2r%) < 0.475 66. This implies in particular that ~ is not equal to its
trivial upper bound (i.e. %). We also derive similar estimates of disconnection expounents for several planar
Brownian motions and intersection exponents.
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1. Introduction

The initial purpose of this short paper is to prove that the disconnection exponent for two-
dimensional Brownian motion is not equal to 4 (which is its trival upper bound). Let us recall the
exact definition of this exponent and some known facts, Let (B,,¢ > 0} denote a planar Brownian
motion started from By = 1, and put, for all R > 1,

Tr = inf{z > 0,|B,| = R}.
We say that By ; disconnects O from oo if there is a subpath of {B;;s < t} which makes a closed loop
around 0. We then define:

Pr = P(By 1, does not disconnect ¢ from co).

We are interested in the asymptotic behaviour of py as R — oo. A subadditivity argument (see, for
example, Lawler 1991, Proposition 5.5.1) shows that

. —long:
R—x logR

for some finite strictly positive constant - called the disconnection exponent for two-dimensionail
Brownian motion. It is known that
1 1
— iy =,
m=7=2
The lefi-hand inequality has been derived by Burdzy and Lawier (1990b); the right-hand inequality
corresponds to the fact that the probability that B does not hit the ray (—oo, 0] before Tr decays
asymptotically as (2/x)R -1/2 when R — oo. Tt has been conjectured by physicists that v = ] (see
Duplantier and Kwon 1988, Duplantier ez of. 1993).
Lawler and Puckette (1994) have shown that the corresponding disconnection exponent for the
simple two-dimensional random walk exists and is also equal to -y. We are going to prove the
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following estimate:

Proposition 1

1 1 /log2)\?
Lo | — . .
<3 2( - ) < 0.47566
We now briefly explain the outline of our proof. Throughout this paper, we will identify C with
R?. It is straightforward that

pr > P(3g: (0, R] — R, continuous, ¥Vt € [0, T, Z, # |Z,| exp{ig(}Z,))}).

The image under a conformal mapping of a planar Brownian motion is a time-changed planar
Brownian motion. Therefore, using the analyticity of the exponential mapping — in other words,
using the skew-product representation of B (see, for example, Itd and McKean 1965, p. 265) — if
Z ={X +1iY ) is a complex Brownian motion started from ¢, and if

T,=inf{t >0, X, =1}
where r = log R(> 0) (we wili use this notation throughout this paper), then
Pr> P(3f i (~00,7] — R, continuous, ¥z € [0, T}), | ¥, — f(X,)| < ).
For all functions f : (o0, 7] — R, we put:
4)={¥1€ (0,1, ¥, - FX) <.

Beurling’s (1933) projection theorem on harmonic measure in a disc — see Ahlfors (1973, Theorem
3.6), Oksendal (1983) for a short probabilistic proof, or Werner (1994) for an alternative approach —
shows readily that for continuous functions f, P(47) < P{A4) as soon as f* # 0. Nevertheless, we
are going to show (using conformal invariance arguments and extremal distance) that if the growth
rate of f is absolutely bounded by M >0 (that is, f for ali (x,x') e (~cx, r]z,
|F(x) = f(x")] £ M|x —x'|) and if f is odd (that is, for all x € [0,7], f(x) = —f(—x)), then

oo 1
P(Az} > Eexp(

Then, it suffices to observe that (for some fixed ¢ and for all M} it is possible to find at least
m > exp(crM ) such functions { ;)| <; < m (e will choose piecewise linear functions) for which all the
sets A7 are disjoint; then:

r

2(1+M2)).

z 1 r 1
Pr = ;P(AJ’«E) > = exp(cMr)exp(~§(l + Mz)) > Eexp{-r(% - e)}
for some ¢ > 0 and for a sufficiently small M, which shows that v < 1--e < 1.

We will also adapt the same arguments to prove an analogue of Proposition 1 for several planar
Brownian motions. More precisely, in Section 3, we define a disconnection exponent vy, correspond-
ing to the event that the union of n independent planar Brownian paths stopped at their respective
hitting times of a big circle, does not disconnect 0 from oc, and we show the following:
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Proposition2 Forall n > 2, 2
_n_(log2?
"2 2min

=, is not equal to its trivial upper bound n/2. In particular, v, < 0.988 < 1, This is still far from
the conjectured value (it has been conjectured, using a relationship with ‘self-avoiding planar
Brownian motion’ for which it is believed that its Hausdorff dimension is § (Mandelbrot 1982) that
5 =2—4%=1; see Burdzy and Lawler (1990b), but it might be the first step in proving that the
fractal dimension of ‘self-avoiding planar Brownian motion’ is strictly bigger than 1 (since
2 - ¥4 > 1

Let us mention that disconnection exponents and techniques involved have a lot of similarities
with intersection exponents, which have given rise to much interest in recent years (see, for example,
Burdzy and Lawler 1990a, 1990b, Burdzy ef al. 1989, Lawler 1989, 1993, and, in particular, Lawler
1991, Chapter 5, in which all known information on intersection exponents can be found). We will
also point out (in the last section) that arguments used in the proof of Proposition 1 can also be
adapted to provide analogous upper bounds for some intersection exponents of two-dimensional
Brownian motion.

2. Preliminaries

We now recall some well-known facts on hitting times by linear Brownian motion which we will use
in the following sections, Let W = (W, > 0) and W' = (W/,t > 0) be two independent one-
dimensional Brownian motions started from (. For all g > 0, we put;

T, = inf{t > 0,|W,| = a},
T, =inf{t > 0,|W/| = a}.
Then, foralla>0,b>0,7>0and X > 0,
1

E{exp(-N'T,/2)} = cosh(ha)’ (1

2 . 2
f—rexp( 8;‘2‘) < P(T,> 1) sgexp( 822‘), @)

2 - -, 4
Reosh{mal (2B} = |1 < 1) S Soomar @

Equation (1) can be found in Revuz and Yor (1991, Chapter I1, Proposition 3.7); (2) is an easy
consequence of the explicit law of T| (see, for example, Port and Stone 1978, p. 52); and (3) is a
straightforward consequence of (1) and (2).

Let us recall that if 9, = inf{z > 0, W, = a}, one has (see, for example Revuz and Yor 1991,
Chapter I, Proposition 3,7)

Efexp(-X'7;/2)} = exp(—a)),
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so that (2) yields:
2
T
which provides immediately (via the skew-product representation),

- - 4 .-
RV P(Figr < T3) < 2RV @

2
pr2 P4y 2 =R
and the upper bound v < 1.

3. Extremal distance estimates

We are going to estimate extremal distances for particular sets. We refer to Ahlfors (1973, Chapter
4) for properties of extremal length and extremal distance, but recall some facts in this paper.

Let us fix r > 0 and an odd continuous function f : {~r,7] — R such that its growth rate is
absolutely bounded by tan @, for some fixed ¢ € (0, /2). We then define:

N={x+iy;xe(-rr)f(x)—n<y<flx)+n}

and A= —-r+i(f(~r)—n), B=—r+i(f(~r)+7r), C=r+i(f{r)+n) and D = r — i(f{r) ~ 7).
We also put:

I={x+i{f(x)+n); x € [-r,r}}
J={x+i(f{x) —n); x € [-r,r]}.

Then, 8Q = [4B] U I U [CD] U J, where [4B] denotes the segment linking 4 and B in the plane. Note
that, as f is odd, {2 is symmetric with respect to 0.

Let (Z,,¢ > 0) be a complex Brownian motion started from 0 and let us denote (for ali compact
sets K ),

T(K)=inf{t>0; Z,€ K}.

Our aim is to give a lower bound for the probability that Z hits 8Q on [48] U [CD)]. More precisely,
we are going to prove that

2 -
P(T(IUT) > T([4B|U[CD]) = = exp (R;Te) ()

Proofof (5)

There exists a unique £ > 0, for which there exists a (unique) conformal one-to-one mapping
&:0— (~£,¢) x (~1,1), such that the continnous extension ®: 2 — [~£,¢]x [-1,1] of &
satisfies $(A4) = —£ ~ i, B(B) = —€+i, ®(C) = £+ i and H(D) = £ — i (see, for example, Ahlfors
1973, p. 52 on the conformal mapping of a quadrilateral in a rectangle or Ahlfors 1973, para. 4.10 on
configurations with a single modulus). By unicity of this conformal mapping (see, for example,
Abhlfors 1966, 1973) and using a symmetry argument (recal] that € is symmetric with respect to 0), it
is straightforward to see that $(0) = 0. We now put Q' =&(Q) = (-£,8) x (-1,1), 4/ = £,
B =—é+iC'=f+iand D' =¢—1.
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The extremal distance in a rectangle of area ab between two non-adjacent sides of length a of this
rectangle is equal to b/a (see, for example, Ahifors 1973, p. 53), so that, if dp(G, H ) denotes the
extremal distance between G and H in F,

£ =4 ([B'C'L[D'A" ) = dn(1, 7). (6)

As the growth rate of f is absolutely bounded by tan 4, it is very easy to see that, with respect to the
Euclidean metric in (3, the length of a path joining J to J in ) is greater than or equal to 2z cos 8.
Since the Euclidean area of €2 is 4nr, it follows (from the definition of exiremal distance in Ahlfors
1973, Definition 4.1) that

ncos’ @
do(l, ) > 22, ™

Now, (6) and (7) impiy that
r

~ mcos?f’
But by conformal invariance, and using inequality (3), in the notation of Section 2,
P(T(TUJ) > T([ABJU[CD))) = P(T([B'C'|u[D'4’)) > T([A'B'|U[C'D )
=PT > T))
2
b
~ rcosh(nf/2)

> Zexp(-nt/2)

2 —r
-z —
=P (Zcos 2 6)

which proves (3). |

4. Conclusion of the proof of Proposition 1

We use the same notation as in the introduction and put
T, =inf{r > 0;|X,| = r}.

Recall that T, = inf{s > 0; X, = r}. We now fix 6 ¢ (0,7/2), define N as being the integer part
of {(rtanf)/m and put Ay = {—1,1}". For all U = (w,...,uy) € Ay, we define the function
Sfu i [-r,r] — R as follows:

o fulrm/N)=—fy(-m/N)=3"1cicntu;forallne {1,... N}.
e fy(0)=0.
e Forallne {-N,....,N -1}, fi; is continuous and linear on [rr/N, (n + 1)r/N].

This definition implies immedijately that the growth rate of f; is absolutely bounded by
nN/r < tanf. We put:
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DE-' = {VI < Tr: |Yr _fU(XI)I < T[}
Dy={vi< T, |¥,~fulX) <mand T, = T,}.
If Dy is satisfied, then foralln € {1,..., N},
n(—-l+ Z u,-) < Y}‘—{ - <:rr(1+ Z u,-).
l<ign i 1<f<n

Consequently, the events (Dy)pea, are disjoint.
Moreover, for any U € Ay, there exists a continuous function /* (any function f : (—oo,r] — R,
such that /' = fi; on [~r, r] would suffice), such that Dy C A4, hence,

Pr = P(Uyea,Du) = Z P(Dy).
Uehy

By symmetry, P(Dy} = P(Dy)/2 for all U € Ay. Hence, (5) yields that for all U € Ay,

P(Dy) > % exp (—_r)

2cos? 8
Consequentiy,
P -r
>
Pr 27 ©XP (2 cos? 9)
1 (log2)tané r )

> —ex —

T 2n p( T {2c0s28)

which completes the proof of Proposition 1.

5. Disconnection exponents for several Brownian motions

Definition

We fix # > 2. Let us consider » independent planar Brownian motions B', ..., B" started from
Bl =1x,,..., B = x, under the probability measure P.xy Forallje{l,...,nfand R > 1, we
put

T4 =inf{r > 0, |B/| = R}.
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We then define for all x = (x),...,x,) € C" (where C = C(0,1) = {z;|z| == 1} denotes the unit
circle),

Px(R) = P{(Bp 1y U... U B oy does not disconnect 0 from oo)
and
Pa(R) = sup pi(R).
xeC"”

It is easy to see that the classical subadditivity argument can be adapted (see, for example, Lawler
1991, p. 152) to show that, forall R> 1, R' > 1,

PA(RR") < pr(R)pH(R")
and consequently (see, for example, Lawler 1991, Lemnma 5.2.1),

—log pp(R) _
Fach log R =%>0

for some deterministic constant -,.

Proof of Proposition 2

probability that none of the » Brownian motions hits the ray {—oc, 0] before hitting a large circle).
We are now going to prove Proposition 2. We use the same notation as in Sections [ and 4. We
consider  independent planar Brownian motions Z' = X' +iY',..., Z" = X" +1Y " started from
0, and put, forallr > 0, forallj € {1,...,n},

1! =inf{t > 0, X/ = r}.

Let us first notice that (4) shows readily that -y, < #/2 (which corresponds to the estimate of the

We have
(R = pu.. 1y(R)
> P(3f : (—oc,r] — R, continuous, ¥j € {1,...,n}, Vi € [0, 7], |¥/ - f(Xx)| < =)
> > P(Dy)

Uehy

2w
=% P \Tcos?e
1 n log2 n_ 9
- —_—— — - =
25 exp{( 2-i- - tané 2tan 9) logR}.

Proposition 2 follows, taking tan 6 = (log 2)/(nn).

Remarks
It is straightforward to show that forall n > 1, m 2 1, (we put 4, = +),
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Yo+ 2 Ym + Ine
Proposition 5.2.1. in Lawler (1991) then yields

where 1 = SUp,. o(a/1)- As v, Sn/2foralln > 1,y <4i.

Using the exact value (i.e. £(2,1) = 2 with the notation of Section 6 below) of the intersection
exponent of two paths versus one path (see Lawler 1989, or 1991, Chapter 5, Eq. (5.9)), and the
analyticity of the mapping z — z°, it is possible to show that ~; > 1, which implies that n > 3-
Needless to say this last estimate is very crude (one expects +, /7 to be strictly increasing). In Burdzy
and Werner {1994), we show that s > 2, which then implies that % > % It would, of course, be of
interest to identify 5 ;7 = 4 looks like a reasonable conjecture.

6. Intersection exponents

We now remark that the same arguments can be adapted to show that intersection exponents for
two-dimensional Brownian motion (or two-dimensional random walks, since they are equai, as
shown in Burdzy and Lawler 1990a) are not equal to their ‘trivial’ upper bounds.

Let us briefly recall (see Burdzy and Lawler 1990a, and Lawler 1991 for more details) the
definition of these expoments: If n>1, m>1, if B',...,.... B™™ denote independent two-
dimensional Brownian motions started from B} =...=B%=1 and BJ*' = ... = BI*"" = 1,
and if forallje {l,...,n+m},and R > 1,

T} = inf{r > 0,|B/| = R},
then the exponent £(n, m) is defined as follows:
( )= fm - logP((UlsjénBﬁ]'ré]) n (Un+l5j5rl+m3‘&},j~£]) = ﬂ)
§ln,m) = R—50 log R '

The exact value of £(#, m) is not known except for £(2, 1) = 2 (see Lawler 1989); see also Burdzy and
Lawler (1990b) and Lawler (1993) for some estimates.

The ‘trivial’ upPer bound of £(n,m) corresponds to the fact that if B',..., B" stay in a wedge
W and if B™' ..  B"*™ stay in WS, then they do not intersect. More precisely, if
W = {re* |8| < nA} with A < 1, then (4) shows immediately that

2 i/
P(B[lo,r,;] cCW)> }ER e
and consequently:

Hence, for A = /a/(v/n+v/m}):
§lnm) < ——5—". (8)
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The arguments of the proof of Proposition 1 can be easily adapted to obtam (slightly) improved
upper bounds, which imply that ipequality (8) is strict. If Zi=x'+iy!,.. ., 2" = X"
Y™™ denote » + m planar Brownian motions started from Z§ = ... = Z§ = 0, Z o V45 s
= in, and if, for all j € {1,...,n+m} and all r > 0, we put

T/ =inf{t> 0, X/ =1},
it is easy to see that for all X € (0,1)
P((U1<j<n Bfu,w) n (Un+lsj$n+m B{O‘T,{]) =9)
> P(3f : (—o0, 1), continuous, Vi € {1,...,n}, ¥t € [0, T, 1Y/ — F(X})] < A,
andVje {n+1,...,n+m}, Ve [0, T, |¥/ —f(X]) - n) < (1 = M)

The same argument as in Section 5.2 (we can define NV as the integer part of (rtané)/{An)) then
shows easily that for all 8 € {0,n/2) and X € (0, 1),

£(n,m) < {1 + tan? 9)(2;\ 2(1"1 ))—l(:\iztanﬂ.

For A = /n/{v/n +/m) and tan 8 = (log2)/{n/n(\/n + /m)}, the previous inequality yields:

(VA+ym)®  (log2)?
E(ﬂ, m) S 2 - mz . (9)
Note that this choice of (A, 8) is not optimal if m > n, so that in this case, inequality (9) is strict.
These estimates give new information on £{(n, m) only for m > 3; Burdzy and Lawler (1990b) have
used the explicit value £(2, 1} = 2 to show that £(1, 1} < 3, which is a much better upper bound than
(9) for n=m = 1. Similarly, Lawler (1993) proved that £(2,2) < 3, which is also a much better
estimate than (9). However, their methods do not seem to give any upper bounds for £(n, m) for
m> 3.
Note that Beurling’s theorem yields readily thatforalln > 1,m > 1, §(n,m) > v+ (n+m — 1)/2.
Hence, foralin> 1, m> 1,

_1_ f(ﬂ,m) 1 2
and consequently,
. Emk) 1
3 .

for every fixed k > 1. Again, it would be interesting to identify the limits of p,q) of £ pn,gn}/n as
n — oo for fixed p > 1, ¢ > 1. The subadditivity argument shows that a{ p, 4) exists and the previous
estimates show that o(p,q) € [(7 +4)/2, (P + & )*/2)-

We take this opportunity to make the following remark: (11) shows that for all &k > 1,
im, . . (£(37 — k,k)/n) =3. On the other hand, £(2n,n) > n£(2,1) = 2n, so that for all k> 1
and for all large enough n, £(3n — k, k) < £(2n, n). This suggests the following conjecture: for ail
N241<n<n <N/2,

EN —n,n) <E&N-#',n"). (12)



380 Werner
Acknowledgements

This paper would not exist without very helpful and enlightening discussions with Chris Burdzy, to
whom I am very grateful. T also thank Greg Lawler, who initially suggested this problem.

References

Ahlfors, L.V. (1966) Complex Analysis. New York: McGraw-Hill

Abhlfors, L.V. (1973) Conformal Invariants, Topics in Geometric Function Theory. New York: McGraw-Hill.

Beurting, A. (1933} Etudes sur un probléme de majoration. Thése, Uppsala.

Burdzy, K. and Lawler, G.L. (1990a) Non-intersection exponents for random walk and Brownian motion. Part
I: Existence and an invariance principle. Probab. Theory Related Fields, 84, 393-410.

Burdzy, K. and Lawler, G.L. (1990b) Non-intersection exponents for random walk and Brownian motior. Part
II: Estimates and applications to a tandom fractal. Ann. Probab., 18, 981-1009.

Burdzy, K., Lawler, G.L. and Polaski, T. (1989) On the critical exponent for random walk intersections, J.
Staiist. Phys., 56, 1-12.

Burdzy, K. and Werner, W. (1994) No triple point of planar Brownian motion is accessible. Ann. Probab. (to
appear).

Duplantier, B. and Kwen, X.-H. (1988) Conformal invariance and intersection of random walks. Phys. Rev.
Lett., 61, 2514-2517.

Duplantier, B., Lawler, G.F., Le Gall, J.F. and Lyons, T.J. (1993) The geometry of the Brownian curve. In
Probabilités et Analyse Stochastique, Tables Rondes de St-Chéron Janvier 1992, Bull. Sci. Math. (2), 117.

It6, K. and McKean, H.P. (1965) Diffusion Processes and Their Sampling Paths. New York: Springer-Verlag.

Lawler, G.L. (1989) Intersection of random walks with random sets. Israel J. Math., 65, 113-132,

Lawler, G.L. (1991} Intersection of random walks. Boston: Birkhiuser,

Lawler, G.L. (1993) A discrete analogue of a theorem of Makarov. Combin. Probab. Comput., 2, 181-200,

Lawler, G.L. and Puckette, E.E. (1994) The disconnecting exponent for simple random wailk. Preprint.

Mandelbrot, B.B. (1982) The Fractal Geometry of Nature. New York: Freeman,

Oksendal, B. (1983) Projection estimates for harmonic measure. Ark. Mat., 21, 191-203.

Port, 5.C. and Stone, C.J. (1978) Brownian Motion and Classical Potential Theory. New York: Academic Press.

Revuz, D. and Yor, M. (1991} Continuous Martingales and Brownian Motion. Berlin: Springer-Verlag.

Werner, W. (1994) Beurling's projection theorem via linear Brownian notion. Matk. Proc. Cambridge Phil. Soc.

{to appear).
Received July 1994 and revised February 1995





