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A new method for monotone estimation of a regression function is proposed, which is potentially

attractive to users of conventional smoothing methods. The main idea of the new approach is to

construct a density estimate from the estimated values m̂m(i=N ) (i ¼ 1, . . . , N) of the regression

function and to use these ‘data’ for the calculation of an estimate of the inverse of the regression

function. The final estimate is then obtained by a numerical inversion. Compared to the currently

available techniques for monotone estimation the new method does not require constrained

optimization. We prove asymptotic normality of the new estimate and compare the asymptotic

properties with the unconstrained estimate. In particular, it is shown that for kernel estimates or local

polynomials the bandwidths in the procedure can be chosen such that the monotone estimate is first-

order asymptotically equivalent to the unconstrained estimate. We also illustrate the performance of

the new procedure by means of a simulation study.

Keywords: isotone regression; local linear regression; Nadaraya–Watson estimator; order-restricted
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1. Introduction

Smoothing as a means of modelling nonlinear structure in data has become increasingly

popular in numerous applications. However, in many cases monotone estimates of the

regression function are required, because physical considerations suggest that the response is

a monotone function of the explanatory variable. There exists a vast literature on the

problem of estimating a regression function m which is believed to be monotone; see the

recent reviews by Delecroix and Thomas-Agnan (2000) or Gijbels (2005). Brunk (1955)

proposed a modified maximum likelihood. Because this estimate is not smooth in general,

Mukerjee (1988) modified it and obtained a monotone estimate with properties similar to

those of nonparametric regression estimators; see also Cheng and Lin (1981), Wright

(1981), Friedman and Tibshirani (1984) and Mammen (1991) for similar procedures.

Monotone nonparametric regression estimators based on constrained spline smoothing have

been proposed by Ramsay (1988, 1998), Kelly and Rice (1990), Mammen and Thomas-

Agnan (1999), while Mammen et al. (2001) suggested projection-based techniques for

constrained smoothing. Recently, Hall and Huang (2001) proposed a new method for
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monotonizing a general kernel type estimator, which modifies the weights in a kernel

estimator such that the modified function is monotone.

In the present paper we propose an alternative construction of monotone regression

functions. The method can easily be motivated by considering an independent and

identically distributed (i.i.d.) sample of uniform random variables, say U1, . . . , U N �
U([0, 1]). If m is a strictly increasing function on the interval [0, 1] with positive derivative,

Kd is a kernel function and hd a bandwidth, then

1

Nhd

XN

i¼1

Kd

m(Ui) � u

hd

� �

is the classical kernel estimate of the density (m�1)9(u)I [m(0),m(1)](u) of the random variable

m(U1). Consequently,

1

Nhd

ð t

�1

XN

i¼1

Kd

m(Ui) � u

hd

� �
du (1:1)

is a consistent estimate of the function m�1 at the point t. In the context of nonparametric

regression m(X ) ¼ E[Y jX ] is the regression of Y with respect to X and the function m can

be estimated by any standard method (kernel type, local polynomial, series or spline

estimator), which yields an estimate of the inverse of the strictly increasing function m. The

corresponding estimate of m is finally obtained by inversion of this estimate. Thus the new

monotone smoother is constructed in three steps and uses two smoothing parameters. It starts

with an unconstrained estimate of the regression function, say m̂m. In a second step a density

estimate of the observations m̂m(Ui) is calculated, which is integrated to obtain an estimate of

the inverse of the regression function. The final step is the inversion of this estimate.

The estimate is carefully described in Section 2, where we also discuss some of its main

properties as a monotone approximation of a given function. In Section 3 we study some of

its statistical properties and prove asymptotic normality if kernel type or local polynomial

estimators are used for the preliminary estimation of the regression function. In particular,

we show that for local linear estimators the bandwidths in the procedure can be chosen such

that the new estimate is asymptotically first-order equivalent to the unconstrained estimate.

The choice of the smoothing parameters is also investigated from an asymptotic point of

view. In Section 4 we discuss the finite-sample properties of the new estimator by means of

a simulation study. Finally, some of the technical details are given in the Appendix. The

main advantages of the new procedure are its simplicity (because it does not require any

constrained optimization techniques) and its asymptotic equivalence to the unconstrained

estimate. The new estimator is also asymptotically first-order equivalent to the estimates

based on smoothing an isotone regression (or vice versa) as considered in Mammen (1991)

and to a tilting estimate proposed by Hall and Huang (2001). A finite-sample comparison

shows slight advantages of the new method with respect to the mean squared error (MSE)

criterion.

We finally note that isotone regression has been criticized because practitioners do not

believe in all those flat spots. Ramsay (1998) proposed a procedure for estimating a smooth

and strictly increasing function which is computationally convenient. However, this method
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is semiparametric in the sense that it requires the regression function to satisfy a specific

second-order differential equation. The solution of this equation is of the form

m(x) ¼ c0 þ c1

Ð
exp(

Ð
w(x)dx)dx, where c0, c1 are arbitrary constants and w is a square-

integrable unconstrained function. As a consequence the procedure of Ramsay (1998) is not

consistent in general (for example, for the regression functions m(x) ¼ x p, x 2 [0, 1],

p . 0). An important contribution of this paper is that it provides a simple smooth, strictly

monotone and generally consistent nonparametric estimator of the regression function.

Furthermore, R code for the new estimator is available. All these properties should make

the new method particularly attractive to users of conventional kernel methods.

2. Monotone smoothing by inversion

Consider the nonparametric regression model

Yi ¼ m(X i) þ � (X i)�i, i ¼ 1, . . . , n, (2:1)

where f(X i, Yi)gn
i¼1 is a bivariate sample of i.i.d. observations such that X i has a positive

twice continuously differentiable density f with compact support, say [0, 1]. We further

assume that the random variables �i are i.i.d. with E[�i] ¼ 0, E[�2
i ] ¼ 1 and finite fourth

moment. The variance function � : [0, 1] ! Rþ and the regression function m : [0, 1] ! R

are assumed to be continuous and twice continuously differentiable, respectively. Throughout

this paper we restrict ourselves to the case of an isotone regression function. Corresponding

results for the antitone case are very similar and obtained by the same reasoning. If there is

evidence that the regression function m is (strictly) increasing we define, for N 2 N,

m̂m�1
I (t) :¼ 1

Nhd

XN

i¼1

ð t

�1
Kd

m̂m(i=N ) � u

hd

� �
du (2:2)

as an estimate of m�1(t), where

m̂m(x) ¼
Pn

i¼1 K r((X i � x)=hr)YiPn
i¼1 K r((X i � x)=hr)

is the classical Nadaraya–Watson estimate, Kd and K r denote symmetric kernels with

compact support, say [�1, 1], and finite second moment, and hd, hr are the corresponding

bandwidths converging to 0 with increasing sample size n. We assume that Kd is twice

continuously differentiable on its support and that the kernel K r has been appropriately

modified at the boundary; see Müller (1985). For the sake of transparency we restrict

ourselves to the Nadaraya–Watson estimate, but it is notable that all results in this paper

remain valid (subject to an appropriate modification of constants) for other types of kernel

estimators such as the Gasser–Müller estimator (see Gasser and Müller 1979) or local

polynomials (Wand and Jones 1995; Fan and Gijbels 1996).

Note that the indices r and d correspond to ‘regression’ and ‘density’ because we

combine a regression with a density estimate to define the estimator in (2.2). Comparing

this estimate with the motivation in equation (1.1), we see that the uniformly distributed

Simple estimator of a strictly monotone regression function 471



random variables have been replaced by an equidistant design. It is not necessary (and in

many cases not desirable) that the number N of design points coincides with the sample

size n. Finally, we note that the estimate m̂m�1
I is isotone if the kernel Kd is positive, which

will be assumed throughout this paper. In this case an isotone estimate of the regression

function m̂mI is simply obtained by reflection of the function m̂m�1
I in the line y ¼ x. Note

that the estimator m̂m�1
I is equal to 1 if t . maxN

i¼1 m̂m(i=N ) þ hd and to 0 if

t , minN
i¼1 m̂m(i=N ) � hd , and that the inverse of the function m̂mI is calculated only for

t 2 [minN
i¼1 m̂m(i=N ), maxN

i¼1 m̂m(i=N )].

It is heuristically clear that the estimate m̂m�1
I is in some sense close to the function

m�1
N (t) ¼ 1

Nhd

ð t

�1

XN

i¼1

Kd

m(i=N ) � u

hd

� �
du ¼

ð1

0

Ifm(x) < tgdx þ o(1) (2:3)

(note that the kernel Kd has compact support). In other words, the statistic m̂m�1
I (t) is a

consistent estimate of the quantity
Ð 1

0
Ifm(x) < tgdx and this property does not depend on

the particular consistent estimate m̂m used in the regression step. The leading term on the

right-hand side of equation (2.3) is equal to m�1(t) ¼ inffujm(u) . tg if the regression

function is increasing, and the following lemma gives the precise order of this approximation.

Lemma 2.1. If the regression function is strictly increasing and the assumptions stated at the

beginning of this section are satisfied, then we have for any t 2 (m(0), m(1)) with

m9(m�1(t)) . 0,

m�1
N (t) ¼ m�1(t) þ k2(Kd)h2

d(m�1) 0(t) þ o(h2
d) þ O

1

Nhd

� �
,

where the constant k2(K) is given by

k2(K) ¼ 1

2

ð1

�1

v2 K(v)dv: (2:4)

It is easy to see that the functions m�1
N and m̂m�1

I are strictly increasing, if

maxN�1
i¼1 v(iþ1) � v(i) , 2hd , where vi ¼ m(i=N ) and vi ¼ m̂m(i=N ), respectively. If the sample

size n and number of design points N are chosen sufficiently large, this inequality is

satisfied because of the continuity of the regression function m and the estimate m̂m.

Throughout this paper mN denotes the inverse of the function m�1
N . Because m�1

N is

expected to be an approximation of the function m�1, it is intuitively clear that the inverse

mN of m�1
N is an approximation of the function m. The following lemma makes this

statement precise and is proved in the Appendix.

Lemma 2.2. If the regression function m is strictly increasing and the assumptions stated at

the beginning of this section are satisfied, then we have for any t 2 (0, 1) with m9(t) . 0,

mN (t) ¼ m(t) þ k2(Kd)h2
d

m 0(t)

(m9(t))2
þ o(h2

d) þ O
1

Nhd

� �
:
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If m is not necessarily increasing, the function g : t !
Ð 1

0
Ifm(x) < tgdx or its

approximation

ghd
: t !

ð1

0

ð t

�1

1

hd

Kd

m(x) � u

hd

� �
du dx

is still well defined and non-decreasing. Note that the function g is not necessarily

differentiable (see the examples presented below) and ghd
can be considered as a smooth

version of g which converges to g if hd ! 0. The (generalized) inverse g�1
hd

can be

considered as an approximation of the function m by a non-decreasing smooth function.

Some mathematical properties of a related function have been discussed in the context of

measure-preserving transformations and non-decreasing rearrangements, and the interested

reader is referred to the work of Ryff (1965, 1970) or Bennett and Sharpley (1988), among

others. Further properties of this function will be briefly described in the following. For the

sake of brevity we restrict ourselves to the function g and mention that the properties of ghd

are similar.

If for a fixed t0 the set m�1(ft0g) ¼ fx0g is a singleton and m9(x0) . 0, then, obviously,

g(t0) ¼ x0 and g�1(x0) ¼ m(x0). Now let x0 2 [0, 1] denote the infimum of all points such

that there exists a t0 with this property (note that the case x0 ¼ 0 is not excluded) and

define x1 > 0 as the maximal point such that this property is satisfied for all x 2 (x0, x1)

with corresponding value t1 ¼ m(x1). In this case we have for all t ¼ m(x) 2 [t0, t1] the

representation g(t) ¼ x0 þ (x � x0) ¼ x, which proves g�1(x) ¼ m(x) for all x 2 [x0, x1]. If

x1 , 1, the function m is decreasing in a neighbourhood (x1, x1 þ �) and there may exist a

second interval, say (x2, x3), such that m is strictly increasing on (x2, x3) and such that for

all t 2 (m(x2), m(x3)) the set m�1(ftg) is a singleton. For this interval the same argument

shows g�1(x) ¼ m(x) for all x 2 [x2, x3]. The repetition of this argument shows that on any

interval [a, b], where m is strictly increasing such that m�1(fag) and m�1(fbg) are

singletons the inverse of the function g coincides with the regression function m.

Example 2.1. Consider the function

m(x) ¼ 11

3
x � 8x2 þ 16

3
x3,

which is strictly increasing on the intervals [0, (6 �
ffiffiffi
3

p
)=12], [(6 þ

ffiffiffi
3

p
)=12, 1]. The

functions m, g and g�1 are depicted in Figure 2.1(a), where the function g�1 coincides

with the function m whenever m�1(ftg) is a singleton. Note that there are two points where

the function g is not differentiable. Figure 2.1(b) illustrates the approximation of the

oscillating function

m(x) ¼ x þ 1

4
sin(4�x)

by the monotone increasing function g�1.
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3. Main results – asymptotic behaviour

In this section we investigate some of the asymptotic properties of the estimates m̂m�1
I and

m̂mI . It turns out that both estimates (appropriately centred) are asymptotically normally

distributed, where the standardizations depend on the limit limh r ,hd!0 hr=hd ¼: c 2 [0, 1]

of the ratio of the smoothing parameters. In the case c ¼ 1 we show that the new

monotone estimate m̂mI is first-order asymptotically equivalent to the unconstrained estimate

m̂m, if the Nadaraya–Watson estimator or a local linear estimator is used for the estimation

of the regression function.

3.1. Asymptotic normality

We assume that the smoothness conditions regarding the density, variance and regression

function stated at the beginning of Section 2 are satisfied. For the bandwidths hr and hd in

the regression and density estimate we require hr ! 0, hd ! 0, nhr ! 1, nhd ! 1 and

additionally

nh5
r ¼ O(1), n ¼ O(N ), (3:1)

log h�1
r

nhr h3
d

¼ o(1): (3:2)

Note that for the ‘optimal’ rate in regression estimation hr ¼ ªn�1=5 with respect to the MSE

the latter assumption reduces to hd n4=15=(log n)1=3 ! 1.

Theorem 3.1. If the assumptions (3.1) and (3.2) are satisfied, limn!1hr=hd ¼ c 2 [0, 1)

� ��� ��� ��� ��� �

���

���

���

���

�

� ��� ��� ��� ��� �

���

���

���

���

�

��� ���

Figure 2.1. Approximation of a non-monotone regression function m (dashed line) by its monotone

approximation g�1 (solid line) for (a) m(x) ¼ 11
3

x � 8x2 þ 16
3

x3, (b) m(x) ¼ x þ 1
4

sin(4�x). The figures

show also the function g(t) ¼
Ð 1

0
Ifm(x) < tgdx (dotted line).
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exists and m is strictly increasing, then it follows that, for all t 2 (m(0), m(1)) with

m9(m�1(t)) . 0,

ffiffiffiffiffiffiffiffi
nhd

p
m̂m�1

I (t) � m�1
N (t) þ k2(K r)h2

r

m 0 f þ 2m9 f 9

fm9

� �
(m�1(t))

� �
¼)
D

N (0, r2(t)),

where the constant k2(K r) is defined in (2.4) and the asymptotic variance is given by

r2(t) ¼ � 2(m�1(t))

m9(m�1(t)) f (m�1(t))
(3:3)

3

ð ð ð
Kd(w þ cm9(m�1(t))(v� u))Kd(w)K r(u)K r(v)dw du dv:

If limn!1hr=hd ¼ 1, then we have, for all t 2 (m(0), m(1)) with m9(m�1(t)) . 0,

ffiffiffiffiffiffiffiffi
nhr

p
m̂m�1

I (t) � m�1
N (t) þ k2(K r)h2

r

m 0 f þ 2m9 f 9

fm9

� �
(m�1(t))

� �
¼)
D

N (0, ~rr2(t)),

where the asymptotic variance is given by

~rr2(t) ¼ � 2(m�1(t))

fm9(m�1(t))g2 f (m�1(t))

ð
K2

r(u)du:

Note that for sufficiently large n and N the functions m̂m�1
I and m�1

N are strictly increasing

independent of the monotonicity of the ‘true’ regression function m. The following result

shows that the corresponding inverse functions m̂mI and mN also satisfy an asymptotic

normal law.

Theorem 3.2. Assume that the assumptions of Theorem 3.1 are satisfied and let m̂mI and mN

denote the inverse functions of the functions m̂m�1
I and m�1

N defined by (2.2) and (2.3),

respectively. If limn!1hr=hd ¼ c 2 [0, 1) exists, then we have, for every t 2 (0, 1) with

m9(t) . 0,

ffiffiffiffiffiffiffiffi
nhd

p
m̂mI (t) � mN (t) � k2(K r)h2

r

m 0 f þ 2m9 f 9

f

� �
(t)

� �
¼)
D

N (0, s2(t)),

where the asymptotic variance is given by

s2(t) ¼ � 2(t)m9(t)

f (t)

ð ð ð
Kd(w þ cm9(t)(v� u))Kd(w)K r(u)K r(v)dw du dv: (3:4)

If limn!1hr=hd ¼ 1 it follows that, for every t 2 (0, 1) with m9(t) . 0,

ffiffiffiffiffiffiffiffi
nhr

p
m̂mI (t) � mN (t) � k2(K r)h2

r

m 0 f þ 2m9 f 9

f

� �
(t)

� �
¼)
D

N (0, ~ss2(t)),

where the asymptotic variance is given by
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~ss2(t) ¼ � 2(t)

f (t)

ð
K2

r(u)du:

Remark 3.1. For a regression function m with m9(m�1(t)) ¼ 0, Theorem 3.1 (and 3.2) are no

longer valid – see (A.11) and (A.13) in the proof of Theorem 3.1 in the Appendix. Note also

that in this case the variance and bias in Theorem 3.1 are undefined and that the proof of

Theorem 3.2 is based on Theorem 3.1 – see (A.14) in the proof of Theorem 3.2.

Remark 3.2. It follows from Lemma 2.2 and the second part of Theorem 3.2 that in the case

hd ¼ o(hr) the monotone estimator m̂mI exhibits the same first-order asymptotic behaviour as

the unconstrained estimate m̂m. A similar property was observed by Mammen (1991) for the

L2-projection of the Nadaraya–Watson estimate onto the space of all increasing functions. It

is also notable that Theorems 3.1 and 3.2 are applicable for the optimal bandwidth with

respect to uniform convergence; see Mack and Silverman (1982). In this case bandwidths

satsfying hr ¼ o(hd) (i.e. c ¼ 0) have to be applied.

3.2. Bandwidth selection

The choice of the two bandwidths is essential for the performance of the new smoothing

procedure. While the bandwidth hr for the regression estimate m̂m can be chosen by standard

methods, the choice of the bandwidth hd in the second step of the density estimate is less

clear. In the following we will demonstrate that bandwidths satisfying hd ¼ o(hr) should be

preferred from an asymptotic point of view if the MSE is used to compare estimates

obtained from different choices for the bandwidth hd . For this we assume that f � 1 (or

that a local linear estimate is used as the unconstrained estimate m̂m) and note that by

Theorem 3.2 the leading term of the bias of the estimate m̂mI is given by

ˆI (hd , hr) ¼ k2(Kd)
m 0(t)

(m9(t))2
h2

d þ k2(K r)m 0(t)h2
r:

We choose the bandwidth hd ¼ ª m9(t)hr in the estimate m̂mI , for some constant ª . 0. As a

consequence of Theorem 3.2, the estimate m̂mI is asymptotically normal distributed with bias

[k2(K r) þ ª2k2(Kd)]m 0(t)h2
r

and variance

� 2(t)

nhr f (t)
�2

K (ª),

where

�2
K (ª) ¼

ð ð
K r(u)K r(u þ ªw)du

� � ð
Kd(v)Kd(vþ w)dv

� �
dw:

Note that it is easy to see that these calculations also include the case ª ¼ 0 (corresponding

to the second part of Theorem 3.2), if this is interpreted as limhr ,hd!0 hr=hd ¼ 1. Numerical
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results show that for the commonly used kernels the function �2
K is decreasing with ª.

Therefore the variance of the statistic m̂mI is decreasing with ª, while the converse holds for

the bias. Heuristically, the choice ª ¼ 0 may have particular advantages if the standard error

is small compared to the bias, while values as ª ¼ 0:5 or ª ¼ 1 may be appropriate for a

small bias and larger standard errors.

In the rest of this section we study the effect of the choice of ª on the rule

hd ¼ ª m9(t)hr if the local optimal bandwidth

hr ¼
�2

K (0)� 2(t)

4 f (t)(m 0(t))2k2
2(K r)n

� �1=5

(3:5)

with respect to the MSE criterion is used for the estimation of the regression function. A

standard calculation shows that for this choice the first-order approximation of the MSE is

given by

mse(ª) ¼ �2
K (0)� 2(t)

4nf (t)

� �4=5

(m 0(t)k2(K r))
2=5 1 þ ª2 k2(Kd)

k2(K r)

� �2

þ 4

�2
K (0)

�2
K(ª)

( )
:

The corresponding MSE for the unconstrained estimate is given by mse(0), which gives

e(ª) ¼ mse(ª)

mse(0)
¼ (1 þ ª2k2(Kd)=k2(K r)Þ2 þ (4=�2

K (0))�2
K(ª)

5
: (3:6)

Figure 3.1 shows the function e for the cases where K r ¼ Kd is the Epanechnikov and

rectangular kernel. We see that for these kernels the optimal choice (minimizing e(ª) with

respect to the parameter ª) is ª ¼ 0, which corresponds to the case limhr ,hd!0 hr=hd ¼ 1,

while for the rectangular kernel the choice ª � 0:3 yields the smallest efficiency. In this

case the bandwidths hd and hr should be chosen of the same order according to the rule

hd ¼ ª m9(t)hr with (3.5). We investigated several other kernels (including the beta family)

and conclude that the situation displayed in Figure 3.1(b) for the Epanechnikov kernel is

quite typical. All kernels except the rectangular yield the same picture for the efficiency as

displayed in Figure 3.1(b) for the Epanechnikov kernel. These results indicate that from an

asymptotic point of view the bandwidths hd and hr should not be of the same order, but

bandwidths satisfying hd ¼ o(hr) should be preferred for the monotone estimator.

4. Finite-sample properties

In this section we illustrate the behaviour of the new monotone estimator for finite sample

sizes. We consider the nonparametric regression model (2.1) with a uniform design and

normally distributed errors. As a preliminary estimate m̂m we use a local linear estimator,

while the density estimate is based on N ¼ 100 design points. The bandwidth hr of the

unconstrained estimators is chosen as hr ¼ (�̂� 2=n)1=5, where
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�̂� 2 ¼ 1

2(n � 1)

Xn�1

i¼1

(Y[iþ1] � Y[i])
2

is Rice’s (1984) estimator; here Y[1], . . . , Y[n] denote the observations ordered with respect to

their corresponding X -values. The Epanechnikov kernel is used for Kd and K r.

In order to illustrate the performance of the new procedure we show in Figure 4.1 the

estimate m̂mI based on n ¼ 100 observations. The standard deviation of the errors is

� ¼ 0:1, while the bandwidth is chosen as hd ¼ h3
r. Figure 4.1(a) corresponds to the

regression function m(x) ¼ 1
2
(2x � 1)3 þ 1

2
and Figure 4.1(b) to m(x) ¼ sin(1

2
�x). Three

monotone estimates obtained from different simulations are displayed. These correspond to

the 5th percentile (solid line), 50th percentile (dashed line) and 95th percentile (dotted line)

with respect to the integrated squared error performance (based on 1000 simulation runs).

� ��� ��� ��� ��� � ��� ���

�

����

���

��	�

�

����

���

��	�

� ��� ��� ��� ��� � ��� ���

�
����
���

��	�
�

����
���

��	�

��� ���

Figure 3.1. The function e defined in (3.6) for (a) the rectangular and (b) the Epanechnikov kernel,

where Kd ¼ K r.

��� ��� ��� ��	 ��
 ���

��
�

��
�

��
	

��



��
�

��� ��� ��� ��	 ��
 ���

��
�

��
�

��
�

��
	

��



��
�

��� ���

Figure 4.1. Three monotone estimates obtained from different simulations (n ¼ 100 observations and

� ¼ 0:1): (a) m(x) ¼ 1
2
(2x � 1)3 þ 1

2
; (b) m(x) ¼ sin(1

2
�x).
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4.1. Bandwidth choice

In the second part of our simulation study we investigate the effect of the choice of the

bandwidth hd in more detail. Two choices of hd are considered, hd ¼ 1
2
hr and hd ¼ h3

r. In

Figure 4.2 we show the simulated MSE, squared bias and variance of the monotone

estimates for n ¼ 100 observations with standard deviation � ¼ 1. Four cases for the

regression function are considered in our study, namely m(x) ¼ x (first row), m(x) ¼ x2

(second row), m(x) ¼ sin(�
2
x) (third row), m(x) ¼ 1

2
þ 1

2
(2x � 1)3 (fourth row). The monotone

estimates with bandwidths hd ¼ h3
r and hd ¼ 1

2
hr are represented by the solid and dashed

line, respectively. The dotted lines show the unconstrained local linear estimate. In all cases

we observe a smaller variance and a larger bias for the constrained estimates. Also the

bandwidth hd ¼ 1
2
hr yields a smaller variance but a larger bias than the choice hd ¼ h3

r.

This corresponds to the asymptotic theory presented in Section 3.

The effect of the choice of the bandwith on the MSE depends on the size of the variance

and the size of m 0(t). For regression functions with a large value of jm 0(t)j the bias

dominates the MSE. Consider, for example, the function m(x) ¼ 1
2
(2x � 1)3 þ 1

2
. At the point

x ¼ 1
2

we have m9(1
2
) ¼ m 0(1

2
) ¼ 0 and the larger bandwidth hd ¼ 1

2
hr for the density

estimate yields a smaller MSE than the choice hd ¼ h3
r (see the fourth row in Figure 4.2).

On the other hand, if x ¼ 1
4

or x ¼ 3
4

we have jm 0( 1
4
)j ¼ jm 0( 3

4
)j ¼ 6 and the effect of the

bias is visible such that a smaller bandwidth hd in the density estimate is appropriate.

Based on our numerical results we recommend the choice hd ¼ h3
r or hd ¼ h2

r for the

bandwidth in the density estimation step, where the particular alternative depends on the

desired smoothness of the monotone estimate. This choice has the additional advantage that

the regions where boundary effects affect the density estimate are very small and that the

first-order asymptotic behaviour of the monotone estimate coincides with that of the local

linear estimate.

4.2. A brief comparison with other estimators

In this section we briefly compare the new estimator with two procedures for monotone

estimation which are most similar in spirit to the method proposed in this paper. A detailed

comparison can be found in Dette and Pilz (2004). Note that our asymptotic results in

Section 3 suggest the use of bandwidths satisfying hd ¼ o(hr). For this choice the new

estimate is asymptotically first-order equivalent to the classical smoothed isotone estimate of

Brunk (1958) (see Mammen 1991) and to the tilting method proposed by Hall and Huang

(2001), which will be denoted by m̂mIS and m̂m HH in the following. Note that the estimate m̂mIS

is not necessarily monotone increasing, but it can be shown that the estimate m̂mIS is

asymptotically first-order equivalent to the estimate obtained by projecting a smooth curve

on the space of monotone functions; see Mammen (1991). Moreover, this author compared

the finite-sample performance of the two isotone regression estimates obtained by

interchanging the order of smoothing and isotonizing and concluded that the estimate

m̂mIS usually yields a smaller MSE than the estimate obtained by projecting a non-monotone

curve on the space of monotone functions; see Mammen (1991, Table 1) for more details.
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Figure 4.2. Simulated MSE, squared bias and variance of the monotone estimator m̂mI with bandwidth

hd ¼ h3
r (solid line), bandwidth hd ¼ 0:5hr (dashed line) and the local linear estimator m̂m (dotted line)

for various regression functions and a uniform design: m(x) ¼ x (row 1), m(x) ¼ x2 (row 2),

m(x) ¼ sin(1
2
�x) (row 3), m(x) ¼ 1

2
(2x � 1)3 þ 1

2
(row 4). The estimates are calculated from n ¼ 100

observations with standard deviation � ¼ 1.
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Thus we included the more efficient method of these two monotone regression estimates in

our numerical study.

The following example has two purposes. On the one hand, we wish to compare the three

different estimation procedures. On the other hand, we would like to see the performance of

the new estimate at points where the derivative of the regression function vanishes. For this

reason we consider the regression function

m(x) ¼

2x, if x 2 [0, 1
4
],

1
2
, if x 2 [1

4
, 3

4
],

2x � 1, if x 2 [3
4
, 1],

8>><
>>:

and display the curves for the squared bias, variance and MSE in Figure 4.3 for a normally

distributed error with standard deviation 0:2 and sample size n ¼ 80. These results are based

on 1000 simulation runs. Note that all monotone estimation techniques require a preliminary

nonparametric (unconstrained) estimate of the regression function with corresponding

smoothing parameter. For the sake of comparison we use the same regression estimate m̂m for

all three methods in the first step, namely a local linear estimator (see Wand and Jones 1995)

with Epanechnikov kernel. The additional bandwidth for the density estimation step in the

calculation of the estimate m̂mI was chosen as hd ¼ h3
r. We observe that all three estimators

exhibit quite similar behaviour (as predicted by the asymptotic theory), where the new

estimate m̂mI proposed in this paper has some advantages with respect to MSE and the worst

performance is observed for the isotone estimate obtained by the tilting method. Moreover,

all estimates seem to be consistent even at points where the derivative of the regression

function vanishes. Further simulation results, which show a very similar picture, are available

in Dette and Pilz (2004). Thus the new estimate has at least a similar finite-sample behaviour

to that of its closest competitors and leads in many cases to a smaller MSE.
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Figure 4.3. Simulated squared bias, variance and MSE of the smoothed isotonized estimate m̂mIS

(dashed line), the estimator m̂m HH obtained by the tilting method (dotted line) and the estimator m̂mI

(solid line). The sample size is n ¼ 80, the standard deviation is � ¼ 0:2.
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Appendix: Proofs

Throughout this section we assume without loss of generality that the function m has a

positive derivative on the interval [0, 1]. The general case can easily be obtained by

considering a subinterval, for which this property is satisfied (note that m9 is continuous).

Moreover, we assume for the sake of a transparent notation that the number of design

points N in the estimate m̂mI equals the sample size n and write mn instead of mN .

Proof of Lemma 2.1. Obviously, we have

m�1
n (t) ¼

ð1

0

ð t

�1
Kd

m(x) � u

hd

� �
1

hd

du dx � 1 þ O
1

nhd

� �� �

and, observing that the support of the kernel Kd is given by the interval [�1, 1], the leading

term on the right-hand side is estimated as follows:

A(hd) ¼
ð1

0

ð t

�1
Kd

m(x) � u

hd

� �
du

hd

dx ¼
ðm�1( tþhd )

0

ð t

m(x)�hd

Kd

m(x) � u

hd

� �
du

hd

dx

¼ m�1(t � hd)

þ
ð1

0

Ifm�1(t � hd) < x < m�1(t þ hd)g
ð t

m(x)�hd

Kd

m(x) � u

hd

� �
du

hd

dx

¼ m�1(t � hd) þ hd

ð(m(1)� t)=hd

(m(0)� t)=hd

If�1 < z < 1g(m�1)9(t þ zhd)

ð1

z

Kd(v)dv dz:

If t 2 (m(0), m(1)) is fixed, we obtain from the identity
Ð 1

�1

Ð 1

z
Kd(v)dv dz ¼ 1 (note that Kd

is symmetric and has compact support [�1, 1]) and a Taylor expansion,

A(hd) ¼ m�1(t � hd) þ hd

ð1

�1

(m�1)9(t þ zhd)

ð1

z

Kd(v)dv dz

¼ m�1(t) þ h2
d(m�1) 0(t)

1

2
þ
ð1

�1

z

ð1

z

Kd(v)dv dz

� �
þ o(h2

d)

¼ m�1(t) þ k2(Kd)h2
d(m�1) 0(t) þ o(h2

d)

as hd ! 0, where the last identity follows from
Ð 1

�1
z
Ð 1

z
Kd(v)dv dz ¼ 1

2

Ð 1

�1
v2 Kd(v)dv� 1

2
.

h

For a proof of Lemma 2.2 and Theorem 3.2 it is necessary to understand the operator

which maps a non-decreasing function m to its ‘quantile’ m�1(t). Consider a fixed t 2 R,

and let M denote the set of all functions H 2 C2[0, 1] with positive derivative on the

interval [0, 1], which contain t in the interior of their image, that is, t 2 int H([0, 1]).

Consider the functional
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� :
M 7! [0, 1]

H 7! H�1(t)

�

and define for H1, H2 2 M the function

Q :
[0, 1] 7! R

º 7! �(H1 þ º(H2 � H1)):

�
(A:1)

Note that in the case of existence Q9(0) is the Gatéaux derivative of the functional � at H1

in the direction of H2 � H1. The following result shows that this derivative exists and also

gives the second derivative.

Lemma A.1. The mapping Q : [0, 1] ! R defined by (A.1) is twice continuously

differentiable with

Q9(º) ¼ � H2 � H1

h1 þ º(h2 � h1)
� (H1 þ º(H2 � H1))�1(t), (A:2)

Q 0(º) ¼ Q9(º)
�2(h2 � h1)

h1 þ º(h2 � h1)
þ (H2 � H1)(h91 þ º(h92 � h91))

fh1 þ º(h2 � h1)g2

� �
� Q(º), (A:3)

where h1, h2 denote the derivatives of H1, H2, respectively.

Proof. Let F(x, y) ¼ (H1 þ x(H2 � H1))(y) � t, then Q(º) is determined by the equation

F(º, Q(º)) ¼ 0. It is easy to see that the domain of the function Q can be extended in a

neighbourhood of the interval [0, 1], and by the implicit function theorem it follows that Q is

differentiable with derivative

Q9(º) ¼ � (H2 � H1) � Q(º)

h1 � Q(º) þ º(h2 � h1) � Q(º)
,

which proves (A.2). The calculation of the second derivative now follows by a

straightforward application of the chain rule, which gives

Q 0(º) ¼ (H2 � H1)(h2 � h1)

fh1 þ º(h2 � h1)g2
� Q(º)

� Q9(º) � (h2 � h1)(h1 þ º(h2 � h1)) � (H2 � H1)(h91 þ º(h92 � h91))

fh1 þ º(h2 � h1)g2
� Q(º),

and an application of (A.2) yields the representation (A.3). h

Proof of Lemma 2.2. By a Taylor expansion we have from Lemma A.1 (with H1 ¼
m�1, H2 ¼ m�1

n )

mn(t) � m(t) ¼ �(m�1
n ) ��(m�1) ¼ Q(1) � Q(0) ¼ Q9(º�)

for some º� 2 [0, 1] (see Serfling 1980), where

Simple estimator of a strictly monotone regression function 483



Q9(º�) ¼ � m�1
n � m�1

(m�1 þ º�(m�1
n � m�1))9

� (m�1 þ º�(m�1
n � m�1))�1(t): (A:4)

Note that (m�1 þ º�(m�1
n � m�1)) ! m�1 by Lemma 2.1 and that for tn ¼ (m�1 þ

º�(m�1
n � m�1))�1(t) we have tn ! m(t). For the numerator in (A.4) we obtain

(m�1
n � m�1)(tn) � (m�1

n � m�1)(m(t)) ¼ (m�1
n � m�1)9(�n) � (tn � m(t)) (A:5)

for some �n with �n � m(t) < t n � m(t). For the first factor in (A.5) we have by a standard

argument

(m�1
n � m�1)9(�n) ¼

ð1

0

Kd

m(x) � �n

hd

� �
dx

hd

� (m�1)9(�n) þ O
1

nhd

� �
¼ O(h2

d) þ O
1

nhd

� �
,

and as a consequence it follows from (A.4) and (A.5) that

Q9(º�) ¼ � (m�1
n � m�1) � m(t)

(m�1)9(m(t))
þ o(h2

d) þ o
1

nhd

� �
:

The assertion of Lemma 2.2 is now obtained from Lemma 2.1 and (A.4) – note that

(m�1) 0(m(t)) ¼ �m 0(t)=fm9(t)g3. h

Proof of Theorem 3.1. We only prove the first part of the theorem; the second assertion

follows by similar arguments. We use the decomposition

m̂m�1
I (t) ¼ 1

nhd

ð t

�1

Xn

i¼1

Kd

m̂m(i=n) � u

hd

� �
du ¼ m�1

n (t) þ ˜n(t), (A:6)

where m�1
n is defined in (2.3) and ˜n is given by

˜n(t) ¼ 1

nhd

Xn

i¼1

ð t

�1
Kd

m̂m(i=n) � u

hd

� �
� Kd

m(i=n) � u

hd

� �� �
du: (A:7)

For the latter term it follows that

˜n(t) ¼ ˜(1)
n (t) þ 1

2
˜(2)

n (t), (A:8)

where

˜(1)
n (t) ¼ 1

nh2
d

Xn

i¼1

ð t

�1
K9d

m(i=n) � u

hd

� �
m̂m

i

n

� �
� m

i

n

� �� �
du,

˜(2)
n (t) ¼ 1

nh3
d

Xn

i¼1

ð t

�1
K 0d

�i � u

hd

� �
m̂m

i

n

� �
� m

i

n

� �� �2

du,

with j�i � m(i=n)j , jm̂m(i=n) � m(i=n)j (i ¼ 1, . . . , n). A straightforward calculation shows

that
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˜(2)
n (t) ¼ 1

h2
d

���� 1

n

Xn

i¼1

K9d
�i � t

hd

� �
m̂m

i

n

� �
� m

i

n

� �� �2����
¼ 1

h2
d

����
ð1

0

K9d
m(x) � t

hd

� �
fm̂m(x) � m(x)g2 dx

���� � (1 þ o p(1)):

If we assume that the kernel K r has been appropriately modified near the boundaries (see

Müller 1985) it follows that this term is of order O(f1=nhr þ h4
rg=hd). This implies that

ffiffiffiffiffiffiffiffi
nhd

p
˜(2)

n (t) ¼ o p(1), (A:9)

and a combination of (A.6), (A.8) and (A.9) shows that the assertion of Theorem 3.1 can be

proved, establishing the weak convergence

ffiffiffiffiffiffiffiffi
nhd

p
˜(1)

n (t) þ k2(K r)h2
r

m 0 f þ 2m9 f 9

fm9

� �
(m�1(t))

� �
¼)
D

N (0, r2(t)): (A:10)

For this we use the decomposition

˜(1)
n (t) ¼ ˜(1:1)

n (t) þ ˜(1:2)
n (t)

� �
(1 þ o p(1))

with

˜(1:1)
n (t) ¼ �1

n2 hd hr

Xn

i, j¼1

Kd

m(i=n) � t

hd

� �
K r

X j � i=n

hr

� �
m(X j) � m(i=n)

f (i=n)

˜(1:2)
n (t) ¼ �1

n2 hd hr

Xn

i, j¼1

Kd

m(i=n) � t

hd

� �
K r

X j � i=n

hr

� �
� (X j)

� j

f (i=n)
:

For the first term we obtain

E[˜(1:1)
n (t)] ¼ � 1 þ o(1)

hr hd

ð1

0

ð1

0

Kd

m(x) � t

hd

� �
K r

y � x

hr

� �
f (y)

m(y) � m(x)

f (x)
dy dx

¼ �h2
rk2(K r)

ð1

0

1

hd

Kd

m(x) � t

hd

� �
m 0(x) þ 2m9(x) f 9(x)

f (x)

� �
dx � (1 þ o(1)) (A:11)

¼ �h2
rk2(K r)

m 0 f þ 2m9 f 9

fm9

� �
(m�1(t)) � (1 þ o(1)),

while the variance of ˜(1:1)
n (t) is given by
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var ˜(1:1)
n (t)

� �
¼ 1

n3 h2
d h2

r

var
Xn

i¼1

Kd

m(i=n) � t

hd

� �
K r

X j � i=n

hr

� �
m(X j) � m(i=n)

f (i=n)

 !

<
1

nh2
d h2

r

E

ð1

0

Kd

m(x) � t

hd

� �
K r

X j � x

hr

� �
m(X j) � m(x)

f (x)
dx

� �2
" #

(1 þ o(1))

¼ o
1

nhd

� �
:

This implies, using assumption (3.1), that

˜(1:1)
n (t) þ h2

rk2(K r)
m 0 f þ 2m9 f 9

fm9

� �
(m�1(t)) ¼ o p

1ffiffiffiffiffiffiffiffi
nhd

p
� �

,

and consequently (A.10) follows fromffiffiffiffiffiffiffiffi
nhd

p
˜(1:2)

n (t)¼)
D

N (0, r2(t)): (A:12)

For a proof of this relation we note that E[˜(1:2)
n (t)] ¼ 0 and calculate the variance

var(
ffiffiffiffiffiffiffiffi
nhd

p
˜(1:2)

n (t)) ¼ 1

n3 hd h2
r

Xn

j¼1

var
Xn

i¼1

� (X j)� j

f (i=n)
Kd

m(i=n) � t

hd

� �
K r

X j � i=n

hr

� � !

¼ 1

hd h2
r

ð1

0

� 2(x)

ð1

0

Kd

m(y) � t

hd

� �
K r

x � y

hr

� �
dy

f (y)

	 
2

f (x)dx � (1 þ o(1))

¼ 1

hd h2
r

ð1

0

Kd

m(z) � t

hd

� �ð1

0

Kd

m(y) � t

hd

� �
1

f (y) f (z)

3

ð1

0

� 2(x)K r

x � y

hr

� �
K r

x � z

hr

� �
f (x)dx dy dz � (1 þ o(1))

¼ � 2(m�1(t))

m9(m�1(t))2 f (m�1(t))

hd

hr

ð ð ð
Kd(w)Kd(v)K r(u)

3 K r

m�1(t þ hdv) � m�1(t þ hd w)

hr

þ u

� �
du dv dw � (1 þ o(1))

¼ � 2(m�1(t))

m9(m�1(t)) f (m�1(t))

ð ð ð
Kd w þ hr

hd

m9(m�1(t))(v� u)

� �

3 Kd(w)K r(u)K r(v)dw du dv � (1 þ o(1)), (A:13)

where we have applied the substitution v ! fm(m�1(t þ hd w) þ hr(v� u)) � tg=hd and the

last identity uses the relation
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lim
h r!0,hd!0

h r=hd!c

Kd

m(m�1(t þ hd w) þ hr(v� u)) � t

hd

� �
¼ Kd(w þ cm9(m�1(t))(v� u)):

This proves the representation of the asymptotic variance in (3.3). For a proof of the

asymptotic normality we calculate by similar arguments

Xn

j¼1

E
� (X j)

n3=2 h
1=2
d hr

� j

Xn

i¼1

Kd

m(i=n) � t

hd

� �
K r

X j � i=n

hr

� �
1

f (i=n)

( )4
2
4

3
5

¼ E[�4
1]

nh2
d h4

r

ð Y4

j¼1

ð
Kd

m(xj) � t

hd

� �
K r

x � xj

hr

� �
dxj

f (xj)

( )
� 4(x)dx � (1 þ o(1))

¼ � 4(m�1(t))E[�4
1]

nhd

(m�1)9(t)

f f (m�1(t))g4

ð ð Y4

j¼2

ð
Kd ~xx þ hr

hd

m9(m�1(t))(yj � y1)

� �
K r(yj)dyj

( )

3 Kd(~xx)K r(y1)dy1 d~xx � (1 þ o(1))

¼ O
1

nhd

� �
¼ o(1),

and the asymptotic normality in (A.12) follows from the central limit theorem of Lyapunov.

h

Proof of Theorem 3.2. We only prove the first part of the theorem; the second assertion

follows by exactly the same arguments. From Lemma A.1 we obtain the Taylor expansion

H�1
2 (t) � H�1

1 (t) ¼ Q(1) � Q(0) ¼ Q9(0) þ 1

2
Q 0(º�)

for some º� 2 [0, 1] (see Serfling 1980), which will now be applied for the functions

H2 ¼ m̂m�1
I , H1 ¼ m�1

n . This gives for the estimator m̂mI and the quantity mn at the point t the

representation

m̂mI (t) � mn(t) ¼ An þ
1

2
Bn, (A:14)

where

An ¼ � m̂m�1
I � m�1

n

(m�1
n )9

� mn(t),

Bn ¼ 2(m̂m�1
I � m�1

n )(m̂m�1
I � m�1

n )9

f(m�1
n þ º�(m̂m�1

I � m�1
n ))9g2

� m�1
n þ º�(m̂m�1

I � m�1
n )

� ��1
(t)

� (m̂m�1
I � m�1

n )2(m�1
n þ º�(m̂m�1

I � m�1
n )) 0

f(m̂m�1
I þ º�(m̂m�1

I � m�1
n ))9g3

� (m�1
n þ º�(m̂m�1

I � m�1
n ))�1(t):
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At the end of this proof we will show the estimates

An ¼ � m̂m�1
I � m�1

n

(m�1)9
� m(t) þ o p

1ffiffiffiffiffiffiffiffi
nhd

p
� �

, (A:15)

Bn ¼ o p

1ffiffiffiffiffiffiffiffi
nhd

p
� �

, (A:16)

then the first assertion of Theorem 3.2 can be obtained as follows. From (A.15), (A.16) and

(A.14) we have

ffiffiffiffiffiffiffiffi
nhd

p
m̂mI (t) � mn(t) � k2(K r)h2

r

m 0 f þ 2m9 f 9

f

� �
(t)

� �

¼ �
ffiffiffiffiffiffiffiffi
nhd

p (m̂m�1
I � m�1

n ) � m(t) þ k2(K r)h2
r (m 0 f þ 2m9 f 9)= fð Þ(t) � (m�1)9 � m(t)

(m�1)9 � m(t)
þ o p(1)

¼ �m9(t)
ffiffiffiffiffiffiffiffi
nhd

p
(m̂m�1

I � m�1
n ) � m(t) þ k2(K r)h2

r

m 0 f þ 2m9 f 9

m9 f

� �
(t)

� �
þ o p(1)

¼)
D

N (0, s2(t)),

where s2(t) is defined in (3.4) and we have used the first part of Theorem 3.1 in the last step.

For a proof of the estimate (A.15) we consider the difference

Dn ¼ (m̂m�1
I � m�1

n ) � mn(t) � (m̂m�1
I � m�1

n ) � m(t) (A:17)

¼ (m̂m�1
I � m�1

n )9(�n)(mn(t) � m(t)),

where j�n � m(t)j < jmn(t) � m(t)j. The first factor can be estimated as follows (recall the

definition of ˜n in (A.7)):

˜9n(�n) ¼ (m̂m�1
I � m�1

n )9(�n) ¼ 1

nhd

Xn

i¼1

Kd

m̂m(i=n) � �n

hd

� �
� Kd

m(i=n) � �n

hd

� �� �

¼ 1

nh2
d

Xn

i¼1

K9d
�i,n � �n

hd

� �
m̂m

i

n

� �
� m

i

n

� �� �
,

where j�i,n � m(i=n)j < jm̂m(i=n) � m(i=n)j ¼ O(Rn) almost surely, with

Rn ¼ log h�1
r

nhr

� �1=2

;

see Mack and Silverman (1982, Theorem B). This yields
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˜9n(�n) ¼ 1

nh2
d

Xn

i¼1

K9d
m(i=n) � �n

hd

� �
m̂m

i

n

� �
� m

i

n

� �� �
þ O

R2
n

h3
d

 !
a:s:

¼ 1

h2
d

ð
K9d

m(x) � m(t)

hd

� �
fm̂m(x) � m(x)gdx þ O Rn þ

R2
n

h3
d

þ 1

nhd

 !
a:s:

¼ O
Rn

hd

þ R2
n

h3
d

þ 1

nhd

 !
a:s:

As a consequence, we obtain from (A.17) and Lemma 2.2,

Dn ¼ O Rn hd þ
R2

n

hd

þ hd

n

� �
¼ o

1ffiffiffiffiffiffiffiffi
nhd

p
� �

a:s:

The estimate (A.15) now follows from the fact that (m�1
n )9(t) ¼ (m�1)9(t) þ o(1); (see the

proof of Lemma 2.1).

The second estimate (A.16) is proved similarly and we only indicate the main steps. First,

we decompose Bn ¼ 2Bn1 � Bn2, where

Bn1 ¼ (m̂m�1
I � m�1

n )(m̂m�1
I � m�1

n )9(tn)

fm�1
n þ º�(m̂m�1

I � m�1
n )g2(tn)

,

Bn2 ¼ (m̂m�1
I � m�1

n )2(m�1
n þ º�(m̂m�1

I � m�1
n )) 0(tn)

fm̂m�1
I þ º�(m̂m�1

I � m�1
n )g3(tn)

and tn ¼ (m�1
n þ º�(m̂m�1

I � m�1
n ))�1(t). Note that tn m(t), (m�1

n þ º�(m̂m�1
I � m�1

n ))!P m�1. In

view of Theorem 3.1, we therefore obtain from (3.2),

Bn1 ¼ O p

1ffiffiffiffiffiffiffiffi
nhd

p � Rn

hd

þ R2
n

h3
d

 ! !
¼ o p

1ffiffiffiffiffiffiffiffi
nhd

p
� �

,

Bn2 ¼ O p

1

nhd

� �
,

which proves (A.16). h
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