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We show that if the generalized variance of an infinitely divisible natural exponential family F = F(u)
in a d-dimensional linear space is of the form det K (@) = exp(67b + c), then there exists k in
{0, 1, ..., d} such that F is a product of k univariate Poisson and (d — k)-variate Gaussian families.
In proving this fact, we use a suitable representation of the generalized variance as a Laplace
transform and the result, due to Jorgens, Calabi and Pogorelov, that any strictly convex smooth
function f defined on the whole of R? such that det (@) is a positive constant must be a quadratic
form.
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1. Introduction

It is well known that natural exponential families (NEFs) are characterized by their variance
functions. In the past ten years, several authors have investigated the so-called generalized
variance, that is, the determinant of the covariance matrix of an NEF F on R? (see, for
example, Kokonendji and Seshadri 1996; Hassairi 1999; Kokonendji and Pommeret 2001).
While for d = 2 the variance function characterizes F, the generalized variance does not
(see Example 1 below), as is the case on the real line, where the generalized variance
coincides with the NEF variance. Letac (1989) and Koudou and Pommeret (2002) point out
some particularities concerning the basic NEFs, which are the Gaussian and Poisson
families. The notion of joint multidimensional Poisson—Gaussian NEFs was introduced by
Letac (1989), who characterized these families through their affine variance function.
Koudou and Pommeret (2002) presented another characterization of Poisson—Gaussian NEFs
in terms of the stability of their finite convolution product.

The aim of this paper is to show that if an NEF F is generated by an infinitely divisible
measure 4 on R? such that its generalized variance is det K #(0) = exp(6™b) for some
b € R?, then there exists k € {0, 1, ..., d} such that F = F(u) is a product of k univariate
Poisson and (d — k)-variate Gaussian NEFs. The present study is motivated by the
following question: under what circumstances does generalized variance characterize an
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NEF? This is an ambitious project. The tool for studying this problem has hitherto been a
suitable representation of the generalized variance as a Laplace transform.

This paper is organized as follows. In Section 2 we recall some of the technical material
that we need for this new characterization of Poisson—Gaussian NEFs. In Section 3 we state
the main result and make some comments on it. Section 4 is devoted to its proof.

2. Preliminaries

The NEFs represent a very important class of distributions in both probability and statistical
theory (Kotz et al. 2000, Chapter 54).

2.1. NEFs and generalized variance

Let M(RY) be the set of o-finite positive measures u on R not concentrated on an affine
subspace of RY, with the Laplace transform of u given by

L,,(0) = JW exp(87x)(dx)

and such that the interior (u) of the domain {# € RY; L,(0) < oo} is non-empty. Defining
the cumulant function as K,(0) = log L,(0), the NEF generated by u € M(R?), denoted by
F = F(u), is the family of probability measures {Pg,(dx) = exp[@Tx — K,(0)]u(dx);
0 c O(w)}. If X is a random vector distributed according to Py, then Eg(X) = 0K,(0)/
90 = K,(0) and varg(X) = 0*K,(0)/00T06 = K ;(0). The function m(f) = K () is a one-
to-one transformation from ©(u) onto My = K;(O(u)) and thus m = m(@) provides an
alternative parametrization of the family F = {P(m, F); m € M}, called the mean
parametrization. Note that M depends only on F, and not on the choice of the generating
measure u of F. The variance matrix of P(m, F') can be written as a function of the mean
parameter m, Vp(m) = K (@), called the variance function of F. Together with the mean
domain Mg, V characterizes F within the class of all NEFs. This leads Morris (1982) to
establish the first classification of NEFs with quadratic variance function (QVF) on R,
containing six basic families, as normal and Poisson, up to affine transformation and
convolution power. The multivariate concept of QVF was considered by Letac (1989):
Vr(m) = A(m, m) + B(m) + C, where A(m, m), B(m) and C are real symmetric (d X d)
matrices of respectively bilinear, linear and constant elements in m € My C R9. Three
special cases are the affine variance functions (AVF) with Vp(m) = B(m) + C (Letac 1989),
the homogeneous QVF with Vy(m) = A(m, m) (Casalis 1991), and the simple QVF with
Vir(m) = amm’ + B(m) + C, where a € R (Casalis 1996); see Consonni et al. (2004) and
Seshadri (1997) for some properties.
The generalized variance

det Vp(m) = det K ;/(0) (1)
of an NEF F was considered by Kokonendji and Seshadri (1996). Hassairi (1999) showed the
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following: if u is an infinitely divisible measure generating F, then there exists a positive
measure p(u) on R? such that

det Ki(0) = Ly(0),  for all 6 € O(u). )

In general, the generalized variance does not characterize the NEF.

Example 1. Let F; be the NEF on R? generated by u(dx, dy) = 10¢,1(dx, dy) +

%e‘xﬂ&(x)dx ® O0g(dy). Its variance function is given by
mi(1+m)(1 —my)™' —mym

V =
A (m) —mymy my(1 —my) |’

and M, = (0, o) X (0, 1). Let F, be the NEF on R? defined as the product of independent
gamma and Poisson on the real line, with variance function Vp,(m) = diag(m3, my) on
Mp, = (0, 00)*. So we have det Vi, (m) = det Vi, (m) = mim, with M, # Mg, but also F)
and [, are distinct.

We conclude this subsection by recalling the notion of type of NEF (see Kokonendji and
Seshadri 1996, Definition 3.1) and by giving (without proof) the effect of determinant on
type of NEF.

Definition 1. Let u € M(R?) and let
A = {p>0: Ju, € MR : L, (0) = [L0)]"}.

Two NEFs F| and F, are said to be of the same type if there exist u € M(R?), p € A(u)
and an affinity ¢ in R? such that Fy = F(u) and F» = F(@), where fi = ¢(u ).

Proposition 1. Let u, ji be in M(R?), F = F(u), F = F(ji) and m € M.

() If there exists (d, e) € R? X R such that ji(dx) = exp{d"x + e}u(dx), then F=F
with O(i) = O(u) + d. Moreover, det Vg(m) = detVy(m) for m=m € Mp.

(1) If = @yu is the image measure of u by @(x) = Ax-+b, where A is a non-
degenerate matrix (d X d) and b € RY, then det Vi(m) = (det A)*det Ve(m) for
m=Am-+b € p(Mp).

(iii) If @ =u, is the pth power measure of u for pc A(u), then detVz(m)=
p?detVe(m) for m = pm € pMp.

2.2. Reducible NEFs

Let X be a random vector distributed according to an NEF F on RY. If X can be
partitioned into two independent subvectors X, and Xp) of dimensions d; and
dy = d — di, respectively, each following an NEF distribution, then the family F is called
reducible (e.g. Bar-Lev et al. 1994). The family is said to be irreducible if it is not
reducible. More generally, we have:
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Definition 2. An NEF F on R? is said to be r-reducible if there exists an integer
r=1,...,d such that F is the product of r independent irreducible NEFs F,, ..., F,
defined on R, ... R withd =d| + ... + d,. In this case we write F = Fy ® --- ®F,,
and u = uy & -+ ®u, for their corresponding generator.

It follows that K,(@) of an r-reducible F = F(u) can be written as K,(0)=
K (00) + ... + Ky (0) with 0= (0", -, 0)" € Ou) = O1(u1) X -+ X Op(ty),
and where 0(;), K,, and ©;(u;) denote respectively the canonical parameter, the cumulant
function and the canonical parameter space of the NEF F; = F(uy), u; € M(R%) for
k=1, ..., r. Thus, we have the trivial result:

Proposition 2. Let F(u) be an NEF generated by u € M(R?). If F(u) is r-reducible with

U= & - ®u, (up to affinity), where u; € MR for k=1,...,r then
det K;;(0) = det K}, (01)) X --- X det K (0,), for all 0 = (0", ..., 07" € Ou).

What about the converse of Proposition 2? Reasonably, we may consider the situation
where » =d and each irreducible u; € M(R) is infinitely divisible. The assumption of
infinite divisibility allows to use (2) as necessary and sufficient condition for each
component .

2.3. Poisson—Gaussian NEFs

Let (e, ..., ;) be the canonical basis of R?. A random vector X on R? is said to be a
Poisson—Gaussian vector of order k€ {0,1,...,d}, written X~ PGy, if X=
Pie; + ...+ Prey + Z where Py, ..., Py, Z are independent random variables such that

the P; are Poisson, and Z is a Gaussian variable in RY~* with given covariance matrix. Any
PGy family is the set of PGy distributions up to affine transformation. For £ = 0 we have
the Gaussian distribution on RY, and for k = d we have the (pure) Poisson on R?. We
recall also the following Letac (1989) characterization: an NEF F on R? has an AVF if and

only if, up to an affine transformation, there exists k€ {0, 1, ..., d} such that for all
m=(m, ..., mg) € Mp = (0; 00)¥ X R¥* the variance function is the d X d diagonal
matrix

VF(m):diag(mla cee, My, 19 ) l) (3)

This NEF is PG with generating measure

1N~ 2
1 exXp( =22 im g1 X;
fu(dx) = Z _'(3j(d'x19 ) dxk) ((2_77:)(01—1()/2 ) (dxk+1: DR dxd)a

JjeNFk J:

where 0, is the Dirac mass at j with @(x) = R? and K,(0) = Zf‘:l el + %Zfl:kﬂ 9,2.. Then
the generalized variance of u is

det K/(0) = exp(6; + ... + 0;) = exp(0"1y), 4)
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where 1; is the vector in R? such that the first k£ components are 1 and the rest 0. From (1)
and (3), expression (4) can be written as det Vp(m) = m; - -- my. We close this subsection by
observing that each of the d + 1 basic families of PGy in RY is infinitely divisible and d-
reducible (up to affinity).

3. Result and comments
Let us first state our main result. We present its proof in Section 4.

Theorem 3. Let F = F(u) be an infinitely divisible NEF on R?. Assume that:

(i) ©(u) =R, and
(i) there exist b € RY and ¢ € R such that

det K (0) = exp(0"b + c), (5)
for all 6.
Then there exists k € {0, 1, ..., d} such that F is of Poisson—Gaussian PGy type.
Before commenting on this result, let us present the following consequences. For n > d
and (xi, ..., X,) € (RY)", let

det .
@+D 5 x X X

Ud+1(X1, ) Xn) =

Let 4 € M(RY) be a probability measure with ©(«) = R?. Consider the two probabilities in
(R P, =u XX u and P, = BU? +1Pn, where [ is a normalization constant. Denote
by O, and Q, the respective images of P, and P, by the map (x;, ..., X,) — X| + ... + X,.
A reformulation of the Kokonendji and Seshadri (1996, Theorem 2.2) result gives
LQM(B) = Lg,(0)det K ;(0)/det K ;(0). Then O, and 0, have, up to translation, the same
distribution (obviously Poisson—Gaussian) if and only if x is Poisson—Gaussian. Also, under
condition (5) with b# 0 (< k # 0), we can show that the maximum likelihood and
uniformly minimum variance and unbiased estimators of det K ;(8) coincide (Kokonendji and
Pommeret 2001).

Remark 1. The hypothesis ©(u) = R? is crucial for many reasons. One of them is that it
does not follow from the fact that the function 0 — det K,(0) is analytic in RY that
0 — K(0) coincides with a positive definite analytic function in R?; this would imply
O(u) = R? by the principle of maximal analyticity.

Remark 2. Equation (5) in K, is of the Monge—Ampere type (see Gutiérrez 2001) which is
well known in the area of differential geometry. If b = 0 in the right-hand side of (5) we have
the basic Monge—Ampére equation solved using the Jorgens—Calabi—Pogorelov (JCP) result:
any strictly convex smooth function f in RY such that det /(@) = 1 must be a quadratic
form. The latter result was proved by Jorgens (1954) for d = 2 (for a comprehensive version,
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see also Kokonendji 1995), by Calabi (1958) for d = 3, 4, 5, and by Pogorelov (1972) for
d = 6. A shorter and more analytical proof is given in Cheng and Yau (1986). Recently,
Caffarelli and Li (2004) extended this characterization to positive periodic functions in the
right-hand side of (5).

Remark 3. The characterization of Gaussian NEFs given by Kokonendji and Seshadri (1996,
Theorem 3.5), making direct use of the JCP result without the assumption of infinite
divisibility as in Theorem 3, where we consider b = 0 in the right-hand side of (5) and then
k=0.

It is a challenging problem to show that there exists a non-quadratic cumulant function
K, such that det K/(6) = 1 on ©(u) # R?. The following proof of Theorem 3 relies on the
JCP result through equation (2): the positive measure p(u) on R? is associated with det K.

4. Proof of Theorem 3

We first recall the following notation and then state the Laplace formula for determinant
calculations (see Muir 1960). If A = (a;)i<;j<a is @ d X d matrix and § is a subset of
{1,2,...,d} with §¢={1,2,...,d}\S, we denote by Ag the matrix (a;) jjesxs With
det A@ =1.

Proposition 4. Let A and B be two d X d matrices. Then

det(A+B)= ) detAgdetBs.
Sc{1,2,....d}

We also need the following two propositions. The first is an elementary result, so its
proof is omitted. The second is due to Bar-Lev et al. (1994, Lemma 4.1).

Proposition 5. Let b € RY and let uy, ..., uy be k independent positive measures in R? such
that py * - % uy = Op. Then there exist by, ...,by in R? such that u; = Oy, and
b=>b; +...+ by

Proposition 6. Let f : R — R be a C> map. Then f is an affine polynomial if and only if
PL(0))00° =0, for i=1,...,d

We can now prove Theorem 3. Since u is infinitely divisible, there exist a symmetric
non-negative definite d X d matrix = with rank » < d and a positive measure v on R such
that

Ku0) =2+ J xx' exp(6'x)v(dx) (6)
Rd

(Gikhman and Skorohod 1973: 342). We let k=d —r. For S={i, ip, ..., i;} with
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1<i <iy<...<i;<d,anon-empty subset of {1, 2, ..., d}, and 75 : RY — R’ the map

defined by t5(x) = (x;,, Xiy, - - -, X;,)T, we define by vy the image measure of
1
Hi(dxy, ..., dx)) = ﬁ(det[fs(xl) e Ts(x)DPv(Ax) - v(dxg)
by ¢;: (R) — R (xq,...,X;) — X; + ...+ x;. Then the measure p(u) in (2) can be
expressed by using Proposition 4 and (6) as
pu) = (detA)do+ D (detAs)vs, (M
@£Sc{12,...d}
where A is the diagonal representation matrix of X in an orthonormal basis e = (e, - - -, ;)

of R? (Hassairi 1999).

Without loss of generality, we assume ¢ =0 in (5); so det K,,(8) = exp(6'b). From (2)
we easily obtain p(u) =0Jp. If b=0 then we have k=0, which is the JCP result.
Henceforth, we assume b # 0 and therefore & # 0. Thus, the expression (7) implies

det(A) =0 with A = diag(0, ..., 0, A4.1, ..., A4), where A; > 0; and for all non-empty
subsets S of {1, 2, ..., d} there exist real numbers ag = 0 such that
(detAsc) Vs = H li Vs = aséb. (8)
S

The following lemma makes precise the measure v of (8).

Lemma 7. Let v satisfy condition (8) and So=1{1, ..., k}. Let Jo={ie{l,...,d};
X2v(dx) # 0, X = x1€] + ... + xqeq}. Then Je = Sy and, for all i € Sy, x?v(dx) = B;0c,e,(dx),
where 3; > 0 and c; # 0.

Proof. We proceed in three steps.
Step 1. J. 2 Sy. Indeed, suppose that there exists i € Sy such that i ¢ J.. According to
(6) we obtain
0*K ,.(0)
067

= K (0)(e;, e;) = J x% exp(0"x)v(dx) = 0,
Rd

which implies that K ;(0) is not positive definite. This leads to a contradiction.

Step 2. There exist k linearly independent vectors (b;);cs, of R? such that b = > ies,bi
and, for all i € Sy, we have x?v(dx) = f;0p,(dx) with B; > 0 and 75,(b;) = b;e;. Indeed, let
Dy, be the set of k X k diagonal matrices. If we denote

HP(dx,, ..., dxy) = Ui, )5y xnene (K15 -+ X)) Hg(dxy, ..., dX)

= H xtz'i”{xieR";xU:O,VjeSo\{i}}(xi)V(dxi)

€Sy

and H (kz) =H,—H g{l), from step 1 we have x?v(dx) # 0, for all i € Sy and hence there exists



378 C.C. Kokonendji and A. Masmoudi

aj; > 0 such that (pk(H(kl)) = a,0p. Since H(kl) is the product of k independent positive
measures, then (pk(H(l)) is a convolution product of & independent positive measures.
According to Proposition 5 there exist (b;)ics, in R? such that x? V(dX) ﬁ 6b (dx) and
b= ZZES b;. Note that (b;);cs, is linearly independent and is an atom of H Y such that
[T5,(b1) - - - T5,(bx)] € Dy. Thus we obtain the last part of step 2.

Step 3. Je = So and b; = bye;, for all i € ;. Otherwise we have J. = {1, ..., k, if:1,
..., ir}, where [ = k+ 1. Similarly to step 2, there also exists (b;,,,, ..., b;,) such that
xﬁv(dx) Bjop,(dx) for all j€ Je and b=}, , b, According to step 2, b=}, b
implies 0 = Zle Jo\s,Pi and leads to a contradlctlon since (b;);c,, are linearly independent.
Therefore Je = So. Since x3v(dx) = 0 for all j € {k+ 1, ..., d} then for all i € Sy we have

v({b }) = 0. But (b; ),esn are atoms of v, so for all j € {k +1,...,d} we have bf] =0.
F1na11y, using 7s,(b;) = b;e; from step 2, we obtain b; = bje; and choose b;; = ¢;. Hence,
the lemma is deduced from these steps. O

Introducing v from Lemma 7 in (6), we obtain %K, (6) /602 Biexp(ciOlics, + Ailligs,.
Let B(0) = g, ¢i *Biexp(cif;) + Zzlesll%z In view of Proposition 6 and the fact that
(K, — B)(0)/80 =0,fori=1,...,d, (K, — B)(0) is an affine function on RY and then

Ku(0) =" ¢;iexp(cif) + Z 226> +u"0 + a,

ieS, zeS‘

for (u, @) € R? X R. Hence F(u) is of PGy type. This concludes the proof of Theorem 3.

Acknowledgements

We sincerely thank the Editor, an Associate Editor and, in particular, the anonymous referee
for their valuable comments. We are grateful to Professor Gaston M. N’Guérékata for his
attentive reading of an earlier draft of this paper.

References

Bar-Lev, S., Bschouty, D., Enis, P, Letac, G., Lu, I. and Richard, D. (1994) The diagonal multivariate
natural exponential families and their classification. J. Theoret. Probab., 7, 883-929.

Caffarelli, L. and Li, Y.Y. (2004) A Liouville theorem for solutions of the Monge-Ampére equation
with periodic data. Ann. Inst. H. Poincaré Anal. Non Linéaire, 21, 97—120.

Calabi, E. (1958) Improper affine hyperspheres of convex type and a generalization of a theorem by
K. Jorgens. Michigan Math. J., 5, 105—126.

Casalis, M. (1991) Les familles exponentielles a variance quadratique homogene sont des lois de
Wishart sur un cone symétrique. C.R. Acad. Sci. Paris Seér. I, 312, 537-540.

Casalis, M. (1996) The 2d + 4 simple quadratic natural exponential families on RY. Ann. Statist., 24,
1828-1854.

Cheng, S.Y. and Yau, S.T. (1986) Complete affine hypersurfaces. I. The completeness of affine
metrics. Comm. Pure Appl. Math., 39, 839—866.



Characterization of Poisson—Gaussian families by generalized variance 379

Consonni, G., Veronese, P. and Gutiérrez-Pefia, E. (2004) Reference priors for exponential families
with simple quadratic variance function. J. Multivariate Anal., 88, 335-364.

Gikhman, LI. and Skorohod, A.V. (1973) The Theory of Stochastic Processes II. New York: Springer-
Verlag.

Gutiérrez, C.E. (2001) The Monge-Ampére Equation. Boston: Birkhduser.

Hassairi, A. (1999) Generalized variance and exponential families. Ann. Statist., 27, 374-385.

Jorgens, K. (1954) Uber die Losungen der Differentialgleichung rt — s> = 1. Math. Ann., 127,
130-134.

Kokonendji, C.C. (1995) Une caractérisation des vecteurs gaussiens n-dimensionnels. LAMIFA
Technical Report No. 95/03, University of Amiens.

Kokonendji, C.C. and Pommeret, D. (2001) Estimateurs de la variance généralisée pour des familles
exponentielles non gaussiennes. C.R. Acad. Sci. Paris Ser. I, 332, 351-356.

Kokonendji, C.C. and Seshadri, V. (1996) On the determinant of the second derivative of a Laplace
transform. Ann. Statist., 24, 1813—-1827.

Kotz, S., Balakrishnan, N. and Johnson, N.L. (2000) Continuous Multivariate Distributions, Vol. 1:
Models and Applications, 2nd edn. New York: Wiley.

Koudou, A.E. and Pommeret, D. (2002) A characterization of Poisson-Gaussian families by
convolution-stability. J. Multivariate Anal., 81, 120—127.

Letac, G. (1989) Le probléeme de la classification des familles exponentielles naturelles sur R ayant
une fonction variance quadratique. In H. Heyer (ed.), Probability Measures on Groups IX, Lecture
Notes in Math. 1306, pp. 194-215. Berlin: Springer-Verlag.

Morris, C.N. (1982) Natural exponential families with quadratic variance functions. Ann. Statist., 10,
65-380.

Muir, T. (1960) A Treatise on the Theory of Determinants. New York: Dover.

Pogorelov, A.V. (1972) On the improper convex affine hyperspheres. Geom. Dedicata, 1, 33—46.

Seshadri, V. (1997) A property of natural exponential families in R” with simple quadratic variance
function. J. Statist. Plann. Inference, 63, 351-361.

Received November 2004 and revised June 2005



	1.&X;Introduction
	2.&X;Preliminaries
	2.1.&Y;NEFs and generalized vari—ance

	Equation 1
	Equation 2
	2.2.&Y;Reducible NEFs
	2.3.&Y;Poisson

	Equation 3
	Equation 4
	3.&X;Result and comments
	Equation 5
	4.&X;Proof of Theorem 3
	Equation 6
	Equation 7
	Equation 8
	Acknowledgements
	References
	mkr1
	mkr2
	mkr3
	mkr4
	mkr5
	mkr6
	mkr7
	mkr8
	mkr9
	mkr10
	mkr11
	mkr12
	mkr13
	mkr14
	mkr15
	mkr16
	mkr17
	mkr18
	mkr19
	mkr20
	mkr21

