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Introduction

Mixing conditions are the classical concept for imposing a restriction on the dependence

between time series data. However, many classes of processes which are of interest in

statistics do not satisfy any such conditions. Examples include processes driven by discrete

innovations as they appear with model-based time series bootstrap methods. Doukhan and

Louhichi (1999) proposed a new condition of weak dependence which uses covariances

rather than the total variation norm as in the case of mixing. It has been shown that this

concept is more general than mixing and includes, under natural conditions on the

parameters, essentially all classes of processes of interest in statistics. Ango Nze et al.

(2002) provide many examples, including Markov processes and so-called Bernoulli shifts.

The case of ARCH( p) processes is discussed in Neumann and Paparoditis (2004).

It became readily apparent that the concept of weak dependence allows in many instances

the same tools to be used as in the independent or mixing case. For example, versions of a

central limit theorem are derived in Doukhan and Louhichi (1999) for sequences of random

variables, in Coulon-Prieur and Doukhan (2000) for situations as they appear with

nonparametric curve estimators, and in Neumann and Paparoditis (2004) for triangular

schemes. A first exponential inequality was obtained in Doukhan and Louhichi (1999) and a

Bennett inequality was proved in Dedecker and Prieur (2004).

The major contribution of this paper is a new Bernstein-type inequality for weakly

dependent random variables. Our conditions are slightly stronger than those in Dedecker

and Prieur (2004); in particular, we assume an exponential decay of the coefficients of weak

dependence. For typical time series models, one often has such an exponential decay under

conditions on the parameters which are almost necessary for ergodicity. On the other hand,

in contrast to a Bernstein-type inequality which follows from the Bennett inequality of
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Dedecker and Prieur (2004), the variance of the sum appears at the same place in the

exponent as in the classical Bernstein inequality for independent random variables. The

second (asymptotically often negligible) term differs from that in the independent case,

which is an effect of the dependence. It is remarkable that the proofs of the exponential

inequalities are completely different. Dedecker and Prieur (2004) use the recently developed

tool of replacing weakly dependent blocks of random variables by independent ones and

then refer to an exponential inequality for independent random variables. Here we use

cumulant techniques mainly developed by the Lithuanian school; see, for example, Saulis

and Statulevicius (1991) for an overview.

We present the Bernstein-type inequality in the next section and its proof in Section 3.

As a statistical application, we derive in Section 4 rates of convergence for penalized least-

squares estimators based on a neural network with one hidden layer and sinusoids as

activation functions. We suppose that the function to be estimated is a member of Barron’s

class. It is known from related settings that this particular restriction of the complexity

allows a function to be estimated with a rate which does not depend on the nominal

dimension of the space. This is in sharp contrast to more traditional smoothness classes

such as Hölder, Sobolev or Besov for which minimax rates of convergence deteriorate rather

fast as the dimension increases. Using the Bernstein-type inequality, we derive a

penalization scheme which produces an estimator whose rate of convergence does not

depend on the nominal dimension but on an intrinsic measure of complexity. The proofs of

some approximation-theoretic and of our statistical results are contained in Section 5.

2. A Bernstein-type inequality

In this section we state the main result, a Bernstein-type inequality for weakly dependent

random variables.

Theorem 2.1. Suppose that X1, . . . , X n are real-valued random variables with EX i ¼ 0 and

P(jX ij < M) ¼ 1, for all i ¼ 1, . . . , n and some M , 1. Let � 2
n ¼ var(X 1 þ . . . þ X n).

Assume, furthermore, that there exist K , 1 and � . 0 such that, for all u-tuples

(s1, . . . , su) and all v-tuples (t1, . . . , tv) with 1 < s1 < . . . < su < t1 < . . . < tv < n, the

following inequality is fulfilled:

jcov X s1
. . . X su , X t1 . . . X tvð Þj < K2 Muþv�2ve��( t1�su): (2:1)

Then

P
Xn
i¼1

X i > t

 !
< exp � t2=2

An þ B1=3
n t5=3

 !
, (2:2)

where An can be chosen as any number greater than or equal to � 2
n and

Bn ¼
16nK2

9 An (1 � e��)
_ 1

� �
2 (K _ M)

1 � e��
:
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Remark 1. (i) Inequality (2.2) resembles the classical Bernstein inequality for independent

random variables. Asymptotically, � 2
n is usually of order O(n) and An can be chosen equal to

� 2
n while Bn is usually O(1) and hence negligible. In cases where � 2

n is very small, it might,

however, be better to choose An considerably larger than � 2
n since it also appears in the

denominator of the constant Bn. It follows from (2.1) that a rough bound for � 2
n is given by

� 2
n <

2nK2

1 � e��
: (2:3)

Hence, taking An ¼ 2nK2=(1 � e��), we obtain from (2.2) that

P
Xn
i¼1

X i > t

 !
< exp � t2

C1nþ C2 t5=3

� �
, (2:4)

where C1 ¼ 4K2=(1 � e��) and C2 ¼ [2(K _ M)=(1 � e��)]1=3. Inequality (2.4) is more of

Hoeffding type.

(ii) Dedecker and Prieur (2004) proved a Bennett inequality for weakly dependent

random variables. This also implies a Bernstein-type inequality, however, with different

constants. In particular, the leading term in the denominator of the exponent differs from

� 2
n which is a possible choice of An in our case. This is a consequence of their method of

proof which consists of replacing weakly dependent blocks of random variables by

independent ones. On the other hand, our proof makes essential use of the exponential

decay of the right-hand side of (2.1), while Dedecker and Prieur’s (2004) result is valid

under weaker assumptions regarding the coefficients of weak dependence.

(iii) Condition (2.1) is in fact fulfilled for truncated versions of random variables from

many time series models. The constant K in (2.1) is included to possibly take advantage of

the sparsity of data as it appears, for example, in nonparametric curve estimation. The

constant v in (2.1) often appears when one derives bounds for covariances for time series

models; see Doukhan and Louhichi (1999) and Ango Nze et al. (2002) for numerous

examples.

(iv) As kindly pointed out by Professor McCullagh, condition (2.1) could also be

replaced by (3.10) below, which is a condition on the joint cumulants of the process. Such a

condition is sometimes easier to verify in applications, in particular in cases where the

index set is not strictly ordered.

3. Proof of Theorem 2.1

First, note that it is not possible to adapt the classical method of proof since it makes heavy

use of independence; see Bennett (1962). One possible approach to proving an exponential

inequality involves replacing blocks of weakly dependent random variables by independent

ones and then applying an available inequality from the independent case. This was recently

done by Dedecker and Prieur (2004), however, for reasons explained in Remark 1(ii) we do

not follow this route.
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Our proof of the theorem is based on a result of Bentkus and Rudzkis (1980) which we

quote here for reader’s convenience.

Let � be an arbitrary real-valued random variable with E� ¼ 0 and finite moments of all

orders. The kth cumulant of � is defined as

ˆk(�) ¼ 1

ik
dk

dt k
ln Eei t�

����
t¼0

:

If there exist ª > 0, � 2 . 0 and B > 0 such that

jˆk(�)j < k!

2

� �1þª

� 2Bk�2, for all k ¼ 2, 3, . . . ,

then, for all t > 0,

P � > tð Þ < exp � t2=2

� 2 þ B1=(1þª) t(1þ2ª)=(1þª)

� �
: (3:1)

Note that the quotation of this result in Lemma 2.4 in Saulis and Statulevicius (1991: 19)

contains a typo; it is correctly stated and proved in Bentkus and Rudzkis (1980, Lemma 2.1).

Before we proceed with the calculations, we recall some notions needed in the course of

the proof. It follows from the definition of the cumulants that

ˆk(X1 þ . . . þ X n) ¼
X

1< t1,..., t k<n

ˆ(X t1 , . . . , X tk ), (3:2)

where

ˆ(X t1 , . . . , X tk ) ¼
1

ik
@ k

@ut1 . . . @ut k

ln Eei(u1 X1 þ ... þ un X n)

����
u1¼...¼un¼0

are mixed cumulants. For any random variable Y with finite expectation, we define

Y ¼ Y � EY . For 1 < t1 < . . . < t k < n, define so-called centred moments as

E(X t1 , . . . , X tk ) ¼ E[X t1 X t2 . . . X tk�1
X tk ] (E(X t1 ) ¼ EX t1 ). Statulevicius (1970, Lemma 3)

has shown that, for 1 < t1 < . . . < t k < n, the mixed cumulants can be expressed in terms

of centred moments as

ˆ(X t1 , . . . , X tk ) ¼
Xk
�¼1

(�1)��1
XS�

p¼1
I p¼ I

N�(I1, . . . , I�)
Y�
p¼1

EX I p , (3:3)

where
P

[�
p¼1

I p¼ I denotes the summation over all unordered partitions in disjoint subsets

I1, . . . , I� of the set I ¼ f1, . . . , kg; see also equation (1.63) in Saulis and Statulevicius

(1991), as a more easily available reference. Given such a partition, EX I p
stands for

E(X t
i
( p)

1

, . . . , X t
i
( p)

k p

) if I p ¼ fi( p)
1 , . . . , i

( p)
k p
g with i

( p)
1 , . . . , i

( p)
k p

. We arrange the subsets in

the partitions such that i
(1)
1 , . . . , i

(�)
1 . N�(I1, . . . , I�) are certain non-negative integers

defined as follows. For i 2 I, let ni(I1, . . . , I�) ¼ #fp : i
( p)
1 , i , i

( p)
k p
g. Then
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N1(I) ¼ 1

and, for � > 2,

N�(I1, . . . , I�) ¼
Y�
p¼2

n
i
( p)

1

(I1, . . . , I�);

see equations (4.36) and (4.37) in Saulis and Statulevicius (1991: 80). According to this,

it follows that N�(I1, . . . , I�) 6¼ 0 if and only if fI1, . . . , I�g is connected, that is,

n
i
( p)

1

(I1, . . . , I�) . 0 for all p ¼ 2, . . . , �. Furthermore, we have thatXk
�¼1

XS�

p¼1
I p¼ I

N�(I1, . . . , I�) ¼ (k � 1)!; (3:4)

see Saulis and Statulevicius (1991, equation (4.43)).

As a first step to deriving estimates for the cumulants of X1þ . . . þX n, we derive

estimates for the centred moments.

Lemma 3.1. Suppose that the assumptions of Theorem 2.1 are fulfilled. Then, for 1 <

t1 < . . . < t k < n, k > 2 and i 2 f1, . . . , k � 1g,

jE(X t1 , . . . , X tk )j < 2k�1K2Mk�2 e��( tiþ1� ti):

Proof. For t1 < . . . < t k, k 2 N , we define the shorthand notation Yk ¼ X tk and, for

1 < j , k, Y j ¼ X t j X t jþ1
. . . X tk�1

X tk .

Elementary calculations show, for 1 < j , i , k, that

Y j ¼ X t j Y jþ1 � X t jE[Y jþ1]

¼ . . . ¼ X t j . . . X ti Yiþ1 �
Xi

l¼ j

X t j . . . X t lE[Ylþ1]

¼ X t j . . . X ti Yiþ1 �
Xi�1

l¼ j

X t j . . . X t lE[Ylþ1]: (3:5)

Since EX tk ¼ 0, in the special case of i ¼ k � 1 this becomes

Y j ¼ X t j . . . X tk �
Xk�1

l¼ j

X t j . . . X t lE[Ylþ1]: (3:6)

Without making use of the weak dependence assumption, we obtain, for 3 < j , k, that

EjY jj ¼ EjX t j Y jþ1j < MEjY jþ1j < 2MEjY jþ1j

< . . . < (2M)k� jEjX tk j < 2k� jM k� jþ1: (3:7)

Hence, we obtain in conjunction with (3.6) that

An exponential inequality under weak dependence 337



C j,i :¼ jcov X t j . . . X ti , Yiþ1

� �
j

< jcov X t j . . . X ti , X tiþ1
. . . X tk

� �
j þ

Xk�1

l¼iþ1

jcov X t j . . . X ti , X tiþ1
. . . X t lE[Ylþ1]

� �
j

< K2Mk� j�1(k � i)e��( tiþ1� ti) þ
Xk�1

l¼iþ1

K2M l� j�1(l � i)e��( tiþ1� t i)2k� l�1Mk� l

¼ K2Mk� j�1 (k � i) þ
Xk�1

l¼iþ1

(l � i)2k� l�1

 !
e��( tiþ1� ti)

< K2Mk� j�12k�ie��( t iþ1� t i): (3:8)

(The last inequality follows from (k � i) þ
Pk�1

l¼iþ1 (l � i)2k� l�1 ¼
Pk�i�1

j¼1 3

j2k�i�1� j þ (k � i)
P1

j¼1 2� j < 2k�i�2
P1

j¼1 j21� j
� �

¼ 2k�i.)

On the other hand, we obtain from (3.5) that

jE[Y j]j < C j,i þ
Xi�1

l¼ j

jE[X t j . . . X t l ]j � jE[Ylþ1]j:

Therefore, we obtain recursively that

jE(X t1 , . . . , X tk )j ¼ jE[Y1]j

< C1,i þ
Xi�1

l¼1

M l jE[Ylþ1]j

< . . . < C1,i þ
X

1< l1<i�1

M l1Cl1þ1,i þ
X

1< l1, l2<i�1

M l2Cl2þ1,i

þ . . . þ
X

1< l1, ... , li�1<i�1

Mi�1Ci,i:

From (3.8) we now obtain that

jE(X t1 , . . . , X tk )j < K2Mk�22k�ie��( tiþ1� t i)
Xi�1

l¼0

i� 1

l

 !

¼ K2Mk�22k�1e��( t iþ1� t i):

h

Equations (3.2), (3.3) and the result of Lemma 3.1 can now be used to derive estimates

for the cumulants of X 1 þ . . . þ X n.
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Lemma 3.2. Suppose that the assertions of Theorem 2.1 are fulfilled. Then, for k > 3,

jˆk(X1 þ . . . þ X n)j < nk!((k � 1)!)2K2(K _ M)k�2 2

1 � e��

� �k�1

:

Proof. Our proof deviates from the proof of similar results in Saulis and Statulevicius (1991)

since we were not able to follow all of their arguments. In particular, we could not verify

their equation (4.55) on p. 94 which was crucial to their approach.

From (3.2) we obtain that

jˆk(X 1 þ . . . þ X n)jH < k!
X

1< t1< ... < t k<n

jˆ(X t1 , . . . , X tk )j: (3:9)

According to (3.3) and Lemma 3.1, we have, for 1 < t1 < . . . < t k < n, that

jˆ(X t1 , . . . , X tk )j <
Xk
�¼1

XS�

p¼1
I p¼ I

N�(I1, . . . , I�)
Y�
p¼1

jE(X I p
)j

<
Xk
�¼1

XS�

p¼1
I p¼ I

N�(I1, . . . , I�)
Y�
p¼1

2k p�1K2Mk p�2 min
1, j<k p

exp ��(t
i
( p)

j

� t
i
( p)

j�1

)
� �

:

Note that we have, for any connected partition,

max
1< p<�

max
1, j<k p

ft
i
( p)

j

� t
i
( p)

j�1

g > max
1,i<k

fti � ti�1g:

Since N�(I1, . . . , I�) ¼ 0 if fI1, . . . , I�g is not connected we therefore obtain, in

conjunction with (3.4), that

jˆ(X t1 , . . . , X tk )j <
Xk
�¼1

XS�

p¼1
I p¼ I

N�(I1, . . . , I�) 2k�1K2(K _ M)k�2 min
1,i<k

e��( t i� ti�1)

< (k � 1)! 2k�1K2(K _ M)k�2 min
1,i<k

e��( ti� t i�1):

This implies that X
1< t1< ... < t k<n

jˆ(X t1 , . . . , X tk )j

< n(k � 1)!2k�1K2(K _ M)k�2
X1

s2,...,s k¼0

min
2<i<k

e��si : (3:10)

Since #f(s2, . . . , sk) : 0 < si < s, maxfs2, . . . , skg ¼ sg < (k � 1)(sþ 1)k�2 and
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X1
s¼0

(sþ 1)k�2e��s <
X1
s¼0

(sþ 1) . . . (sþ k � 2)e��s

¼ dk�2

dpk�2

1

1 � p

� �����
p¼e��

¼ (k � 2)!
1

(1 � e��)k�1
,

we obtain thatX
1< t1< ... < t k<n

jˆ(X t1 , . . . , X tk )j < n((k � 1)!)22k�1K2(K _ M)k�2 1

(1 � e��)k�1
,

which, in conjunction with (3.9), proves the assertion of the lemma. h

Proof of Theorem 2.1. From Lemma 3.2 we obtain, for k > 3, that

jˆk(X 1 þ . . . þ X n)j <
k!

2

� �3
16nK2

9(1 � e��)

2(K _ M)

1 � e��

� �k�2

,

which implies that

jˆk(X 1 þ . . . þ X n)j <
k!

2

� �3

AnB
k�2
n

holds for all k > 2. The assertion of the theorem follows now from (3.1). h

4. Nonparametric autoregression

We suppose that we observe X1, . . . , X n from a real-valued and (strong) stationary process

(X t) t2Z. We intend to construct an estimator df (d)f (d) of the m-step-ahead autoregression

function based on d lagged variables, f (d)(x1, . . . , xd) ¼ E(X nþmjX n ¼ x1, . . . ,

X n�dþ1 ¼ xd). We suppose that the following condition of weak dependence is fulfilled.

(A1) There exist constants C , 1 and � . 0 such that, for any u-tuple (s1, . . . , su)

and any v-tuple (t1, . . . , tv) with s1 < . . . < su < t1 < . . . < tv and arbitrary

functions g : Ru ! R, h : Rv ! R with E[g2(X s1
, . . . , X su)] , 1, E[h2(X t1 , . . . ,

X tv )] , 1, the following inequalities are fulfilled:

jcov g(X s1
, . . . , X su), h(X t1 , . . . , X tv)ð Þj

< Cv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[g2(X s1

, . . . , X su)]

q
Lip(h) e��( t1�su) (4:1)

and, for s , t,

jcov g(X s, . . . , X s�dþ1)X sþm, h(X t, . . . , X t�dþ1)X tþmð Þj

< C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[g2(X s, . . . , X s�dþ1)]

p
(Lip(h) þ khk1)e��( t�s�m)
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where Lip(h) ¼ supx 6¼ yfjh(x) � h(y)j=kx� yk l1g denotes the Lipschitz modulus of

continuity of h.

Remark 2. (i) Condition (4.1) is similar to a condition used in Doukhan and Louhichi

(1999) where only kgk1 rather than
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E[g2(X s1

, . . . , X su )]
p

appears on the right-hand side.

Doukhan and Louhichi (1999) and Ango Nze et al. (2002) discuss many examples of

processes which satisfy such a condition including Markov processes and so-called Bernoulli

shifts. With a slight modification of their proofs, it can be shown that our condition (A1) is

also fulfilled by these processes. The case of ARCH(p) processes is studied in Neumann and

Paparoditis (2004).

(ii) Alternative conditions which are more closely related to classical mixing concepts are

proposed by Dedecker and Doukhan (2003). A condition similar to theirs,

E E(h(X t1 , . . . , X tv )X s, X s�1, . . .) � Eh(X t1 , . . . , X tv )½ �2 < CvLip(h)e��( t1�s),

for all s , t1 , . . . , t k and Lipschitz continuous h, is indeed equivalent to our condition

(4.1).

As a criterion for evaluating the performance of df (d)f (d), we use the loss function

L(df (d)f (d), f (d)) ¼
ð

(df (d)f (d)(x) � f (d)(x))2 �(d)(dx), (4:2)

where x ¼ (x1, . . . , xd)T and �(d) denotes the d-dimensional stationary distribution of the

process (X t) t2Z.

It is well known that achievable rates of convergence in traditional smoothness classes

(Hölder, Sobolev, Besov) deteriorate rather fast as the dimension d increases. For example,

if some d-dimensional curve possesses s bounded derivatives, then the corresponding

minimax rate of convergence for the mean squared error is typically n�2s=(2sþd). This

phenomenon is connected with the notion of the ‘curse of dimensionality’. On the other

hand, this viewpoint often seems too pessimistic. The difficulty of estimation in the above

smoothness classes comes from sequences of functions that contain an increasing (with n)

number of ‘features’ on increasingly fine scales. In contrast, in practical examples,

multivariate functions are often of simpler structure. Scott (1992, Chapter 2) claims:

‘Multivariate data in Rd are almost never d-dimensional. That is, the underlying structure

of data in Rd is almost always of dimension lower than d.’

While many popular estimators such as standard kernel estimators suffer from the curse

of dimensionality, there is some hope for a reasonably good asymptotic behaviour if the

true function does indeed have some ‘simple structure’ and if the method of estimation is

able to exploit this simplicity. To get good rates of convergence even in high dimensions,

one sometimes imposes structural assumptions such as an additive structure on the function

to be estimated. Corresponding estimators attain favourable rates of convergence if the true

function obeys the assumed structure; however, they fail completely if these structural

assumptions are not fulfilled. In contrast, we choose a truly nonparametric approach which

originates from the seminal paper by Barron (1993).
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He imposed smoothness constraints of the formð
Rd

køkjeff (ø)j dø < L, (4:3)

where eff is the Fourier transform of f , and studied approximation-theoretic properties of such

function classes in certain overcomplete bases built from sigmoidal functions. It has been

shown in several statistical papers – see, for example, Barron (1994) and Juditsky and

Nemirovski (2000) for nonparametric regression, Modha and Masry (1996) for nonparametric

regression with dependent data, Barron et al. (1999) for nonparametric regression and density

estimation, Delyon and Juditsky (2000) for nonparametric autoregression – that favourable

approximation-theoretic properties of certain bases (sigmoids, sinusoids, etc.) transfer to

statistical rates of convergence that do not depend on the nominal dimension d. Despite many

similarities, details of the corresponding methods are different. While Delyon and Juditsky

(2000) and Juditsky and Nemirovski (2000) supposed that the upper bound in an inequality

similar to (4.3) is known in advance, Barron (1994), Modha and Masry (1996), and Barron et

al. (1999) developed penalized minimum distance methods which do not require such prior

information.

In the present paper, we devise an estimator of the m-step-ahead autoregression function

in the context of general stationary processes satisfying a condition of weak dependence.

This generalizes previous work of Delyon and Juditsky (2000) who assumed that data are

generated by an autoregressive process of finite order, and also of Modha and Masry (1996)

who used a stronger restriction on the dependence. Furthermore, in contrast to Delyon and

Juditsky (2000) and Juditsky and Nemirovski (2000), we wish to avoid the assumption that

an upper bound as in (4.3) is known in advance. To this end, we propose a penalized least-

squares method which does not use knowledge of any constant that is usually not available

in practice. The proposed estimator can be considered as an artificial neural network

estimator with one hidden layer and sinusoids as activation functions.

Similarly to condition (4.3), we assume that

(A2) f (d) can be represented as

f (d)(x) ¼
ð
Rd

eixT gF (d)F (d)(dø), (4:4)

where the Fourier distribution gF (d)F (d) of f (d) satisfiesð
Rd

����gF (d)F (d)(dø)

���� < L0 (4:5)

and ð
Rd

køk l1

����gF (d)F (d)(dø)

���� < L1, (4:6)

for some L0, L1 , 1.

We decided to choose this particular restriction of the complexity of f (d) for several

reasons. On the one hand, it is strong enough to allow rates of convergence that do not
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suffer from the curse of dimensionality. On the other hand, (A2) is more general than the

assumption of an additive structure and includes many cases that may not be unrealistic; see

Barron (1993) for examples. Finally, it motivates a method of estimation that is quite

flexible in taking advantage of different types of simple structures of f (d).

The complexity bounds (4.5) and (4.6) imply that f (d) can be approximated by a

moderate number of basis functions. Using basis functions with variable frequencies ø, one

can find an approximation with N terms, gf (d)f (d)(x) ¼
PN

k¼1 Łke
iøT

k
x, such thatð

jgf (d)f (d)(x) � f (d)(x)j2 �(d)(dx) ¼ O(N�1);

see Barron (1993) for similar results. We will use an alternative approach based on fixed

basis functions where the possible frequencies are taken from a sufficiently fine grid. Since���� f (d)(x) �
ð
fø:køk l1<n1=4g

eixTø gF (d)F (d)(dø)

���� < ð
fø: køk l1.n1=4g

����gF (d)F (d)(dø)

����
< n�1=4L1 (4:7)

and the desired rate of convergence for the loss is (ln(n)=n)1=2, it follows that it suffices to

include only parameters ø with køk l1 < n1=4. Let �(n) ¼ fø(n)
0 , . . . , ø(n)

Nn
g be a sequence of

n�1=4 nets of cardinality Nn þ 1 ¼ O(nd=2) for fø 2 Rd : køk l1 < n1=4g. In particular, we

choose ø(n)
0 ¼ (0, . . . , 0)T. Since the target function f (d) is real-valued, it is natural to use

sine and cosine functions for the approximation. We set �(n)
0 � 1 and, for 1 < k < Nn,

�(n)
k (x) ¼ cos(xTø(n)

k ), �(n)
�k(x) ¼ sin(xTø(n)

k ). To simplify notation, we set ø(n)
�k ¼ ø(n)

k , for

k ¼ 1, . . . , Nn. The following result characterizes the ability of the chosen basis to

approximate f (d) and serves as the basis for the derivation of statistical properties of our

method of estimation.

Lemma 4.1. Suppose that (A2) is fulfilled. Then there exist real parameters ~ŁŁ(n)
�Nn

, . . . , ~ŁŁ(n)
Nn

such that ð
Rd

���� XNn

k¼�Nn

~ŁŁ(n)
k �(n)

k (x) � f (d)(x)

����2 �(d)(dx) < n�1=2 2L2
1 þ 8L2

0 d
2 EX 2

t

� �
and XNn

k¼�Nn

j~ŁŁ(n)
k j kø(n)

k k l1 þ 1
� �

< 2 n�1=4 þ 1
� �

L0 þ 2L1:

This lemma states that there exist parameter values which provide a rate of

approximation of order n�1=2. We intend to choose such parameters by some penalized

least-squares method. As a starting point, we take the residual sum of squares,

RSS(Ł) ¼ 1

n9

Xn�m

t¼d

X tþm �
XNn

k¼�Nn

Łk�
(n)
k (X t, . . . , X t�dþ1)

 !2

, (4:8)
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where n9 ¼ n� m� d þ 1 is the number of summands in (4.8). Note that, up to a summand

not dependent on Ł, RSS(Ł) is equivalent to

gRSSRSS(Ł)

:¼ RSS(Ł) � E X tþm � f (d)(X t, . . . , X t�dþ1)
� �2� 1

n9

Xn�m

t¼d

(X 2
tþm � E[X 2

tþm])

¼
ð
Rd

XNn

k¼�Nn

Łk�
(n)
k (x) � f (d)(x)

 !2

�(d)(dx)

� 2
XNn

k¼�Nn

Łk

1

n9

Xn�m

t¼d

X tþm�
(n)
k (X t, . . . , X t�dþ1) � E[X tþm�

(n)
k (X t, . . . , X t�dþ1)]

� �
:

þ
XNn

k, l¼�Nn

ŁkŁl

1

n9

Xn�m

t¼d

�(n)
k (X t, . . . , X t�dþ1)�(n)

l (X t, . . . , X t�dþ1)
�

� E[�(n)
k (X t, . . . , X t�dþ1)�(n)

l (X t, . . . , X t�dþ1)]
�
: (4:9)

Hence, it is sufficient to choose the penalty term in such a way that it compensates for the

last two terms in (4.9). Since the X t are not necessarily bounded, we also impose the

following condition which, in particular, allows us to apply the Bernstein inequality given in

Theorem 2.1 in the course of the proof of Lemma 4.2 below.

(A3) For all M , 1, EjX tjM is finite.

A hint for an appropriate choice of the penalty function can be derived from the next

lemma.

Lemma 4.2. Suppose that (A1) and (A3) are fulfilled. For arbitrary º . 0, there exist finite

constants K1, K2 such that

(i) P

���� 1

n9

Xn�m

t¼d

X tþm�
(n)
k (X t, . . . , X t�dþ1) � E[X tþm�

(n)
k (X t, . . . , X t�dþ1)]

� �����
 

. K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(n)

n
(kø(n)

k k l1 _ 1)

r
for any k 2 f�Nn, . . . , Nng

!

¼ O(Nn n�º),
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(ii) P

���� 1

n9

Xn�m

t¼d

�(n)
k (X t, . . . , X t�dþ1)�(n)

l (X t, . . . , X t�dþ1)
� 

� E[�(n)
k (X t, . . . , X t�dþ1)�(n)

l (X t, . . . , X t�dþ1)]
�����

. K2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(n)

n
(kø(n)

k k l1 þ kø(n)
l k l1 )

r
for any k, l 2 f�Nn, . . . , Nng

!

¼ O(N2
n n�º):

According to this lemma, it follows from (4.9) thatð
Rd

XNn

k¼�Nn

Łk�
(n)
k (x) � f (d)(x)

 !2

�(d)(dx)

< gRSSRSS(Ł) þ Zn

ffiffiffiffiffiffiffiffiffiffi
ln(n)

n

r X
k

jŁk j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kø(n)

k k l1 _ 1

q
þ
X
k, l

jŁk j jŁlj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kø(n)

k k l1

q" #
(4:10)

holds for all Ł 2 R2Nnþ1, where Zn is some random variable not dependent on Ł with

Zn ¼ OP(1). Since, up to a summand not depending on Ł, gRSSRSS(Ł) is equivalent to RSS(Ł),

we can use inequality (4.10) to find an appropriate penalty term. Since it seems to be very

cumbersome to find appropriate explicit expressions approximating the constants K1 and K2

from Lemma 4.2 without prior knowledge of the dependence structure, we choose an

arbitrary continuous function r : [0, 1) ! [0, 1) with r(x)=x !n!1 1, and define the

penalty function as

Penn(Ł) ¼
ffiffiffiffiffiffiffiffiffiffi
ln(n)

n

r
r

X
k

jŁk j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kø(n)

k k l1 _ 1

q
þ
X
k, l

jŁk j jŁlj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kø(n)

k k l1

q" # !
: (4:11)

Since, for arbitrary c , 1, supx<c sup y>0fx � y� r(y)g , 1, it follows from Zn ¼ OP(1)

that

sup
Ł2R2Nnþ1

Zn

X
k

jŁk j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kø(n)

k k l1 _ 1

q
þ
X
k, l

jŁk j jŁlj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kø(n)

k k l1

q" #(

�r
X
k

jŁk j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kø(n)

k k l1 _ 1

q
þ
X
k, l

jŁk j jŁlj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kø(n)

k k l1

q" # !)
¼ OP(1): (4:12)

This implies, in conjunction with (4.10), thatð
Rd

XNn

k¼�Nn

Łk�
(n)
k (x) � f (d)(x)

 !2

�(d)(dx) ¼ gRSSRSS(Ł) þ Penn(Ł) þ Rn(Ł), (4:13)
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where supŁ2R2Nnþ1 Rn(Ł) ¼ OP(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(n)=n

p
).

Ł̂Ł is now chosen by penalized least-squares, that is, it is a measurable function with

Ł̂Ł 2 arg min
Ł2R2 Nnþ1

RSS(Ł) þ Penn(Ł)f g: (4:14)

(The existence of such a measurable version is guaranteed by Lemma 2 in Jennrich 1969.)

This leads to the estimator

f Ł̂Ł (x) ¼
XNn

k¼�Nn

Ł̂Łk�
(n)
k (x):

A similar penalized minimum distance method has been developed, for example, in Barron

et al. (1999). The following theorem is the main result in this section.

Theorem 4.1. Suppose that (A1), (A2) and (A3) are fulfilled. Thenð
Rd

f Ł̂Ł (x) � f (d)(x)
� �2

�(d)(dx) ¼ OP

ffiffiffiffiffiffiffiffiffiffi
ln(n)

n

r !
:

This result basically means that the rate of convergence does not depend on the

dimension d, but is related to the actual difficulty of the problem that derives from the

complexity of f (d). Due to the use of the function r we do not have to worry about

the right constant in the penalty term. This means that we need not estimate variances of

certain sums which could turn out to be quite involved if the dependence structure is

complex. However, we agree with an Associate Editor who pointed out that the result of

Theorem 4.1 is therefore purely asymptotic.

5. Proofs of approximation-theoretic and statistical results

Proof of Lemma 4.1. We can decompose the complex-valued measure gF (d)F (d) as gF(d)
reF(d)
re � i

g
F

(d)
imF
(d)
im ,

where gF(d)
reF(d)
re and

g
F

(d)
imF
(d)
im are both real-valued measures, and obtain

f (d)(x) ¼
ð
Rd

cos(xTø) gF(d)
reF(d)
re (dø) þ

ð
Rd

sin(xTø)
g
F

(d)
imF
(d)
im (dø): (5:1)

Let �(n)
0 , . . . , �(n)

Nn
be any decomposition of fø : køk l1 < n1=4g into disjoint subsets

with the property �(n)
k � fø : kø� ø(n)

k k l1 < n�1=4g. (Such a decomposition exists since

�(n) is an n�1=4 net.) We define the approximation

gf (d)f (d)(x) ¼
XNn

k¼�Nn

~ŁŁ(n)
k �(n)

k (x),

where ~ŁŁ(n)
k ¼

Ð
�( n)

k

gF(d)
reF(d)
re (dø), for k ¼ 0, . . . , Nn, and ~ŁŁ(n)

k ¼
Ð
�( n)

� k

g
F

(d)
imF
(d)
im (dø), for

k ¼ �Nn, . . . , �1.
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With f
(d)
trunc(x) ¼

Ð
fø:køk l1<n1=4g eixTø gF (d)F (d)(dø), we obtain that

j f (d)(x) � gf (d)f (d)(x)j

< j f (d)(x) � f
(d)
trunc(x)j þ j f (d)

trunc(x) � gf (d)f (d)(x)j

<

ð
fø:køk l1.n1=4g

jgF (d)F (d)(dø)j þ
XNn

k¼�Nn

j~ŁŁ(n)
k j sup

ø2�(n)

j kj

jeixTø � eixTø( n)

k j

< n�1=4 L1 þ 2L0kxk l1ð Þ:

This implies that ð
j f (d)(x) � gf (d)f (d)(x)j2 �(d)(dx) < n�1=2(2L2

1 þ 8L2
0 d

2 EX 2
t ):

Furthermore, we obtain thatXNn

k¼�Nn

j~ŁŁ(n)
k jkø(n)

k k l1 < 2
XNn

k¼0

ð
�( n)

k

(køk l1 þ n�1=4)jgF (d)F (d)(dø)j < 2(L1 þ n�1=4L0)

as well as XNn

k¼�Nn

j~ŁŁ(n)
k j < 2

XNn

k¼0

ð
�( n)

k

jgF(d)F(d)(dø)j < 2L0,

which proves the second assertion. h

Proof of Lemma 4.2. We have that

Lip(�(n)
k �(n)

l ) < Lip(�(n)
k ) � k�(n)

l kL1 þ Lip(�(n)
l ) � k�(n)

k kL1 < kø(n)
k k l1 þ kø(n)

l k l1 ,

which implies that

var
Xn�m

t¼d

�(n)
k (X t, . . . , X t�dþ1)�(n)

l (X t, . . . , X t�dþ1)

 !
¼ O(n (kø(n)

k k l1 þ kø(n)
k k l1 )):

Assertion (ii) now follows directly from Theorem 2.1.

It remains to prove (i). Since the random variables X t are not necessarily bounded we

will replace them by the following truncated versions. We choose any � 2 (0, 3=8) and

define eXX t ¼ maxfminfX t, n
�g, �n�g, t ¼ 1, . . . , n:

It now follows by Markov’s inequality from (A3) that

P X t 6¼ eXX t

� �
¼ O(n�º)

and
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EjX t � eXX tjr <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P X t 6¼ eXX t

� �r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EjX t � eXX tj2r

q
¼ O(n�º), r ¼ 1, 2, (5:2)

hold for arbitrary º , 1. We define random variables Z t,k ¼ X tþm�
(n)
k (X t, . . . , X t�dþ1) andeZZ t,k ¼ eXX tþm�

(n)
k (X t, . . . , X t�dþ1). Furthermore, we set K2

n ¼ kø(n)
k k l1 _ 1 and Mn ¼ n4�=3.

From (A1) and (5.2) we obtain that

var
Xn�m

t¼d

eZZ t,k

 !
¼ var

Xn�m

t¼d

Z t,k

 !
þ O(n�º) ¼ O nK2

n

� �
: (5:3)

Furthermore, according to (A1), the random variables eZZ t,k are weakly dependent and it

follows in conjunction with (A3), for s1 < . . . < su < t1 < . . . < tv, and uþ v > 3, that

jcov( eZZs1,k . . . eZZsu,k , eZZ t1,k . . . eZZ tv ,k)j < Cv(n�)vK2
n e��( t1�dþ1�suþm)

< eCCK2
n Muþv�2

n ve��( t1�su): (5:4)

With the choice of An ¼ 2n eCCK2
n=(1 � e��) which is possible by (2.3), we obtain by the

Bernstein-type inequality from Theorem 2.1 that

P

����Xn�m

t¼d

eZZ t,k

���� > t

 !
< 2 exp � t2=2

An þ B1=3
n t5=3

 !
,

where Bn ¼ O(kø(n)
k k l1 _ n�) ¼ O(n1=4). Therefore, we obtain that

P

���� 1

n9

Xn�m

t¼d

X tþm�
(n)
k (X t, . . . , X t�dþ1) � EX tþm�

(n)
k (X t, . . . , X t�dþ1)

h i����
 

. K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(n)

n
(kø(n)

k k l1 _ 1)

r
for any k 2 f�Nn, . . . , Nng

!

< P

���� 1

n9

Xn�m

t¼d

eXX tþm�
(n)
k (X t, . . . , X t�dþ1) � E eXX tþm�

(n)
k (X t, . . . , X t�dþ1)

h i����
 

. K1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln(n)

n
(kø(n)

k k l1 _ 1)

r
� Cºn

�º for any k 2 f�Nn, . . . , Nng
!

þ P X tþm 6¼ eXX tþm for any t 2 fd, . . . , n� mg
� �

¼ O(Nn n�º):

h

Proof of Theorem 4.1. Let ~ŁŁ(n) ¼ (~ŁŁ(n)
�Nn

, . . . , ~ŁŁ(n)
Nn

)T be as in Lemma 4.1. It follows from

Lemmas 4.1 and 4.2 that
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gRSSRSS(~ŁŁ(n)) þ Penn(~ŁŁ(n)) ¼ OP

ffiffiffiffiffiffiffiffiffiffi
ln(n)

n

r !
:

Since gRSSRSS(Ł̂Ł) þ Penn(Ł̂Ł) < gRSSRSS(~ŁŁ(n)) þ Penn(~ŁŁ(n)) we obtain from (4.13) thatð
Rd

X
k

Ł̂Łk�k(x) � f (d)(x)

 !2

�(d)(dx) ¼ OP

ffiffiffiffiffiffiffiffiffiffi
ln(n)

n

r !
:

h
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