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Consider likelihood inference about a scalar function ł of a parameter Ł. Two methods of

constructing a likelihood function for ł are conditioning and marginalizing. If, in the model with ł
held fixed, T is ancillary, then a marginal likelihood may be based on the distribution of T , which

depends only on ł; alternatively, if a statistic S is sufficient when ł is fixed, then a conditional

likelihood function may be based on the conditional distribution of the data given S. The statistics T

and S are generally required to be the same for each value of ł. In this paper, we consider the case in

which either T or S is allowed to depend on ł. Hence, we might consider the marginal likelihood

function based on a function Tł or the conditional likelihood given a function Sł. The properties and

construction of marginal and conditional likelihood functions based on parameter-dependent functions

are studied. In particular, the case in which Tł and Sł may be taken to be functions of the maximum

likelihood estimators is considered and approximations to the resulting likelihood functions are

presented. The results are illustrated on several examples.
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1. Introduction

Consider a parametric model P ¼ fPŁ : Ł 2 ¨g for an observed random variable Y . Let g

denote a real-valued function on ¨ such that ł ¼ g(Ł) represents the parameter of interest

of the model and consider likelihood-based inference for ł. For models that are

parametrized by ł alone, inference may be based directly on L(ł), the likelihood function

for ł. For models with a nuisance parameter, likelihood inference is often based on a

pseudo-likelihood, a function of the data and ł that has properties similar to those of a

likelihood function. One commonly used pseudo-likelihood is the profile likelihood, in

which Ł is replaced by Ł̂Łł, the maximum likelihood estimator of Ł for fixed ł, in L(Ł),
leading to Lp(ł) ¼ L(Ł̂Łł). Inference for ł then proceeds by treating Lp(ł) as a likelihood

function for ł. Although this approach leads to optimal procedures in terms of first-order

asymptotic theory, in small or moderate samples inferences based on Lp(ł) may be

misleading.

Two approaches to forming a likelihood function for ł are conditioning and

marginalizing. If there exists a statistic T such that the distribution of T depends only

on ł, then a marginal likelihood may be based on this distribution. Let Pł denote the
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model with ł held fixed. Then T is an ancillary statistic in this model; here, as throughout

the paper, an ancillary statistic in a model will mean a statistic that has the same

distribution under each distribution in the model. Alternatively, if there exists a statistic S

which is sufficient in Pł, and not sufficient in P, then a conditional likelihood can be based

on the conditional distribution of Y given S. See, for example, Kalbfleisch and Sprott

(1970; 1973) for a discussion of marginal and conditional likelihoods.

Hence, a marginal or conditional likelihood exists only in certain special cases –

specifically when, in Pł, there exists either an ancillary statistic T or a sufficient statistic S

which is not sufficient in the full model. A key part of this assumption is that either the

ancillary statistic or the sufficient statistic is the same for all values of ł. One way to

weaken these assumptions is to allow either T or S to depend on the parameter value ł.
Hence, we might consider the marginal likelihood function based on a function Tł or the

conditional likelihood given a function Sł.

In this paper, the construction of marginal and conditional likelihood functions based on

parameter-dependent functions is considered. The important messages and results of the

paper are as follows. First, if a likelihood function is based on a parameter-dependent

function then it is important to include a ‘volume element’ in the specification of the

likelihood. Second, there are a number of important considerations to keep in mind when

specifying this volume element. Third, if likelihoods based on parameter-dependent

functions are considered, there is a close connection between marginal and conditional

likelihoods (at least from an approximation-based point of view). Finally, using likelihoods

based on parameter-dependent functions, it is generally possible to construct an approximate

marginal or conditional likelihood (this is in contrast to the modified profile likelihood,

which requires a specific model structure for its justification).

In Section 2, the general problem of constructing such likelihood functions is discussed.

In Section 3, the cases in which Tł and Sł may be taken to be functions of the maximum

likelihood estimators Ł̂Ł and Ł̂Łł are considered and approximations to the resulting marginal

and conditional likelihoods are presented. In this section, it is also shown that, using

likelihoods based on parameter-dependent functions, it is generally possible to construct an

approximate marginal or conditional likelihood. These approximations are related to the

modified profile likelihood proposed by Barndorff-Nielsen (1980; 1983), and this connection

is discussed in Section 4. Section 5 contains several examples.

The main discussion of parameter-dependent likelihood functions given in Section 2 is

based on the assumption that the underlying data have an absolutely continuous distribution

and the pseudo-likelihood functions derived in Section 3 are obtained under this

assumption. In Section 6, it is shown that the pseudo-likelihood functions derived in

Section 3 are also valid when the underlying data have a lattice distribution.

The problem of constructing a likelihood function for a parameter of interest has been

considered from many different points of view. Here we follow the same general approach

used by Kalbfleisch and Sprott (1970; 1973). The purpose of this paper is to expand on this

approach and to apply it to the cases in which Tł and Sł may be taken to be functions of

the maximum likelihood estimators Ł̂Ł and Ł̂Łł.
Conditional and marginal likelihood functions based on parameter-dependent functions

are considered by Fraser (1967; 1968; 1972; 1979) for the case of a linear model. Related
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results for more general models are discussed by Fraser and Reid (1989). As noted above,

the approximations obtained here are closely related to the modified profile likelihood

function proposed by Barndorff-Nielsen (1980; 1983); see also Cox and Reid (1987),

McCullagh and Tibshirani (1990), Barndorff-Nielsen and Cox (1994), Fraser and Reid

(1995) and Severini (1998; 2000a).

2. Conditional and marginal likelihood functions

2.1. Marginal likelihoods

Suppose that the distribution of T depends only on ł so that T is ancillary in the model

with ł held fixed. If T itself does not depend on ł, then a marginal likelihood for ł based

on T is given by L(ł; T ) ¼ p(t; ł), where t is the observed value of T ; here, and

throughout the paper, the symbol p is used to denote a density function with the argument

of p indicating the specific density under consideration. Unless explicitly stated otherwise,

all density functions will be assumed to be with respect to Lebesgue measure.

However, when the statistic T depends on ł, T � Tł, there are difficulties in

constructing a marginal likelihood function for ł based on T . These are illustrated by

the following example, which is also discussed, for example, in McCullagh and Nelder

(1989, Exercise 7.6).

Example 1 Ratio of normal means. Consider two independent samples of size n from

normal distributions with means �1 and �2, respectively, and each with standard deviation 1.

Let X and Y denote the sample means and take ł ¼ �1=�2 as the parameter of interest, with

º ¼ �2 as a nuisance parameter. Thus, in this example, the data will be denoted by (x, y). The

log-likelihood function for the model is given by

‘(Ł) ¼ nº(łxþ y)� n

2
(ł2 þ 1)º2:

The function X � łY is normally distributed with mean 0 and variance (1þ ł2)=n; the
marginal likelihood based on this function is given by

� n

2

(x� ły)2

1þ ł2
� 1

2
log (1þ ł2):

Alternatively, a marginal likelihood could be based on
ffiffiffi
n

p
(X � łY )=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ł2

p
which has

a standard normal distribution; the corresponding marginal likelihood is given by

� n

2

(x� ły)2

1þ ł2
:

Hence, equivalent statistics lead to different forms for the marginal likelihood.

The problem with defining the marginal likelihood based on Tł by p(tł; ł) becomes

apparent when we interpret p(tł; ł) as the probability that Tł lies in a small set containing
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tł. That is, it is perhaps more accurate to write the marginal likelihood function based on

Tł as p(tł; ł)dtł where dtł denotes the volume of a infinitesimally small set containing

tł. If Tł does not depend on ł then dtł does not depend on ł and, hence, it may be

ignored when forming the likelihood function. However, whenever tł does depend on ł,
dtł also depends on ł and, hence, this dependence must be taken into account.

Alternatively, the problem may be viewed as arising from the fact that the densities used

to construct the likelihood function are with respect to a dominating measure that depends

on ł.
One approach to dealing with this issue is to express all volume elements in terms of a

variable that does not depend on ł; see, for example, Kalbfleisch and Sprott (1970). Let z

denote a function of the data y, of the same dimension as tł, such that tł is a one-to-one

function of z for each fixed ł. Note that z does not depend on ł. Then, using the usual

Euclidean volume for dz, the volume element dtł may be written

dtł ¼
���� @ tł@z

����dz
and the marginal likelihood based on T may be written

p(tł; ł)

���� @ tł@z
����dz;

in calculating the likelihood, dz, which does not depend on ł, can be omitted.

In many cases, tł cannot be written as a function of a variable z with the same

dimension as tł. Suppose that we wish to express dtł in terms of dz, where

dim(tł) < dim(z). Then

dtł ¼ @ tł
@z

@ tł
@z

� �T
�����

�����
1=2

dz:

This result may be derived using the following argument; for further details, see Tjur (1980,

Chapter 3) or Hoffmann-Jørgensen (1994, Chapter 8).

Let n denote the dimension of z and let m denote the dimension of t � t(z), where

m < n. The basic idea is that, locally, t depends on z only through a linear function of z of

dimension m, which we denote by v. The correct Jacobian term to include in the

specification of the volume element is j@ t=@vj, which may be expressed in terms of z. To

carry out this approach, consider a fixed value of z, z0; the argument is a local one, near

z ¼ z0, which is all that is needed. Let v1, . . . , vm denote vectors of length n that form an

orthonormal basis for the space

c 2 Rn : c ¼ @ t

@z
(z0)

� �T

x, x 2 Rm

( )

and let D denote the matrix with jth row vTj . It is straightforward to show that

@ t

@z
(z0)D

TD ¼ @ t

@z
(z0):
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Define v ¼ D(z� z0) and v0 ¼ 0. Then, for z near z0,

t(z) ¼ t(z0)þ
@ t

@z
(z0)(z� z0) ¼ t(z0)þ

@ t

@z
(z0)D

Tv:

Hence,���� @ t@v (v0)
���� ¼ @ t

@v
(v0)

@ t

@v
(v0)

� �T
�����

�����
1=2

¼ @ t

@z
(z0)D

TD
@ t

@z
(z0)

� �T
�����

�����
1=2

¼ @ t

@z
(z0)

@ t

@z
(z0)

� �T
�����

�����
1=2

:

It is worth noting that the vectors v1, . . . , vm, in general, depend on ł and, hence, D and v

depend on ł. However, since dv ¼ jDDTj1=2 dz and, by construction, DDT is an identity

matrix, the volume element associated with dv does not depend on ł.
Using this approach, the marginal likelihood function based on Tł is given by

p(tł; ł)
@ tł
@z

@ tł
@z

� �T
�����

�����
1=2

: (1)

The marginal likelihood function (1) was given by Kablfleisch and Sprott (1970; 1973). Note

that this marginal likelihood is invariant under one-to-one differentiable transformations of

tł. To see this, let wł ¼ f (tł) for some one-to-one differentiable function f . Then

p(wł; ł) ¼ p(tł; ł)

���� @ tł@wł

����, tł � tł(wł):

The result now follows from the fact that

@wł

@z

@wł

@z

� �T
�����

�����
1=2

¼ @ tł
@z

@ tł
@z

� �T
�����

�����
1=2���� @wł

@ tł

����:
Example 1 Ratio of normal means (continued). Consider the function tł ¼ x� ły.

Taking z ¼ (z1, z2) ¼ (x, y) yields

@ tł
@z

@ tł
@z

� �T
�����

����� ¼ 1þ ł2;

the resulting marginal log-likelihood function is given by

� n

2

(x� ły)2

1þ ł2
: (2)

Now consider tł ¼ ffiffiffi
n

p
(x� ły)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ł2

p
. Then j(@ tł=@z)(@ tł=@z)Tj ¼ n and the

resulting marginal log-likelihood is also given by (2).

In this example, D ¼ vT1 ¼ (1, ł)=
p
(1þ ł2) and, taking z0 ¼ 0, v ¼ (z1 þ łz2)=ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ł2
p

so that v depends on ł. However, @v=@z ¼ (1, ł)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ł2

p
so that

(@v=@z)(@v=@z)T ¼ 1, in agreement with the general result given above.

Suppose that ~zz is given and that z is a one-to-one function of ~zz; then

Likelihood functions based on parameter-dependent functions 425



@x

@~zz

@x

@~zz

� �T
�����

����� ¼ @x

@z

@z

@~zz

@z

@~zz

� �T
@x

@z

� �T
�����

�����
so that the corresponding volume element in terms of z is

@x

@z
H(z)

@x

@z

� �T
�����

�����, H(z) ¼ @z

@~zz

@z

@~zz

� �T
�����
~zz¼~zz(z)

:

Hence, the problem of specifying the volume element may be addressed by making a

convenient choice for z and then choosing a non-negative definite symmetric matrix H . Thus,

we are using the metric j(dz)TH(z)�1 dzj1=2 for dz or, equivalently, using a Euclidean metric

for dw ¼ H(z)�1=2 dz; a similar approach is used by Fraser and Reid (1989). Using this

approach, the marginal likelihood function based on a particular choice of z and H is given by

p(tł; Ł)
@ tł
@z

H(z)
@ tł
@z

� �T
�����

�����
1=2

:

2.2. Conditional likelihood

Suppose that Sł, the sufficient statistic for Pł, depends on the value of ł. Then the

conditional distribution of the data given Sł ¼ sł depends only on ł and, hence, this

conditional distribution can, in principle, be used to form a conditional likelihood function.

Let X denote a function of the data Y such that (X , Sł) is a one-to-one differentiable

function of Y ; a conditional likelihood may be based on the conditional density of X given

Sł,

p(xjsł; ł) ¼
p(x, sł; Ł)

p(sł; Ł)
:

As with the marginal likelihood, the conditional likelihood given Sł is not well defined

unless the densities are expressed with respect to a volume element that is independent of ł.

Example 1 Ratio of normal means (continued). Consider the model with ł held fixed; the

maximum likelihood estimator of º is º̂ºł ¼ (łX þ Y )=(ł2 þ 1), which is sufficient. The

conditional log-likelihood based on the conditional distribution of X given º̂ºł is given by

n

2

(łxþ y)2

ł2 þ 1
þ 1

2
log (ł2 þ 1):

Alternatively, the conditional likelihood may be based on the conditional distribution of Y

given º̂ºł, leading to the conditional log-likelihood

n

2

(łxþ y)2

ł2 þ 1
þ 1

2
log (ł2 þ 1)� logł:

Hence, the conditional log-likelihood is not well defined.
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To specify a conditional likelihood given Sł we need to specify the variable z along with

the matrix H(z). When sł depends on ł, different choices of z and H yield different

conditional likelihoods. For particular z and H, the conditional likelihood function given Sł
is given by

p(x, sł; Ł)

p(sł; Ł)

j(@(x, sł)=@z)H(z)(@(x, sł)=@z)
Tj1=2

j(@sł=@z)H(z)(@sł=@z)Tj1=2
:

Conditional likelihoods of this form are considered by Kalbfleisch and Sprott (1970; 1973)

for the case in which H is an identity matrix; see also Fraser and Reid (1989).

The resulting conditional likelihood does not depend on the choice of the complementary

variable x. In particular, the conditional likelihood may be given by

p(y; Ł)

p(sł; Ł)

@sł
@z

H(z)
@sł
@z

� �T
�����

�����
�1=2

:

To see this, note that, for any complementary variable x,

p(x, sł; Ł) ¼ p(y; Ł)

���� @ y

@(x, sł)

����, y � y(x, sł):

Hence,

p(x, sł; Ł)
@(x, sł)

@z
H(z)

@(x, sł)

@z

� �T
�����

�����
1=2

¼ p(y; Ł)

���� @ y

@(x, sł)

���� @(x, sł)@z
H(z)

@(x, sł)

@z

� �T
�����

�����
1=2

¼ p(y; Ł)
@ y

@z
H(z)

@ y

@z

� �T
�����

�����
1=2

and the result follows from the fact that @ y=@z does not depend on ł.

2.3. Choice of volume element

Specification of the volume element requires specification of the variable z, a function of

the data y, as well as the matrix H . Although there are relatively few mathematical

requirements on these choices, essentially only that H is non-negative definite symmetric,

there are at least three desirable properties for the volume element to possess; see

Kalbfleisch and Sprott (1970; 1973) for further discussion.

The first property is concerned with invariance of the model under transformations of the

data. Suppose that the model for ~zz ¼ g(z) is the same as the model for z, for some one-to-

one function g. Then, since

@x

@z
H(z)

@x

@z

� �T

¼ @x

@~zz

@~zz

@z
H(z)

@~zz

@z

� �T
@x

@~zz

� �T

,

we should have
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H(~zz) ¼ @~zz

@z
H(z)

@~zz

@z

� �T

:

In particular, suppose that, for some class of n3 n matrices B, the model for Bz is the same

as the model for z. Then H should satisfy H(Bz) ¼ BH(z)BT. This holds, for example, if

H(z) is taken to be the covariance matrix of z.

A second issue is ancillarity. Suppose that we may write z ¼ (z0, a), where a is an

ancillary statistic. Then, holding a fixed, the volume element is expressed in terms of z0
alone. More generally, H(z) corresponds to holding a fixed provided that

H(z)
@a

@z

� �T

¼ 0:

A third consideration is the properties of the resulting likelihood. Note that neither the

marginal likelihood based on a parameter-dependent function nor the conditional likelihood

given a parameter-dependent function is guaranteed to satisfy the Bartlett identities. Hence,

unlike marginal and conditional likelihoods based on statistics T and S that do not depend

on ł, these likelihoods are not ‘true’ likelihoods. Consider the case of a marginal likelihood

based on Tł. A likelihood function L(ł) for ł satisfies the Bartlett identities provided that

for any parameter value ł0,

E
L(ł)

L(ł0)
; Ł

( )
¼ 1

for all Ł such that g(Ł) ¼ ł0. For the marginal likelihood function based on tł, this becomes

E

ð
p(tł; ł)

p(t0; ł0)

j(@ tł=@z)H(z)(@ tł=@z)
Tj1=2

j(@ t0=@z)H(z)(@ t0=@z)Tj1=2
p(y; Ł) dy ¼ 1, z � z(y), tł � tł(y), t0 � t0(y),

where t0 ¼ tł0
. It is easy to see that this does not hold in general; similar considerations

apply to conditional likelihoods. Hence, likelihood functions based on parameter-dependent

functions do not satisfy the Bartlett identities exactly, although they may satisfy them

approximately.

The choice of z and H(z) is an assumption about the data and would not depend, for

example, on the parameter of interest. However, given that the Bartlett identities are central

to likelihood-based statistical inference, it may be desirable in some cases to choose z and

H so that these identities are at least approximately satisfied by the marginal or conditional

likelihood under consideration.

Example 2 Exponential regression. Let Y1, . . . , Yn denote independent exponential

random variables such that Y j has mean º exp(łxj)
�1, where x1, . . . , xn are fixed scalar

constants and ł and º are unknown scalar parameters. Here the data are denoted by

y ¼ (y1, . . . , yn). The log-likelihood function for this model is

‘(ł, º) ¼ �n log º� ł
X

xj �
1

º

X
exp(�łxj)yj:
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For fixed ł, sł ¼
P

exp(�łxj)yj is sufficient and, aside from an additive constant,

log p(y; Ł)� log p(sł; Ł) ¼ �ł
X

xj � (n� 1)log
X

exp(�łxj)yj:

In order to complete specification of the conditional likelihood, we need to choose z and

H(z). Three choices are considered here, leading to three different conditional likelihoods.

First, consider z ¼ (y1, . . . , yn) with H taken to be the identity matrix. Then the

conditional log-likelihood is given by

�ł
X

xj � (n� 1) log
X

exp(�łxj)yj �
1

2
log

X
exp(�2łxj): (3)

Note that this model is unchanged if each yj is transformed to Æyj, Æ . 0. Hence, H should

satisfy H(Æz) ¼ Æ2H(z). The choice of H as an identity matrix, which was used to derive

(3), does not satisfy this condition.

Perhaps the simplest matrix H satisfying H(Æz) ¼ Æ2H(z) is a diagonal matrix with jth

diagonal element equal to z2j , which leads to a second choice for the conditional likelihood.

It is easy to see that this choice is equivalent to using the volume element

���� @sł@w

@sł
@w

� �����
1=2

where w ¼ (w1, . . . , wn), wj ¼ log yj. The resulting conditional log-likelihood function is

�ł
X

xj � (n� 1) log
X

exp(�łxj)yj �
1

2
log

X
exp(�2łxj)y

2
j : (4)

Ancillarity can be used to suggest a third choice for H. Note that the model for

y1, . . . , yn corresponds to a linear model for w1, . . . , wn. Let Æ̂Æ and �̂� denote the least-

squares estimators of Æ and �, respectively, in the model wj ¼ Æþ �xj þ e j; then the

residuals a j ¼ wj � Æ̂Æ� �̂�xj, j ¼ 1, . . . , n, are ancillary in the full model.

It is straightforward to show that

@sł
@Æ̂Æ

¼
X

exp(�łxj)yj and
@sł

@�̂�
¼
X

exp(�łxj)xj yj,

and that the covariance matrix of (Æ̂Æ, �̂�) is proportional to

� ¼

X
x2j=n �x

�x 1

0
@

1
A:

The volume element based on z ¼ (Æ̂Æ, �̂�) and H(z) ¼ � leads to the conditional log-

likelihood
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�ł
X

xj � (n� 1)log
X

exp(�łxj)yj

� 1

2
log

X
exp(�łxj)yj

" #2
þ

X
exp(�łxj)(xj � x)yj

" #2
X

(xj � x)2=n

8>>>><
>>>>:

9>>>>=
>>>>;:

(5)

These three conditional log-likelihoods may be compared based on the expected value of

the corresponding conditional score function, that is, based on how close they are to

satisfying the first Bartlett identity; the expected value of the score function based on a

given pseudo-likelihood function is sometimes referred to as the score bias of the pseudo-

likelihood. For (3), the score bias isX
exp(�2łxj)(xj � x)

X
exp(�2łxj)

¼ O(1):

For (4) it is O(n�2), while for (5) it isX
xj(xj � x)2

X
(xj � x)2

1

n
þ O(n�2):

Pseudo-likelihood (3), which is based on the naive choice of z ¼ y with H(z) taken to be

an identity matrix, has little to recommend it. Pseudo-likelihood (4), which is based on the

transformation structure of the model and satisfies the first Bartlett identity to a high degree

of approximation, would be a reasonable choice for likelihood inference in this problem.

However, if conditioning on an ancillary statistic is thought to be an important

consideration, (5) may be a more appropriate choice.

2.4. Equivalence of marginal and conditional likelihoods in exponential

family models

For some models, both a marginal and a conditional likelihood function are available. This

is particularly true if likelihoods based on parameter-dependent functions are considered

since then the ancillary statistic or sufficient statistic in the model with ł fixed may depend

on the value of ł under consideration. Suppose that the sufficient statistic for the full

model is equivalent to (Tł, Sł) where, in the model with ł held fixed, Sł is sufficient and

Tł is ancillary. Furthermore, suppose that Sł is complete for fixed ł; this holds, in
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particular, if the model with fixed ł is a full-rank exponential family model. Then, by

Basu’s theorem (Basu 1955; 1958), Tł and Sł are independent.

Using the volume based on the statistic z and matrix H(z), the conditional likelihood

given Sł is given by

p(tł; ł)
j(@(tł, sł)=@z)H(z)(@(tł, sł)=@z)

Tj1=2
j(@sł=@z)H(z)(@sł=@z)Tj1=2

and the marginal likelihood function based on Tł is given by

p(tł; ł)
@ tł
@z

H(z)
@ tł
@z

� �T
�����

�����
1=2

:

It is straightforward to show a sufficient condition for the marginal and conditional

likelihoods to agree is that

@ tł
@z

H(z)
@sł
@z

� �T

¼ 0: (6)

Example 1 Ratio of normal means (continued). Taking z ¼ (x, y) and H(z) equal to the

identity matrix, we have seen that the marginal likelihood based on tł ¼ x� ły and the

conditional likelihood given sł ¼ łxþ y are identical. Note that condition (6) is satisfied.

Example 2 Exponential regression (continued). The distribution of t ¼ (y2=y1, y3=y1,
. . . , yn=y1) depends only on ł; the marginal likelihood based on t is given by

�ł
X

xj � n log
X

exp(�łxj)yj:

Note that, since t does not depend on ł, the volume element does not need to be specified.

This marginal likelihood differs from the conditional likelihoods derived for this example.

Suppose that z is given by (log y1, . . . , log yn) and H is taken to be a diagonal matrix with

jth diagonal element d j. The resulting conditional likelihood given sł is identical to the

marginal likelihood based on t provided thatX
d j exp(�2łxj)y

2
j ¼

X
exp(�łxj)yj, �1 , ł , 1;

clearly, this cannot occur unless d j depends on ł.
Now suppose that z ¼ (Æ̂Æ, �̂�) so that the volume element holds a1, . . . , an fixed. The

resulting conditional likelihood given sł is identical to the marginal likelihood based on t

provided that H is taken to be of the form

H(z) ¼ c 0

0 0

� �
,

where c does not depend on ł. This volume element depends only on variation in Æ̂Æ, while t
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is a function of a1, . . . , an and �̂�. These results suggest that, for this model, the marginal and

conditional approaches to likelihood inference for ł are fundamentally different.

3. Likelihood functions based on maximum likelihood

estimators

3.1. A general framework for marginal and conditional likelihoods

We now consider the construction of likelihood functions for a parameter of interest for

models satisfying the following conditions. In the full model, we assume that the sufficient

statistic may be written (Ł̂Ł, a), where a is ancillary; similarly, in the model with ł held

fixed, we assume that the sufficient statistic may be written (Ł̂Łł, bł, a), where bł is

ancillary. These assumptions are satisfied if the models are exponential family models or

transformation models, and they are satisfied to a sufficient degree of approximation for a

wide range of models; see, for example, Severini (2000a, Chapter 6) for a detailed

discussion of these issues. We assume that these conditions hold for the remainder of the

paper.

Hence, the distribution of bł may depend on ł but not on º. For simplicity, we assume

that the parameter of the model may be written Ł ¼ (ł, º) for some nuisance parameter º;
in Section 3.4, the likelihood functions derived in this section are expressed in a form that

does not require an explicit nuisance parameter. Throughout this discussion we condition on

the ancillary a, although, for simplicity, this conditioning is not always explicitly stated.

Furthermore, we assume that, for both models, the likelihood ratio approximation to the

conditional density of the maximum likelihood estimator given an ancillary statistic, also

called the p� formula, holds. For a model with parameter Ł this approximation is given by

p�(Ł̂Łja; Ł) ¼ c(Ł; a)j |̂|j1=2 expf‘(Ł)� ‘(Ł̂Ł)g

(Barndorff-Nielsen 1980; 1983). The constant c is of the form c(Ł; a) ¼ (2�)�q=2f1 þ
O(n�3=2)g, where q denotes the dimension of Ł. Hence, for Ł ¼ Ł̂Łþ O(n�1=2), c depends

only on the data, neglecting terms of order O(n�3=2).

We first show that, in this setting, a conditional or marginal likelihood function based on

a parameter-dependent function always exists. Consider the model with ł held fixed. In this

model, either (º̂ºł, a) is sufficient or it is not sufficient. If it is sufficient, the conditional

distribution of the data given º̂ºł depends only on ł and this conditional distribution may be

used to form a conditional likelihood. This approach is considered in Section 3.2.

If, in the model with ł held fixed, (º̂ºł, a) is not sufficient, then a sufficient statistic is

given by (º̂ºł, bł, a) and bł is ancillary in the model with ł fixed; that is, the distribution

of bł depends only on ł. We now consider the construction of a marginal likelihood

function on the distribution of bł.

Since bł is ancillary in the model with ł fixed, the conditional density of º̂ºł given bł
may be approximated by
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p�(º̂ºłja, bł; Ł̂Łł) ¼ c1j jºº(Ł̂Łł)j1=2 expf‘(Ł)� ‘(Ł̂Łł)g,

where jºº(Ł̂Łł) denotes the observed information for fixed ł, evaluated at Ł̂Łł. The density of

(º̂ºł, bł) given a may be approximated by transforming p�(Ł̂Łja; Ł):

p�(º̂ºł, błja; Ł) ¼ c2j |̂|j1=2 expf‘(Ł)� ‘(Ł̂Ł)g
���� @Ł̂Ł

@(º̂ºł, bł)

����:
Here |̂| denotes the observed information. Since the marginal density of bł is given by

p(º̂ºł, błja; Ł)
p(º̂ºłjbł, a; Ł)

,

it may be approximated by

p�(błja; Ł) ¼ c
j |̂|j1=2j@Ł̂Ł=@(º̂ºł, bł)j

j jºº(Ł̂Łł)j1=2
expf‘(Ł̂Łł)� ‘(Ł̂Ł)g:

In order to complete specification of the marginal likelihood function, we need to specify the

variable z and the matrix H(z). Since (Ł̂Ł, a) is sufficient and a is ancillary, we may take

z ¼ Ł̂Ł and then specify the volume element by choosing the matrix H(Ł̂Ł).
The matrix H(Ł̂Ł) should be chosen so that the assumption that a Euclidean metric is

appropriate for H(Ł̂Ł)�1=2 dŁ̂Ł is reasonable. Note that |̂|1=2(Ł̂Ł� Ł) is approximately distributed

according to a multivariate normal distribution with mean vector 0 and covariance matrix

equal to the identity matrix. Furthermore, this result holds conditionally on a. This suggests

that a Euclidean metric is appropriate for |̂|1=2 dŁ̂Ł; that is, this suggests that a reasonable

choice for H is H(Ł̂Ł) ¼ |̂|�1. Note that the resulting volume is locally invariant under

transformations of Ł. This metric is discussed further by Fraser and Reid (1989), who refer

to it as the constant information metric.

The marginal likelihood based on bł using this approximation and the constant

information metric is therefore given by

Lb(ł) ¼ j jºº(Ł̂Łł)j�1=2Lp(ł)

���� @Ł̂Ł

@(º̂ºł, bł)

���� @bł
@Ł̂Ł

|̂|�1 @bł

@Ł̂Ł

� �T
�����

�����
1=2

:

Here Lp is the profile likelihood function. It is straightforward to show that, by rewriting the

differential terms,

Lb(ł) ¼ j jºº(Ł̂Łł)j�1=2

� @º̂ºł

@Ł̂Ł
|̂|�1 @º̂ºł

@Ł̂Ł

 !T

� @º̂ºł

@Ł̂Ł
|̂|�1 @bł

@Ł̂Ł

� �T
@bł

@Ł̂Ł
|̂|�1 @bł

@Ł̂Ł

� �T
" #�1

@bł

@Ł̂Ł
|̂|�1 @º̂ºł

@Ł̂Ł

 !T
������

������
�1=2

Lp(ł):

(7)

This expression yields a family of marginal likelihoods for ł based on the specific choice

used for the statistic bł. The case in which bł is taken to be null, so that @bł=@Ł̂Ł ¼ 0,
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corresponds to the case in which º̂ºł itself is sufficient for fixed ł. Hence, in a certain sense,

all marginal and conditional likelihood functions for ł based on the p� approximation and

the constant information metric may be generated by (7) using different choices for bł. In

Section 3.3, we take bł to be rł, the signed likelihood ratio ancillary in the model with ł
fixed.

3.2. Conditional modified profile likelihood

Suppose that, in the model with ł fixed, (º̂ºł, a) is a sufficient statistic. A conditional

likelihood function for ł may then be based on an approximation to the conditional

distribution of the data given º̂ºł; as noted above, this corresponds to taking bł to be null in

(7). Then

@bł

@Ł̂Ł
¼ 0

and the denominator in (7) becomes

@º̂ºł

@Ł̂Ł
|̂|�1 @º̂ºł

@Ł̂Ł

 !T
������

������
1=2

;

this leads to the conditional likelihood function

LC(ł) ¼ j jºº(Ł̂Łł)j�1=2 @º̂ºł

@Ł̂Ł
|̂|�1 @º̂ºł

@Ł̂Ł

 !T
������

������
�1=2

Lp(ł):

An alternative expression for LC is sometimes useful. Since º̂ºł satisfies ‘º(ł, º̂ºł; Ł̂Ł) ¼ 0,

it follows that

‘ºº(ł, º̂ºł)
@º̂ºł

@Ł̂Ł
þ ‘º;Ł̂Ł(ł, º̂ºł) ¼ 0

where

‘º;Ł̂Ł(Ł) ¼
@

@Ł̂Ł
‘º(Ł; Ł̂Ł):

Hence,

@º̂ºł

@Ł̂Ł
¼ |̂|ºº(Ł̂Łł)

�1‘º;Ł̂Ł(º̂ºł):

Substituting this in the expression for LC above shows that

LC(ł) ¼
j |̂|ºº(Ł̂Łł)j1=2

j‘º;Ł̂Ł(Ł̂Łł) |̂|�1‘º;Ł̂Ł(Ł̂Łł)
Tj1=2

Lp(ł):
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The pseudo-likelihood LC will be called the conditional modified profile likelihood. This

approximation to a conditional likelihood was also derived by Fraser and Reid (1989) using a

closely related, but slightly different approach; its connection to the modified profile

likelihood of Barndorff-Nielsen (1983) will be discussed in Section 4.

It is straightforward to show that, when (º̂ºł, a) is sufficient, LC approximates the true

conditional likelihood function given º̂ºł to O(n�3=2) for ł of the form ł̂łþ O(n�1=2).

3.3. Likelihood ratio modified profile likelihood

We now consider an approximation to the marginal likelihood function based on the

distribution of the signed likelihood ratio statistic

R � Rł � sgn(ł̂ł� ł)f2[‘(Ł̂Ł)� ‘(Ł̂Łł)]g1=2:

Using (7), along with the fact that

@ r

@Ł̂Ł
¼ 1

r
f‘;Ł̂Ł(Ł̂Ł)� ‘;Ł̂Ł(Ł̂Łł)g, ‘;Ł̂Ł(Ł) ¼

@

@Ł̂Ł
‘(Ł; Ł̂Ł),

leads to the likelihood function

LR(ł) ¼
j |̂|ºº(Ł̂Łł)j1=2

j‘º;Ł̂Ł(Ł̂Łł) |̂|�1‘º;Ł̂Ł(Ł̂Łł)
T � Dj1=2

Lp(ł),

where the matrix D is given by

D ¼
‘º;Ł̂Ł(Ł̂Łł) |̂|

�1f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)gT[‘º;Ł̂Ł(Ł̂Łł) |̂|�1f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)gT]T

f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)g |̂|�1f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)gT
:

An alternative expression for LR is

LR(ł) ¼ j |̂|ºº(Ł̂Łł)j1=2

.
‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)

‘º;Ł̂Ł(Ł̂Łł)

�����
����� jf‘;Ł̂Ł(Ł̂Ł)� ‘;Ł(Ł̂Łł)g |̂|�1f‘

;Ł̂Ł(Ł̂Ł)� ‘;Ł(Ł̂Łł)gTj1=2Lp(ł):

We will call LR the likelihood ratio modified profile likelihood; its connection to the modified

profile likelihood of Barndorff-Nielsen (1983) will be discussed in Section 4.

If the distribution of R depends only on ł, then LR(ł) approximates the true marginal

likelihood function based on R to O(n�3=2) for ł ¼ ł̂łþ O(n�3=2). If, for fixed ł, R is a

second-order ancillary statistic, so that the marginal likelihood function based on R depends

only on ł to O(n�3=2), then LR(ł) approximates this marginal likelihood function with

error O(n�3=2). In the general case, R is a first-order ancillary statistic so that the marginal

likelihood function based on R depends only on ł to O(n�1). In this case, LR(ł)
approximates the marginal likelihood function based on R with error O(n�1).
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3.4. Expressions for LC and LR that do not require an explicit nuisance

parameter

The expressions for LC and LR given earlier are all based on a parametrization of the

model of the form Ł ¼ (ł, º) where ł is the parameter of interest and º is a nuisance

parameter. We now show that it is possible to calculate these likelihoods without choosing

an explicit form for the nuisance parameter. That is, consider a model with parameter Ł and

let ł � ł(Ł) denote the real-valued parameter of interest. We may calculate LC and LR

based on this structure alone, without explicitly selecting a form for the nuisance parameter

º. Hence, these results also serve to verify that these likelihoods are invariant under

interest-respecting reparametrizations.

First note that an explicit form for º was only used in calculation of the derivatives

‘º;º̂º(Ł), ‘º;Ł̂Ł(Ł) and ‘ºº(Ł). Let f (Ł) be an arbitrary function of Ł and consider calculation of

f º(Ł) ¼ @ f (Ł)=@º. By the chain rule,

f º(Ł) ¼ fŁ(Ł)
@Ł

@º
;

hence, it is sufficient to obtain an expression for @Ł=@º. Note that

@Ł

@ł

@Ł

@º

� �
¼

@ł

@Ł

@º

@Ł

0
BB@

1
CCA

�1

and, hence, @Ł=@º satisfies

@º

@Ł

@Ł

@º
¼ I and

@ł

@Ł

@Ł

@º
¼ 0;

here I represents the identity matrix with rank q� 1, where q ¼ dim(Ł).
Let B � B(Ł) denote a q3 (q� 1) matrix such that for all Ł,

@ł

@Ł
B ¼ 0 and

���� @º@Ł B

���� 66¼ 0:

Then

@Ł

@º
¼ B

@º

@Ł
B

� ��1

:

Hence,

‘º;Ł̂Ł(Ł̂Łł) ¼
@º

@Ł
(Ł̂Łł)B(Ł̂Łł)

� ��1
" #T

B(Ł̂Łł)
T‘Ł;Ł̂Ł(Ł̂Łł),

‘º;º̂º(Ł̂Łł) ¼
@º

@Ł
(Ł̂Łł)B(Ł̂Łł)

� ��1
" #T

B(Ł̂Łł)
T‘Ł;Ł̂Ł(Ł̂Łł)B(Ł̂Ł)

@º

@Ł
(Ł̂Ł)B(Ł̂Ł)

� ��1
" #T

,

436 T. Severini



and

|̂|ºº(Ł̂Łł) ¼
@º

@Ł
(Ł̂Łł)B(Ł̂Łł)

� ��1
" #T

B(Ł̂Łł)
T |̂|(Ł̂Łł)B(Ł̂Łł)

@º

@Ł
(Ł̂Łł)B(Ł̂Łł)

� ��1
" #T

:

Define the matrix Pł by

Pł ¼ I � ł9(Ł̂Łł)Tł9(Ł̂Łł)

ł9(Ł̂Łł)ł9(Ł̂Łł)T

where

ł9(Ł) ¼ d

dł
ł(Ł):

For a given q3 q non-singular matrix M0, let v1, . . . , vq�1 denote the eigenvectors of

(I � Pł)M0 corresponding to the non-zero eigenvalues �1, . . . , �q�1. Then the matrix

B � B(Ł̂Łł) needed for calculation of the sample space derivatives is of the form VM1, where

V is the matrix with jth column v j and M1 is an arbitrary (q� 1)3 (q� 1) non-singular

matrix. It follows that

jBTM0Bj1=2 ¼ jM1j(�1 � � � �q�1)
1=2 and jBTM0j ¼ jM1j(�1 � � � �q�1):

For a q3 q non-singular matrix M define jM jł to be the product of the non-zero eigenvalues

of (I � Pł)M . Then we may write

LC(ł) ¼
j j(Ł̂Łł)j1=2ł

j‘Ł;Ł̂Ł(Ł̂Łł) |̂|�1‘Ł;Ł̂Ł(Ł̂Łł)
Tj1=2ł

Lp(ł)

and

LR(ł) ¼
j j(Ł̂Łł)j1=2ł

j‘Ł;Ł̂Ł(Ł̂Łł) |̂|�1‘Ł;Ł̂Ł(Ł̂Łł)
T � D0j1=2ł

Lp(ł),

where

D0 ¼
‘Ł;Ł̂Ł(Ł̂Łł) |̂|

�1f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)gT[‘Ł;Ł̂Ł(Ł̂Łł) |̂|�1f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)gT]T

f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)g |̂|�1f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)gT
:

4. Relationships with the modified profile likelihood

4.1. Modified profile likelihood

The modified profile likelihood function is given by
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LM (ł) ¼
���� @º̂ºł
@º̂º

����
�1���� |̂|ºº(Ł̂Łł)

����
�1=2

Lp(ł) ¼
j |̂|ºº(Ł̂Łł)j1=2

j‘º;º̂º(Ł̂Łł)j
Lp(ł):

Here we give a brief overview of the properties of LM ; see Barndorff-Nielsen and Cox (1994,

Chapter 8) for a more detailed discussion.

The modified profile likelihood is derived as an approximation to either a conditional or a

marginal likelihood. Let ł̂ł denote the maximum likelihood estimator of ł and let º̂º denote

the maximum likelihood estimator of º. First, suppose that º̂º is sufficient in the model with

ł held fixed. A conditional likelihood function may be based on the density of ł̂ł given º̂º,
which is given by

p(ł̂łjº̂º, a; ł) ¼ p(ł̂ł, º̂ºja; ł, º)
p(º̂ºja; ł, º)

: (8)

The density p(ł̂ł, º̂ºja; ł, º) may be approximated using the p� approximation. In order to

approximate p(º̂ºja; ł, º), we first approximate p(º̂ºłja; ł, º) using the p� approximation in

the model with ł fixed; since º̂º is sufficient for fixed ł, º̂ºł must be a function of º̂º. Hence,
an approximation to p(º̂ºja; ł, º) may be obtained using the usual change-of-variable formula

for density functions. Substituting these approximations in (8) yields LM .

Alternatively, suppose that the distribution of ł̂ł does not depend on º. Note that

p(ł̂łja; ł) ¼ p(ł̂ł, º̂ºja; ł, º)
p(º̂ºjł̂ł, a; ł, º)

(9)

and a marginal likelihood function for ł can be based on (9). The density p(ł̂ł, º̂ºja; ł, º)
can be approximated using the p� approximation. The density p(º̂ºjł̂ł, a; ł, º) can also be

approximated using the p� approximation by noting that, in the model with ł held fixed, ł̂ł is

ancillary. Substituting these approximations in (9) yields LM .

Whenever either of these assumptions holds, LM (ł) approximates the conditional or

marginal likelihood to order O(n�3=2) for ł of the form ł̂łþ O(n�1=2). In general – when

these assumptions do not necessarily hold – the marginal likelihood based on ł̂ł is

independent of º to O(n�1=2), that is to say, it does not depend on ł excluding terms of

order O(n�1=2) and LM (ł) approximates this marginal likelihood function to O(n�1=2).

Since, for general models, º̂º is not even sufficient to a first-order approximation (Severini

1994) whenever (º̂º, a) is not sufficient for fixed ł, LM (ł) cannot interpreted as an

approximation to a conditional likelihood.

It is worth noting that when º̂ºł is sufficient for fixed ł, LM (ł) may also be derived by

conditioning on º̂ºł by using

p�(ł̂łjº̂ºł, a; ł) ¼
j |̂|j1=2 expf‘(Ł)� ‘(Ł̂Ł)gj@Ł̂Ł=@(ł̂ł, º̂ºł)j

j |̂|ºº(Ł̂Łł)j1=2 expf‘(Ł)� ‘(Ł̂Łł)g
:

Simplifying this expression and ignoring terms not depending on the data, this approximation

may be seen to be exactly LM. Equivalently, we may derive LM by using the same

approximation used in the derivation of LC with the differential term based on z ¼ Ł̂Ł and
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H(z) ¼ 0 0

0 Hºº

� �
,

where Hºº is any full rank matrix not depending on ł.
Barndorff-Nielsen (1994, Section 6.2) shows that the modified profile likelihood function

LM (ł) may be derived as an approximation to the marginal likelihood function based on

the modified signed likelihood ratio statistic R�ł. The modified signed likelihood ratio

statistic is given by

R� ¼ Rþ 1

R
log

U

R

� �
,

where R is the signed likelihood ratio statistic and

U ¼
‘;Ł̂Ł(Ł̂Ł)� ‘;Ł̂Ł(Ł̂Łł)

‘º;Ł̂Ł(Ł̂Łł)

�����
�����j |̂|ºº(Ł̂Łł)j�1=2j |̂|j�1=2:

Using the fact that r� ¼ r þ O(n�1=2),

exp � (r�)2
2

� �
¼ u

r
exp � r2

2

� �
[1þ O(n�1)]:

Hence, for the portion of the marginal likelihood based on the p(r�; ł), Barndorff-Nielsen
uses

u

r
exp � r2

2

� �
/ u

r
L p(ł):

The volume element used is based on���� @ r�@ł̂ł

���� ¼
���� @ r�(r, º̂ºł)@ r

@ r(ł̂ł, º̂ºł)

@ł̂ł

����: (10)

According to Barndorff-Nielsen (1994, Section 6.2), @ r�=@ r may be approximated by 1 and

@ r(ł̂ł, º̂ºł)

@ł̂ł
¼ j |̂|ºº(Ł̂Łł)j1=2j |̂|j1=2

j‘º;º̂º(Ł̂Łł)j
u

r

so that the resulting marginal likelihood is LM .

In order to compare this approach to the one used in deriving LR, we may write the

differential term corresponding to (10) in the notation���� @ r
@Ł̂Ł

H(Ł̂Ł)
@ r

@Ł̂Ł

� �T����
1=2

:

Hence, the differential term used by Barndorff-Nielsen corresponds to taking H ¼ HM ,

where
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HM ¼
1 �‘º;ł̂ł(Ł̂Łł)

Tf‘º;º̂º(Ł̂Łł)�1gT

�‘º;º̂º(Ł̂Łł)
�1‘º;ł̂ł(Ł̂Łł) ‘º;º̂º(Ł̂Łł)

�1‘º;ł̂ł(Ł̂Łł)‘º;ł̂ł(Ł̂Łł)
Tf‘º;º̂º(Ł̂Łł)�1gT

 !
:

Note that the matrix HM , in addition to depending on ł, is not of full rank. Therefore,

LM (ł) may be viewed as an approximation to the marginal likelihood based on R, using the

differential term based on HM ; from this point of view LM has the same properties as an

approximation to the marginal likelihood as does LR, the only difference being in the choice

of metric used.

4.2. Large-sample comparison

The likelihood functions LM , LC , and LR have very similar behaviour in large samples. In

particular, in this subsection it is shown that LM (ł), LC(ł) and LR(ł) all agree to order

O(n�1) for ł of the form ł ¼ ł̂łþ O(n�1=2); for example,

‘M (ł)� ‘M (ł̂ł) ¼ ‘C(ł)� ‘C(ł̂ł)þ O(n�1),

where ‘M ¼ log LM and ‘C ¼ log LC .

First, consider the term ‘º;Ł̂Ł(Ł̂Łł) |̂|
�1‘º;Ł̂Ł(Ł̂Łł)

T. Throughout the following argument assume

that ł and ł̂ł differ by O(n�1=2). Note that we may write

‘º;ł̂ł(Ł̂Łł) ¼ |̂|ºł þ Mł(ł̂ł� ł)þ O(1) and ‘º;º̂º(Ł̂Łł) ¼ |̂|ºº þ Mº(ł̂ł� ł)þ O(1),

where Mł and Mº are O(n) matrices depending only on the data. A tedious, but elementary,

calculation shows that

‘º;Ł̂Ł(Ł̂Łł) |̂|
�1‘º;Ł̂Ł(Ł̂Łł)

T ¼ |̂|ºº þ (Mº þ MT
º )(ł̂ł� ł)þ O(1)

so that

1

2
logj‘º;Ł̂Ł(Ł̂Łł) |̂|

�1‘º;Ł̂Ł(Ł̂Łł)
Tj ¼ 1

2
logj |̂|ººj þ tr( |̂|�1

ºº Hº)(ł̂ł� ł)þ O(n�1):

A similar calculation shows that

logj‘º;º̂º(Ł̂Łł)j ¼ logj |̂|ººj þ tr( |̂|�1
ºº Mº)(ł̂ł� ł)þ O(n�1),

which establishes the result for LM and LC .

To establish this result for LR it suffices to show that the matrix D is O(1). Then

‘º;Ł̂Ł(Ł̂Łł) |̂|
�1‘º;Ł̂Ł(Ł̂Łł)

T � D ¼ |̂|ºº þ (Mº þ MT
º )(ł̂ł� ł)þ O(1)

as above, which yields the result. It is straightforward to show that ‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł) ¼ O(
p
n)

so that

f‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)g |̂|
�1f‘

;Ł̂Ł(Ł̂Ł)� ‘
;Ł̂Ł(Ł̂Łł)g

T ¼ O(1):

Using Taylor’s series expansions,

‘;ł̂ł(Ł̂Ł)� ‘;ł̂ł(Ł̂Łł) ¼ c(ł̂ł� ł)þ O(1),
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where c ¼ �‘ 0p(ł̂ł) and ‘
;º̂º(Ł̂Ł)� ‘

;º̂º(Ł̂Łł) ¼ O(1). Using the facts that

‘º;ł̂ł(Ł̂Łł) ¼ |̂|ºł þ O(
p
n) and ‘º;º̂º(Ł̂Łł) ¼ |̂|ºº þ O(

p
n),

it follows that

‘º;Ł̂Ł(Ł̂Łł) |̂|
�1f‘

;Ł̂Ł(Ł̂Ł)� ‘
;Ł̂Ł(Ł̂Łł)g

T ¼ O(1)

and, hence, that D ¼ O(1).

The results of this subsection may be used to consider the extent to which LC and LR

satisfy the first Barlett identity. Ferguson et al. (1991) show that E[‘9M (ł); Ł] ¼ O(n�1).

According to the analysis above, both ‘C(ł)� ‘C(ł̂ł) and ‘R(ł)� ‘R(ł̂ł) are of the form

‘M (ł)� ‘M (ł̂ł)þ O(n�1), where the O(n�1) term has a leading term of the form

Q(ł̂ł� ł)2 and Q ¼ O(1). Hence, ‘9C(ł) ¼ ‘9M (ł)þ Q1(ł̂ł� ł)þ O(n�1) for some O(1)

term Q1. It follows that

E[‘9C(ł); Ł] ¼ E[‘9M (ł); Ł]þ O(n�1) ¼ O(n�1);

similarly, E[‘9R(ł); Ł] ¼ O(n�1). Thus, both LC and LR satisfy the first Bartlett identity to a

high degree of approximation.

4.3. Exact agreement between LC, LR, and LM

In some cases, either LC or LR agrees exactly with LM . For instance, if º̂º is sufficient for

fixed ł, then LM is valid to O(n�3=2) and LM ¼ LC, which follows from the fact that

‘º(ł, º) depends on the data only through (º̂º, a) so that ‘º;ł̂ł(Ł̂Łł) ¼ 0.

More generally, LM ¼ LC whenever there exists a statistic s, with dimension equal to that

of º̂º, such that (s, a) is sufficient for fixed ł. To show this, let ~‘‘(ł, º) � ~‘‘(ł, º; s, a)
denote the log-likelihood function for º with ł fixed, written as a function of (s, a). Then,

for given values of the data,

‘º;Ł̂Ł(ł, º) ¼ ~‘‘º;s(ł, º)
@s

@Ł̂Ł
and ‘º;º̂º(ł, º) ¼ ~‘‘º;s(ł, º)

@s

@º̂º
:

It follows that

j‘º;Ł̂Ł(Ł̂Łł) |̂|
�1‘º;Ł̂Ł(Ł̂Łł)

Tj1=2 ¼ j~‘‘º;s(Ł̂Łł)j
���� @s
@Ł̂Ł

|̂|�1 @s

@Ł̂Ł

� �T����
1=2

and that

j‘º;º̂º(Ł̂Łł)j ¼ j~‘‘º;s(Ł̂Łł)j
���� @s
@º̂º

����
so that LM and LC differ by a factor depending only on the data.

Also, if º̂ºł does not depend on ł, then LM ¼ LC . This follows immediately from the

fact that in this case ‘º;ł̂ł(Ł̂Łł) ¼ 0. Since LM and LC are invariant under interest-respecting

parametrizations, LM ¼ LC holds provided that º̂ºł is a function of (ł, T ), where T is a

statistic with the same dimension as º.
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If the signed likelihood ratio statistic R depends on the data only through ł̂ł then

‘
;º̂º(Ł̂Ł)� ‘

;º̂º(Ł̂Łł) ¼ 0. Hence,

‘
;Ł̂Ł(Ł̂Ł)� ‘

;Ł̂Ł(Ł̂Łł)

‘º;Ł̂Ł(Ł̂Łł)

�����
����� ¼ j‘º;º̂º(Ł̂Łł)j j‘;ł̂ł(Ł̂Ł)� ‘;ł̂ł(Ł̂Łł)j

and, neglecting terms depending only on the data,

jf‘
;Ł̂Ł(Ł̂Ł)� ‘;Ł(Ł̂Łł)g |̂|�1f‘

;Ł̂Ł(Ł̂Ł)� ‘;Ł(Ł̂Łł)gTj1=2 ¼ j‘;ł̂ł(Ł̂Ł)� ‘;ł̂ł(Ł̂Łł)j

so that LR ¼ LM .

5. Examples

Example 1 Ratio of normal means (continued). Recall that the log-likelihood function for

the model is given by

‘(Ł) ¼ nº(łxþ y)� n

2
(ł2 þ 1)º2,

where x and y are normal random variables with means łº and º, respectively, and each with

variance n�1. Since x ¼ ł̂łº̂º and y ¼ º̂º, we may write

‘(Ł) ¼ nº(łł̂łþ 1)º̂º� n

2
(ł2 þ 1)º2:

The profile log-likelihood function is given by

‘ p(ł) ¼
n

2

(łxþ y)2

ł2 þ 1
:

It is straightforward to show that ‘C(ł) ¼ ‘R(ł) ¼ ‘ p(ł). The modified profile log-

likelihood function is given by

‘M (ł) ¼
n

2

(łxþ y)2

ł2 þ 1
þ 1

2
log(ł2 þ 1)� logjłxþ yj:

At least in some cases, inferences based on ‘C are preferable to those based on ‘M . Note
that ł̂ł maximizes ‘C(ł). If x ¼ 0 and y 6¼ 0 then ‘M is maximized at ł ¼ 1 while ł̂ł ¼ 0;

if y ¼ 0 and x 6¼ 0, then ‘M is maximized at ł ¼ 0 while ł̂ł is either +1 or �1.

Example 3 Linear regression model. Let Y1, . . . , Yn denote independent random variables

of the form Y j ¼ łþ xj�þ � E j where x1, . . . , xn are known covariate vectors of length p

satisfying
P

xj ¼ 0, ł and � . 0 are unknown scalar parameters, � is a unknown parameter

vector, and the E j are independent unobservable standard normal random variables. Assume

that the matrix x with columns x1, . . . , xn is of full rank.

The log-likelihood function for the model is given by
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‘(ł, �, � ) ¼ �n log � � 1

2� 2
[n�̂� 2 þ n(ł̂ł� ł)2 þ ( �̂�� �)TxTx( �̂�� �)]

and ‘ p(ł) ¼ �n log �̂�ł, where �̂� 2
ł ¼ �̂� 2 þ (ł̂ł� ł)2. It is straightforward to show that

LC(ł) ¼ �̂��(n� p�2)
ł 1þ 2

(ł̂ł� ł)2

�̂� 2

� ��1=2

and that

LR(ł) ¼ �̂��(n� p)
ł 1þ (ł̂ł� ł)2

2�̂� 2

� �1=2

:

The profile likelihood function is given by Lp(ł) ¼ �̂��n
ł ; it is well known that for this model

LM (ł) ¼ �̂��(n� p�2)
ł (Barndorff-Nielsen and Cox, 1994, Chapter 8).

Thus, there are at least four possible choices of pseudo-likelihood function for ł. Each of

LC(ł), LR(ł) and LM (ł) provides a degrees-of-freedom adjustment to Lp(ł). Note,

however, that when n ¼ pþ 2, the single-degree-of-freedom case, LM (ł) is constant,

suggesting that LC and LR may be preferable to LM when the degrees of freedom are small.

For instance, each of these pseudo-likelihood functions is maximized at ł ¼ ł̂ł, the

maximum likelihood estimate. The inverse of the negative second derivative of the log of

the pseudo-likelihood function evaluated at ł̂ł may be used as an estimate of the variance of

ł̂ł. It is straightforward to show that

�‘ 0p(ł̂ł)
�1 ¼ �̂� 2

n
, �‘ 0M (ł̂ł)

�1 ¼ �̂� 2

n� p� 2
,

�‘ 0C(ł̂ł)
�1 ¼ �̂� 2

n� p
, �‘ 0R(ł̂ł)

�1 ¼ �̂� 2

n� p� 1=2
:

Recall that the usual unbiased estimate of the variance of ł̂ł is given by �̂� 2=(n� p� 1).

Hence, LM , LC and LR are each a great improvement over Lp in terms of estimating the

variance of ł̂ł, with the estimate based on LR being closest to the unbiased estimate.

Example 4 Normal distributions with common mean. Let Y jk , k ¼ 1, . . . , n j, j ¼ 1,

. . . , m, denote independent normal random variables such that Y jk has mean � and standard

deviation � j. Take the common mean � as the parameter of interest and take (�1, . . . , � m) as

the nuisance parameter. Let

Y j ¼
1

n j

X
Y jk and S j ¼

X
(Y jk � Y j)

2;

by sufficiency, the analysis may be based on (Y1, S1), . . . , (Ym, Sm). The log-likelihood

function is given by

‘(Ł) ¼ �
X

n j log� j �
1

2

X n j

� 2
j

(yj � �)2 � 1

2

X s j

� 2
j

:

For this model, exact calculation of the sample space derivatives needed to determine LC ,
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LR and LM is not possible. Hence, we use approximations to these functions based on the

approach of of Skovgaard (1996) and Severini (1998) in which sample space derivatives are

approximated by covariances of the log-likelihood function and its derivatives. These

approximations have error O(n�1) for ł ¼ ł̂łþ O(n�1=2).

Let ‘M denote the approximation to ‘M and so on. It is straightforward to show that

‘M (�) ¼ �
X

(n j � 2)log �̂� j�, ‘C(�) ¼ �
X

(n j � 2)log �̂� j� �
1

2
logjFj,

where F is an m3 m matrix with (i, j)th element given by

Fij ¼

4ni n j

c
[( �̂�� �)2 þ f(yi � �̂�)þ (yj � �̂�)g(�̂�� �)] if i 6¼ j,

4n2i
c

f( �̂�� �)2 þ 2(yi � �̂�)(�̂�� �)g þ 2ni�̂�
4
i if i ¼ j,

8>><
>>:

c ¼
P

ni=�̂� 2
i and

‘R(�) ¼ �
X

(n j � 2)log �̂� j� þ
1

2
logG,

where

G ¼ 2
X ni

�̂� 4
i�

yi �
�þ �̂�

2

� �2

þ d2

c
� 4

d

c

X ni

�̂� 2
i��̂�

2
i

(yi � �̂�) yi �
�þ �̂�

2

� �

and d ¼
P

ni=�̂� 2
i�. Also, note that ‘ p(�) ¼ �

P
n j log �̂� j�.

For small sample sizes, ‘C and ‘R may be very different than ‘M . In particular, ‘M
ignores any observations (Y j, S j) with n j ¼ 2. If there are several observations of this type

or if those observations have a relatively small standard deviation, this can be a serious

waste of information.

Likelihood inference for this model has been considered by Kalbfleisch and Sprott

(1970), Chamberlin and Sprott (1989) and Barndorff-Nielsen (1983), among others.

Barndorff-Nielsen (1983) obtains the expression for LM obtained here by ignoring the factor

@º̂º=@º̂ºł.

6. Discrete data

The results in the preceding section were based on the assumption that the underlying data

have a continuous distribution. The main difference in the discrete case is that, if the

relevant densities are with respect to counting measure, it is not obvious that the differential

terms used in deriving LC and LR are still appropriate.

Suppose that the underlying data have a lattice distribution. Then Severini (2000b) shows

that the density of Ł̂Ł may still be approximated using p�; however, the density p� is with

respect to a measure that depends on the structure of the sample space of Ł̂Ł, rather than

with respect to counting measure. Let ��(�; ^̈̈ ) denote this underlying measure, where ^̈̈
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denote the sample space of Ł̂Ł; see Severini (2000b) for further discussion of ��. Then we

may approximate the density of Ł̂Ł by

p�(Ł̂Łja; Ł) ¼ cj |̂|j1=2 expf‘(Ł)� ‘(Ł̂Ł)gd��(Ł̂Ł; ^̈̈ ):

Now consider the density function of X ¼ g(Ł̂Ł) where g is a one-to-one continuously

differentiable function. It may be shown that an approximation to the density of X is given

by

p�(Ł̂Łja; Ł)
���� @Ł̂Ł@x

����d��(x; X ), Ł̂Ł ¼ Ł̂Ł(x);

here X denotes the sample space of X . That is, the density of X with respect to ��(�; X ) may

be obtained from p�(Ł̂Łja; Ł) using the change-of-variable formula commonly used for

densities with respect to Lebesgue measure. It follows that the methods used to derive LC and

LR hold when the underlying data have a lattice distribution as well.
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