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It is shown that the Kolmogorov distance between the spectral distribution function of a random
covariance (1/p)XX", where X is an n X p matrix with independent entries and the distribution
function of the Marchenko—Pastur law is of order O(n~'/2) in probability. The bound is explicit and
requires that the twelfth moment of the entries of the matrix is uniformly bounded and that p/n is
separated from 1.
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1. Introduction and results

Let X, 1si<p, 1<j=<wn, be independent random variables with EX; =0 and
EXlzj =1, and X, = (X;){1=i=p,1=j<n). Denote by 4; < ... <41, the eigenvalues of the
symmetric matrix

1
W:=W,:=-X,X]
n

and defined its empirical distribution by

1 P
Fy(x) = —Z Iip=<x)s
Pi=

where [y denotes the indicator of an event B. We shall investigate the rate of convergence
of the expected spectral distribution EF,(x) as well as Fj,(x) to the Marchenko—Pastur
distribution function F(x) with density

1
fylx) = Yo V(b =) — &) {14 (%) + L1 oo ()1 — 37 HO(),

where y € (0, 00) and @ = (1 — \/3)%, b = (1 + /3)*. Here we denote by d(x) the Dirac delta
function and by /1,41 (x) the indicator function of the interval [a, b]. As in Marchenko and
Pastur (1967) and Pastur (1973), assume that Xj;, 7, j = 1, are independent and identically
distributed (i.i.d.) random variables such that
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EX; =0, EXj=1, E[X;['<oo, foralli,j.

Then EF, — F, and F, — F, in probability, where y =lim, .o y,: —limnﬂoo(p/n)e
(0, c0). Y1n (1986) has shown that the result holds in the i.i.d. case assuming EX; 2 — o2 only.
Wachter (1978) proved the result for independent X; with EX; =0, EX 2=1 and
E|X;**¢ < C < oo, for any & > 0.

Let y:=y,:= p/n. We introduce the following distance between the distributions
EF,(x) and F)(x),

A, = sup|EF,(x) — F)(x)|,

as well as another distance between the distributions F,(x) and F)(x),

A: = sup| Fp(x) — Fy(x)|.
X

We shall use the notation &, = Op(a,) if, for any & > 0, there exists an L > 0 such that
P{|&,| = La,} < &. Note that, for any L > 0,

A*
P{sup|F,,(x) — Fy(x)| = L} < Tp'

Hence bounds for Aj; provide bounds for the rate of convergence in probability of the
quantity sup,|F,(x) — F,(x)| to zero. Using our techniques it is straightforward, though
technical, to prove that the rate of almost sure convergence is at least O(n~'/2%¢), for any
¢ > 0. In view of the length of the proofs for the results stated above we refrain from
including the details in this paper as well.

Bai  (1993b) proved that A, =O(n'*), assuming EX;=0, EX;=1,
sup,, sup;, ; EX;;[{\XUPM} — 0 as M — oo, and

y€e(H,0)suchthat 0 <O <O<lorl<f<A<ooc. (1.1)

If y is close to 1 the limit density and the Stieltjes transform of the limit density have a
singularity. In this case the investigation of the rate of convergence is more difficult. Bai
(1993b) showed that, if 0 < 6 < y, < © < 0o, A, = O(n*/*%). Recently Bai et al. (2003)
have shown, for y, equal to 1 or asymptotically near 1, that A, = O(n="/8). 1t is clear that
the case y, ~ I requires different techniques. Recent results of the authors show that for
Gaussian random variables X;; the rate A, = O(n ") is the correct rate of approximation.

In the present paper we shall consider bounds for A, in the case (1.1) only. By C (with
or without an index) we shall denote generic absolute constants, whereas C(-, -) will denote
positive constants depending on arguments. For & = 1, we introduce the notation

Mk::M(k"):: sup E|Xj|*.
I<jk=n

Our main results are the following:

Theorem 1.1. Ler 0 < ©) < y < O, < oo and |y — 1| = 0 > 0. Assume that X;; satisfies the
conditions above and that
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Mg = sup E‘X]k‘g = 00. (12)

1<j,k<n
Then there exists an absolute constant C(0, ©, @,) > 0 such that
A, < C@O, 0, O)MY* n~'12,
Theorem 1.2. Let 0 <O <y <0, < oo and |y—1| = 6> 0. Assume that X; satisfies
the conditions above and condition (1.2), and that

My = sup E|Xu|"” < oo, (1.3)

1<jk<n
Then there exists an absolute constant C(0, Oy, ©,) > 0 such that

EA% = Esup |F,(x) — G(x)| < C(6, Oy, @)M ) n~'1.

2. Inequalities for the distance between distributions via
Stieltjes transforms

We define the Stieltjes transform s(z) of a random variable & with distribution function F(x)
(the Stieltjes transform s(z) of distribution function F(x)) by

s(z):=E ! :J ! dF(x), z=u-+1iv, v > 0.
E—z z

Given ¢ > 0, we introduce the intervals I, = [a+¢&, b—¢] and I; = [a + %s, b— ;e]. Recall
that a = a(y) = (1 — \/»)* and b = b(y) = (1 + /).

—00

Lemma 2.1. Let F be a distribution function and let F, denote the Marchenko—Pastur
distribution function. Denote their Stieltjes transforms by s(z) and s,(z) respectively. Assume
that [~ |F(x) — Fy(x)|dx < co. Let v >0, and d and ¢ be positive numbers such that

1 1 3
—_ du=2= 2.1
y TﬁJMSdu2+1 T @b
and
e > 2vd. 2.2)

Assume that |y —1|=0>0. Then there exist some constants C(0), C2(0), C5(0),
depending only on 6, such that

A(F, Fy) := sup| F(x) — Fy)

=< C; sup
xel;

Im (J (s(z) — sy(z))du> ‘ + Cov + G332,
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where z = u + iv.
A proof of Lemma 2.1 is given in Gotze and Tikhomirov (2000; 2003).

Corollary 2.2. The following inequality holds:

A(F, F)) < Clj (s(u +1V) — s,(u +1V))|du + Cov + C3%/>
V
+ C; sup Im{J (s(x + 1u) — sp(x + iu))du} . (2.3)
xel; v

3. The main lemma

We shall follow the notation of Bai (1993b). Let

_y+zflf\/(y+z—1)2f4yz
2yz

{o.¢]

1
5,(2) = —dERE. ()

Cose=]

—00
Note that, for z = u + iv such that a < u < b,

Cly—1| ¢ ¢
=1, € _C 3.2)

ERRVERRY

sy (2)| <

By definition of F,(x), we can write

1< 1 1 1<
sy(z) =E| — =—EtrR=— ER(j, )), 33
5(2) <p;z,z> p; p; ) (33)

where R :=R(z) := (W —zI,)~' = (R(j, k))ikzl. Here I, denotes the p X p identity
matrix.

Set W(k) = (1/n)X(k)X(k)", where X(k) denotes the matrix obtained from X by deleting
the kth row, and let X} = (X1, ..., Xim). Set ay = (1/n)X(k)x;. Write

1 n
er = ;Z(Xij — 1)+ ¥+ yzsp(z) — ap(W(k) — z1,_) ay. (3.4)
j=1
We introduce the scalar
1 L Ek
Oz2)=—-=Y E 3.5
G DL ooy gy oy ey gy e By 6-3)

and the matrix
Ry = (W(k) —z1,) "

For readers’ convenience we state here two algebraic lemmas which are proved in Bai
(1993a) and in Gotze and Tikhomirov (2003). Let A = (ay;) denote a matrix of order » and
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A denote the principal submatrix of order n — 1, that is, A; is obtained from A by
deleting the kth row and the kth column. Let A~' = (a/%). Let al denote the vector obtained
from the kth row of A by deleting the kth entry and b the vector from the kth column by
deleting the kth entry. Let I, with or without a subscript, denote the identity matrix of
corresponding order.

Lemma 3.1. Assume that A and Aj are non-singular. Then

Kk __ 1

il — akAk bk

Lemma 3.2. Let z = u+iv, and A be an n X n symmetric matrix. Then

1+aj(Ay —zL,_)%a;
ae —z — aj(Ag — zL,_) lag

tr(A — zI,) ' —tr(Ay —zI,_) ! =

=(1+ay(Ay —zI,-1) *apa" (3.6)
and

(A —zL,) "' —tr(Ay — 2L, ) < vl (3.7)

Applying Lemma 3.1 with A =W and relation (3.3), we may write
1

R, )= —
G ) y+z—1+4yzs,(z) — ¢
1 .
S f & . (3.8
yrz—l+yzspz) (y+z—1+yzsp@Ny+z— 1+ pzsp(z) — g))
This implies that
Sp(z) = — +96,(2). (3.9

y+z—14 yzs,(2)

To prove Theorem 1.1 we shall use the result of Corollary 2.2.

The following inequality (3.10) was proved in Bai (1993b), but for readers’ convenience
we repeat its proof here. Throughout this paper we shall consider z=u+iv with
asusband 0<v<C.

Lemma 3.3. Under the conditions of Theorem 1.1, for any v > 0 and for any k=1, ..., n,
we have

C
Ee,| < — 3.10
| gkl P ( )

Proof. Let E® denote the conditional expectation given Xj;, i # k. Note that the random

ij>
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vector x; and the random matrices W(k), X, (k) are independent. Using the definition of a
vector a; and taking into account the above-mentioned independence, we obtain

EPaf(W(k) — z1,_)"'ay = n EOXT (DX (k)(W(k) — 21,1) "' X, (k)x(k)

= n 2 e XL ()(W(k) — z1,1) ', (k)

1
= — tr(W(k) — z1,_1) " 'W(k).
n
Furthermore, since
(W(k) — zIp,l)*lW(k) = z(W(k) — zIp,l)*1 +1,_1,

we obtain

—1
E®al(W(k) — 21, 1) 'a; = pT + zyp e (W(k) — 21, y)"!

1
:y—;—l—zyp_ltr(W(k)—zIp_l)_l. (3.11)

Equation (3.11) implies that
1

V4
Eey| = |—Z| E[tr(W(k) — z1,_)"" — (W — z1,)"']| + =

Using Lemma 3.2 with A =W and A; = W(k), we obtain inequality (3.10). 0

Without loss of generality, we may assume that v = A, with some constant 0 < 3 <'1
depending on 6 only. Thus, using inequality (3.2), we immediately obtain, for z = u + iv
such that a < u < b,

[5p(2)] < 52| + [sp(2) = s,(2)] < CLONL + 1) < COB "
The main result of this section is the following:
Lemma 3.4. Let
Im{yz0,(z) +z} = 0.
Then there exists a positive constant a, depending on 0, ©, ©, and 3 such that
lz+y— 14 yzs,(2)| = ai.

Proof. Assume that |z| < |y — 1|/2(1 + yC(6)B~"). This immediately implies that

=q; > 0.

ly—1
oy 1tz = Ly 1= 2+ sl = 2

Now let
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2(1+yC(O)B)

Equation (3.9) and the assumption of Lemma 3.4 together imply that

vz
Im{z + yzs,(2)} = —Im .
{ y P( )} {Z+y—1+yZSp(Z)}

Note that
Im{z + yzs,(2)} = v+ p(VRe{s,(2)} + ulm{s,(2)}) = v+ yvEtr WR|* > 0.
Hence,

—Im{yzzZ+y—1+ yfm)}

lz4+y— 1+ yzs,(2)) = e E—ay , (3.12)
where w denotes the complex conjugate of w. Furthermore,
—Im{yz(Z+ y = 1+ )Z5,()} = —yIm{|z* + 2(y = D) + y]z"5,(2)}
= Y|z Im{s,(2)} + ¥(1 = yo. (3.13)
If y <1, we have
—Im{yzzZ + y — 1+ yZs5,(2)} _ y(1 = ) + 3|z Im{s,(2)} (3.14)

Im{z + yzs,(2)} 0+ yuRe{s,(2)} + yulm{s,(z)}

Assuming Im{s,(z)} < v, we obtain

—Im{yz(z+y = 14 yZ5,(2)} _ y(1 =y
Im{z + yzs,(2)} v(1 + yC(O)5~! + yb)

=3y — DA+ yCOB " +yb)y ' =a; > 0. (3.15)
If Im{s,(z)} = v, then

—Im{yz(z + y — 1 +yZ5,(2)} _ V2 |z]* Im{s,(2)}
Im{z + yzs,(2)} (1 + yC(O)B~! + yb)Im{s,(2)}

=214+ yCOB " +yb) ' =a; >0. (3.16)

Inequalities (3.12), (3.15) and (3.16) together complete the proof for y < I.
Consider the case y = 1. Assuming Im{s,(z)} = 2v(y — 1)/ya® = 2v(y — 1)/ y|z|>, we
obtain
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—Im{yz(z + y — 1 + y2s5,(2)} _ 3|z Im{s,(2)}
Im{z + yzs,(2)} U+ yuRe{s,(2)} + yulm{s,(2)}

_ 172 s (o)}
(1 + yCO)B~(ya?/2(y — 1)) + yb)Im{s,(2)}

121,12
- 3V°lal
(14 yCO)B~")ya*/2(y = D) + yb-

Write B = 2(y — 1)/ya* and assume that

Ims,(z) < Bv. (3.17)
If Im{6,(z)} = 0, then (3.9) implies
m{sy(2)} = - i ;Liml{fiﬁ)(}z)z . (3.18)
Since Im(yzs,(z)) = 0, inequalities (3.17) and (3.18) together imply
|24y — 14 yzs,(z)| = B = a; > 0. (3.19)
If Im0,(z) < 0 the condition Im(z + yz0,(z)) > 0 implies
Imo,(z)| < v%. (3.20)
From (3.9) it follows that
0, < |z+y =1+ yzs,(2)| " + 7. (3.21)

Without loss of generality, we may assume that
a
lz+y— 14 yzsp(2)| < y?
Thus inequalities (3.9), (3.20) and (3.21) together imply that

v v (1+B Mo
lz+y—14yzsp(2)*  yalz+y — 1+ yzs,(2)] ya

Im{s,(2)} =

From this inequality and assumption (3.17) it follows that

1+ 1\
z4+y— 14 yzs,(z)| = yla! <B+y—f) .

This completes the proof of Lemma 3.4. U
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4. Bounds for the function 6,(z)

In this section we shall assume that there exist some positive constants a; and a, depending
only on 6, ®;, ®, and f such that
ar < |z4+y— 14 yzs,(2)| < as. 4.1)

We introduce in addition the following notation:

1< 1
1 _ 2 ) Ty, »T . .
g 7;;:1()(].17 1), g’ = f;(ij(]) R;X(j)x; — tr R;W(})),

@ _ 2 @ _ 1 5 _Z
g = —;(trR—ter), Sy = €; —;(trR—EtrR).
Note that
terW(j):tI'Ipfl +ZtI'Rj. (42)

Using (4.2), we obtain the representation

g = Z 35."). 4.3)
v=1
This representation implies, for j =1, ..., p,
5
Ele,” <5 E[eY. (4.4)

v=I

Lemma 4.1. Under condition (4.1) there exist some constants Ci(a;, ay) and Cy(ay, az)
depending on a; and a» only, such that, for u € [a, b] and 1 = v = Ci(a1, a))/Masn~'/?,

Elep < &M
J n !

Proof. The proof of this bound is trivial. O

Lemma 4.2. Under condition (4.1) there exist some constants Ci(ay, ay) and Cy(a;, az)
depending on a, and a, only, such that, for u € [a, bl and 1 = v = C\(ay, ag)\/M4n‘1/2,

Cy(ay, ar)M.
Ele@p < Q@ @My (4.5)
no
Proof. Since x; and X() are independent, we have
CM, .
EleP < 7Etr\R,W(,)P. (4.6)

Here and in what follows we use the notation |A|> := AAT, for any complex matrix A. It is
easy to check that
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trR,W()> = v~ Im{tr R;W(j)*}. 4.7)
Using (4.7), we obtain
Et|[R,W()]? <(p— 1)+ v '|Z|EtR,]. (4.8)
Since, by (3.6),
EtrR;| < [EtR|+ v, (4.9)
from (4.4) and (4.6) we obtain
M CMy CM
Ele?P < 4|Et R+ 4+—“. (4.10)
no
Inequality (4.10) and assumption (4.1) together 1mply
M M
Ele (z)| _ Ca1, @) 4+C(al’2ai) 4 @.11)
nv n?v
This concludes the proof. O

Lemma 4.3. Under condition (4.1) there exist some constants C such that, for u € [a, b] and
1=v>0,

CM4

EleOp < £ )
n

Proof. The proof follows from inequality (3.7) with A =W and A, = W(k). O

Lemma 4.4. Under condition (4.1) there exist some constants Ci(ay, ay) and Cs(ay, az)

depending on a, and a, only, such that, for u € [a, bl and 1 = v = C\(ay, az)Mé/“n’l/z,
Cy(ay, ap)M
32 2(ar, az)My
E|ej | $T.
Proof. Note that 85»5) does not depend on j =1, ..., n. To obtain a bound for E|£(5)|2

shall use the method of martingale differences which was first used for random matrices in
Girko (1989); see also Girko (1990). Let

o =t(W—zI,)"" —te(W(k) —z1,1)"" (4.12)
and
Vi =Er_10f —E0y. (4.13)
Here and in what follows let E; denote the conditional expectation given X with k < j < p,
1 <7< n. Itis easy to check that

P
E[t(W — z1,)"' —Et(W — zL,)]? = > Ely/. (4.14)

By (3.6), we have
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or = {(1 +a(W(k) —z1,_1)*ay)R(k, k). (4.15)
Write
or=0+0 +0?, (4.16)
where
g1t (1/mte(W(k) — z1,1)*W(k) eI €40
k 2+ y+ yzsy(2) ’ 2y yzsy(z)’

aT(k)(W(k) — z1,_1)2a; — (1/m)r(W(k) — z1,_) 2W(k)
24y + y25,(2) '

o0 —

Since Ek,lo(kl) — Ekafjl) = 0, we obtain

2 3
Ely4l* < Elo}'] +Elo{’

al (k) (W(k) — z1,_1) %a; — %tr(W(k) —z1,1)*W(k)

< C(ay, a2) (UZE|8k2 +E

)

(4.17)
By the representation (4.3) of &¢; and by Lemmas 4.1-4.3, we have
4
v Cla, a)M
BlexP =53 Bl + 5Bl < Son )M ZZ) L+ 5B, (4.18)
n
v=I

Similarly to the proof of Lemma 4.3, we obtain

2
Ela"(k)(W(k) — z1,_)2a(k) — % t(W(k) — z1,_1) 2 W(k)| < %Etrcm(k)@(k),

(4.19)
where GV (k) = (W(k) — z1,_1) 2W(k). It is easy to check that
Etr GP(H)GO(k) < v Im{Etr(W(k) — z1,_1) " 'W2(k)}.
Using (4.7), we obtain
EtrGV(K)GO(k) < v (w(p — 1) + |z]*|[Etr R|). (4.20)

Inequalities (4.1) and (4.20) together imply
EtrGY(H)GD(k) < v 3(w(p — 1) + nC(ay, a»))). (4.21)
From (4.19) and (4.21), it follows that

2
E|a" (k) (W(k) — zIp_l)’za(k)-%tr(W(k) —zL, ) *W(k)| < W (1 + %)

(4.22)
The relations (4.14), (4.17), (4.18) and (4.22) together imply
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E|8(5)|2 = Clay, ax))My  Clay, ax)M4
! n?v? nv?

E|e)]2. (4.23)

Inequality (4.23) implies that, for some positive constant Cj(a;, a;) and for v=

Ci(ar, a))y/Myn~'72,
1
FE|tr(W —zI,) ' —Et(W — z1,)"'|* < C(a1, ax)Myn~v>, (4.24)
which proves the lemma. O
Let us introduce the matrices

1
G = (GU. Ny = -Xp0F, = 21,)'X,,
1
G(k) = (Gi(j, 1) = XL (W) = 21,-1) X, (k)

W(k, d) = %xp(k, X (k, d),
Ris = (W(k, d) —z1,5)7",
1
G(k, d) = (Gra(J, 1)) = ;Xf,(k, R WX ,(k, d),

where X ,(k, d) is obtained from X, by deleting the Ath and dth rows. Note that
trG = tr(W — zI,)"'W,  trG(k) = tr(W(k) — z1,_1) "' W(k).

The next lemma is similar to Lemma 5.4 in Gotze and Tikhomirov (2003).

Lemma 4.5. There exist positive constants Ci(ai, ap) and Cs(ai, ay) such that, for any
1=v=Ca, a)VMn 2,

1 P
—ZE|R(k, k) < Cyai, a).
Pi=

Proof. Equation (3.5), condition (4.1) and the representation (4.3) together imply

5
E|R(k, b)]* < C(ay, a2)<1 + > Ele P R(k, k)|2>. (4.25)
v=1
It is obvious that
M. 1
Blel’ PIRG P <=5 Bl IR(k B < —. (4.26)

By Lemma 3.2, we have
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E|e®?|R(k k|2<L 4.27
81{ ( b ) n2U4 . ( . )

Using Rosenthal’s inequality for quadratic forms or direct calculation, we obtain

2

CMyg "
Ele)|* < 71‘: Z |G (1, m)|?
I,m=1

I#k,m#k

We may write

2

n
E[ Y 1Gl mP | < [Et|G(h)F] +Elt|G(h) — EulG(h)]*.
I,m=
l%lcrflm;ék
By relations (4.2), (4.7) and condition (4.1), we have

Etr|G(k))* < M

(4.28)

Similarly as in the bounds for E|tr R — EtrR|?, we introduce the random variables
7a(k) = Eq_1 tr|G(k)|* — Eq tr|G(k)|* = Eq_161(d) — E46 1(d),

with G 4(k) = tr|G(k)|* — tr|G(k, d)|. Since the y,4(k) are orthogonal, for d =1, ..., p, we
obtain

1 L&
o GO — BulGUP < 253 Elpa(hF

Note that, according to (4.7),
|tr|G(k)|* — tr|G(k, d)|*| = ! Im{Z2(trR; — trRy ) + z}| < <
) =5 k kd s
This implies that |y(d)| < Cv~? and
1 2 212 ¢
—ElrGUP — EnlGUPP = ——. (4.29)
Inequalities (4.27)—(4.29) together imply that, for v = C(a;, az)M§/4n*1/2,
Cv/ Mg
n2v?

E|e?* < (4.30)

Using Cauchy’s inequality, we obtain
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|2 . 1/2 . 1/2
—> EleP PR, B < 07! (—ZEe&?l“) <—ZE|R(k, k>|2>
P4 P Pi=
1/2
Mt (1
< nug ;;Em(k, P . (4.31)

Notice that

1<& 1&
LS B0 rek, b — Bl (—z R, k>|2)
P4 Pi=

1 & 1
< Blef'P (; >Rk j)|2> — o B m{ ]

kj=1
1 EtrR
= L Eep R - Bur) + BRI gop. (4.32)
vp §2
Furthermore,
Lo ¢ 3
—Ele]”|*[rR —EtrR| < — E[rR - EtrR[".
vp vn
By Burkholder’s inequality for martingales (see Hall and Heyde 1980, p. 24), we obtain
»
ElrR—EtrR’ < Cy/p > Elyif, (4.33)
k=1
with y; defined in (4.13). Inequalities (4.17), (4.18) and (4.22) together imply that, for

l=v=Ciay, az)MéMn’l/z,

Clay, a)My?

E')/k|2 < no’

! we obtain

Since |yi| <20~
C(ala az)

E|Vk|3 < ot

(4.34)
From (4.33) and (4.34) we obtain

Clar, aMy?
NI
Inequalities (4.32), (4.36), (4.1) and Lemma 4.4 together imply

1
mE\trR—EtrRP < (4.36)

1 Clay, a)MY*  Clay, a)ML?
=Y E PG = ——==" LBTs (4.37)
n —l vV nlv nv

Inequalities (4.25)—(4.27), (4.31) and (4.37) finally yield, for v = C(a;, az)MéMn’l/z,
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1/2
1 & 1 &
—>TEIRG, HP < Cilar, @) + Colar, an) |~ E[RG, P |
P L=
From the last inequality it follows that, for v = C(a;, axs)M é/ nl/ 2,
1 P
=Y "E[R(j, )P = Car, ay),
pi=
which completes the proof. O

Lemma 4.6. There exist positive constants Ci(ai, az) and Cs(ai, ay) such that, for any
v = Ci(ar, a)My*n~112,

C vM
16,(3) < 2(ai, @) 8
nv

Proof. By the definition of J,(z), (3.4) implies that

[0p(2)] < |y +2 =1+ yzsp(2)| !

1 .

2 EeiR, ])‘~ (4.38)
Pi=

Taking into account that Esj(.v) =0,forv=1,2, |Es](v)| < 1/nv, for v =3, and |Ee”| < 1/n,
for v =4, and expanding R(j, j) into the parts ¢; defined in (4.3), we obtain

3

C .
10,(2)] = Z;ZEle;\ﬂRu hl
Jj=1

v=1

SO O a2 € O ey
+Y =D Ee P RGL ) tts S EEPRGL )| (439)
v=1 j=1 Jj=1
Since |R(j, j)] <v~! and E|,s§.l)|2 < Cy/Mgn~!, we obtain
1 & o CVMy
=Y EIEPPIRG, A < : (4.40)
P nv

Lemma 3.2 and the definition of both 8;3) and 85-4) together imply that

C

1 L 3 .. 1 - 4 .. C
P2 Bl PIRG = e ) D I PIRG DI < (4.41)
J= J=

Applying Hoélder’s inequality, inequality (4.30) and Lemma 4.5, we obtain that

1/2 1/2
C O S - Cv/ My
;ZE|65~2>|2|R<J,J>|<;<ZE|S§«”|“> <ZE|R(J,J)|2> ===  @#
j=1 j=1 j=1

Consider now the summand with 8(/-5). Write
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o) ”
Sj = Sj + 8j,

where

1 1 1
g = ;(ter —EtrR)), ef = ;(trR —trR;) — ;E(trR —trR)).

By (3.7), |ej] < 2(nv)~'. This inequality and Lemma 4.3 together imply that, for
v=1,2,3,4,

1/2

c . » 1/2 1 P
ViR, j)’ = (D EEPP) (Y EIRGLP
A no \ n<= o=

1/2
C(al,az)< ZE| m) < S VI (g g3

Since the random variables X, / =1, ..., n, and the random matrix R; are independent, we
obtain, for v =1, 2, 3,

CvM CM
1 ! 1 ! 8 ’ 8
Ele}ejf? = Ele"PElej? < = =Elej? < 3. (4.44)
MsC
ElePel]? < =2~ Etr|G())Ple) P, (4.45)
. n .
C
Ele®e 2 < — 2 4.46
€De < —Elejf (440)
By definition of the matrix G(j), we have
. 1 . _ .
TGO = Im{(r(W(j) = 21,-1)7 W)}
1 2
:EIm{z trR; 4+ ztrl,_; }. (4.47)
The relations (4.45) and (4.47) together imply that
C\/ C\/
Eleej* < = ~Elejl* + =5 = [EwR[¢jf. (4.48)
Using the definition of &, we obtain
CvyM C\/ CVM
ElePej? < ——"E|ejP + YIEtrRy[E[e]]> + ——"Ele). (4.49)
no no
Using (4.36) and (4.24), simple calculations y1e1d
CM CM
@12 8 8
Ele"ej|” < g +W. (4.50)

Furthermore, by (4.46) and (4.24), we have, for v = CM é/ a1/ 2,
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CMsg

E|ePel? < ol
n

J

(4.51)
Applying Hoélder’s inequality and (4.44), (4.50) and (4.51), we obtain, for v =1, 2, 3,
zp:Es(kv)ekR(k, k)’ < (lzp:me(;)euz)l/z (lzp:E|Rkk2> N
=1 iy gy

_ Clay, aVils.

no
Inequalities (4.52) and (4.39)—(4.43) conclude the proof. U

1
n

(4.52)

5. Proof of Theorem 1.1

The rest of the proof of Theorem 1.1 is similar to the proof of the results for a Wigner
matrix in Gotze and Tikhomirov (2003). First we prove that there exists some constant C
such that, for any

v = v = max{BA,, CMy*n'/?}, (5.1)
the inequality Im{z + yzd,(z)} > 0 holds. Assume that
Im{z + yz0,(z)} = 0. (5.2)
Then according to Lemma 3.2, there exists some constant a; > 0 such that
ly+1—z+ yzsp(2)] = ai. (5.3)

In addition, we have

o0

1
|Sp(z) - Sy(Z)‘ = U E d(EFp(x) - Fy(x))

= JOO M dx| < & < l
o (x—2)? v B
Since |s,(z)| < C(0, ©, a, b) = C, we obtain
ly+z—14 yzs,(z)| < C(0, O, a, b, f) = a. (5.4)

By Lemma 4.6, there exist constants Ci(aj, a;) and Cj(aj, a;) such that, for
v=Cia, az)Mslg/4”71/2’

Co(ay, ax)/Ms
no '

0p(2)] = (3-5)

Recall that vy = max{fA,, n’l/ZCn/Mg}, with 1 > 8 > 0 to be chosen later. The constant
C, is chosen such that, for any 1 = v = v,;, we have
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v

10,(2)| < m

(5.6)

This inequality contradicts condition (5.2), since it implies that |0,(z)| = v/©(b + 1). Now
choose v = 1. It is easy to see that

lv+z—14yzs,(2)| =Im{y+z— 1+ yzs,(2)} = 1, (5.7)
and since [s,(z)l sv7! <1,
lz+y— 14 yzsp(2)| < (b+ 1)(©O +1). (5.8)
By Lemma 4.6,
C
10p(2)] < - (5.9)

This inequality implies, for v =1,
Im(z + yzd,(z)) > 0, (5.10)

and since Im(z + yzd,(z)) # 0, we obtain that (5.10) holds, for v = v.
By Lemma 3.2, for z = u +iv with u € [a, b] and 1 = v = v,, we have

lz+y =14 yzs,(2)| = Ci(B, 0, O, ©). (5.11)
Using inequality (5.11) and (5.4), by Lemma 4.6, we obtain that
Cv/ Mg
10,(2)] =< w
It is straightforward to check that
sp(2) = 52 < [0p(2)|y + 2 — 1 + yzsp(2) + yzsy(z)|_1. (5.12)

Since Im(yzs,(z)) > 0 and Im(yzs,(z)) > 0, we obtain
|y +z— 14 yzsp(2) + yzs,(2)| = Im{y + z — 1 + yzs,(2) + yzs,(2)} = v.

These inequalities together imply that

Cv/Msg
Isy(2) — sy(2)| < o
Integrating this inequality yields
v C
J |sp(u + iv) — sy(u + iv)|dv < —. (5.13)
o noy

Choose V' =1 and consider the first integral in (2.3). By (5.12), we obtain
00 o0
J Isp(2) — 8,(2)|du < J |0,(2)|du. (5.14)

By definition of 0,(z), we have
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1 & 1 &
10,(2)] < Clz+ y — 1+ yzs,(2)|* (EZ |Eex| + ;ZE|sk\2|R(k, k)|> : (5.15)
k=1 k=1
Using Lemma 3.1 and inequality (3.31) in Bai (1993b), we obtain
C .
052 < —lz+y = 1+ yz5,(2)|
Finally, applying (3.6) gives

C
8, = (s, +18,(P). (5.16)

Without loss of generality we may assume that |0,(z)| < 1/4. Inequalities (5.14)—(5.16)
together imply that

00 C o0
J 10,(2)|du < —J |s,(2)[*du. (5.17)
—o nJ)_o
It is easy to check that
2
du < ————— dudE F,(x) =< —.
|| Jwobau=| | s ez =
Applying this inequality, for v = 1, we obtain
o C
J 5p(2) — 8,(2)|du < — (5.18)
Now choose ¢ = Uo ? and apply Lemma 2.1. We obtain that
CivMg C
e +—2+ C3vp.

Vo

Note that the constant C; does not depend on 3. We choose B < 1(2C3)~! and
= CMY/*n~12. We finally conclude

CM1/4

Ay <

>

§

which proves Theorem 1.1. O

6. An improved bound for E|tr R — E tr R|?

Recall that

W = lXXT, R=(W-zI,)"',  W(k)= lX(k)X(k)T,
P P

1 1
Ry = (W) —z1,.)",  s,(z)=—EtrR,  s,(2) = ;EtrRk
P
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and
1 €j
+
y+z—=14yzs,(z) y+z—1+yzs,(2)

where

1 n
ey =—> (Xi— D+ y+rz() —a (W, () = z1,-) ' ar.
j=1

From this representation it follows that

% trR=— o 11+ V25,3) +9,(2), (6.2)
where
1 »
K T yz8p(2)) ; R D)
Write
gp=e)+e? 40 4 H) (6.3)
with

1< 1
M @ Wi
& ,;;:l(xij—n, & —<a}Rjaj—;ter (;)),

1 1
¢V = —(rRW — rR,W(j)), &V = —trRW — y — yzs,(2).
n n

Recall that y = p/n. Note that trRW = trI, + ztrR. These relations and the definition of
sp(z) imply that

1
—EtrRW = y + yzs,(2).
n

We can now write

¢ = Z(rR -~ EtrR) =2 (wR — EtrR). (6.4)
n p
Furthermore,
trRW — trR;W(j) =1 + z(trR — trR;). (6.5)

Hence, it follows that

B) _ 5 (6)
£ =& +8j,

(6.6)

where
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1 z
) (6)
&l =—, e’ =—(trR—trR)).
J n J n ( /)
We introduce the notation

M, = sup E[|X;|?

1<j,k=n

Proposition 6.1. Assuming the conditions of Theorem 1.1, we have, for any

V> U= yM:é6n’1/2 with sufficiently large v > 0,
1 CM
—E|[rR—EtrR]? < 8 . (6.7)
n? n? |y +z— 1+ 2yzs(z)|?
Proof. To prove Proposition 6.1 we shall use the following facts: for v = vy, we have
1 S a2
> EIRGL )P = C (6.8)
n45
and
E[trR — EtrR|> < CMv>. (6.9)

These inequalities were proved in Lemmas 4.4 and 4.5. We shall use also the following
lemma:

Lemma 6.2. Under the conditions of Theorem 1.2 we have, for any q = 4 and for v = v,

Clg)M>,

1
— _ ¢ < 1724
E‘ p(trR EtrR)|7 < T (6.10)
Proof. By Burkholder’s inequality for martingales, we have
E[trR — EtrR|? < C(q)n?*"" Y "Ely;|4, (6.11)
J=1

where the martingale difference y; is defined in (4.12) and (4.13). Furthermore, using the
representation (4.16) which is similar to inequality (4.17), we obtain

Ely,|? = C(@)E[0}?|Y + C(9)E[o |
1 . . .
< C(q)ﬁE|a(])TR§a(]) — trRIW()|? + C()E|e;(tr R —trR)|?.  (6.12)

By the definition (6.3) of &;, using Rosenthal’s inequality for quadratic forms (see, for
example, Gotze and Tikhomirov 2003), we obtain
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D a2 w2

Ely | s ——
q

1
E)—(X}ijj—trcj) ltrR — trR;|*
n

*tI'Rj|q

CQ) | =, 12
+— E‘;(ij

C
(Q)E|trR EtrR[%[trR — trR;[9

1
+—E|trR — trR;[*7, (6.13)
n4
Inequalities (6.11), (6.13) and the inequality |trR —trR;| < v~! together imply

% max E(tr(|R5|W(J))2)q/2 +%

EtrR—EtrR|? <
I<j<n v4

Clq) | ClgMy,

nQ/zuzq n‘]/zuq

C(9)
na/2pa

By E(tr(|R;*W(,)*)7/?)

+—5—E|rR — EtrR|%. (6.14)

From (6.14) we obtain for v = v,

C(g)M
ElrR — EtrR[? < @My max E(tr(|R2W( /))*)?/>
nd/2  1=j=n j
Clg)Mr,  Clq)My, 5 o
R palips max E(r IR;[PW()?) (6.15)
Note that
tr[R;[*W()? < v *tr[R, PW(j)* = o7 Im{tr R, W(j)* }. (6.16)

Furthermore, it is easy to check that
trR;W(j)* = 22trR; + ztr 1, + tr W(})). (6.17)
Relations (6.16) and (6.17) imply that
E(tr|R;[*W?)7/? < C(qu 37X E|r R,|92 4 (tr1,_1)7/?). (6.18)
Analogously,
E(tr[R;PW(j))** = C(q)v~ Bl R, W(j)|*

< C(qu~ VX EJtr Rj|7? 4 |tr 1,1 |7?). (6.19)
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By Burkholder’s inequality for the martingales, we have, for v = v,

EltrR; — EtrR;|%? < C(g)n?/*"! Zn:Eb/ 2|92 < Clgn?” < C(q)n?? (6.20)
J J = na/4pa/2 ‘ :
I#]
Inequality (6.20) implies that for, v = vy,
E|trR;|7? < C(q)|[EtrR;|?? 4+ C(g)E|trR; — EtrR;|7? < C(g)n?/>. (6.21)

From inequalities (6.17)—(6.21) it follows that
E(tr|Rj|4W( D < C(gu312n??, Eu|RPW(G))Y? < Clgo % (6.22)

Combining the inequalities (6.15) and (6.22), we obtain, for v = v,
COMry | Cl@May _ C9)May

_ 9 < =
EtrR—EtrR|? < a2 p PR (6.23)
which concludes the proof of the lemma. O
We may prove a rougher bound than (6.10), assuming Mg < oo only.
Remark 6.1. We have, for v = vy and for g = 4,
1 M 1
E|- i< M 1 (6.24)
n (v/nv) 44 n*v®

Proof. To prove (6.24) we use Burkholder’s inequality for martingales. We obtain

1 4
E';(trREtrR)‘q /2+IZE|V/ \W<n3 ZE|VJ‘ )
4

Applying now arguments similar to the relations (6.13)—(6.18) for (1/n3)z;7:1E|yj , We
obtain inequality (6.24). '

We now continue with our proof of Proposition 6.1. In order to simplify the exposition
we introduce the following notation:

Ag(R):=trR—EtuR, AY[R):=tR,—EtrR;,

1/2
n 1 n

Xj=> (X351, DiR):=trR-—tR;, CR):= (;ZEU{(L j)2> ,
=1 =1

Q;(R):=ajRja; —trR,W()j),  Q;(R%):=ajRja; — r RIW()),
an(z) = (zspy(D)+z+y— 17", bu(2) = Qyzsy(D)+y+z— 17

Using this notation, we have
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1 1 1 =z z

Consider the representation

EjtrR — EtrR|* = E(rR — ErR)(trR — EtrR)

p
=E(rR - EtrR)rR = a,(2) Y EAz(R)g,R(J, j).
j=1

Using (6.25), we may rewrite this equality as follows
1
—E|trR — EtrR|> = a,(2)(41 + Ay + z45 + zA4 + z45), (6.26)
n

where

vy o 1< N
Ay =— Z EAsR)XGR(), ), Aa=——3 Z EA;(R)Q;(R)R(J, j),
J= J=
1 U 1 P 5
A3 = ;ZEAE(R)DJ'(R)R(JL N As= —ﬁZEmE(R)\ R(j, ).
J= J=

1 & L. 1
As =—> As(RIR(j, )) = —E|Ae(R)P.
=1
We first consider Ajy.

Lemma 6.3. Assuming the conditions of Theorem 1.2, the following representation holds:
2

Ay = ylan(2) - 5n(Z)yZSp(Z)bn(Z))E‘ %(AE(R)) + bu(2)(4s + A7 +z45) + T, (6.27)

where

1 & ..
A6 = =5 ) EARIPX,R(, ).
j=1
1 & 5 .
Aq = FZ E|As(R)|“Q,;(R)R(J, j),
j=1

1 ..
Ag = _FE CE|A(R)PD,(R)R(, ),
=1

and T satisfies the inequality

- CMg|b,,(z)|'

r
T oo

(6.28)
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()
—trR J.
n

Adding and subtracting ys,(z) = %E tr R, we rewrite this equality as
Ay = Ao + Ao, (6.29)

e
<— AE(R)>.
n
To investigate the asymptotics of A4y we derive some recursion relations. Using the

representation (6.2), we obtain

Ao = yAn + an(2)(4s + A7 + 245 + zA1), (6.30)

Proof. We have

1
Ay = —E‘ —Ap(R)
n

where

) 2
Ag = —ySp(Z)E’ m Ap(R)

1
, A= _E‘;AE(R)

where

an(2) + 5p(2)

Ay =
n2

E|As(R))%,

1 - S -
A =—> EIARPARIR(. J) = —EIAHR)PA(R)R.
J=1
Adding and subtracting ys,(z) again, we write the term A, in the form

1= s (5B RERR) + AR

1 _
= —ys,(2)A10 + ;E|AE(R)|2(AE(R))2‘ (6.31)
Comparing (6.30) and (6.31), we obtain
zZ
Ao = yz5,(2)an(2)A1o + an(2) (ﬁE\AE(R)\Z(AE(R))Z A+ Ay + ZAS) + ydyy.

Combining the left-hand side with the first term on the right-hand side, we obtain, after
multiplication with (a,(2))"'b,(z) = (1 — yzsp(z)an(z))’l,

A1 = by(2) (y(an(Z))lAn + E' %AE(R)

2 2
<’11ZE(R)) +A4g + A7 + zAg> . (6.32)

From the definition of A4;; and (6.2), it follows that

Ay = 6p(Z)E‘ %(AE(R)) %

This relation and (6.2), (6.31), (6.32) together imply that
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2

1
As = —ySp(Z)E’ ;(AE(R)) + 410
1 : 1 :
= yan(z)E’ ~(Ae(R))| yé,;(z)E‘ —(AE(R))| +Aig
1 2
= Man(z) — 6p(z)yzsp(z)bn(z))E‘ —(Ap(R)
+ ba(2)(Ag + A7 + z43) + T, (6.33)
where
a,(2)b,(z
ny = 20 D g )P AL R)Y
According to Remark 6.1 and inequahty (5.11), we obtain
CM8|bn(z)|
The relations (6.33) and (6.34) conclude the proof of the lemma. O

We now turn to A4;.

Lemma 6.4. Under the conditions of Theorem 1.2 the following inequality holds, for v = vy:

VMg
i <Y (6.35)
Proof. Using (6.1), we obtain
1 & .
= —32 EAp(R)X;R(J, J) = A13 + A1a, (6.36)
where
an(2) & an(2) & .
Ay = ——5 Z::EAE(R)Xj, A =3 > EARR)X & R(j, j)-

=1
Using the equality D;(R) = (1 + a}R?a )R(j, j), which follows from (3.6), we obtain
A = —an(z)%zp:EDj(R)Xj = —a,,(z)i}i:E<1 +la}R§a,~) X R(j, ))- (6.37)
n i n i n -
Applying (6.1) and (6.25), we can write
A3 = Ais + Aie + A17 + Ais + Ao + Ao, (6.38)

where
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1 & 1
Ays ai(z);ZE(l—&-;aija, X,

Ja; | XTR, J)s
;4

i
TR2
1 )4
Ap=d ()Y E(1+- aTR2

2a; | XA (R)R(), J),

)
)
)0, ®RG.
)00
)
)

P

Note that

1 P 1 P n
— 2 E TR2 _ 2 E E 2
A15 = a,,(z) F - Ea/R]a]Xj = a,,(z) F Lol E(X]l I)X IEG (l l) (639)

where G; = X(j)TR§X(j). Since tr|G/| = tr|R§W(j)| < Cnv~!, we obtain, from (6.39),

CM,
|[4s] < - (6.40)
To bound A4;6—A439 we use (3.6) again. It is easy to check that
CM.
FiE— (6.41)
n?v
Furthermore, the inequality |D;(R)| < v~!, which follows from (3.7), implies
C C
|[417] < g < el (6.42)
Applying Cauchy’s inequality gives
_ &L w2y 2~ €
|415] %ZE QRPE AP < (6.43)
J=1
Using Cauchy’s inequality and (6.9), we obtain
C & C C
L /2 2121y 12
|410] < n4UZE |A(R)PE2| X)) < B S (6.44)

J=1
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For the term A,; we have a similar bound:

C
Azg] < —ZE”ZI/’Y P<—.
Inequalities (6.39)—(6.45) together imply that
C
|Ai3] < S g
We write the term A4 as
an(2) & .
A ==3 > EAR(R)X j&R(j, j) = An + A + Aoz + s,
j=1

where

1 & o 1 < .
Ao =3 EAsR)XIR(, ), An = —— > EAR)IXQRIR(, ),
J=1 Jj=1

1 & .
A =—> EAsR)XDiRIR(), j). A = ——ZE|AE<R>|2X R(j, j)-
j=1

Note that

CC(R) 1 2
<;ZE|AE(R)|2|X,-|“>

Jj=1

1/2
$%<Em 1

—Ar(R < .
n n £(R) no n2v?

2 ! ) cmy?
Using the inequality |Ag(R)| < |Ag(R;)| +v~!, we obtain

12
cc
drs] < n““( ZE|AE<R>| QR X2>

n3

12
<< ( ZE|A“’<R)| |Q(R>|2X2>

L 1/2
R (;ZEQAR)FX?)
Jj=1

Applying Cauchy’s inequality, we obtain

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)
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E{|QRPX]IR;} < EV2{|Q;(R)[[R;}E! ]
< CMgntr|R,[* < CMgnv~'|trR). (6.50)
Furthermore,
E|AY(R)P[trRj| < Cn|s ,(2)E|AY(R)]* + CE[AY(R)[?
< CnE|Ag(R)]> + CE|As(R)|® + Cv~> + Cnv 2. (6.51)

By Burkholder’s inequality for martingales, we have, for v = vy,

3 2 2

1 C 1 1
E’—AE(R) s—E‘—AE(R) < CE’—AE(R) . (6.52)
n Vnv | n n
Inequalities (6.50)—(6.52) together imply that, for v = vy,
My’
|A22‘ = nzvz (653)
Using the inequality |D;(R)| < v~' and Cauchy’s inequality, we obtain that, for v = vy,
CCR) (1L 2
242
|| < = <;;E|AE(R>| X_,-) : (6.54)

Since AY and AX; are independent,
, c
E[As(R)* X% < CE|AY (R)PEA? + EEX? < CnMg(E|Ap(R)|* + v72). (6.55)

Inequalities (6.8), (6.9), (6.54) and (6.55) together imply

cmy*my? _ emy?

x| < =55 5h == a0 (6.56)
Using Cauchy’s inequality,
1/2 1/2
CCR) [(1¢ 42/C1p (j>42742/
[ Aaa| < = ;ZIE|AE(R)| v o= ZZIEME (R)[*EXS + v *EX3
J= J=
CM1/2 MY A2 CMI/Z
s — - (EBAR) +o s — 4 < 8 (6.57)

n3/2 5203 20

The relations (6.36), (6.46), (6.47), (6.48), (6.53), (6.56) and (6.57) together imply that,
for v = vy,

VMg

A < PR

(6.58)

This concludes the proof of the lemma. U



532 FE Gotze and A. Tikhomirov

Furthermore, using Cauchy’s inequality and Lemma 4.5, we obtain

C(R e 1
|A;| < ( )El/2 < —E'2|= (6.59)
nv
Using Cauchy’s inequality again,
1/2
CCR) (1|1 !
| 46| < —== (;ZE —(ArR)| A7) (6.60)
Applying the inequality |AR)| < |AV(R)| + 207},
1 ! 2 1 ! 2 ¢ 2
E ;(AE(R)) X;<CE ;( i EX? +WEX].
CM,
<C ’ EX2 T (6.61)
Hence inequalities (6.8), (6.60), (6.61) and Remark 6.1 imply that, for v = v,
My’
|Ag| < oo (6.62)
We have the bound
BN @) 2
|As| = — > _EIAY R)PD,R(, J)|
=1
CC(R) (/) 41172 < Cv/ My ¢
7 (nZEA (R)| T = (6.63)
Now consider 47. We may write
1 P
A7 = =2 EIARR)PQ[RIR(), ) = Ads + i, (6.64)
J=1

where

AR Q;RIR(, ),

1 P
AZS*T;Z

P
A =— ZE(|AE<R)|2 AL R)P)Q,(R)R(J, )-
=1

Lemma 6.5. Under the conditions of Theorem 1.2, there exists some absolute constant C
such that, for v = v,
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cmy?

|A26‘ = PENCRE

Proof- We decompose Ayq into
Azs = A7 + Az + Ao + Azo + A3,

where
Ay = %]Zpl E[D;(R)*Q/(R)R(/. )),
Aoy = L |EDR)PEQRIR(. )
My =2 ,Zi E[Re{D,(R)}ED,(RINQ,(R){R(j, )},

2 L . _
430 = " Z E[Re{AY (R)D,(R)}1Q,(R)R(j, ),
J=

2 & j
A = =5 D BRAAY (RED, (RN R, )

Using Cauchy’s inequality and Lemma 4.5, we obtain that, for v = v,

E

4

12
CCR) (1L c
max{|A27|, |A28|, ‘Azgl} = W < ZE|QJ(R)‘2 <

n<
j=

Furthermore, using Cauchy’s inequality again,

1/2
CCR) (1 & i
max{[Aso], |Asi[} = <X %;ZEIA?(R)FQ;(R)P) :
J=1

n3v
Since x; and R;W(;) are independent, we have
EIAYR)PIQR)P < CMLEIAL R)P(tr|R P W()?).
Note that
tr|R;|*W())* = %Im{terW(j)z} = %I{trW(j) +ztrlm,_; +ztr R, }.

With a similar argument to (6.50), we obtain, for v = vy,

(nv)? -

533

(6.65)

(6.66)

(6.67)

(6.68)

(6.69)
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CM,
v

EIAYR)F|QR)]F < ——{(n(|s ()| + DEJAY R + E[AY(R)]*}

CM. cM?
< U“{nE|AE(R)|2+E|AE(R)|3+U—"2}s 044". (6.70)

Inequalities (6.8), (6.67) and (6.70) together imply that, for v = vy (/nv = C > 0),
CMy _ Cy/Msy

maX{‘A30|, ‘A31|} = m = n2—02 (671)
From inequalities (6.66) and (6.71) it follows that, for v = v,
C/ Mg
[Aae| < =55~ (6.72)
The last inequality concludes the proof. UJ

We continue with A4js.

Lemma 6.6. Under conditions of Theorem 1.2, there exists some constant Cy such that, for
U = Dy,

CM]/Z
|[dos| < — 55—
n?v
Proof- We express A,s in the form
a5 = LS EADRPQRIRG, J) = Ass + Ass + A + 4 6.73
25—n4z A" (R)"QHR)R(j, j) = A32 + A3z + Azs + Ass, (6.73)
=

where
1 & ;
An =~ > EIAYR)Q,(R)X(R(j, j),
j=1
1 & -
A3y = —5 > EIAP(R)P(Q,RVR(. ),
J=1

1 & j
Ass = =5 D _EIAL RO, RD R, )},

1 & ;
Ass =5 Zl E|AY (R)PAL(R)Q,(R)R(j, J)-
=

Using Cauchy’s inequality,
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12
Al \@< ZEW”(R)\ QJ<R)|2X2> | (6.74)

Applying inequality (6.50), we obtain

1 : Mg (|1 N 1 ’
This inequality and (6.74), (6.24) and together imply
Cv/ M
|4z2| < =3 2 : (6.75)
Similarly,
CC(R) 2
As3| < E|AY (R R[*] . 6.76
|A3] n(Zl()lQ,ul (6.76)
According to Rosenthal’s inequality for quadratic forms, we have
E{|Q/R)[*|X()} < CMs(tr|R;PW()*)’.
Similar to inequality (6.70), we obtain that, for v = v,
. M .
ElAY R0, = T sy EIAY R+ E|aY w0
CM n’ 1
US (EAE<R>)|“ +—E[A(R)|° + ) (6.77)

Using the last inequality, the relations (6.69), (6.24) and the inequalities (6.74)—(6.77), we
obtain, for v = vy,

CMg C\/Mg
|433] < S S g (6.78)
For A434 the following bound holds:
CCR) 2
<= ( ZEIA(”(R)I Q,<R)|2) .
Analogously to (6.77), (6.78), we obtain that, for v = v,
CM 4/ M Cv/M
Az < —2 V2t < s (6.79)

/2092 2

Applying Cauchy’s inequality, Rosenthal’s inequality for quadratic forms and inequalities
(6.24) and (6.68), we obtain that, for v = v,
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1 & j
[3s] = -5 > EIAY R)PAR)Q(R)R(, /)
j=1

J

1 P ) P )
<. <§ EIAY RFIQR)|IRG, )l + v D EIALRIPIQ;R|IRG: ,-)>
=1 =1

1/2

n

C(R) BN () 6 2 " ] - () 4 2
== | S EAY®FIQM®P | + o7 (S EAY®IQ,®)]
=1 =1

CR) L 1/2 L2 1/2
@) 6 2 ~2 -1 () 4 2 2
< <;;E|Ag (R)[*r[R;PW(,) ) +v (;;EAE’ (R)[*u[R*W(,) )
C/ My 6 ;on 1\"?
=< e nE|Ap(R)|® + E|Ag(R) +$+ﬁ
o 1\ 12
+ov! (nE|AE(R)|4 +E|Az(R)P + p + $>
_ CVMsMy, _ CV Mg/ My, _ CV Mg 6.80
T 205 T n2v? @323 p2p? (6.80)
The relations (6.75), (6.78), (6.79), and (6.80) together imply
C\/Mg
|Aas| < — 5 5~ (6.81)
This concludes the proof. O
Lemmas 6.5 and 6.6 imply that, for v = v,
My’
47l < — 5% (6.82)

We now continue with 4, as follows:

1 )4
Ay = =3 EAsR)QRIR(, J) = Ass + an(2)(dsy + Axs + 24so + z4m).  (6.83)
j=1

where
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1 &~ =
Az = —— > E(D;(R) — ED;(R)Q;(R)R(, j),
j=1

n3
1 & ; .
Ayy = _QZEA?(R)Q,(R)X/‘R(J’ J)s
=
LR pAG) 2R(j 7
Azg = FZ:EAE R)Q;(R)"R(J, )
=1

1 & i
Ao = =3 EAY(RIQRDRIR(, ),
Jj=1

1 & ;
g = 2; EIAY(R)*Q,(R)R(/, j).
=

Lemma 6.7. Under the conditions of Theorem 1.2, for v = v,

My’
| 36| = n202
Proof. Write
Asze = Ag1 + Aaa, (6.84)

where
A LN~ ep
A =Y EDR)QRIR(. j). A=~ EDREQR)R(). j).
=1 =

Using (6.1) and (6.25), we obtain
Agy = a,(2)(Aaz + Aaa + zAss + zAs6), (6.85)

where
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R —
J=

P

Aus = _%ZEfj(R)E(Qj(R))zR(]E h)

| —
Ass = =15 > ED,RE Q;(RD,RIR(;, ),
=

P

1 [
Aig=——3 > ED{R)E Q;(R)AL(R)R(, j).

Applying Cauchy’s inequality and (6.49),

Furthermore,

Analogously we obtain, for v = v,

12
CC(R CVMs _ C\/M
] < 3(U)<nZEIQ(R)2X2> < p=—ts. (6.86)
1/2
CC(R CM
|Aga| < n( )< ZEIQ,(R)I“) $n2—028. (6.87)
12
CC(R CyM
| as| < = ! )< ZEIQJ(R)V) < (6.88)

Finally, for A4 we have the following bounds:
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3v

b

1/2
cC
e = T (nZE@](R» |AE<R>|2>

//\

n2p?

:M—‘

12
XPI IQ,-<R)|2|A§5)(R>2> LV

n2p?

1/2

1/2
Cv My Nn
Y ( ZE‘A(”(R)\ ((p — 1)+ |2?[|rR; |)> s
CV 1 2 C/Ms C\/Mg
2gl2 A R < )
(nv)3/2 e(R)| + 202 202

We now turn to the estimation of A4;. Using Lemma 3.3, we may write
1 & 2 2
An = —32 _— —a/Ra; | Q;(R)|R(j, /).

By (4.6), we obtain
Agy = Aa7 + Asg + Ao + Aso,

where

\an(2)|2 - )
AMZT;E I+ —a;/ Ria; | O(R),

Agg =

P
Z <1+ a] TRza]>Q](R)eJR(], )

Ago =

"(Z)ZE(H— al TRZa,) Q,(R)ER(J, ),

1 & 1
Asg=—> <1+ a,/TRza,> Qi(R)[e;*[R(J, I
j=1

Using Cauchy’s inequality,

C & CMy
| = 5 > EVIQRIPE QR = .

539

(6.89)

(6.90)

(6.91)

(6.92)
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Since [trR — trRy[ = [1 + (1/n)a] R3a, || R(j, j)l < v™', we have

CMy

C
max{|dss|, |dusl} < 7o max {E'Z[Q;R)PE! e} < 75

Furthermore, using (6.25),
|4so| < Asi + Asy + As3 + Asa,

where

P

c
s1:= —5= Y EIQ,R)IA[R(). ).

C )4
A = n—su‘ZE\QﬂR)PlR(j, M
C S 2 .
55 = SUZE\QJ(R)IID;(R)I IRG. ),

C P
A5 =~ > E|QR)Ae(R)F|R(). J).
j=1

For As; we have the obvious bound, for v = vy,

C C
sy <5 max E[Q;(R)|AF < — s max. E'2|Q;(R)E!X)

cf* CV/M;s

SV UERHR WO < O B RWOP 2
_ CVMy _ CVM;y
ns/zvs/z 2

Applying Cauchy’s inequality, we obtain, for v = vy,

3/4 3/4
CC(R)'/? L i) oMy _ CV/My
452 = N ZE|Q](R)| (n u)5/2\/_ nv?

Analogously we obtain, for v = v,

E

1/2
CC(R C
15 =SB (Lm0 ) =L,

and

(6.93)

(6.94)

(6.95)

(6.96)

(6.97)
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1/2
CC(R) 4 Cv/ Mg
Ass <= <n2E|Q,(R) AR ) <=5 (6.98)
Inequalities (6.71)—(6.85) together imply that, for v = v,
Cv/ Mg
|36l < — 25 (6.99)
This completes the proof. O
Lemma 6.8. Under the conditions of Theorem 1.2, there exists constants C such that
Cv/M
max{|dz7], ||} < =55,
n-v
C\/ CvM
max{|Ass, |A3|} < 55"+ E'/2
Proof. Using Cauchy’s inequality, we obtain
LN AW
|37 = —| D_EAP(R)Q;(RIX,R(j. j)|
j=1
_ cemy 2
= ( ZE|A“>(R)| Q,(R)|2X2> : (6.100)
Inequalities (6.47), (6.8), and (6.85) together imply that, for v = v,
1/2
Cv/ Mg 1 My Cv/ Mg

Analogously to this inequality, we obtain

1 & ;
[ 3s] = — > EAP(R)Q,(RYR(;. j)
j=1

1/2
C(R)
( ZE|A“>(R>| |QJ<R)“> :
Since R; and x; are independent, we have
1 ; M ; .
SEIAYR)PIQ R < = S EIAYR)P (R, PWE))

Using (6.68),
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1 - M. : - B .
$E|A%’)(R)|2|QJ(R)\4 < TX(E\A‘%’)(R)F(U 2IEt R + n?) + v 2E|AY R ).

The last three inequalities and (6.19) together irnply that, for v = v,

C\/ C\/ CM
|dsg| < —S5>+ El/2 —. (6.102)
n v
For Aj9 the following inequality holds:
| 39| = ffZEA”(R)Q (R)D;(R)R(, j)
CR) [1& 2
< <_ZEA§;)(R)2|Q}(R)|2>
n’v n =
C vMy C
024 ‘/—4151/2 (6.103)
For A4y the same bound holds as for A,s (see (6.61) and (6.70)). O
Equation (6.82) and Lemmas 6.7 and 6.8 together imply that, for v = v,
C\/ C\/
|4y < =%+ E1/2 (6.104)
From Lemma 6.3 and from relations (6.62), (6.63), (6.82) we conclude that
1 2 Clbu(2)|VM
Ay = @) - yzan<z)bn(z>)E' Lasmy| o PO (g 10s)

with some 6 such that |§] < 1. Lemma 6.4 and the relations (6.26), (6.59), (6.104), (6.105)
together imply that, for v = v,

2 2

E' L AR)
n

= yza,(z)(a,(z) — yzén(z)b,,(z))E’ %(AE(R))

nv

2
+ ce('b”(z)|‘/— E1/2 ) (6.106)

with some 6 such that |0] < 1. Finally, we investigate the quantity x,(z) = 1 — yza?(2).

Lemma 6.9. Under the conditions of Theorem 1.2, there exists a positive constant C such
that, for v = vy,

a(2)] 7 < Clan@)|y + 2 = 1+ 2yz5,(2)]. (6.107)

Proof. We may write
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z8p(2)
z+y— 14 yzs,(2)

H,,(Z) =1+ + ecyzlan(z)ép(z)|

= 4,(D(b,(2) " + 0C|yza,(2)0,(2)]. (6.108)

Note that, for z = u + iv such that \/(u — a)(b — u) = C/vy and v = v, according to (5.1)—
(5.6) we have Im(z 4 0,(z)) < 0. We can write that

y+z—1—y20,(2) n \/(erz —1 = 20,(2))? + 4y20,(2) — 4yz
2yz 2yz

Sp(z) =
= (et ) - 21D

This implies that

|\/(y+zf 1+ y20,(2))* — 4yz — \/(y+zf 1)2 —4yz]

|Sp(z) - S(Z)| = |6n(z)| +

2|yz|
< C|6n(2)| 1 + |y—|—Z— 1‘ + |(5n(Z)| )
|\/(y+zf 1+ y20,(2))* — 4yz + \/(erZf 1)2 — 4yz]

It is not difficult to check that for z = u + iv such that |y + u — 1| = 3v and v = v,
sgn{Re{/(z +y — 17 — 4yz}} = sgn{/(zy — 1 + y20,(2))? — 4yz}.
This implies that, for such z,
[V + 2= 1420422 = 4yz+V/(y+ 2~ 17 — 4y
= |V(y+z— 17 —4yz[ = Vo

In this case we have
C|0,(2)] - C
NG w32

On the other hand, if |y + u — 1| <3v then |y +z— 1| < 4v and v = vy, and we have

|Sp(z) - Sy(z)| =

On
‘Sp(z) - Sy(Z)| = C|6,,(Z)| (1 +#> = C|6n(z)| (1 +#) = C|6n(z)|’

The last two inequalities imply that, for v = vy,

C
Isp(2) = 5,2 < —575 < vV/vo, (6.109)
nv’/
with sufficiently small y. Furthermore, note that

24y —142yz5,(2) = /(v +z— 12 —dyz = \/(a—2)(b — 2),

where a = (1 — \/5)2, b=+ ﬁ)z. This implies that there exists some positive constant
C; such that, for v = v,
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|z+ y— 14 2yzs,(2)| = Ci1y/Vy. (6.110)
These relations imply that
ba(@) 7" = |24y = 1+ 2pz5)(2)] = 2+ y = 1+ 2p25,(2)| — 2|yzllsp(2) = 5,(2)|
2%|z+y—l+2yzsy(z)|. (6.111)
According to Lemma 4.6 and inequality (6.110), we have, for v = vy,
16,(2)] < Covg < Calz+ y — 1 + 2yzs,(2)|vy>. (6.112)
We may choose the constant in the definition vy such that
Ci — C)* = C3 > 0. (6.113)
The relations (6.107), (6.110)—(6.113) together imply that, for v = vy,
#a(2)] = Y]an@ly + 2z — 1+ 2yz5(2)]. (6.114)
This concludes the proof. O

Put b(z)=(z+y—1+2 yzsy(z))’l. Equation (6.106) and Lemma 6.9 together imply that

2 2

E' LAx®)
n

=el(z>C|b(z>bn(z)||6p<z)|E’ L AR)

POV 1)

El/2
|an(z)‘n2U2 |an(z)\nu

+ C@z(z)( %AE(R)|2>, (6.115)

with some functions 6;(z) and 6,(z) such that |0;(z)] < 1, for i = 1, 2. Inequalities (6.111)
and (6.112) together imply that, for v = vy,

1
CO1RCOAEE)0n(2)] < 5 .- (6.116)

From (6.115), (6.116) and (5.11) we obtain the recursive inequality

2

1
CV/ME?| —(Ap(R
1 2 8 n( E( )) \/m
E|—AsR)| = + : (6.117)
n noly +z—1+42yzs,(z)|  n*v*y+z—1+2yz,(2)

For n sufficiently large the recursion (6.93) implies that, for v = vy,

?_ CMs
T2y +z— 1+ 2yzs(2)

E‘ L aswy)
n

The last bound concludes the proof of Proposition 6.1. UJ
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7. Proof of Theorem 1.2
We now consider a modification of the smoothing inequality in Corollary 2.2.
Lemma 7.1. Let F,(x) be the empirical spectral distribution function of the matrix W and let

F,(x) denote the Marchenko—Pastur distribution function. Denote their Stieltjes transforms by
m p(z) and s,(z), respectively. Let vy, d and & be positive numbers such that

IJ 1 3
T S du=7,
)| yj<a tt +1 4
and

&< 2U()d.
Then there exist constants Cy, ..., Cy4 such that

E sup|F,(x) — EF, ()
X

< CIJ |(Em,(u+1V) — s,(u+iV)|du + Covy + C3&*/?

—00

+ C4 sup

xel;

v
Im{J (E mu(x +iu) — s,(x + iu)du}‘

Vo

o0

1
+ C E‘;(trR(u—!—iV)—EtrR(u+iV))

—00

du

14
+ Ci| E

Vo

1 . 1 .
— trR(xp 4+ iv) — — Etr R(xy + iv))|dv
n n

Vv
1 1
+ G, J E‘ <— trR*(x + iu) — E— tr R?(x + iu)>
xel, n n

Vo

dx du. (7.1)

Proof. Note that the Stieltjes transform m,(z) of distribution function F,(x) is equal to
(1/mtrR, and

my(z) = % tr R*(2). (7.2)

Applying Corollary 2.2 to the distribution functions F,(x) and F)(x), we obtain
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A% = sup| Fy(x) — Fy(x)|
00
< CIJ [(ma(u +1V) — Sy(u +1iV)|du + Covg + C3&32

+ C; sup

xel!

vV
Im{J (mp(x +1iv) — Sy(x + iv))duH.

Vo

Furthermore, using the obvious inequality
[mu(2) = 5y(2)| < |ma(z) = Ema(2)] + [Ema(2) = 5,(2)],

we obtain

o0
sup| Fy(x) — Fy(x)| < CIJ ((E mo(u+iV) — S,(u+iV)|du + Cov + C3*?

—00

+ C4 sup

xel;

V
Im{J (E m,(x +1iv) — Sy(x + iv)du}‘

=0

+ C1J |(mp(u+1iV) — Em,(u+iV)|du

—00

+ C; sup

xel;

v
Im{J (mu(x +iu) — Em,(x + iu))du} ‘

Uo

By Taylor’s formula,
sup|m,(x +iv) — Em,(u + iv)|

xel,

< |mu(xo + iv) — Em,(xo + iv)| + J |my,(u + iv) — E my,(u + iv)|du.

xel,

Inequalities (7.2)—(7.5) together imply (7.1), thus proving the lemma.
Note that, for v = vy = yM|*n~1/ and for & = Cuy, we have

clj |(Em,(u+1V) — s,(u +iV))|du + Cov + C3/>

—00

+ Cy4 sup

xel;

v
Im{J (Emp(x 4 iu) — s,(x + iu))du}‘ = CM}één’I/z.

v

Analogously to Section 4, we obtain that

~ 11
J E‘—(trR(quiV)EtrR(quiV)) du<cCn'.
n

—00

From Lemma 6.1 it follows that

(7.3)

(7.4)

(7.5)

(7.6)

(7.7)
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v
1 1

J E‘ —trR(xp + iv) — —EtrR(xy + iv))|dv
n n

Uo

v 1 1 :
< CJ E'2| = tr R(xy + iv) — —Etr R(xo + iv))| dv
v n n
v
CyM
< J [ § }dv, (7.8)
vo L1U|Z0 + ¥ — 1 + 2yz05,(20)|

where zy) = xp +iv. Using the fact that |zp+y—1+2 yzosy(zo)| = p, we obtain after
integration in v,
1/4 1/6
CVMs _ cmy _ M},
noo nl/2 nl/2

V
1 1
J E’ —trR(xg + iv) — —EtrR(xy + iv))|dv <
n n

Vo

Let z = x + iv. Note that, for v = vy,

1
du < C.
Le[s |y +2z— 14 2yzs,(2)]

By Cauchy’s theorem, we have

1 1
‘—(tr R? —EtrR?)| < Cv ! sup|—Ag(R)
n n

gely

>

where [, = {z : | — z| = vo/2}. Applying Cauchy’s inequality and Proposition 6.1 gives
1 2 2 -1 121 ?
E|~(trR? —Etr R¥)| < Cv ' sup E'/2| = Ag(R)
n zel, n

=

v! Cv My .
nolz+y — 1 +2yzs,(z)|
After integration, we obtain

cmy* _ oml
<
a2 Tl

v 1 1
J J E‘( trRZ(x+iu)—EtrRZ(x+iu))‘dxdus
xel, n n

Vo

This proves Theorem 1.2. O
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