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We study the properties of empirical likelihood for Hadamard differentiable functionals tangentially to

a well chosen set and give some extensions in more general semiparametric models. We give a

straightforward proof of its asymptotic validity and Bartlett correctability, essentially based on two

ingredients: convex duality and local asymptotic normality properties of the empirical likelihood ratio

in its dual form. Extensions to semiparametric problems with estimated infinite-dimensional

parameters are also considered. We give some applications to confidence intervals for the location

parameter of a symmetric model, M-estimators with some nuisance parameters and general functionals

in biased sampling models.
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1. Introduction

Likelihood inference has been one of the major tools of parametric statistics. Owen (1988,

1990, 2001) introduced the ‘empirical likelihood’ ratio in a nonparametric setting and

obtained a generalization of Wilks’s theorem, stating that twice the log-likelihood ratio

asymptotically has a �2 distribution. The idea of empirical likelihood goes back to Thomas

and Grunkemeier (1975), but also to some extent to Hartley and Rao (1968) in the context

of survey sampling, where it is known as ‘model-based likelihood’. It is closely related to

the notion of nonparametric maximum likelihood. For a good review of empirical

likelihood, see Hall and La Scala (1990) and Owen (2001) which includes a large

bibliography.

For independent and identically distributed (i.i.d.) data, the empirical likelihood ratio

allows the construction of confidence regions for smooth parameters – mainly Fréchet

differentiable parameters with respect to the Kolmogorov metric, including M-robust

parameters (see Owen 1988). A more precise description of the method is recalled in

Section 2 in the general framework of Hadamard differentiable functionals. We give a short

proof of the validity and Bartlett correctability of empirical likelihood, extending results of

Qin and Lawless (1994) (and removing third-order moment conditions). This relies on the

existence of a convex dual representation of the empirical likelihood, which may itself be

seen as the log-likelihood ratio associated with a least favourable parametric family. This

representation is closely connected to the important notion of dual likelihood introduced by
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Mykland (1995). It leads to a Wilks-type theorem and the validity of the Bartlett

correctability of the empirical likelihood ratio, provided that this family satisfies the local

asymptotic normality property. This may be checked by showing that it is quadratically

differentiable; see Le Cam (1986). We show that Hadamard differentiability (according to a

well-chosen set of functions) is sufficient to validate the use of the empirical likelihood of

general statistical functionals, extending some results of Owen (1988, 2001).

Section 3 discusses extensions to a more general semiparametric framework with infinite-

dimensional nuisance parameters. Our approach (based on derivatives of functionals) is

different from that considered in Murphy and van der Vaart (1997), in which the

semiparametric likelihood incorporates the knowledge contained in the likelihood of the

model. We give a general formulation of the empirical likelihood in this framework. The

idea is essentially based on using an estimated version of the (efficient, when it is available)

influence function which serves as the basis for the empirical likelihood procedure. This

type of construction is already implicit in many recent studies of empirical likelihood in

specific semiparametric models (see Chen and Hall 1993; Chen 1996; Qin and Jing 2001;

and the examples given in Owen 2001, Chapters 5 and 6). We give here some generic

arguments for studying such models and to prove the asymptotic validity of the empirical

likelihood under weak assumptions.

In Section 4, we give examples and applications to semiparametric models, including

confidence intervals for the location parameter of a symmetric distribution, a problem

discussed in Chapter 10 of Owen (2001), M-estimators with nuisance parameters, and

parameter estimation in some mixture models. We also re-examine the results of Qin (1993)

in biased sampling models under weaker conditions. We do not discuss algorithmic

problems here, in spite of their importance: see Owen (2001, Chapter 12) for some

propositions.

The technical proofs of the lemmas and theorems are deferred to Section 5.

2. Empirical likelihood for Hadamard differentiable
functionals

2.1. Empirical likelihood for a functional parameter

Let X 1, . . . , X n, . . . be i.i.d. random variables, taking values on a space X , defined on a

probability space (�, A, P�) with common probability measure P belonging to a convex set

æ of signed measures (containing the Dirac measure). In the following, we are interested in

constructing a confidence region for the functional parameter Ł ¼ T (P) defined on æ, taking
values in Rq (see von Mises 1936). The empirical probability measure defined by

Pn ¼ n�1
Xn
i¼1

�X i

is known to be the nonparametric maximum likelihood estimator (NPMLE) of P (see Gill

1989; Owen 1988; 1990) The NPMLE of T (P) is then its empirical counterpart,
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Ł̂Łn ¼ T (Pn):

Many statisticians since von Mises have been interested in deriving the asymptotic properties

of Ł̂Łn using differentiability assumptions on T (see Gill 1989) via Taylor expansion (the delta

method). Under some regularity conditions, it is then possible to construct confidence

intervals or regions for the parameter Ł. The approach of Owen (1988) is dual to this

approach: the idea is to profile an ‘empirical likelihood’ supported by the data so as to

construct directly a confidence region without relying on previous estimations.

The empirical likelihood ratio evaluated at Ł is defined by

RE,n(Ł) ¼ sup
Qn2Pn

Yn
i¼1

dQn

dPn

(X i), T (Qn) ¼ Ł

( )
,

where Pn is the set of discrete probability measures dominated by Pn, that is,

Pn ¼ ~PPn ¼
Xn
i¼1

pi,n�X i
, pi,n > 0,

Xn
i¼1

pi,n ¼ 1

( )
:

Actually it should be noticed that for certain values of Ł, RE,n(Ł) may not have any

solution (consider for instance Ł ¼ EPX ; for values of Ł outside the convex hull of the X i,

there is no solution to the maximization problem). In that case we arbitrarily put

RE,n(Ł) ¼ 0. This is of no consequence in the construction, because we will essentially be

interested in the value of Ł for which RE,n(Ł) . 0. The empirical log-likelihood ratio is thus

log(RE,n(Ł)) ¼ sup
pi,n,i¼1,...n

Xn
i¼1

log
pi,n

1=n

� �
, T

Xn
i¼1

pi,n�X i

 !
¼ Ł, pi,n > 0,

Xn
i¼1

pi,n ¼ 1

( )
:

(1)

A better way to see this problem from a probabilistic point of view is to consider (1) as

the minimization of the Kullback distance

K(Q, P) ¼ �
Ð
log

dQ

dP

� �
dP, if Q � P

1, otherwise,

8<
:

between Q and Pn, over all probabilities Q dominated by the empirical distribution Pn, where

Q satisfies the constraint T (Q) ¼ Ł. That is,

�log(RE,n(Ł))=n ¼ inf
Qn2Pn

K(Qn, Pn), T (Qn) ¼ Ł,

ð
dQn ¼ 1

� �
: (2)

This may be seen as the empirical minimization of a particular distance to solve the

inverse problem T (Q) ¼ Ł. Other distances, which are all particular cases of convex

distance or I-divergence (see Rockafeller 1968; Liese and Vajda 1987), have been suggested

in place of the Kullback distance. This has given rise to what econometricians call

‘maximum entropy econometrics’ (see, for instance, Golan et al. 1996) when choosing the

relative entropy. The Cressie–Read distance has also been suggested by many authors (see
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Owen 2001; Baggerly 1998; Corcoran 1998; and references therein). Most of the (first-

order) asymptotic results that we discuss here can be obtained in the much more general

framework of I-divergences for which a dual representation holds (see Borwein and Lewis

1991; Bertail 2004). We will, however, focus here on the particular case of Kullback

distance and empirical likelihood because of its interesting third-order properties.

Owen (1990) showed that if T (P) ¼ EPX is the mean of a q-variate random variable

with a covariance matrix � ¼ var(X ) of rank q then �2 log(RE,n(Ł)) converges in

distribution to �2(q), a result which is the nonparametric analogue to Wilks’s (1938) result.

This yields a confidence region asymptotically of level 1� Æ:

Rn,1�Æ ¼ fŁ, ¸n(Ł) ¼ �2 log(RE,n(Ł)) < �21�Æ(q)g: (3)

It is easy to show by reciprocal inclusion that in the case of a linear functional,

Rn,1�Æ ¼ fT ( ~PPn), ~PPn 2 Pn,1�Æg, (4)

with

Pn,1�Æ ¼
Xn
i¼1

pi,n�X i
,
Xn
i¼1

pi,n ¼ 1, pi,n > 0, �2
Xn
i¼1

log
pi,n

1=n

� �
< �21�Æ(q)

( )

¼ Q 2 P, K(Q, Pn) <
�21�Æ(q)

2n
,

ð
dQ ¼ 1, Q > 0

� �
� Pn:

This equality, which plays an important role in our analysis, fails for nonlinear statistics, for

which we simply have fT ( ~PPn), ~PPn 2 Pn,1�Æg � Rn,1�Æ. Notice that for any fixed n, the set

Pn,1�Æ contains Pn for any fixed value of 0 , Æ < 1. One purpose of this paper is to show

that, for Hadamard differentiable functionals, fT ( ~PPn), ~PPn 2 Pn,1�Æg is still an asymptotically

valid 1� Æ confidence region for T (P) 2 Rq. This means that, for smooth functionals, the

image by T of the ball (constructed with the Kullback distance) centred at Pn with diameter

�21�Æ(q)=n is an asymptotically correct confidence interval for T (P).

Owen (1988) and DiCiccio et al. (1991) showed in the case of the mean (under moment

and Cramér conditions) that

P(Ł 2 Rn,1�Æ) ¼ 1� Æþ O(n�1): (5)

This is actually the error rate for a two-sided confidence interval based on the normal

asymptotic distribution in regular cases such as smooth functions of the means. DiCiccio et

al. (1991) proved that empirical likelihood ratios (as in the parametric case) are Bartlett

correctable (under some regular assumptions); see also DiCiccio and Romano (1990) and

Hall (1990). The Bartlett correction aims to fix the expectation of ¸n(Ł) ¼ �2 log(RE,n(Ł))
exactly at q, the expectation of the limiting distribution. Since the first term in the Edgeworth

expansion of ¸n(Ł) is of order n�1 multiplied by a polynomial function of degree 1, a simple

and explicit correction of the form q¸n(Ł)=EP¸n(Ł) results in a confidence region with a

coverage error of order O(n�2) (see Bickel and Ghosh 1990). Notice that this is also the rate

that can be obtained with the bootstrap for two-sided confidence intervals in smooth cases. In

practice EP¸n(Ł) is unknown but can be replaced by a suitable estimator: if the estimator is
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chosen adequately, then accuracy up to O(n�2) still holds (Barndorff-Nielsen and Hall 1988).

For instance, one may use a jackknife estimator or a bootstrap estimator of this mean. Thus

empirical likelihood does not require intensive computations (at least theoretically), contrary

to the bootstrap distribution, which in most cases needs to be approximated by Monte Carlo

simulation. It should be noted that a ‘corrected version’ of the weighted bootstrap has been

proposed in Barbe and Bertail (1995) to improve on the usual bootstrap. Adequate choice of

the weights, depending on the data (which may be seen as an attempt to invert the Edgeworth

expansion of the bootstrap distribution), typically leads to an accuracy of order O(n�5=2), for

symmetric statistics, under regularity assumptions on the functional of interest. However this

requires strong knowledge of the functional of interest (the gradients up to order 6), whereas,

as we will see, the empirical likelihood leads to an accuracy of order O(n�2) in a quite

automatic way.

Computational problems may, however, arise in the algorithms used to build the empirical

likelihood regions if the parameter is very complicated; see Owen (2001) for algorithms and

tricks to alleviate these. In the case of smooth functions of a (possibly vector) mean, the

confidence region is convex and the problem is to find the boundary of the confidence

region. This may be done by solving a system of simultaneous equations and is achieved

practically, for instance, via standard multivariate Newton algorithms. These results have

been generalized by Hall and La Scala (1990) for smooth functions of the multivariate

mean.

The case of a Fréchet differentiable functional with respect to the Kolmogorov metric has

been studied by Owen (1988, 1990) and the case of M-estimators by Qin and Lawless

(1994). These results may be generalized to more general functionals, Fréchet differentiable

with respect to an adequate metric which shares the same properties as the Kolmogorov

metric, for instance a metric indexed by a class of functions (see Dudley 1990; Barbe and

Bertail 1995). In the next subsection, we show that Hadamard differentiability is sufficient

to obtain such generalizations.

2.2. Asymptotic validity of empirical likelihood for Hadamard

differentiable functionals

We will establish our results for Hadamard differentiable functionals with an explicit

canonical gradient. Hadamard differentiability is a notion of differentiability in which the

remainder is controlled over compact neighbourhoods. It is well suited for studying

functionals of asymptotically tight random sequences (see Gill 1989). Moreover, Hadamard

differentiability is the weakest form of differentiability for which the chain rule holds. It

also preserves asymptotic efficiency, which makes it a privileged tool in semiparametric

analysis (see van der Vaart 1998). The main problem in using this notion in statistical

applications lies in the choice of metric or topology to ensure both the convergence of the

empirical process and the Hadamard differentiability of the functional.

For the sake of generality, we will consider the following abstract empirical process

framework. Assume that the functional T is defined on P considered as a subset of L1(F ).

F is a subset of functions of a normed space of functions, here L2(P) ¼ fh, EPh
2 , 1g,
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endowed with k f k2,P ¼ (EP( f
2)1=2. L1(F ) is equipped with the uniform convergence norm

(or equivalently Zolotarev metric)

kP� QkF ¼ dF (P, Q) ¼ sup
h2F

����
ð
hdP�

ð
hdQ

����:
To avoid measurability problems, we assume that expectations (probabilities) are outer

expectations (outer probabilities) so that weak convergence is interpreted as Hoffman-

Jørgensen convergence �� see van der Vaart and Wellner (1996) for details. For the same

reason, we will also assume that F is image admissible Suslin. This ensures that the classes

of the square functions and difference of square functions are P-measurable (see Dudley

1984). In the following, it is assumed that F is a Donsker class of functions with envelope H

satisfying

0 ,

ð
H2 dP , 1, (6)

so that the empirical process n1=2(Pn � P) indexed by F converges (as an element of L1(F ))

to a limit GP, which is a tight Borel measurable element of L1(F ) with uniformly k � k2,P
continuous sample paths f ! GP( f ). Extensive references and results on empirical processes

indexed by class of functions and conditions for F to be Donsker may be found in van der

Vaart and Wellner (1996). Denote the covering number (the minimal number of balls of

radius � for the seminorm k � k needed to cover F ) by N (�, F , k � k). We will assume the

usual uniform entropy conditionð1
0

sup
Q2D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(N (�kHk2,Q, F , k � k2,Q))

q
d� , 1, (7)

where D is the set of all discrete probability measures Q with 0 ,
Ð
H2dQ , 1. Notice that

if H is an envelope of the class then H þ 1 is also an envelope, so that we may assume

without loss of generality that H > 1.

The following lemma shows that the set Pn,1�Æ is small and contained in a band around

Pn. This implies that the associated weighted empirical process indexed by F, correctly

standardized, is asymptotically converging in L1(F ) uniformly over Pn,1�Æ.

Lemma 2.1. For any Æ 2 [0, 1[, there exist non-negative constants, a(Æ) , 1 , b(Æ), such
that for any ~PPn ¼

Pn
i¼1 pi,n�X i

in Pn,1�Æ we have

a(Æ)

n
< pi,n <

b(Æ)

n
,

where b(Æ) ! 1 when Æ ! 1 (and b(Æ) ! 1 when Æ ! 0)

For any fixed Æ 2]0, 1[, if F is a (Suslin) Donsker class of functions satisfying (6) and

(7), then

Xn
i¼1

p2i,n

 !�1=2

( ~PPn � P) !w
n!1

GP in L1(F ),
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uniformly over Pn,1�Æ, where GP is a Gaussian process in L1(F ).

Now define B(F , P), the subset of L1(F ) (seen as functions (or paths) f ! � f ¼
Ð
fd�

from F ! R) which are k � k2,P-uniformly continuous and bounded (which is the smallest

natural space in which GP lies). We recall the following definition of Hadamard

differentiability tangentially to B(F ) adapted from Pons and Turckheim (1991). Notice that

differentiation taken tangentially to B(F , P) (and not to L1(F ), which is too large)

weakens the notion of differentiation and makes it easier to check in statistical problems

(see examples in Gill 1989; Pons and Turckheim 1991; van der Vaart and Wellner, 1996,

Chapter 3.9; van der Vaart, 1998, Chapter 20).

Definition 2.1. The functional T from P � L1(F ) to Rq (or any Banach space (B1, k � kB1
))

is said to be Hadamard (or compact) differentiable at P 2 P tangentially to B(F , P) – or T

is HDTF � P for short – if and only if there exists a continuous linear mapping dTP (defined

on P), such that for every sequence hn ! h 2 B(F , P), for every sequence tn ! 0 such that

Pþ tn h 2 P,

T ((Pþ tnhn))� T (P)

tn
� dTP:h ! 0, as tn ! 0:

For a Hadamard differentiable functional, a canonical (or first) gradient T (1)(�, P) is any

function from X to B1 such that

dTP(Q� P) ¼
ð
T (1)(x, P)(Q� P)(dx),

with the normalization

EPT
(1)(X , P) ¼ 0:

In the terminology of robustness, T (1)(x, P) is the influence function of the parameter

T (P) and is defined by

lim
t!0

T ((1� t)Pþ t�x)� T (P)

t

� �

(see Hampel 1974). Notice that, in a semiparametric framework, in which the parameter is

defined implicitly by the model, the canonical gradient may not be unique. In the following

we will assume that such a gradient exists and is non-degenerate (that is to say, the

covariance operator associated with T (1)(X , P) has full rank).

Assuming that T is HDTF � P with canonical gradient T (1)(�, P), then we have

T ( ~PPn)� Ł ¼
ð
T (1)(x, P)( ~PPn � P)(dx)þ Rn( ~PPn, P):

Lemma 2.1 implies that the solutions ~PPn in Pn,1�Æ are close to P typically up to OP(n
�1=2)

in L1(F ). Thus we expect the delta method for Hadamard differentiable functionals to yield
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Rn( ~PPn, P) ¼ oP((
P2

i,n)
1=2) ¼ oP(n

�1=2) uniformly over all admissible ~PPn in Pn,1�Æ. These

arguments suggest that the empirical likelihood ratio may be replaced by a linearized version

R
L

E,n(P) ¼ sup
~PPn2Pn

Yn
i¼1

nd ~PPn(X i), E ~PPn
T (1)(X , P) ¼ 0

( )

¼ sup
pi,n,i¼1,...,n

Yn
i¼1

npi,n,
Xn
i¼1

pi,nT
(1)(X i, P) ¼ 0, pi,n > 0,

Xn
i¼1

pi,n ¼ 1

( )
, (8)

yielding an asymptotic confidence region for T (P) of the form

R
�
n,1�Æ ¼ T (P)þ

ð
T (1)(�, P)d ~PPn, ~PPn 2 Pn,1�Æ

� �
:

But the analogue of (4),

R
T
n,1�Æ ¼ fT ( ~PPn), ~PPn 2 Pn,1�Æg,

is ‘close’, up to oP((
P

p2i,n)
�1=2) ¼ oP(n

�1=2), to the linearized confidence region which may

be deduced from (8) so that the use of RT
n,1�Æ is asymptotically justified.

The following theorem states that these approximations are asymptotically valid and

establishes the validity of empirical likelihood for Hadamard differentiable functionals.

Theorem 2.1. Assume that P is dominated by a measure �. Assume that there exists a

(Suslin) Donsker class of functions F with envelope H, satisfying (7) such that T defined on

P is HDTF � P with gradient T (1)(�, P). If var(T (1)(X , P)) , 1 is of rank q, then we have

�2 log R
L

E,n(P)
� �

!
n!1

�2(q) (9)

and

P(T (Ł) 2 R
T
n,1�Æ) !

n!1
1� Æ:

If, in addition, R
L

E,n(P) � R
L

E,n(Ł) only depends on Ł through T (1)(x, P) � T (1)(x, Ł), assume
the Cramér condition

lim
k tk!1

jEp exp(it9T
(1)(X i, P))j , 1, (10)

and

EpkT (1)(X i, P)ks , 1, for s > 8þ �, � . 0, (11)

and then the Bartlett corrected confidence region,

R
B
1�Æ ¼ Ł, q log R

L

E,n(Ł)
� �

=E log R
L

E,n(Ł)
� �� �

< �21�Æ(q)
n o

,

is a third-order correct confidence region for T (P):

P(Ł 2 R
B
1�Æ) ¼ 1� Æþ O(n�2):
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Proof. For a better understanding of these results, we give here a short proof. Recall that

using standard variational calculus (see Owen 2001), the solution of the maximization

problem (8) is given by

pi,n(º) ¼
1

n(1þ º9T (1)(X i, P))
. 0,

where º, the Kuhn–Tucker coefficient, satisfies

Xn
i¼1

pi,n(º) ¼ 1, 0 < pi,n(º) < 1,

Xn
i¼1

pi,n(º)T
(1)(X i, P) ¼ 0:

By standard Kuhn–Tucker duality theory, we have

�2 log R
L

E,n(P)
� �

¼ 2 sup
º2Rq

Xn
i¼1

log(1þ º9T (1)(X i, P)) :¼ 2 sup
º2Rq

Ln(º): (12)

We may see Ln as the log-likelihood ratio of a worst parametric family of distribution

parametrized by º, which passes through the true model at º ¼ 0. Indeed, since

EPT
(1)(X i, P) ¼ 0,

pº(�) ¼
dP

d�
(�)(1þ º9T (1)(�, P))If1þº9T (1)(�,P).0g

is a density defined for any º in the neighbourhood of 0 (notice that we may choose � ¼ P).

The log-likelihood ratio in this parametric family at 0 is exactly Ln(º). In some sense

empirical likelihood generates a least favourable model (see Bickel et al. 1993; DiCiccio and

Romano 1990) indexed by the Kuhn–Tucker parameters. This interpretation of the empirical

likelihood ratio as the likelihood ratio associated with a least favourable family, which is

already present in DiCiccio and Romano (1990), will be particularly useful in semiparametric

models. Since Ln(0) ¼ 0, Ln(º) may also be seen precisely as a dual log-likelihood in the

sense of Mykland (1995) – that is, in his terminology, a log-likelihood such that

@Ln(º)

@º

	 

º¼0

¼
Xn
i¼1

T (1)(X i, P):

Ln(º) is well defined and strictly concave. Thus it admits a unique maximum. Moreover, by

concavity of the log,

EP(log(1þ º9T (1)(X i, P))) < log(1þ º9EPT
(1)(X i, P)) ¼ 0:

Thus EP(log(1þ º9T (1)(X , P))) has a unique maximum at º ¼ 0 and the maximum

likelihood estimator (MLE) converges to 0. Notice that since var(T (1)(X , P)) exists and is

strictly positive, the family fpº, º 2 Rqg is differentiable in quadratic mean and the

associate log-likelihood ratio is locally asymptotically normal (see Le Cam 1986). Indeed, the

differentiability in quadratic mean follows from Lemma 7.6 of van der Vaart (1998: 95).
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pº(x) is continuously differentiable in º everywhere except on the set

fx, 1þ º9T (1)(x, P) ¼ 0g. But it is easy to see that this set has probability 0 if

var(T (1)(X , P)) . 0 (see also the direct proof of Owen 2001, Lemma 11.1, p. 217). Thus

the empirical likelihood ratio is simply a likelihood ratio for testing º ¼ 0 and, as in Mykland

(1995), (9) follows.

Because Ln(º) is itself a parametric log-likelihood ratio (as a function of the parameter

º), it is Bartlett correctable under (10) and (11). These conditions are sufficient to ensure

the validity of the Edgeworth expansion of the standardized version of n�1
P

T (1)(X i, P) up

to order O(n�2), which is needed for the Bartlett correction to hold. Thus if R
L

E,n(P)

depends only on Ł, Bartlett corrected empirical likelihood can be used to construct efficient

confidence region.

Now, for Q 2 P, define the linear parameter

�(Q) ¼ Ł(P)þ
ð
T (1)(x, P)Q(dx):

Then a 1� Æ empirical likelihood based confidence region for this parameter is

R
�
n,1�Æ ¼ f�( ~PPn), with ~PPn 2 Pn,1�Ægg

¼ �(P), �2 log(R
L

E,n(P)) < �21�Æ(q)
n o

¼ fŁ(P), �2 log(R
L

E,n(P)) < �21�Æ(q)g,

with P(Ł(P) 2 R
�
n,1�Æ) ! 1� Æ, since the parameter �(Q) is linear. More precisely, we have

P(Ł(P) 2 R
�
n,1�Æ) ¼ 1� Æþ O(n�1) if (10) and (11) hold for s . 4.

Now we have by Hadamard differentiability

T ( ~PPn) ¼ �( ~PPn)þ Rn( ~PPn, P)

¼ Ł(P)þ
ð
T (1)(x, P)( ~PPn � P)(dx)þ Rn( ~PPn, P):

The results now follow by similar arguments to those in Theorem 20.8 of van der Vaart

(1998). Take t ¼ (
P

p2i,n)
�1=2, which is of order o(n�1=2) uniformly over Pn,1�Æ by Lemma

2.1, and hn ¼ (
P

p2i,n)
�1=2( ~PPn � P) 2 L1(F ) in the definition of Hadamard differentiability.

Then, by definition, h ¼ GP 2 B(F , P). We deduce that R( ~PPn, P) ¼ o(n�1=2) uniformly

over Pn,1�Æ. It follows that R
�
n,1�Æ and R

T
n,1�Æ are asymptotically equivalent. h

Remark 2.1. The proof essentially relies on a convex duality argument that allows us to write

the empirical likelihood as a true parametric likelihood ratio indexed by the Kuhn–Tucker

coefficient. Duality is used in a constructive way in Mykland (1995): here duality is actually

a consequence of the fact that the Kullback distance is a convex statistical distance (see Liese

and Vajda 1987). The duality principle generates a least favourable family, which may be

verified to be locally asymptotically normal, under the condition var(T (1)(X , P)) , 1. This

dual representation is easy to obtain when there is a finite number of constraints in the
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empirical likelihood (here if the parameter is of finite dimension). Actually, even if there is an

infinite number of constraints (which is actually the case in many semiparametric problems),

a dual representation still holds (see Remark 3.1).

Hadamard differentiability is needed to show that R
�
n,1�Æ and R

T
n,1�Æ are asymptotically

equivalent. Such arguments may be used in a large number of applications to obtain the

asymptotic distribution of the empirical log-likelihood ratio as well as its Bartlett

correctability (see Example 5 below). It also may be used to prove (first-order) asymptotic

results, when the Kullback distance in (2) is replaced by another convex statistical distance,

the entropy or even any convex statistical distance (I-divergence) for which a convex duality

principle holds (see Borwein and Lewis 1991; Leonard 2001; Bertail 2004). In the case of

the empirical likelihood, Bartlett correctability follows from the fact that the dual function

is itself a likelihood, which is not the case for more general convex statistical distances (see

Baggerly 1998; Corcoran 1998). Of course this result is theoretical in that EP(log(R
L

E,n(Ł)))
is generally unknown and must be estimated. This can be done by using jackknife or even

bootstrap procedures, even though this may be computer-intensive. The fact that accuracy

up to O(n�2) may still hold even with an estimated value is supported by results of

Barndorff-Nielsen and Hall (1988).

Remark 2.2. Owen (1990) and Qin and Lawless (1994) showed how results of this kind may

be used for M-estimates. Indeed, in this case the influence function depends only on Ł and

RL
E,n(Ł) may be quite easy to calculate. Notice that in a semiparametric model the choice of

the influence function is left to the statistician. Of course if the efficient influence function (in

the sense of Bickel et al. 1993) is known and independent of the nuisance parameters – see

Amari and Kawanabe (1997) for the existence of general estimating equations – then this

would be the best candidate for T (1). However, many problems may appear. First, the efficient

influence function is not always easy to obtain since most of the time it involves the

projection into an infinite-dimensional space. Second, it is not clear whether this expression

may be used in practice, for T (1)(�, P) may have a very complicated form and depend on

some nuisance parameter. This kind of problem typically appears in the ‘challenges’ exposed

in Chapter 10 of Owen (2001). We shall further examine these points in the next section.

Remark 2.3. The preceding arguments mainly rely on the existence of a dual form for the

likelihood ratio and it is interesting to investigate and use the special structure of this dual

representation. At 0, the information matrix with respect to º is given by VP(T
(1)(X , P)) and

the MLE for º in this locally asympotically normal family is such that

º̂ºn(P) ¼ S�2
n

Xn
i¼1

T (1)(X i, P))(1þ o p(1)) ¼ OP

1ffiffiffi
n

p
� �

,

with

S2n ¼
1

n

X
T (1)(X i, P)T

(1)(X i, P)9:
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Apply the strong law of large numbers to the first term and the central limit theorem to the

second term to obtain ffiffiffi
n

p
º̂ºn(P) !

n!1
N (0, V (T (1)(X i, P))

�1):

It follows that at the MLE º̂ºn(P), the empirical likelihood ratio Ln(º̂ºn(P)) behaves

asymptotically like the usual generalized method of moments (see Hansen 1982) objective

function

1ffiffiffi
n

p
Xn
i¼1

T (1)(X i, P)

 !
9
(S2n)

�1 1ffiffiffi
n

p
Xn
i¼1

T (1)(X i, P)

 !
,

which may be seen as the square of the norm of a self-normalized sum (which is

asymptotically �2(q)). This self-normalization, carried out internally by the optimization

procedure as noticed by several authors (see Owen 2001), is essentially due to the locally

asymptotically normal structure of the dual likelihood ratio.

Remark 2.4. Because Ln(º) is itself a likelihood (as a function of º), a rather interesting

property of this approximate linearized empirical likelihood is that, even though we do not

take into account the second-order terms in the Taylor expansion of T (Pn), it shares the same

properties as the empirical likelihood of the mean, that is, it is Bartlett correctable. This is a

rather amazing fact which speaks in favour of empirical likelihood against other third-order

correction methods for constructing confidence intervals such as iterative inversion of

Edgeworth expansion or weighted bootstrap approximations. Indeed, in these cases, the

structure of the statistic (its Hoeffding decomposition in terms of orthogonal U-statistics)

plays a fundamental role in implementing these methods (see Barbe and Bertail 1995).

However, it should be noted that this is only possible when the influence function is simple

and does not depend on additional nuisance parameters. If T (1)(�, P) does not depend only on

Ł, it is in general not possible to control the error induced by the linearization of T (P), so

that the Bartlett properties will not hold.

Remark 2.5. Hadamard differentiability seems to be the weakest form of differentiability

which ensures that we may approximate the exact interval by its linearized form. Lemma 2.1

is the key point for showing the validity of the approximation. Of course other types of

conditions may be used to obtain a similar result, for instance by using bracketing entropy.

3. Empirical likelihood in semiparametric models

3.1. Semiparametric extensions

A model is called semiparametric if æ¨,H ¼ fPŁ,G 2 æ, Ł 2 ¨, G 2 Hg is a set of

probability measures indexed both by a parameter of interest Ł in a subset ¨ of Rk and a

nuisance parameter G in a space H , possibly of infinite dimension. Such models and the

generalization to the infinite-dimensional case for ¨ are studied at length in Bickel et al.
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(1993). One of the main problems which appears in semiparametric models is that generally

the parameter of interest Ł ¼ T (PŁ,G) is defined on a set æ¨,H smaller than æ considered

above, so that T (Pn), T ( ~PPn) with ~PPn ¼
Pn

i¼1 pi,n�X i
, or the gradient T (1)(x, Q) at Q ¼ Pn

may not be defined properly and may depend on some nuisance parameter.

One semiparametric approach generally used in such a context is to extend the functional

T (�) to a more general space. For this purpose, one generally introduces a pseudo-metric d

on æ and defines a pseudo-projection — (not necessarily unique, or even a sequence of

pseudo-projectors —m, m ! 1) into the model of any P 2 æ such that

—(P) ¼ arg min
Q2æ¨,H

(d(P, Q)):

Then the functional

~TT (P) ¼ T �—(P)

extends T defined on æ¨,H to æ. ~TT (Pn) defines a minimum distance estimator (see Bickel

et al. 1993). More generally, we may choose — to be any function (or sequence of

functions) which extends the functional T (�) to æ, the set of all signed measures. For

instance, if æ¨,G is the set of probability measures with continuous density with respect to

the Lebesgue measure º, we may choose — to be the convolution of P with a continuous

kernel if P does not have a continuous density with respect to º and —(P) ¼ P otherwise.

In that case, because of the linearity of the convolution operator, the influence function of
~TT will be the smoothed version of the influence function of T – see Chen and Hall

(1993) and Chen (1996) for such use in the context of empirical likelihood. If such an

extension exists then we may define the empirical likelihood ratio in the semiparametric

model as

RE,n(Ł) ¼ sup
pi,n,i¼1,...,n

Yn
i¼1

npi,n, ~TT
Xn
i¼1

pi,n�X i

 !
¼ Ł, pi,n > 0,

Xn
i¼1

pi,n ¼ 1

( )
: (13)

However, in many problems, the right ‘efficient’ choice of the extension — (in the sense

of Bickel et al. 1993) depends on the geometry of the problem. Ideally it should be chosen

in such a way that the gradient at P of ~TT coincides with the efficient influence function of

T in the original semiparametric problem. However, in many problems it may be easier to

work directly with the efficient influence function or a non-efficient but tractable one.

In the following ~TT (1)(�, PŁ,G) is the efficient influence function when it is available or a

particular tractable influence function of ~TT . ~TT (1)(�, PŁ,G) may be simply proportional to an

influence function, as is the case in Example 4 below. The linearized version of the original

problem is thus

sup
pi,n,i¼1,...,n

Yn
i¼1

npi,n,
Xn
i¼1

pi,n ~TT
(1)(X i, PŁ,G) ¼ 0, pi,n > 0,

Xn
i¼1

pi,n ¼ 1

( )
: (14)

Of course, since in practice G is unknown this also depends on the nuisance parameter G.

However, one may in many situations, for any fixed Ł, find a smooth estimator ĜGŁ,n of G.
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Assuming that such a consistent estimator exists, then we may use the approximate

semiparametric empirical likelihood

~RRE,n(Ł) ¼ sup
Yn
i¼1

npi,n,
Xn
i¼1

pi,n ~TT
(1)(X i, PŁ,ĜGŁ,n

) ¼ 0, pi,n > 0,
Xn
i¼1

pi, n ¼ 1

( )
: (15)

It should be noted that in general the solution of the original problem (13) and that of

(15) are different but asymptotically equivalent (for instance, if ~TT is Hadamard

differentiable with a gradient continuous in P).

Another possible definition which will ease the technical difficulties that we will

encounter later, when studying the asymptotic properties of this approximate empirical

likelihood, is to rely on the splitting trick frequently used in the semiparametric literature.

For this purpose, define two estimators of G, G
(1)

Ł,n=2 and G
(2)

Ł,n=2, based respectively on the

first half ([n=2] first values) and second half of the sample. Then we may define the

approximate semiparametric empirical likelihood by

~RRE,n(Ł) ¼ sup
pi,n,i¼1,...,n

(Yn
i¼1

npi,n, pi,n > 0,
Xn
i¼1

pi,n ¼ 1,

X[n=2]
i¼1

pi,n ~TT
(1)(X i, PŁ,G(2)

Ł,n=2
)þ

Xn
i¼[n=2]þ1

pi,n ~TT
(1)(X i, PŁ,G(1)

Ł,n=2
) ¼ 0

)
: (16)

The asymptotic results that we obtain may be derived in this case too by using the same

kind of arguments. However, from a practical point of view the splitting trick is less than

satisfactory. The loss in using only half of the sample for the estimation of the nuisance

parameter, for instance a density, may have disastrous effects on the semiparametric

estimators for fixed n.

Remark 3.1. As mentioned by a referee and an associate editor, computing the efficient

influence function may be a difficult task in many semiparametric models, so that the

attractive automatic implementation of empirical likelihood may be lost. Of course the choice

of an inefficient influence function is always possible, but even in that case the influence

function may depend on some nuisance parameter. Empirical likelihood then has to be

adapted to the semiparametric problem under consideration.

A possible solution is to profile the empirical likelihood according to the nuisance

parameter and to maximize it or to integrate it over the nuisance parameter (see Leblanc

and Crowley 1995; Owen, 2001, Section 3.5). Another solution is simply to try to

estimate the nuisance parameter by using some plug-in estimators. This idea is used in

many recent constructions – see Qin and Jing (2001) as well as the examples given in

Owen (2001, Chapters 5 and 6) and our previous construction. This solution is only

possible when the model may be reduced to a problem with a finite number of

constraints indexed both by the parameter of interest and the nuisance parameter.

Moreover, the choice of the estimator of the nuisance parameter estimator may have

some drastic effects on the limiting distribution of the empirical likelihood ratio which
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may asymptotically converge to a mixture of �2 distributions. For an example, see the

study of Qin and Jing (2001). In their paper, the problem is essentially due to the

choice of the constraints (choice of the influence function) and of the estimator of the

nuisance parameter (which are not ‘orthogonal’ in some sense). In the following, we will

show how to choose the estimator of the nuisance parameter to avoid this kind of

problem. The split empirical likelihood introduced before is also a solution in other

complicated situations.

A second solution is to note that the semiparametric problem generates a large number

(even an infinity) of linear constraints. This suggests the use of a growing number of

constraints or moments in the empirical likelihood maximization program – see, for

instance, Chen and Cui (2003) for generalized linear models. Such a construction is also

used in many applications of empirical likelihood in econometrics. Indeed, as mentioned

by van der Vaart (1995) and Bickel et al. (1993), a semiparametric problem is somehow

asymptotically equivalent to an infinite-dimensional M-estimation problem, with an

associated operator A. To see this, one may write all the scores with respect to the

parameter of interest and to all finite-dimensional parametrizations of the nuisance

parameter and write that, under the true model, they all have expectations equal to 0.

This approach leads to several issues. How should one choose the constraints which

make sense for the problem? How many constraints should be retained and is there any

efficiency loss in retaining only some constraints? The first issue is closely related to the

choice of an adequate base for the tangent space of the semiparametric model (see

Bickel et al., 1993). The possibility of asymptotically reducing the problem to a finite

number of efficient constraints is actually closely linked to semiparametric analysis and

the existence of estimating equations (see Amari and Kawanabe 1997). This is the

approach that we have taken in this paper. However, since the operator A may be very

complicated (and projections into the tangent space difficult to carry out), it may still be

interesting to look at the empirical likelihood under an infinite number of constraints. In

this case, it is still possible to obtain a dual version of the empirical likelihood problem,

using, for instance, the results of Leonard (2001). Of course, the dual likelihood

(indexed by a parameter of infinite dimension) may be more difficult to control in that

case, unless one has some control over the operator A (and/or the size of the functions

inducing the constraints as measured by some entropy index). As far as the number of

constraints and the practical implementation of such problems are concerned, some

elements are already given in the literature on nonlinear convex analysis (in particular,

semi-infinite and semi-definite programming). We will not pursue this analysis here; it is

currently under study.

3.2. Asymptotic validity under weak assumptions

Consider the optimization program (13). Similar arguments to those in Section 2 yield the

dual equality
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�2 log( ~RRE,n(Ł)) ¼ 2sup
º2Rq

Xn
i¼1

log 1þ º9 ~TT (1)(X i, PŁ,ĜGŁ,n
)

� �( )
� 2 sup

º2Rq

~LLn(º):

Notice, however, that ~LLn(º) cannot be seen directly as a log-likelihood ratio because of the

dependence on ĜGŁ,n and the absence of recentring. Indeed, there is no reason why

EPŁ,G
~TT (1)(X i, PŁ,ĜGŁ,n

) ¼ 0. However, a result similar to Theorem 2.1 may be proved by

combining martingale and empirical process arguments, provided that ĜGŁ,n is chosen adequately.

To prove the validity of empirical likelihood in this framework, we will assume the

following hypotheses:

H1 Assume that the sequence of estimators ĜGŁ,n is a symmetric statistic of the

observations X 1, . . . X n and that it converges to G with probability one.

The following condition is the usual one ensuring that the bias of the estimated influence

function is small compared to the rate of convergence which we expect. This implies that

ln,E(Ł) is close to a sequence of likelihood ratios.

H2 The estimator ĜGŁ,n is such that

EPŁ,G
~TT (1)(X i, PŁ,ĜGŁ,n

) ¼ o(n�1=2):

H3
~TT (1)(�, PŁ,G) is a continuous function of G (with respect to a metric metrizing

convergence of ĜGŁ,n to G).

The last condition implies a uniform control of the approximation of ~TT (1)(�, PŁ,G) by
~TT (1)(�, PŁ,ĜGŁ,n

).

H4 For every Ł and n, the functions ~TT (1)(�, PŁ,ĜGŁ,n
) belong to a Donsker class of

functions with probability one. The class has an envelope H(�) . 0, possibly

dependent on Ł, with

EPŁ,G H(X )2 , 1:

Actually these conditions are weaker than the conditions that one usually assumes in the

framework of semiparametric models – see, for instance, Bickel et al. (1993) or van der

Vaart (1998, Theorem 25.54). The main reason for this is that we just want to give here

conditions for the asymptotic validity of the empirical likelihood principle. Moreover, the

fact that we choose an estimator ĜGŁ,n which is a symmetric function of the observations

allows us to weaken the usual hypotheses thanks to extended backward martingale

arguments (see Lemma 5.1). Nevertheless, if we want to obtain efficient estimators by

minimizing the resulting asymptotically �2 statistics, additional assumptions (uniformity

conditions in the neighbourhood of the true value Ł) close to those assumed by van der

Vaart (1998) seem to be needed.

Theorem 3.1. Assume that hypotheses H1–H4 hold. If var( ~TT (1)(X , PŁ,G)) is of rank q,

�2 log( ~RRE,n(Ł)) ! �2(q), as n ! þ1,

yielding asymptotically correct confidence intervals of level 1� Æ of the form
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fŁ, �2 log( ~RRE,n(Ł)) < �21�Æ(q)g:

Remark 3.2. Another way to prove this result is to consider the sequence of approximate least

favourable models (notice the recentring factor which ensures that we have a density, for º in

the neighbourhood of 0)

pº,n(�) ¼
dP

d�
(�)½1þ º9ð ~TT (1)(�, PŁ,ĜGŁ,n

)� EPŁ,G
~TT (1)(X1, PŁ,ĜGŁ,n

)Þ�

If1þº9ð ~TT (1)(�,PŁ,ĜGŁ,n )�EPŁ,G
~TT (1)(X1,PŁ,ĜGŁ,n

)Þ.0g:

Even if it may be possible to check the quadratic differentiability, conditions which ensure

that the MLE of º in this family behaves well in the presence of the estimated parameter ĜGŁ,n

may be more difficult to check. However, it is interesting to see that for the Bartlett

correctability of the approximate empirical likelihood (15) to hold, the behaviour of

EPŁ,G
~TT (1)(X 1, PŁ,ĜGŁ,n

) is of great importance. In many situations, for instance convex models

(see Bickel et al. 1993), we have

EPŁ,G
~TT (1)(X i, PŁ,ĜGŁ,n

) ¼ 0, (17)

so that it may be easier to show the Bartlett correctability (at least up to order O(n�3=2)) in

that case – see Chen (1996) and Chen and Hall (1993) for some examples.

Remark 3.3. Although the splitting trick used to construct (16) is not very satisfactory from a

practical point of view, it may be used to weaken the hypotheses of the preceding theorem.

Indeed, in that case, we do not even have to assume that the class is Donsker (provided that

we still have a square-integrable envelope). If we assume instead

H5 EPŁ,Gk ~TT (1)(X 1, PŁ,ĜG(i)

Ł,n
)� EPŁ,G

~TT (1)(X , PŁ,G)k2 ! 0, as n ! 1, for i ¼ 1, 2,

then the result of Theorem 3.1 still holds. Indeed, the Donsker property is only needed to

show the uniformity (26) in the proof. To obtain a similar theorem for (16), we have to check

that

n�1=2
Xn
i¼1

~TT (1)(X i, PŁ,G)�
X[n=2]
i¼1

~TT (1)(X i, PŁ,ĜG(2)

Ł,n
)�

Xn
i¼[n=2]þ1

~TT(1)(X i, PŁ,ĜG(1)

Ł,n
)

0
@

1
A ¼ oP(1),

which is a consequence of H5. In some models, condition H5 may be easier to check than

the Donsker property.

4. Examples

Most of the examples of Hadamard differentiable functionals considered in Pons and

Turckheim (1991) and van der Vaart (1998) can be studied within the framework of Section

2. There is nothing really new in detailing these examples. Provided that we consider finite-
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dimensional parameters, which are Hadamard differentiable with smooth gradients (this

includes constructing confidence intervals at several points of hazard rates with censored

data, or copulas at some given points, which have applications in finance), R
T
n,1�Æ ¼

fT ( ~PPn), ~PPn 2 Pn,1�Æg is asymptotically a valid confidence region. We therefore illustrate

our results and remarks with some examples taken from the semiparametric literature. In

Examples 1 and 2, the efficient influence function is known (up to a unidimensional

parameter in Example 1). These two examples show that the first and second

(nonparametric and semiparametric) approaches are not equivalent and may be more or

less adequate according to the problem at hand. Examples 3 and 4 propose a way to handle

nuisance parameters in semiparametric models. Many semiparametric problems quoted as

challenging in Chapter 10 of Owen (2001) are actually semiparametric problems which may

be treated as in Examples 3 and 4. Finally, we show in Example 5 how extensions and

Bartlett correctability may be obtained quite straightforwardly in the case of bias sampling

models studied by Qin (1993).

The following example illustrates the two different points of view taken in this paper,

that is, the nonparametric and semiparametric approaches. It shows that, when there is a

finite number of constraints (with no nuisance parameter), it is easier to use the arguments

of Section 2 to obtain third-order correct confidence intervals. The efficient influence

function is actually computed internally by the program. In that case estimating the efficient

influence function is not really necessary.

Example 1 Third-order correct confidence interval for a P-constrained mean: a comparison

of the nonparametric and semi-parametric approaches. Consider Example 3 of Bickel et al.

(1993: 68), in which one is interested in estimating the mean Ł ¼ EPX 6¼ 0 with

T (1)(x, P) :¼ T (1)(x, Ł) ¼ x� Ł, on the set of probability with a fixed coefficient of

variation fP such that EPX
8 , 1 and ª(P) ¼ EPX

2 � (1þ c0)(EPX )
2 ¼ 0, c0 6¼ 0g. Let

ª(1)(�, P) be the influence function of ª(�) at P. By a straightforward calculus, this is given by

ª(1)(x, P) :¼ ª(1)(x, Ł) ¼ x2 � 2(1þ c0)Ł(x� Ł)� (1þ c0)Ł
2:

The efficient influence function which is given by the projection on the nuisance tangent

space fh 2 L2(P), EPh ¼ 0 and EPhª(1) ¼ 0g is expressed as

~TT (1)(x, P) ¼ T (1)(x, P)� covP(T
(1)(X , P)ª(1)(X , P))

varP(ª(1)(X , P))
ª(1)(x, P) (18)

(this is simply the residual of the regression of T (1) on ª(1); see Bickel et al. (1993: 55), with

variance

VP
~TT (1)(X , P) ¼ VPT

(1)(X , P)� covP(T
(1)(X , P)ª(1)(X , P))2

varP(ª(1)(X , P))
:

However, the regression coefficient

Æ ¼ covP(T
(1)(X , P)ª(1)(X , P))

varP(ª(1)(X , P))

is unknown and must be estimated, for instance, by
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Æ̂Æ(Ł) ¼
X

T (1)(X i, Ł)ª
(1)(X i, Ł)X

ª(1)(X i, Ł)
2

,

which is a symmetric function of the observations. However, ~TT (1)(x, P) is clearly continuous

in Æ (which plays the role of the nuisance parameter G) and we have Æ̂Æ(Ł) ! Æ(Ł) almost

surely. We may then use the ‘estimated’ estimating function

Xn
i¼1

T (1)(X i, Ł)� Æ̂Æ(Ł)ª(1)(X i, Ł) ¼ 0:

It is easy to check that

EP(T
(1)(X i, Ł)� Æ̂Æ(Ł)ª(1)(X i, Ł)) ¼ O(n�1):

H4 is satisfied with an envelope given by

H(x) ¼ jT (1)(x, Ł)j þ 2VP(T
(1)(X , P))1=2VP(ª

(1)(X , P))�1=2jª(1)(x, Ł)j:
Moreover, when EX 8 , 1, we have

EP T (1)(X i, Ł)� Æ̂Æ(Ł)ª(1)(X i, Ł)� T (1)(X i, Ł)� Æ(Ł)ª(1)(X i, Ł)
� �2
< EPª

(1)(X i, Ł)
4


 �1=2
EP(Æ̂Æ(Ł)� Æ(Ł))4

 �1=2! 0 as n ! 1,

so that H5 is satisfied. We may then apply Theorem 3.1 to obtain empirical likelihood based

confidence intervals. However, in this case, it is simpler to consider this semiparametric

model as a problem in which there are two estimating functions corresponding respectively to

EQ(T
(1)(X , P)) ¼ 0 and EQ ª(1)(X , P) ¼ 0. Notice that at P, these two estimating functions

only depend on Ł, so that the results of Qin and Lawless (1994) apply in this framework. This

result may be explained by the fact that the optimization problem internally computes (up to

a constant) the efficient influence function. Indeed, if one tries to solve directly the dual

optimization problem

sup
º,�

n�1
Xn
i¼1

log 1þ º9T (1)(X i, P)þ �9ª(1)(X i, P)

 �

,

straightforward calculus based on Taylor expansions (see Remark 2.3) yields

� º̂º
�̂�

� �
¼

1

n

Xn
i¼1

T (1)(X i, P)

1

n

Xn
i¼1

ª(1)(X i, P)

0
BBBB@

1
CCCCAþ oP(1),

with

� ¼ VP(T
(1)(X , P)) covP(T

(1)(X , P)ª(1)(X , P))
covP(T

(1)(X , P)ª(1)(X , P)) VP(ª(1)(X , P))

� �
,
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that is,

º̂º
�̂�

� �
¼

1

n

Xn
i¼1

~TT (1)(X i, P)=VP( ~TT
(1)(X i, P))

1

n

Xn
i¼1

~ªª(1)(X i, P)=VP(~ªª
(1)(X i, P))

0
BBBB@

1
CCCCA,

where ~ªª(1) is the residual of the regression of ª(1) on T (1):

~ªª(1)(x, P) ¼ ª(1)(x, P)� covP(T
(1)(X , P)ª(1)(X , P))

varP(T (1)(X , P))
T (1)(x, P):

This is the efficient influence function when estimating ª(P) with a known mean Ł. Thus the
MLE of º is exactly proportional to the efficient estimating function given by (18). As a by-

product, this suggests that we may use the solution of the estimated Kuhn–Tucker coefficient

seen as a function of the parameter Ł, º̂º ¼ º̂º(Ł), to obtain an efficient estimator of Ł by

solving º̂º(Ł) ¼ 0 (which may be done practically by discretizing º̂º(Ł)), without any

preliminary estimation (of Æ) as in the first method.

Moreover, the likelihood ratio behaves as

Gn ¼ n

1

n

Xn
i¼1

T (1)(X i, P)

1

n

Xn
i¼1

ª(1)(X i, P)

0
BBBB@

1
CCCCA
9

��1

1

n

Xn
i¼1

T (1)(X i, P)

1

n

Xn
i¼1

ª(1)(X i, P)

0
BBBBB@

1
CCCCCA,

which is the usual general method of moments objective function (Hansen 1982). Because of

the likelihood structure of the least favourable family parametrized by � and º, we may

modify Theorem 2.1 straightforwardly and obtain the Bartlett correctability of the empirical

likelihood. Notice, however, that the two methods – on the one hand calculating first the

efficient influence function and then applying the empirical likelihood method, or, on the

other hand, applying the empirical likelihood to the constraints seen as estimating functions –

lead to different objective functions. The first method in some sense amounts to estimating

��1, which is actually internally computed in the second method.

Conversely, when the model is semiparametric, there may be some clear advantage in

computing the efficient influence function (especially if it does not depend on the nuisance

parameter). In the following example dealing with mixture models (see Bickel et al. 1993,

pp. 126–133; Amari and Kawanabe 1997) the mixing distribution g introduces an infinite-

dimensional nuisance parameter, so that the classical empirical likelihood approach cannot

be directly implemented: we would need to write an infinite number of moment constraints

(just as in the examples given in Owen 2001, Chapter 10). The approach of Section 3.1 is

easier to implement, all the more so as the efficient influence function does not depend on

the nuisance parameter, so that the second part of Theorem 1 also applies and leads to

Bartlett correctability.
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Example 2 Mixture models. Let g(�) be an unknown positive density on R and let

f f (x, Ł, �), Ł 2 R, � 2 Rg be a regular parametric exponential family of density

f (x, Ł, �) ¼ C(�, Ł)exp(�T1(x, Ł)þ T2(x, Ł)),

where T1 and T2 are measurable functions not dependent on �, differentiable in Ł such that

@T1(�, Ł)=@Ł is a function of T1.

The observations (X1, X 2, . . . , X n) are taken from

p(x, Ł) ¼
ð
f (x, Ł, �)g(�)d�;

then the efficient influence function of Ł is given by

T (1)(X , Ł, P) ¼ @T2(X , Ł)

@Ł
� EP

@T2(X , Ł)

@Ł
jT1(X , Ł)

� �

and is independent of the nuisance density g (see Amari and Kawanabe 1997 for details on

the existence of an estimating function in this case). In some models

EPf(@T2(X , Ł)=@Ł)jT1(X , Ł)g may be calculated explicitly (see Bickel et al. 1993, Section

4.5). In other general models, this quantity may be seen as a nuisance parameter that may

also be estimated by some kernel smoothing method (see Example 4 below).

The following example is considered in Chapter 10 of Owen (2001) and illustrates the

fact that a direct approach of empirical likelihood is not possible here. The result follows

directly from an application of Theorem 3.1.

Example 3 Confidence region for the centre of symmetry of a semiparametric family. Assume

that the model is given by æŁ,G ¼ fPŁ,� � � (any dominating measure) with dPŁ,�=d�
¼ �(x� Ł) and � symmetric about 0, � 2 G}. To avoid technical difficulties, we assume that

the densities are bounded and strictly positive on the whole support. We will also assume some

conditions (Lipschitz or Sobolev type conditions) to ensure that the class { _�� (x� Ł)2=
�(x� Ł), � 2 Gg is a Donsker class (see van der Vaart and Wellner 1996). It is known that Ł
may be estimated adaptively. An efficient influence function for the parameter Ł is given by

�I(�)�1 _��(x� Ł)

�(x� Ł)
with I(�) ¼

ð
_�� (x� Ł)2

�(x� Ł)
dx:

Let �̂�Ł be a symmetrized kernel density estimator of � based on the recentred observations

{X i � Ł, �X i � Łg. Consider, for instance, the construction in van der Vaart (1998: 397);

then all the conditions of Theorem 3.1 are satisfied (H1 follows by construction, H2 is

implied by the bounding hypotheses on the family of densities, H3 follows from the

symmetry). Thus, the semiparametric empirical log-likelihood given by

2 sup
º

n�1
Xn
i¼1

log 1þ º9
_̂��̂��Ł(X i � Ł)

�̂�Ł(X i � Ł)

 !
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is asymptotically �2(1). Bartlett correctability essentially depends on the choice of the

smoothing parameter for constructing �̂�Ł.
The following example illustrates the fact that even if we do not have an efficient

influence function but the parameter is the solution of some moment equations, with some

nuisance parameter, it is still possible to use Theorem 3.1 to construct empirical likelihood

based confidence region.

Example 4 M-estimators with nuisance parameters. In many applications and many

econometric models, the parameter of interest is the solution of an equation of the form

EPm(X , Ł, g) ¼ 0,

where m is a function from (�, ¨, H) to Rk , ¨ � Rk , and g belongs to H which is of

infinite dimension. We assume for the sake of simplicity that m(�, Ł, g) is C1 in Ł,
continuous in g and bounded (but less restrictive hypotheses may be considered on the class

of functions m(�, Ł, g), indexed by Ł and g, to cover specific applications). Typically, in

many applications, g is a density or an unknown regression function. Then the problem

reduces to exhibiting an estimator of g (possibly dependent on Ł) which is invariant, by

permutation of the X i. In many applications, a kernel estimator or a Nadaraya–Watson

estimator (possibly dependent on Ł as in Example 3) of g may be used. To check H2 and

control the bias, it may be necessary to use higher-order kernels, a technique which is now

standard. The result of Theorem 3.1 can then be applied directly. There is actually no need to

compute an influence function here. To recast this example in our framework, simply notice

that the parameter Ł ¼ T (P) can be extended to the entire space P. This is precisely the

principle of generalized estimating equations. A (generally) non-efficient influence function

for this parameter is given by

�EP

@m(X , Ł, g)

@Ł

� �� ��1

m(X , Ł, g),

which is proportional to m(X , Ł, g). Of course there is no reason for the procedure to be

efficient, but it is easy to implement.

Our final example shows how the theoretical arguments of the preceding section (mainly

convex duality theory) can be extended in specific situations by interpreting empirical

likelihood ratio as an adequate dual likelihood ratio.

Example 5 Empirical likelihood in biased sampling model, revisited. We refer to Chapter 6 of

Owen (2001) for complete references and give brief arguments showing how our approach

can lead directly to the validity of empirical likelihood for general parameters. In biased

sampling problems, we have s independent samples generated by s biased distributions

defined by non-negative weight functions wi:
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Qi(dy) ¼
wi(y)

Wi(P)
P(dy),

Wi(P) ¼
ð
wi(y)P(dy), i ¼ 1, . . . , s:

We do not assume here that there is a preliminary selection of a ‘stratum’ with known

probabilities: this case may be handled quite similarly. We assume for simplicity that P is

dominated by a measure �.
Let

X 1,i, . . . , X ni ,i i:i:d: Qi , i ¼ 1, . . . , s,

and denote by n ¼
Ps

i¼1ni the total sample size. We use in the following the dominating

measure

Pn ¼ n�1
Xs
i¼1

Xni
j¼1

�X j,i
:

Notice that this is not the NPMLE for P. Let us give some specific cases.

Case 1: Stratified sampling. Let X be a random variable taking values in Rk . Let

S1, S2, . . . , Ss be a partition of the space: [s
i¼1Si ¼ Rk , S j \ Si ¼ ˘. Then the weight

functions are wi(x) ¼ I Sifxg, where I Af�g is the indicator of set A. It is known that, unless

auxiliary (transverse) information is available, the probability P is not identifiable.

Case 2: Enriched sample. It is more frequent that a sample obtained by sampling in the

population is completed by s� 1 biased samples (this is, for instance, the case when a survey

is first based on a random sampling scheme and then completed by some additional biased

sample), in which case S1 ¼ Rk and S2, . . . , Ss do not form a partition and we have simply

w1(x) ¼ 1. It is generally assumed that the biasing scheme, that is, the wi, are known. Then

the likelihood of the data is given by

Ln(P, �) ¼
Ys
i¼1

Yni
j¼1

dQi

d�
(X j,i) ¼

Ys
i¼1

Yni
j¼1

wi(X j,i)

Wi(P)

dP

d�
(X j,i): (19)

Case 3: Length-biased sampling. It sometimes happens that the bias of the sampling scheme

is related to the length of the variable (see Vardi 1982). In survey sampling this often happens

when the inclusion probability is proportional to a positive measure of size. In that case the

weight is typically of the form w(x) ¼ x.

Vardi (1982; 1985) and Gill et al. (1988) have given conditions for the identifiability of

P and for the existence and uniqueness of the NPMLE of P, say Pw,n. If one is interested

in a functional of P, then the von Mises principle (known as the delta method) yields

asymptotically convergent (and often Gaussian) estimators. The NPMLE of T (P) is no more

than T (Pw,n). Qin (1993) has generalized the approach of Owen (1988) for case 2 (enriched

sample with s ¼ 2). We think that it is easier to understand his work within our framework.

Most of his results may be obtained and generalized in a more straightforward way by using
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convex duality arguments provided that an adequate (locally asymptotically normal) least

favourable family is constructed explicitly. The empirical likelihood in a biased sampling

model evaluated at Ł is defined here similarly to (19) by considering only probability

dominated by Pn,

Lw,n(Ł) ¼ sup
Q

Ln(Q, Pn), Q � Pn, T (Q) ¼ Ł,

ð
dQ ¼ 1

� �

¼ sup
pj,i,n

i¼1,...,s
j¼1,...,ni

Ys
i¼1

Yni
j¼1

wi(X j,i)Ps
k¼1

Pni
l¼1wi(X l,k)pl,k,n

npj,i,n, T
Xs
i¼1

Xni
j¼1

pj,i,n�X j,i

 !
¼ Ł,

(

pj,i,n . 0,
Xs
k¼1

Xni
l¼1

pj,i,n ¼ 1

)

¼ sup
p j,i,n,Wi

i¼1,...,s
j¼1,...,ni

Ys
i¼1

Yni
j¼1

wi(X j,i)

Wi

npj,i,n, T
Xs
i¼1

Xni
j¼1

pj,i,n�X j,i

 !
¼ Ł, pj,i,n . 0,

(

Xs
k¼1

Xni
l¼1

pj,i,n ¼ 1,
Xs
k¼1

Xni
l¼1

wi(X l,k) pl,k,n ¼ Wi

)
,

which we approximate by the linearized version

~LLw,n(Ł) ¼ sup
p j,i,n,Wi

i¼1,...,s
j¼1,...,ni

Ys
i¼1

Yni
j¼1

wi(X j,i)

Wi

npj,i,n,
Xs
i¼1

Xni
j¼1

pj,i,nT
(1)(X j,i, Ł) ¼ 0, pj,i,n > 0,

(

Xs
k¼1

Xni
l¼1

pj,i,n ¼ 1,
Xs
k¼1

Xni
l¼1

wi(X l,k) pl,k,n ¼ Wi

)
:

We assume for simplicity that the gradient (or the estimating function) T (1)(X j,i, Ł) only
depends on Ł. We will also assume the following condition (see Vardi 1985; Owen 2001),

which ensures the existence of an NPMLE. This condition essentially means that we are not

in the situation of case 1, that is, we have some transverse information or ‘linking’

observations.

(H1) For every proper subset B of f1, . . . , sg, there exists at least one point X� in

[i2B fX1,i, . . . , X ni ,ig, for which we have wj(X
�) . 0, for some j in Bc.

Actually this condition plays the role of a qualification constraint ensuring that the original

and dual solutions have a finite solution so that the set equivalent to Pn in this framework is

non-empty.

The following condition also appears in Qin (1993).1 It ensures that the sampling bias is
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not proportional to T (1)(X , P). This hypothesis thus excludes case 3, when

T (1)(x, P) ¼ x� Ł and w(x) ¼ x. This case can be considered by itself after minor

modifications.

(H2) var
T (1)(X , P)

w(X )

� �
is of rank qþ s:

Under condition (H1), the value of the empirical likelihood calculated at Vardi’s

nonparametric maximum likelihood is

Lw,n ¼ sup
p j,i,n,Wi

i¼1,...,s
j¼1,...,ni

Ys
i¼1

Yni
j¼1

wi(X j,i)

Wi

pj,i,n, pj,i,n > 0,
Xn
i¼1

pj,i,n ¼ 1,
Xs
k¼1

Xni
l¼1

wi(X l,k) pl,k,n ¼ Wi

( )

¼ sup
Q

Ln(W , Pn), Q � Pn,

ð
dQ ¼ 1

� �
:

The NPMLE Pw,n of P is precisely the solution of this unconstrained empirical likelihood.

The empirical log-likelihood ratio at Ł is then

RE,w,n(Ł) ¼
~LLw,n(Ł)

Lw,n

:

Define w(x) ¼ (w1(x), . . . , ws(x)) and W ¼ (W1, . . . , Ws). As in Section 2, we may now

define the least favourable model:

pº,ª,W (x) (20)

¼ dP

d�
(x)(1þ º9T (1)(x, Ł)þ ª9(w(x)� W ))I 1þ º9T (1)(x, Ł)þ ª9(w(x)� W ) . 0

� �

¼ dQi

d�
(x)(1þ º9T (1)(x, Ł)þ ª9(w(x)� W ))

Wi

wi(x)
Ifx 2 Sig

3 I 1þ º9T (1)(x, Ł)þ ª9(w(x)� W ) . 0
� �

,

where the family is indexed by the parameter (º, ª, W ) 2 Rq 3 Rs 3 Rs.

The convex duality arguments of Section 1 (used twice) imply that the empirical

likelihood ratio is

1Notice that Qin (1993) makes the assumption on p. 1183 that w(x) (w2(x) in our notation) is not proportional to x.
See also his comment after his Theorem 1.
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� 2 log(RE,w,n(Ł)) (21)

¼ 2 sup
W ,ª

Xs
k¼1

Xnk

l¼1

log(1þ ª9(w(X l,k)� W ))þ
Xs
k¼1

nk log(Wk)

 ! 

� sup
W ,º,ª

Xs
k¼1

Xni
l¼1

log(1þ º9T (1)(X l,k , Ł)þ ª9(w(X l,k)� W )þ
Xs
k¼1

nk log(Wk)

 !!
:

This is exactly the log-likelihood ratio for testing º ¼ 0 in model (20); compare with Qin

(1993). Now under (H1) and (H2), (20) is quadratically differentiable (using the same

arguments as in Theorem 1) (if (H2) does not hold then P(1þ º9T (1)(X , Ł) þ
�9(w(X )� W ) ¼ 0) 6¼ 0 and the quadratic differentiability may fail). Hence using the same

argument as Mykland (1995), (21) is asymptotically �2(q), yielding an asymptotically (1� Æ)
confidence region

R1�Æ ¼ Ł, �2 log(RE,w,n(Ł)) < �21�Æ(q)
� �

:

Under additional moments on (T (1)(X , Ł), w(X )), Bartlett correctability also follows from

representation (21) seen as a log-likelihood ratio for testing º ¼ 0 in the family (20).

5. Technical details

5.1. Proof of Lemma 2.1

Put r0 ¼ exp(�1
2
�21�Æ(q)) , 1 for Æ 2]0, 1[ and let p� ¼ mini¼1,...,n(pi,n) < 1=n <

maxi¼1,...,n(pi,n) ¼ p�. Consider j such that p� ¼ pj,n. Then the constraint on the likelihood

implies

r0 <
p�—n

i¼1,i 6¼ j pi,n

(1=n)n
<

p�max—n
i¼1,i6¼ j pi,n

(1=n)n
, with

X
i6¼ j

pi,n ¼ 1� p� (22)

¼ np�(1� p�)n�1(n=(n� 1))n�1:

Because (n=(n� 1))n�1 is a sequence that converges to e from below, this yields the

inequality

1

n

r0

e
< p� <

1

n
:

Now we have that

d H (Q, P) < K(Q, P),

where
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d H (Q, P) ¼
ð

dQ

dP

� �1=2

�1

 !2

dP

is the Hellinger distance between Q and P when Q is dominated by P.

It follows that on Pn,1�Æ,

d H (Q, Pn) <
�21�Æ(q)

2n
,

which implies

n�1
Xn
i¼1

npi,nð Þ1=2�1
� �2

<
�21�Æ(q)

2n

and, in particular,

p� < n�1 1þ �21�Æ(q)

2

� �1=2
 !2

:

Notice that when Æ ! 1, the bound converges to 1=n, that is, at the limit, all the pi,ns are

equal to 1=n.
Now notice that (

Pn
i¼1 p2i,n)

1=2( ~PPn � P) ¼ (
Pn

i¼1 p
2
i,n)

1=2(
P

pi,n(�X i
� P)) is nothing other

than a weighted empirical process with deterministic weights pi,n=(
Pn

i¼1 p2i,n)
1=2. First check

that

max
1<i<n

pi,n

(
Pn

i¼1 p
2
i,n)

1=2
! 0,

since each pi,n is of order 1=n by the first part of the lemma. Since the X i are i.i.d. and F is

Donsker and satisfies the uniform entropy condition (7), it follows – see van der Vaart and

Wellner (1996: 210) or Koul (1992, Theorem 2.2) for the real multidimensional case – that

1

(
Pn

i¼1 p2i,n)
1=2

X
pi,n(�X i

� P) ! GP in L1(F ),

where GP is a Gaussian process with covariance operator independent of the weights. Now

for pn ¼ ( p1,n, . . . , pn,n) constrained by Pn,1�Æ (we will use the notation pn Pn,1�Æ), put,

for f 2 F ,

Gn, pn( f ) ¼
1

(
Pn

i¼1 p2i,n)
1=2

X
pi,n(�X i

� P)( f ):

To prove the uniform convergence over Pn,1�Æ, it is sufficient to check the uniform

equicontinuity condition

lim
�!0

lim sup
n!1

sup
pn Pn,1�Æ

P sup
k f� gk2,P,�

jGn, pn( f )� Gn, pn (g)j . �

 !
! 0,

where
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k f � gk22, pn ¼
Xn
i¼1

p2i,nPn
i¼1 p2i,n

( f (X i)� g(X i))
2:

Using the first part of Lemma 2.1, there exist some non-negative constants A and B such that,

for any pn Pn,1�Æ,

Ak f � gk22,Pn
< k f � gk22, pn < Bk f � gk22,Pn

: (23)

Thus k f � gk22, pn is equivalent to k f � gk22,Pn
uniformly over Pn,1�Æ. Define also

F�,P ¼ f f � g, f 2 F , g 2 F , k f � gk2,P , �g;

this is a measurable class of functions by the ‘Suslin hypothesis’.

Now using standard empirical process arguments, sub-Gaussianity of Gn, pn ( f ) (for the

seminorm k f � gk22, pn ), symmetrization and the Markov inequality (see the proofs of

Theorems 2.5.2 and 2.8.3 in van der Vaart and Wellner 1996), we have, for any sequence

� ! 0, that there exists a constant C such that

˜n ¼ P sup
k f� gk2, pn,�

jGn, pn ( f )� Gn, pn(g)j . �

 !

< CEP

ðŁn=kHk2, pn

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log(N (�kHk2, pn , F�,P, k � k22, pn ))

q
d� kHk2, pn ,

with

Łn ¼ sup
f 2F�,P

k f (X i)k2, pn < B sup
f 2F�,P

k f (X i)k2,Pn
¼ Łn�:

Now (23) implies that there exists a constant C such that for all pn Pn,1�Æ,

N (�kHk2, pn , F�,P, k � k22, pn) < CN (�kHk2,Pn
, F�,P, k � k22,Pn

):

Since we have kHk2,Pn
> 1 and EPkHk22,Pn

¼ EPH
2, it follows, by the Cauchy–Schwarz

inequality, that

˜2
n < C1EP

ðŁ9n=A
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup
Q

log(N (�kHk2,Q, F�,P
, k � k2,Q))

r
d� kHk2,Pn

 !
(24)

< C2 EP

ðŁ9n=A
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup
Q

log(N (�kHk2,Q, F�,P
, k � k2,Q))

r
d�

 !2
0
@

1
A

1=2

EPH
2


 �1=2

< C3

ð�
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sup
Q

log(N (�kHk2,Q, F�,P
, k � k2,Q))

r
d�þ P(Ł

�
n=A . �)

 !1=2

EPH
2


 �1=2
:

Under the uniform entropy condition, the right-hand side of (24) does not depend on pn
and may be made as small as we wish provided that Ł�n ! 0. This is a consequence of
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Theorem 2.5.2 in van der Vaart and Wellner (1996) and follows from the uniform law of

large numbers over the class f f � g, f 2 F , g 2 Fg, which is measurable in our case

because F is admissible Suslin. Taking the supremum over Pn,1�Æ on the right-hand side of

(24) yields the result.

5.2. Proof of Theorem 3.1

The following lemma and its short proof are taken from Bertail and Lo (1996). This result

may also be useful in semiparametric applications (when one wishes to avoid the splitting

trick).

Lemma 5.1. Assume X 1, X 2, . . . , X n are i.i.d. random variables, and for each n let Gn be a

symmetric statistic of the observations. Let ø(x, t) be a function of two variables such that (i)

kø(x, t)k < H(x) with EH(X ) , 1 and (ii) ø(x, t) is continuous in t. Then Gn !
a:s:

G implies

that

Søn ¼ 1

n

Xn
i¼1

ø(X i, Gn)!
a:s:

E(ø(X i, G)):

Proof. It is sufficient to write

Søn ¼ E ø(X 1, Gn)jS nð Þ,

where S n is the symmetric field containing all the symmetric functions of X1, X 2, . . . , X n.

By the extended backward martingale convergence of Blackwell and Dubins (1962), Søn
converges with probability one to E ø(X1, G)jS1ð Þ. But by the Hewitt–Savage zero–one law,

S1 is non-trivial and therefore E ø(X1, G)jS1ð Þ is a constant equal to E ø(X 1, G)ð Þ. h

This implies the convergence of the estimated efficiency bound to the true one as stated

in the following lemma.

Lemma 5.2. Under H1 and H3,

I n(Ł) ¼ n�1
Xn
i¼1

~TT (1)(X i, PŁ,ĜGŁ,n
) ~TT (1)(X i, PŁ,ĜGŁ,n

)9 ! I(Ł, G) a:s:

with

I(Ł, G) ¼ EPŁ,G
~TT (1)(X i, PŁ,G) ~TT

(1)(X i, PŁ,G)9:

Proof. Apply Lemma 5.1 with ø(X i, G) ¼ ~TT (1)(X i, PŁ,G)9 ~TT
(1)(X i, PŁ,G). Under H3,

kø(X i, G)k < H(X )2. Since PŁ,ĜGŁ,n
is symmetric in the observations and EH(X )2 ,

1, I n ! I(Ł, G) as n ! 1. h

We also need the following useful and straightforward result, which may be found in Le
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Cam (1986: 188). It allows us to avoid the assumptions on the existence of third-order

moments generally made in the literature.

Lemma 5.3. Let Yk,n be an array of random variables such that

(i) maxk(Yk,n) ! 0 in probability,

(ii)
Pn

k¼1 Y
2
k,n is bounded in probability,

and let �(x) be a measurable and second-order (Peano) differentiable function at 0 with

�(0) ¼ 0. Then

Xn
k¼1

�(Yk,n)� �9(0)
Xn
k¼1

Yk,n �
� 0(0)

2

Xn
k¼1

Y 2
k,n ¼ oP(1):

Proof. Taylor expansion. h

Proof of Theorem 3.1. The proof is now along the same lines as Owen (1990). Notice first

that by Lemma 5.1, for each fixed º, Ln(º) ¼ n�1
Pn

i¼1 log(1þ º9 ~TT (1)(X i, PŁ,ĜGŁ,n
)) converges

to

EPŁ,G log 1þ º9 ~TT (1)(X , PŁ,G)

 �

< log 1þ º9EPŁ,G
~TT (1)(X , PŁ,G)


 �
¼ 0,

by the Jensen inequality. Thus the unique maximum of the limit is 0. Because of the strict

concavity of Ln(º), the supremum is attained at º̂º, which is the unique solution of the

equation

1

n

Xn
i¼1

~TT (1)(X i, PŁ,ĜGŁ,n
)

1þ º9 ~TT (1)(X i, PŁ,ĜGŁ,n
)
¼ 0: (25)

Since supn(EPŁ,Gk ~TT (1)(X i, PŁ,ĜGŁ,n
)k2) , EPŁ,G H

2(X ) , 1, following Owen (2001: 220),

we obtain º̂º ¼ OP(n
�1=2) (using his arguments as well as Lemma 5.2 to control the

moments uniformly) and we have by direct Taylor expansion of (25),

Xn
i¼1

~TT (1)(X i, PŁ,ĜGŁ,n
)

 !
�
Xn
i¼1

~TT (1)(X i, PŁ,ĜGŁ,n
) ~TT (1)(X i, PŁ,ĜGŁ,n

)9º̂º ¼ oP(1):

Under H2 and H4, we obtain that

n�1=2
Xn
i¼1

~TT (1)(X i, PŁ,G)� n�1=2
Xn
i¼1

~TT (1)(X i, PŁ,ĜGŁ,n
) ¼ oP(1): (26)

Equation (26) and Lemma 5.2 imply that

ffiffiffi
n

p
º̂º ¼ I(Ł, G)�1 n�1=2

Xn
i¼1

~TT (1)(X i, PŁ,G)

 !
þ oP(1) ! N (0, I(Ł, G)�1):

Now put Yi,n ¼ º̂º9 ~TT(1)(Xi, PŁ,ĜGŁ,n
). Then we can check that
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max
1<i<n

(Yi,n) ¼ max
1<i<n

( ~TT (1)(X i, PŁ,ĜGŁ,n
)) OP(n

�1=2) ¼ oP(1)

and, using Lemma 5.2,

Xn
i¼1

Y 2
i,n ¼ n1=2º̂º9 n�1

Xn
i¼1

~TT (1)(X i, PŁ,ĜGŁ,n
) ~TT (1)(X i, PŁ,ĜGŁ, n

)9

 !
n1=2º̂º ¼ OP(1):

Thus applying Lemma 5.3 with �(x) ¼ log(1þ x) and using Lemma 5.2, we obtain

Xn
i¼1

log 1þ º̂º9 ~TT (1)(X i, PŁ,ĜGŁ,n
)

� �

¼ n�1=2
Xn
i¼1

~TT (1)(X i, PŁ,G)

 !9

I(Ł, G)�1 n�1=2
Xn
i¼1

~TT (1)(X i, PŁ,G)

 !
þ oP(1)

and the result follows.
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