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We show that if the generalized variance of an infinitely divisible natural exponential family F ¼ F(�)

in a d-dimensional linear space is of the form det K 0�(Ł) ¼ exp(ŁTbþ c), then there exists k in

f0, 1, . . . , dg such that F is a product of k univariate Poisson and (d � k)-variate Gaussian families.

In proving this fact, we use a suitable representation of the generalized variance as a Laplace

transform and the result, due to Jörgens, Calabi and Pogorelov, that any strictly convex smooth

function f defined on the whole of Rd such that det f 0(Ł) is a positive constant must be a quadratic

form.
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1. Introduction

It is well known that natural exponential families (NEFs) are characterized by their variance

functions. In the past ten years, several authors have investigated the so-called generalized

variance, that is, the determinant of the covariance matrix of an NEF F on Rd (see, for

example, Kokonendji and Seshadri 1996; Hassairi 1999; Kokonendji and Pommeret 2001).

While for d > 2 the variance function characterizes F, the generalized variance does not

(see Example 1 below), as is the case on the real line, where the generalized variance

coincides with the NEF variance. Letac (1989) and Koudou and Pommeret (2002) point out

some particularities concerning the basic NEFs, which are the Gaussian and Poisson

families. The notion of joint multidimensional Poisson–Gaussian NEFs was introduced by

Letac (1989), who characterized these families through their affine variance function.

Koudou and Pommeret (2002) presented another characterization of Poisson–Gaussian NEFs

in terms of the stability of their finite convolution product.

The aim of this paper is to show that if an NEF F is generated by an infinitely divisible

measure � on Rd such that its generalized variance is det K 0�(Ł) ¼ exp(ŁTb) for some

b 2 Rd , then there exists k 2 f0, 1, . . . , dg such that F ¼ F(�) is a product of k univariate

Poisson and (d � k)-variate Gaussian NEFs. The present study is motivated by the

following question: under what circumstances does generalized variance characterize an
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NEF? This is an ambitious project. The tool for studying this problem has hitherto been a

suitable representation of the generalized variance as a Laplace transform.

This paper is organized as follows. In Section 2 we recall some of the technical material

that we need for this new characterization of Poisson–Gaussian NEFs. In Section 3 we state

the main result and make some comments on it. Section 4 is devoted to its proof.

2. Preliminaries

The NEFs represent a very important class of distributions in both probability and statistical

theory (Kotz et al. 2000, Chapter 54).

2.1. NEFs and generalized variance

Let M(Rd) be the set of � -finite positive measures � on Rd not concentrated on an affine

subspace of Rd , with the Laplace transform of � given by

L�(Ł) ¼
ð
Rd

exp(ŁTx)�(dx)

and such that the interior ¨(�) of the domain fŁ 2 Rd ; L�(Ł) , 1g is non-empty. Defining

the cumulant function as K�(Ł) ¼ log L�(Ł), the NEF generated by � 2 M(Rd), denoted by

F ¼ F(�), is the family of probability measures fPŁ,�(dx) ¼ exp[ŁTx� K�(Ł)]�(dx);

Ł 2 ¨(�)g. If X is a random vector distributed according to PŁ,�, then EŁ(X) ¼ @K�(Ł)=
@Ł ¼ K9�(Ł) and varŁ(X) ¼ @2 K�(Ł)=@ŁT@Ł ¼ K 0�(Ł). The function m(Ł) ¼ K9�(Ł) is a one-

to-one transformation from ¨(�) onto M F ¼ K9�(¨(�)) and thus m ¼ m(Ł) provides an

alternative parametrization of the family F ¼ fP(m, F) ; m 2 M Fg, called the mean

parametrization. Note that M F depends only on F, and not on the choice of the generating

measure � of F. The variance matrix of P(m, F) can be written as a function of the mean

parameter m, VF(m) ¼ K 0�(Ł), called the variance function of F. Together with the mean

domain M F , VF characterizes F within the class of all NEFs. This leads Morris (1982) to

establish the first classification of NEFs with quadratic variance function (QVF) on R,

containing six basic families, as normal and Poisson, up to affine transformation and

convolution power. The multivariate concept of QVF was considered by Letac (1989):

VF(m) ¼ A(m, m) þ B(m) þ C, where A(m, m), B(m) and C are real symmetric (d 3 d)

matrices of respectively bilinear, linear and constant elements in m 2 M F � Rd . Three

special cases are the affine variance functions (AVF) with VF(m) ¼ B(m) þ C (Letac 1989),

the homogeneous QVF with VF(m) ¼ A(m, m) (Casalis 1991), and the simple QVF with

VF(m) ¼ ÆmmT þ B(m) þ C, where Æ 2 R (Casalis 1996); see Consonni et al. (2004) and

Seshadri (1997) for some properties.

The generalized variance

detVF(m) ¼ det K 0�(Ł) (1)

of an NEF F was considered by Kokonendji and Seshadri (1996). Hassairi (1999) showed the
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following: if � is an infinitely divisible measure generating F, then there exists a positive

measure r(�) on Rd such that

det K 0�(Ł) ¼ Lr(�)(Ł), for all Ł 2 ¨(�): (2)

In general, the generalized variance does not characterize the NEF.

Example 1. Let F1 be the NEF on R2 generated by �1(dx, dy) ¼ 1
2
�(0,1)(dx, dy) þ

1
2
e�xIRþ (x)dx � �0(dy). Its variance function is given by

VF1
(m) ¼ m2

1(1 þ m2)(1 � m2)�1 �m1 m2

�m1 m2 m2(1 � m2)

� �
,

and M F1
¼ (0, 1) 3 (0, 1). Let F2 be the NEF on R2 defined as the product of independent

gamma and Poisson on the real line, with variance function VF2
(m) ¼ diag(m2

1, m2) on

M F2
¼ (0, 1)2. So we have detVF1

(m) ¼ detVF2
(m) ¼ m2

1 m2 with M F1
6¼ M F2

, but also F1

and F2 are distinct.

We conclude this subsection by recalling the notion of type of NEF (see Kokonendji and

Seshadri 1996, Definition 3.1) and by giving (without proof) the effect of determinant on

type of NEF.

Definition 1. Let � 2 M(Rd) and let

¸(�) ¼ fp . 0; 9� p 2 M(Rd) : L� p
(Ł) ¼ [L�(Ł)] pg:

Two NEFs F1 and F2 are said to be of the same type if there exist � 2 M(Rd), p 2 ¸(�)

and an affinity j in Rd such that F1 ¼ F(�) and F2 ¼ F( ~��), where ~�� ¼ j(� p).

Proposition 1. Let �, ~�� be in M(Rd), F ¼ F(�), ~FF ¼ F( ~��) and m 2 M F .

(i) If there exists (d, e) 2 Rd 3 R such that ~��(dx) ¼ expfdTxþ eg�(dx), then F ¼ ~FF
with ¨( ~��) ¼ ¨(�) þ d. Moreover, detV~FF( ~mm) ¼ detVF(m) for ~mm ¼ m 2 M F.

(ii) If ~�� ¼ j�� is the image measure of � by j(x) ¼ Axþ b, where A is a non-

degenerate matrix (d 3 d) and b 2 Rd, then detV ~FF( ~mm) ¼ (detA)2detVF(m) for

~mm ¼ Amþ b 2 j(M F).

(iii) If ~�� ¼ � p is the pth power measure of � for p 2 ¸(�), then detV~FF( ~mm) ¼
pd detVF(m) for ~mm ¼ pm 2 pM F.

2.2. Reducible NEFs

Let X be a random vector distributed according to an NEF F on Rd . If X can be

partitioned into two independent subvectors X(1) and X(2) of dimensions d1 and

d2 ¼ d � d1, respectively, each following an NEF distribution, then the family F is called

reducible (e.g. Bar-Lev et al. 1994). The family is said to be irreducible if it is not

reducible. More generally, we have:
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Definition 2. An NEF F on Rd is said to be r-reducible if there exists an integer

r ¼ 1, . . . , d such that F is the product of r independent irreducible NEFs F1, . . . , Fr

defined on Rd1 , . . . , Rd r with d ¼ d1 þ . . . þ d r. In this case we write F ¼ F1 �� � � � �� Fr,

and � ¼ �1 �� � � � �� �r for their corresponding generator.

It follows that K�(Ł) of an r-reducible F ¼ F(�) can be written as K�(Ł) ¼
K�1

(Ł(1)) þ . . . þ K� r
(Ł(r)) with Ł ¼ (ŁT

(1), � � �, ŁT
(r))

T 2 ¨(�) ¼ ¨1(�1) 3 � � � 3 ¨r(�r),

and where Ł(k), K� k
and ¨k(�k) denote respectively the canonical parameter, the cumulant

function and the canonical parameter space of the NEF Fk ¼ F(�k), �k 2 M(Rd k ) for

k ¼ 1, . . . , r. Thus, we have the trivial result:

Proposition 2. Let F(�) be an NEF generated by � 2 M(Rd). If F(�) is r-reducible with

� ¼ �1 �� � � � �� �r (up to affinity), where �k 2 M(Rd k ) for k ¼ 1, . . . , r, then

det K 0�(Ł) ¼ det K 0�1
(Ł(1)) 3 � � � 3 det K 0� r

(Ł(r)), for all Ł ¼ (ŁT
(1), . . . , ŁT

(r))
T 2 ¨(�).

What about the converse of Proposition 2? Reasonably, we may consider the situation

where r ¼ d and each irreducible �k 2 M(R) is infinitely divisible. The assumption of

infinite divisibility allows to use (2) as necessary and sufficient condition for each

component �k .

2.3. Poisson–Gaussian NEFs

Let (e1, . . . , ed) be the canonical basis of Rd . A random vector X on Rd is said to be a

Poisson–Gaussian vector of order k 2 f0, 1, . . . , dg, written X � PGk , if X ¼
P1e1 þ . . . þ Pkek þ Z where P1, . . . , Pk , Z are independent random variables such that

the Pj are Poisson, and Z is a Gaussian variable in Rd�k with given covariance matrix. Any

PGk family is the set of PGk distributions up to affine transformation. For k ¼ 0 we have

the Gaussian distribution on Rd , and for k ¼ d we have the (pure) Poisson on Rd . We

recall also the following Letac (1989) characterization: an NEF F on Rd has an AVF if and

only if, up to an affine transformation, there exists k 2 f0, 1, . . . , dg such that for all

m ¼ (m1, . . . , md) 2 M F ¼ (0; 1)k 3 Rd�k the variance function is the d 3 d diagonal

matrix

VF(m) ¼ diag(m1, . . . , mk , 1, � � �, 1): (3)

This NEF is PGk with generating measure

�(dx) ¼
X
j2N k

1

j!
� j(dx1, . . . , dxk)

0
@

1
A exp �1

2

Pd
i¼kþ1 x2

i

� �
(2�)(d�k)=2

(dxkþ1, . . . , dxd),

where � j is the Dirac mass at j with ¨(�) ¼ Rd and K�(Ł) ¼
Pk

i¼1 eŁi þ 1
2

Pd
i¼kþ1 Ł

2
i . Then

the generalized variance of � is

det K 0�(Ł) ¼ exp(Ł1 þ . . . þ Łk) ¼ exp(ŁT1k), (4)
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where 1k is the vector in Rd such that the first k components are 1 and the rest 0. From (1)

and (3), expression (4) can be written as detVF(m) ¼ m1 � � � mk . We close this subsection by

observing that each of the d þ 1 basic families of PGk in Rd is infinitely divisible and d-

reducible (up to affinity).

3. Result and comments

Let us first state our main result. We present its proof in Section 4.

Theorem 3. Let F ¼ F(�) be an infinitely divisible NEF on Rd. Assume that:

(i) ¨(�) ¼ Rd, and

(ii) there exist b 2 Rd and c 2 R such that

det K 0�(Ł) ¼ exp(ŁTbþ c), (5)

for all Ł.

Then there exists k 2 f0, 1, . . . , dg such that F is of Poisson–Gaussian PGk type.

Before commenting on this result, let us present the following consequences. For n . d

and (x1, . . . , xn) 2 (Rd)n, let

vdþ1(x1, . . . , xn) ¼ 1

(d þ 1)!
det

1 1 � � � 1

x1 x2 � � � xdþ1

� �
:

Let � 2 M(Rd) be a probability measure with ¨(�) ¼ Rd . Consider the two probabilities in

(Rd)n: Pn ¼ � 3 � � � 3 � and ~PPn ¼ �v2
dþ1 Pn, where � is a normalization constant. Denote

by Qn and ~QQn the respective images of Pn and ~PPn by the map (x1, . . . , xn) 7! x1 þ . . . þ xn.

A reformulation of the Kokonendji and Seshadri (1996, Theorem 2.2) result gives

L ~QQn
(Ł) ¼ LQn

(Ł)det K 0�(Ł)=det K 0�(0). Then Qn and ~QQn have, up to translation, the same

distribution (obviously Poisson–Gaussian) if and only if � is Poisson–Gaussian. Also, under

condition (5) with b 6¼ 0 (, k 6¼ 0), we can show that the maximum likelihood and

uniformly minimum variance and unbiased estimators of det K 0�(Ł) coincide (Kokonendji and

Pommeret 2001).

Remark 1. The hypothesis ¨(�) ¼ Rd is crucial for many reasons. One of them is that it

does not follow from the fact that the function Ł 7! det K 0�(Ł) is analytic in Rd that

Ł 7! K 0�(Ł) coincides with a positive definite analytic function in Rd; this would imply

¨(�) ¼ Rd by the principle of maximal analyticity.

Remark 2. Equation (5) in K� is of the Monge–Ampère type (see Gutiérrez 2001) which is

well known in the area of differential geometry. If b ¼ 0 in the right-hand side of (5) we have

the basic Monge–Ampère equation solved using the Jörgens–Calabi–Pogorelov (JCP) result:

any strictly convex smooth function f in Rd such that det f 0(Ł) ¼ 1 must be a quadratic

form. The latter result was proved by Jörgens (1954) for d ¼ 2 (for a comprehensive version,
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see also Kokonendji 1995), by Calabi (1958) for d ¼ 3, 4, 5, and by Pogorelov (1972) for

d > 6. A shorter and more analytical proof is given in Cheng and Yau (1986). Recently,

Caffarelli and Li (2004) extended this characterization to positive periodic functions in the

right-hand side of (5).

Remark 3. The characterization of Gaussian NEFs given by Kokonendji and Seshadri (1996,

Theorem 3.5), making direct use of the JCP result without the assumption of infinite

divisibility as in Theorem 3, where we consider b ¼ 0 in the right-hand side of (5) and then

k ¼ 0.

It is a challenging problem to show that there exists a non-quadratic cumulant function

K� such that det K 0�(Ł) ¼ 1 on ¨(�) 6¼ Rd . The following proof of Theorem 3 relies on the

JCP result through equation (2): the positive measure r(�) on Rd is associated with det K 0�.

4. Proof of Theorem 3

We first recall the following notation and then state the Laplace formula for determinant

calculations (see Muir 1960). If A ¼ (aij)1<i, j<d is a d 3 d matrix and S is a subset of

f1, 2, . . . , dg with Sc ¼ f1, 2, . . . , dgnS, we denote by AS the matrix (aij)(i, j)2S3S with

detA˘ ¼ 1.

Proposition 4. Let A and B be two d 3 d matrices. Then

det(Aþ B) ¼
X

S�f1,2,...,dg
detASc detBS :

We also need the following two propositions. The first is an elementary result, so its

proof is omitted. The second is due to Bar-Lev et al. (1994, Lemma 4.1).

Proposition 5. Let b 2 Rd and let �1, . . . , �k be k independent positive measures in Rd such

that �1 � � � � � �k ¼ �b. Then there exist b1, . . . , bk in Rd such that �i ¼ �bi
and

b ¼ b1 þ . . . þ bk .

Proposition 6. Let f : Rd ! R be a C2 map. Then f is an affine polynomial if and only if

@2 f (Ł)=@Ł2
i ¼ 0, for i ¼ 1, . . . , d.

We can now prove Theorem 3. Since � is infinitely divisible, there exist a symmetric

non-negative definite d 3 d matrix � with rank r < d and a positive measure � on Rd such

that

K 0�(Ł) ¼ �þ
ð
Rd

xxT exp(ŁTx)�(dx) (6)

(Gikhman and Skorohod 1973: 342). We let k ¼ d � r. For S ¼ fi1, i2, . . . , i lg with
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1 < i1 , i2 , . . . , i l < d, a non-empty subset of f1, 2, . . . , dg, and �S : Rd ! R l the map

defined by �S(x) ¼ (xi1 , xi2 , . . . , xi l
)T, we define by �S the image measure of

H l(dx1, . . . , dx l) ¼
1

l!
(det[�S(x1) � � � �S(x l)])

2�(dx1) � � � �(dx l)

by j l : (Rd) l ! Rd , (x1, . . . , x l) 7! x1 þ . . . þ x l. Then the measure r(�) in (2) can be

expressed by using Proposition 4 and (6) as

r(�) ¼ (detA)�0 þ
X

˘ 6¼S�f1,2,...,dg
(detASc ) �S , (7)

where A is the diagonal representation matrix of � in an orthonormal basis e ¼ (e1, � � �, ed)

of Rd (Hassairi 1999).

Without loss of generality, we assume c ¼ 0 in (5); so det K 0�(Ł) ¼ exp(ŁTb). From (2)

we easily obtain r(�) ¼ �b. If b ¼ 0 then we have k ¼ 0, which is the JCP result.

Henceforth, we assume b 6¼ 0 and therefore k 6¼ 0. Thus, the expression (7) implies

det(A) ¼ 0 with A ¼ diag(0, . . . , 0, ºkþ1, . . . , ºd), where ºi . 0; and for all non-empty

subsets S of f1, 2, . . . , dg there exist real numbers ÆS > 0 such that

(detAS c ) �S ¼
Y
i=2S

ºi

0
@

1
A�S ¼ ÆS�b: (8)

The following lemma makes precise the measure � of (8).

Lemma 7. Let � satisfy condition (8) and S0 ¼ f1, . . . , kg. Let Je ¼ fi 2 f1, . . . , dg;

x2
i �(dx) 6¼ 0, x ¼ x1e1 þ . . . þ xdedg. Then Je ¼ S0 and, for all i 2 S0, x2

i �(dx) ¼ �i�ciei
(dx),

where �i . 0 and ci 6¼ 0.

Proof. We proceed in three steps.

Step 1. Je 	 S0. Indeed, suppose that there exists i 2 S0 such that i =2 Je. According to

(6) we obtain

@2 K�(Ł)

@Ł2
i

¼ K 0�(Ł)(ei, ei) ¼
ð
Rd

x2
i exp(ŁTx)�(dx) ¼ 0,

which implies that K 0�(Ł) is not positive definite. This leads to a contradiction.

Step 2. There exist k linearly independent vectors (bi)i2S0
of Rd such that b ¼

P
i2S0

bi

and, for all i 2 S0, we have x2
i �(dx) ¼ �i�bi

(dx) with �i . 0 and �S0
(bi) ¼ biiei. Indeed, let

Dk be the set of k 3 k diagonal matrices. If we denote

H
(1)
k (dx1, . . . , dxk) ¼ If[�S0

(x1)����S0
(x k )]2Dkg(x1, . . . , xk)H k(dx1, . . . , dxk)

¼
Y
i2S0

x2
iiIfxi2Rd ;xij¼0,8 j2S0nfigg(xi)�(dxi)

and H
(2)
k ¼ H k � H

(1)
k , from step 1 we have x2

i �(dx) 6¼ 0, for all i 2 S0 and hence there exists
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Æ1 . 0 such that jk(H
(1)
k ) ¼ Æ1�b. Since H

(1)
k is the product of k independent positive

measures, then jk(H
(1)
k ) is a convolution product of k independent positive measures.

According to Proposition 5 there exist (bi)i2S0
in Rd such that x2

i �(dx) ¼ �i�bi
(dx) and

b ¼
P

i2S0
bi. Note that (bi)i2S0

is linearly independent and is an atom of H
(1)
k such that

[�S0
(b1) � � � �S0

(bk)] 2 Dk . Thus we obtain the last part of step 2.

Step 3. Je ¼ S0 and bi ¼ biiei, for all i 2 S0. Otherwise we have Je ¼ f1, . . . , k, ikþ1,

. . . , ilg, where l > k þ 1. Similarly to step 2, there also exists (bi kþ1
, . . . , bi l

) such that

x2
j�(dx) ¼ � j�b j

(dx) for all j 2 Je and b ¼
P

j2Je
b j. According to step 2, b ¼

P
i2S0

bi

implies 0 ¼
P

i2JenS0
bi and leads to a contradiction, since (b j) j2Je are linearly independent.

Therefore Je ¼ S0. Since x2
j�(dx) ¼ 0 for all j 2 fk þ 1, . . . , dg then for all i 2 S0 we have

b2
ij�(fbig) ¼ 0. But (bi)i2S0

are atoms of �, so for all j 2 fk þ 1, . . . , dg we have b2
ij ¼ 0.

Finally, using �S0
(bi) ¼ biiei from step 2, we obtain bi ¼ biiei and choose bii ¼ ci. Hence,

the lemma is deduced from these steps. h

Introducing � from Lemma 7 in (6), we obtain @2 K�(Ł)=@Ł2
i ¼ �iexp(ciŁi)Ii2S0

þ ºiIi=2S0
.

Let B(Ł) ¼
P

i2S0
c�2

i �i exp(ciŁi) þ 1
2

P
i2Sc

0
º2

i Ł
2
i . In view of Proposition 6 and the fact that

@2(K� � B)(Ł)=@Ł2
i ¼ 0, for i ¼ 1, . . . , d, (K� � B)(Ł) is an affine function on Rd and then

K�(Ł) ¼
X
i2So

c�2
i �iexp(ciŁi) þ

1

2

X
i2S c

0

º2
i Ł

2
i þ uTŁþ a,

for (u, a) 2 Rd 3 R. Hence F(�) is of PGk type. This concludes the proof of Theorem 3.
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