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Our problem is to estimate the length distribution of fractures in a rock surface from a geological

map. We do not fully observe the fractures because part of the rock surface is covered by vegetation,

soil and water. The uncovered region is very irregular and, as a result, we tend to observe several

pieces of a single fracture. It is quite impossible to decide from the map if two pieces belong to the

same underlying fracture. Under the assumption that the observed pieces are independent, we derive

the nonparametric maximum likelihood estimator of the length distribution of the underlying fractures.

The assumption is clearly false, but our approach is justified by proving consistency of the estimator

without appealing to the independence. We apply our estimator to the geological data.
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1. Introduction

Almost two decades ago, a study was planned concerning the hazards of nuclear fuel waste

disposal in underground excavations in selected plutonic rock masses of the Canadian

Shield. A site within the granitic rock of the Lac du Bonnet batholith in southeastern

Manitoba was selected to build an underground research laboratory. At this lab, experiments

would be conducted related to thermal heating and hydraulic conductivity. For more

information, we refer to a report by Stone et al. (1984). Figure 1 is part of a geological

map in this report. It shows fractures in the rock surface of a 160 by 160 metre region at

the Lac du Bonnet site. The statistical problem is to estimate the probability distribution of

the lengths of these fractures, as an indication of the rock’s permeability. The data from

Figure 1 first entered the statistical literature with Chung (1989a; 1989b). Estimation of the

length distribution of line segments observed through a bounded window is sometimes

called Laslett’s line segment problem, after Laslett (1982a; 1982b).

The one-dimensional version of Laslett’s problem is also called the ‘hospital problem’.

The line segments represent the sojourns of patients in a hospital. We observe the presence

of patients only during a fixed time interval and we are asked to estimate the distribution of

the sojourn length. Note that sojourns can be ‘doubly’ censored, when we observe neither

arrival nor departure of a given patient. Under the assumption that the patients arrive

according to a homogeneous Poisson process, Laslett (1982a; 1982b) showed how the EM

algorithm can be used to obtain the (sieved) nonparametric maximum likelihood estimator

(NPMLE). Wijers (1995) has shown this estimator to be consistent. Gill (1994), van der

Laan (1995) and Wijers (1995) have (jointly) established its asymptotic normality and

efficiency.
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With our geological map, we encounter three main difficulties. Firstly, many of the

fractures are ‘censored’ that is, not fully observed, because the rock is only partly exposed

due to vegetation, soil and water. Secondly, longer fractures have a higher probability of

being (partly) observed than shorter ones. Thus, we have to account for selection bias.

Finally, the area of exposed rock where we observe the cracks is not convex. This means

that we might observe several pieces of a single crack. It is very difficult to assess from

Figure 1 when two pieces belong to the same underlying fracture.

In Section 3 we derive the NPMLE of the fracture length distribution under the

assumption that the observed pieces are independent. This assumption is clearly false, but

our approach is justified in Section 4 by proving consistency of our estimator without

appealing to the independence. In Section 3 we apply our estimator to the Canadian data.

2. Notation and statement of the problem

A two-dimensional line segment process is conveniently modelled by a point process

� ¼ f(~SSi, X i, ¨i)g on R2 3 Rþ 3 (��=2, �=2). The ~SSi are the locations of the leftmost

Figure 1. Fractures in 160 m by 160 m granitic rock of the Lac du Bonnet batholith in Manitoba.

From Stone et al. (1984). Digitized and post-processed by Professor A.J. Baddeley of the University of

Western Australia. The irregular black region is the rock’s surface. The white parts represent areas

where the rock cannot be observed due to soil, vegetation or water. The white lines through the black

regions indicate fractures.
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endpoints (say) of the line segments. The X i and ¨i are the segments’ lengths and

orientations, respectively. We will use square brackets, writing [~ss, x, Ł], to denote a line

segment in R2, rather than a point in R2 3 Rþ 3 (��=2, �=2).

Suppose that � is stationary with respect to shifts on R2 and that each segment’s length

and orientation are independent. To be precise, we assume that � has an intensity measure

º d~ss dF(x)dJ (Ł), (1)

where º . 0 and F and J are distribution functions on Rþ and (��=2, �=2), respectively.

Let � denote the mean of the length distribution F, and suppose that � is finite. Note that we

have not completely described the distribution of � by giving its intensity. The distribution of

a point process is only fully specified by the intensity measure if the process is Poisson.

We assume that the orientation distribution J is known and our goal is nonparametric

estimation of the length distribution F. By ‘nonparametric’ we mean that we make no

assumptions on F. Lok (1994) considers just the opposite situation: she assumes F to be

known and estimates J . If both F and J are unknown we could alternate estimation of F

and J .

For mathematical convenience we let the segment orientations range over (��=2, �=2),

excluding vertical line segments with orientation �=2. There is no loss of generality,

because we are assuming that J is known and hence we can choose the orientation of the

line segment process so that J does not have a jump at �=2.

Let W � R2 be a random closed set and let B be the unit square, B ¼
[�1=2, 1=2] 3 [�1=2, 1=2], and suppose we can only observe the intersections of the line

segments with W ¼ W \ B. In the Canadian data set of Figure 1, B actually corresponds to

the 160 3 160 m square area and W is the irregular black region through which we observe

the fractures. When proving asymptotic properties of our estimator as B grows, we will

assume that � and W are jointly ergodic.

3. A nonparametric estimator

In this section we derive the NPMLE of the fracture length distribution F under

independence of the observed pieces. First we reparametrize the line segment process �
into a new process �� to make the problem one-dimensional. Next, we reparametrize F

into a new distribution function V to account for the sampling bias due to longer fractures

being more likely to be observed. In Section 3.3, we reparametrize again in order to put our

problem in a form that is both identifiable and completely nonparametric. We will then have

a standard nonparametric missing data problem for which we can write down the score

equations. These can be solved using the EM algorithm (Dempster et al. 1977).

3.1. Two reparametrizations

Since our observation window W is not convex, we might observe several pieces of a single

fracture. Instead of the fractures, we wish to treat these pieces as independent observations.
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To this end, we reparametrize our problem. Let ‘(r, Ł) denote the straight line at (signed)

distance r from the origin at an angle Ł with respect to the x-axis. If we define

r(~ss, Ł) ¼ �s1 sin Łþ s2 cos Ł,

then the line segment [~SSi, X i, ¨i] lies exactly on the line ‘i ¼ ‘(r(~SSi, ¨i), ¨i). We assume

that the intersection of W with ‘i is almost surely the disjoint union of a finite number, say

n(i), of line segments (intervals) ‘ij and we write ‘i \ W ¼ [ni

j¼1‘ij. Now let Tij be the

distance between ~SSi and the leftmost endpoint of ‘ij. We take Tij to be negative when ~SSi is to

the left of the leftmost endpoint of ‘ij. Also, let Lij ¼ j‘ijj be the length of ‘ij. Thus, the

intersection of � with W yields a new point process �� ¼ f(Tij, X i, Lij)g ( j ¼ 1, . . . , n(i))

on R3 Rþ 3 Rþ. It is not difficult to show that the intensity measure of �� is

º dt dF(x)d�(l ) (2)

where, for any Borel measurable set A, the measure � is given by

�(A) ¼
ð

r

ð
Ł
#f j : j‘ j(r, Ł) \ W j 2 Agdr dJ (Ł), (3)

with ‘(r, Ł) \W ¼ [ j‘ j(r, Ł) being a countable union of disjoint line segments.

Formula (2) may be understood as follows. Each fracture can be thought of as lying on

an infinite straight line selected at random according to dr dJ (Ł). The fracture could be

observed through any of the intervals that arise from this line intersecting W . The measure

� counts the expected number of such intervals. If we list the distances between the left

endpoint of the fracture and the left endpoints of the intervals we have a homogeneous

stationary point process on the line, as indicated by the Lebesgue measure dt.

We have for the mean of �,

ð
l

l d�(l ) ¼
ð

r

ð
Ł
j‘(r, Ł) \ W jdr dJ (Ł) ¼

ð
Ł
jW jdJ (Ł) ¼ jW j,

and we shall denote the total mass of � by k. Integrals with respect to � can easily be

estimated by Monte Carlo integration.

Our setting is now essentially one-dimensional, as all the pieces of fractures that we

might observe correspond to intersections

[Tij, Tij þ X i] \ [0, Lij], j ¼ 1, . . . , ni: (4)

Of course many of these intersections are empty. To compute the expected number of non-

empty intersections we define A ¼ f(t, x, l ) : [t, t þ x] \ [0, l ] 6¼ ˘g and integrate with

respect to the intensity measure (2):
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ð
A

º dt dF(x)d�(l ) ¼
ð

l

ð
x

ð
t2[�x, l ]

º dt dF(x)d�(l )

¼
ð

l

ð
x

(l þ x)º dF(x)d�(l )

¼
ð

l

(l þ �)º d�(l ) ¼ º(jW j þ �k): (5)

The (Tij, X i, Lij) ( j ¼ 1, . . . , ni) that fall in A are clearly not independent because for fixed i

and varying j they refer to different pieces of the same fracture. However, as we noted earlier,

it is very difficult to assess from Figure 1 when two pieces belong to the same underlying

fracture. Hence the dependence among the (Tij, X i, Lij) seems impossible to track. We will

ignore this dependence and assume that the (Tij, X i, Lij) are distributed on A according to a

Poisson point process with intensity measure (2). Then, given their number, the (Tij, X i, Lij)

are distributed as the set of values in an independent and identically distributed (i.i.d.) sample

from the normalized intensity

1A(t, x, l )
º dt dF(x)d�(l )ð
A

º dt dF(x)d�(l )

¼ 1A(t, x, l )
dt dF(x)d�(l )

jW j þ �k
: (6)

We now address the problem of sampling bias: that longer fractures stand a better chance

of being (partly) observed. The conditional distribution of X i given (Tij, X i, Lij) 2 A, is not

F but another distribution, say V, which is given by

V (x) ¼
ð

y2(0,x]

ð
l

ð
t2[�x, l ]

dt dF(x)d�(l )

jW j þ �k
¼
ðx

0

jW j þ yk
jW j þ �k

dF(y): (7)

Rewriting (6) in terms of V , we obtain

1A(t, x, l )
dt dV (x)d�(l )

jW j þ xk
¼ 1A(t, x, l )

dt

l þ x
dV (x)

l þ x

jW j þ xk
d�(l ): (8)

3.2. Missing data problem

We are led to the following missing data problem. Suppose we have n i.i.d. copies

(Ti, X i, Li) distributed according to (8). Suppose V is an unknown distribution function

among a class V of all distribution functions on Rþ with finite mean. The density (8) is

easy to interpret:

1. First, select X according to V .

2. Given X ¼ x, select L according to the density (l þ x)d�(l )=(jW j þ xk).

3. Given X ¼ x and L ¼ l, select T according to the uniform distribution on (�x, l ).

The (Ti, X i, Li) are the ‘complete data’. The observed data are the intersections

[Ti, Ti þ X i] \ [0, Li]. From these observations we wish to estimate V .

Figure 2 shows a line segment [t, t þ x] intersecting a line segment [0, l ]. Regions which
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correspond to different censoring types are indicated: uncensored (uc), left censored (lc),

right censored (rc) and double censored (dc). For instance, if a point (t, x) falls in the ‘left-

censored’ region (as illustrated), the left endpoint of the line segment [t, t þ x] will be not

be observed through [0, l ].

At this point, we introduce some extra, artificial censoring. We choose a constant � . 0

and group together all observations whose length is greater than �. We perform this

grouping because observations of longer lengths become increasingly sparse, which leads to

unstable estimation. Also, this fixed � will be mathematically convenient when in Section 4

we consider increasing observation windows. Define

Yi ¼ min(�, j[Ti, Ti þ X i] \ [0, Li]j),

˜i ¼
1fTi,0g þ 1fTiþX i.Lig if j[Ti, Ti þ X i] \ [0, Li]j < �,

3 if j[Ti, Ti þ X i] \ [0, Li]j . �:

(

Let P be the common distribution of the (Yi, ˜i). Because both the structure of the

density (8) and the transformation from (T , X , L) to (Y , ˜) are very simple, we can

explicitly evaluate P. We find P by first conditioning on L and integrating the density (8)

over various regions such as indicated in Figure 3.

To describe P we introduce two useful functions:

dc

lc

x

rc

uc

t
0

t � x
l

Figure 2. The different censoring types
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g(x) ¼
ð1

x

1

jW j þ ky
dV (y)

¼
ð�

x

1

jW j þ ky
dV (y) þ g(�); (9)

h(x) ¼
ð1

x

y � x

jW j þ ky
dV (y)

¼
ð�

x

y � x

jW j þ ky
dV (y) þ h(�) þ (�� x)g(�): (10)

It is easily verified that kh(x) þ (jW j þ kx)g(x) þ V (x) ¼ 1. We define H ¼ kh(�) and

G ¼ (jW j þ k�)g(�) so that

V (�) þ G þ H ¼ 1: (11)

As it turns out, P can be expressed in terms of V restricted to [0, �], G and H . Defining

Æ(x) ¼ 1

jW j þ kx

ð1
x

(l � x)d�(l ), (12)

DC

BA

00

00

lx

lxlx

l

Figure 3. Integration regions for calculating P
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we find – after much tedious manipulation – that, for all y < �,

P(dy, 0) ¼ Æ(y)dV (y) (13)

P(dy, 1) ¼ 2�[y, 1)g(y)dy

¼ 2�[y, 1)dy

ð�
y

1

jW j þ kx
dV (x) þ G

jW j þ k�

 !
(14)

P(dy, 2) ¼ d�(y)h(y)

¼ d�(y)

ð�
y

x � y

jW j þ kx
dV (x) þ H

k
þ (�� y)G

jW j þ k�

 !
(15)

and

P(Y ¼ �, ˜ ¼ 3) ¼ Æ(�)G þ �(�, 1)H

k
: (16)

Because (11) expresses G in terms of V (�) and H, the distribution P of the data is fully

parametrized by V restricted to [0, �] (we write V j[0,�]) and H . V j[0,�] ranges over all

(possibly defective) distribution functions on [0, �], and H is any positive real number such

that V (�) þ H < 1.

We now demonstrate that there is a one-to-one correspondence between (V j[0,�], H) and

(Fj[0,�], �), where Fj[0,�] ranges over all (possibly defective) distribution functions on [0, �]

and � is any positive real not less than
Ð �

0
xdF(x). To express Fj[0,�] and � in terms of

V j[0,�] and H, we note that the function g(�), defined in (9), is fully determined by V j[0,�]

and H through (11). Also,

g(0) ¼
ð1

0

1

jW j þ ky
dV (y) ¼

ð1
0

1

jW j þ k�
dF(y) ¼ 1

jW j þ k�
:

Hence,

� ¼ 1

k
1

g(0)
� jW j

� �
(17)

and

F(x) ¼
ðx

0

jW j þ k�
jW j þ ky

dV (y) ¼ g(0) � g(x)

g(0)
: (18)

3.3. Identifiability; another reparametrization

As we pointed out, the distribution of the data is fully parametrized by V j[0,�] and H . This

means that our original model V ¼ {all distributions on Rþ} is not identified. We could

decide on an identifiable subset of V, but that model would no longer be completely

nonparametric. Why it is convenient if the model is both completely nonparametric and
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identified is explained in the Appendix. We move to a different model and a different

mechanism to create (Y , ˜). This new model is both completely nonparametric and

identified, while the distribution of (Y , ˜) remains the same as before.

Let us consider the – admittedly peculiar – space [0, �] [ fy, {g. By fy, {g we simply

mean the addition of two arbitrary points to [0, �]. From (11) we know that G þ H < 1 and

therefore we may interpret G and H as probabilities. Hence, given a distribution function V

on Rþ, we can define a measure Q on [0, �] [ fy, {g by setting

Q(0, x] ¼ V (x), for all x 2 [0, �], (19)

Qfyg ¼ G, (20)

Qf{g ¼ H : (21)

Let P(dy, �jx) denote the conditional distribution of an observed length and censoring

type, given that the underlying fracture has length x. Now, we define a Markov kernel

which maps Q to P. For y < �,

K(dy, �; x) ¼ P(dy, �jx),

K(dy, �; y) ¼ 1f�¼1g
2�[y, 1)dy

jW j þ k�
þ 1f�¼2g

(�� y)d�(y)

jW j þ k�
,

K(dy, �; {) ¼ 1f�¼2g
d�(y)

k
:

Also, set K(Y ¼ �, ˜ ¼ 3; y) ¼ Æ(�) and K(Y ¼ �, ˜ ¼ 3; {) ¼ �[�, 1)=k, where Æ(�) is

defined in (12). With Q defined in terms of V , one can easily verify that

P(dy, �) ¼ QK ¼
ð

K(dy, �; x)dQ(x):

The mapping Q 7! QK is one-to-one on Q ¼ {all distributions on [0, �] [ fy, {gg. In other

words, our new model Q is identified. In addition, Q is completely nonparametric.

3.4. EM algorithm

We are now in a position where we can apply the theory of the Appendix. We use the EM

algorithm to estimate Q. Let P denote the empirical distribution of the observed pieces. A

precise definition of P is given below in (30). The self-consistency equations

Q̂Q(A) ¼ 1

number of observed pieces

X
i

Q̂Q(AjYi, ˜i)

¼
ð

Q̂Q(Ajy, �)dP(y, �)

become, for x < �,
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dQ̂Q(x) ¼ dP(y, 0)

þ dQ̂Q(x)

jW j þ kx

ðx

y¼0

1

ĝg(y)
dP(y, 1)

þ dQ̂Q(x)

jW j þ kx

ðx

y¼0

x � y

ĥh(y)
dP(y, 2)

Q̂Qf{g ¼
ð�

y¼0

1

ĥh(y)
dPn(y, 2) (22)

þ �[�, 1)=k

Æ(�)Q̂Qfyg þ �[�, 1)Q̂Qf{g=k
P(�, 3), (23)

where

Q̂Qfyg ¼ 1 � Q̂Q(0, �] � Q̂Qf{g

and (cf. (9) and (10)),

ĝg(x) ¼
ð�

x

1

jW j þ ky
dQ̂Q(y) þ Q̂Qfyg

jW j þ k�
,

ĥh(x) ¼
ð�

x

y � x

jW j þ ky
dQ(y) þ Q̂Qf{g

k
þ (�� x)Q̂Qfyg

jW j þ k�
:

Finally, using (17) and (18),

�̂� ¼ 1

k
1

ĝg(0)
� jW j

� �
(24)

F̂F(x) ¼ ĝg(0) � ĝg(x)

ĝg(0)
, x < �: (25)

Our estimator solves score equations for a model which reflects the assumptions we have

made. These assumptions include independence of the observed pieces, which certainly is

not true. Also, we should be aware that solving score equations – even if they are the

correct ones – does not necessarily produce a maximum likelihood estimator. Despite all

this, we will refer to our estimator as an (or even ‘the’) NPMLE.

We have applied our estimator to the Canadian data. We assumed that the orientation

distribution J is the uniform distribution on (��=2, �=2) and we used Monte Carlo

integration to approximate the various integrals with respect to � (these are: jW j, k, �[�, 1)

and Æ(�)). We chose � ¼ 14 m, which is about the length of the longest uncensored fracture

we have observed. Next, we ran the EM algorithm with two different starting values. The

algorithm was stopped as soon as the supremum distance between two subsequent iterates

was less than 0.001. This took only a few minutes. Figure 4 shows the two resulting

estimates of Fj[0,�], together with our starting values. From top to bottom we see:
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• our first starting value,
Ð �

0
P(dy, 0)=

Ð �
0
P(dy, 0):

• the result of the EM algorithm, initialized at our first starting value. Convergence

occurred after 19 iterations. The mean of F was estimated at 7.582 m.

• the result of the EM algorithm, initialized at our second starting value. Convergence

occurred after 79 iterations. The mean of F was estimated at 7.565 m.

• our second starting value,
Ð �

0
P(dy, 0):

We note that our two estimates agree very well up to about 10 m. Beyond that the agreement

is not as good, indicating, perhaps, that we chose � too big or that we stopped too early.

4. Consistency

Define

Bn ¼ nB ¼ [�n=2, n=2] 3 [�n=2, n=2]

and B1 ¼ R2. We will now prove consistency of our estimator as we observe the line

segment process � through an expanding sequence of observation windows Wn ¼ W \ Bn,

for n ¼ 1, 2, . . . .
The distribution P ¼ QK of our data depends on the observation window W \ B1

1.0

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10 12 14
Length (m)

Figure 4. Some estimates of F restricted between 0 and 14 m. See description in the text.

Laslett’s line segment problem 387



through the measure � (cf. (3)). To make the dependence on Wn explicit we will write �n

and Pn ¼ Qn K n. We denote our NPMLE of Qn by Q̂Qn and write (F̂Fnj[0,�], �̂�n) for the

NPMLE of (Fj[0,�], �).

First, we will define the ‘empirical distribution’ Pn of the pieces we observe through the

window Wn. Note that the subscript n of Pn does not refer to the number of observed

pieces. In Lemma 2 we use an ergodic theorem to establish that Pn and the true

Pn ¼ Qn K n converge. Then, we introduce a ‘pilot’ sequence ~QQn to ‘guide’ the NMPLE Q̂Qn.

In Lemma 3 we show the convergence of ~QQn and the true Qn. Next, in Lemma 4, we use

the fact that the NPMLE Q̂Qn solves certain score equations, to obtain convergence of the

NPMLE P̂Pn ¼ Q̂Qn K n and the pilot sequence ~PPn ¼ ~QQn K n. By Lemma 3, this implies

convergence of Q̂Qn and Qn, which is the content of Lemma 5. Finally, Theorem 2 concludes

that the NPMLE (F̂Fnj[0,�], �̂�n) converges to (Fj[0,�], �).

The trick of using a pilot sequence to guide the NPMLE has previously been applied by

Murphy (1994), Gill (1994), Wijers (1995) and Hansen and van Zwet (2001).

We shall make extensive use of an ergodic theorem for spatial processes due to Nguyen

and Zessin (1979, Corollary 4.20). A spatial process on R2 is collection of random variables

fX B : B 2 Bg where B are the bounded Borel sets in R2. A spatial process is said to be

covariant if a shift of the entire process accompanied by the same shift of the observation

window B does not change the value of X B. The process is said to be additive if, for

disjoint A, B 2 B,

X A[B ¼ X A þ X B:

We denote the collection of bounded and convex subsets of R2 by K. Let B1 ¼ [�1=2, 1=2]2

be the unit square.

Theorem 1 (Nguyen and Zessin). If a spatial process fX B : B 2 Bg is covariant and

additive and if there exists a non-negative, integrable random variable Y such that

jX Bj < Y , a:s: for each B 2 B1 \ K,

then

lim
n!1

1

jBnj
X Bn

¼ E(X B1
jJ ), a:s:

for each regular countable sequence Bn of sets in K.

Our sequence Bn ¼ [�n=2, n=2]2 is an example of a regular countable sequence in K. Here

J denotes the invariant sigma-algebra. If fX B : B 2 Bg is ergodic – that is, J is trivial –

then the limit equals E(X B1
).

To begin with, we introduce some notation for Lemma 1 below. We intersect W with a

straight line ‘(r, Ł) at signed distance r from the origin and orientation Ł. Suppose such

intersections are always the countable union of disjoint segments (intervals):

‘(r, Ł) \W ¼ [‘i(r, Ł). Let f‘i(r, Ł), i 2 I Bg be the collection of all those segments with

left endpoint in a bounded Borel set B. Define measures ��(dl; B), B 2 B, by
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��(A; B) ¼
ð

r

ð
Ł
#fi 2 I B : j‘i(r, Ł)j 2 Agdr dJ (Ł):

Note the similarities and differences between �1(A) defined at (3) and ��(A; B1).

Lemma 1. Suppose the random closed set W is ergodic. Let f be a �n measurable function,

for all n. The sequence ð
l

f (l )�n(dl )=jBnj ! E

ð
l

f (l )d��(dl; B1)

� �

in probability.

Proof. Consider a collection of random variables X B ¼
Ð

f (l )��(dl; B), indexed by sets

B 2 B. This spatial process is additive, covariant and ergodic (because W is ergodic). Hence,

we can apply Theorem 1 to conclude that X Bn
=jBnj converges to E(X B1

). The difference

between
Ð

f (l )�n(dl ) and X Bn
comes from segments that cross the boundary of Bn. Since the

expected number of such segments is O(n), while jBnj ¼ n2, it follows that����
ð

f (l )�n(dl ) � X Bn

����=jBnj ! 0,

in probability and our claim follows. h

Intersecting the line segment process � with the random closed set W, we obtain a

collection of ‘pieces’ of line segments. These pieces are a new line segment process, say,

� ¼ ((~SSi, X i, ¨i)g, of left endpoints ~SSi, lengths X i and orientations ¨i. We write [~ss, x, Ł]

to indicate a line segment (subset of R2) rather than a point in a higher-dimensional space.

Let B be a bounded Borel set. We define three functions:

pB(~ss, x, Ł) ¼ left endpoint of [~ss, x, Ł] \ B, (26)

yB(~ss, x, Ł) ¼ min(�, j[~ss, x, Ł] \ Bj), (27)

�B(~ss, x, Ł) ¼ censoring type of [~ss, x, Ł] relative to W \ B: (28)

As before, if j[~ss, x, Ł] \ Bj . � we set �B(~ss, x, Ł) ¼ 3. For 0 < y < �, � ¼ 0, 1, 2, 3 we

define

X B(y, �) ¼ #f(~ss, x, Ł) 2 � : [~ss, x, Ł] \ B 6¼ ˘, yB(~ss, x, Ł) < y, �B(~ss, x, Ł) ¼ �g: (29)

With Pn ¼ Qn K n, note that ð y

0

Pn(dx, �) ¼ E
X Bn

(y, �)X
�

X Bn
(�, �)

0
B@

1
CA:

Observing � \W \ Bn, we can evaluate X Bn
(y, �) for all y and �. The empirical

distribution of these observations is defined by
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ð y

0

Pn(dx, �) ¼ X Bn
(y, �)X

�

X Bn
(�, �)

: (30)

We denote by k � kA the uniform norm over a set A.

Lemma 2. Suppose the random closed set W and the line segment process � are jointly

ergodic. Then �����
ð:

0

Pn(dy, �) �
ð:

0

Pn(dy, �)

�����[0,�] ! 0

for � ¼ 0, 1, 2, and

jPn(Y ¼ �, ˜ ¼ 3) � Pn(Y ¼ �, ˜ ¼ 3)j ! 0

in probability.

Proof. Fix y and �. Define, for all B 2 B,

X�
B(y, �) ¼ #f(~ss, x, Ł) 2 � : ~ss 2 B, yR2 (~ss, x, Ł) < y, �R2 (~ss, x, Ł) ¼ �g:

The collection fX�
B(y, �), B 2 Bg constitutes a covariant, additive, ergodic spatial process, so

X�
Bn

(y, �)=jBnj ! EX�
B1

(y, �). The difference between X Bn
(y, �) and X�

Bn
(y, �) comes from

segments that cross the boundary of Bn. Since the expected number of such segments is

O(n), while jBnj ¼ n2, it follows that jX Bn
(y, �) � X�

Bn
(y, �)j=jBnj ! 0 in probability.

Hence, X Bn
(y, �)=jBnj ! EX�

B1
(y, �) in probability, and pointwise convergence ofÐ y

0
Pn(dx, �) and

Ð y

0
Pn(dx, �) follows. The same argument holds if we replace (0, y] by

(0, y). Hence, by monotonicity, the uniform convergence follows. h

We have obtained uniform convergence in probability, while below we really need almost

sure convergence. The Skorohod–Dudley–Wichura almost-sure representation theorem (e.g.

Shorack and Wellner, 1986) says that we can always construct an almost surely converging

sequence whose marginal distributions are equal to a given weakly convergent sequence of

probability measures on a metric space. Hence, we can initially pretend we have almost

sure convergence and prove more almost sure convergence results. Afterwards, we must

modify these results to convergence in probability.

Recalling (13), which states that

dQn(x) ¼ 1

Æn(x)
Pn(dx, 0) ¼ jWnj þ knxð1

x

(l � x)d�n(l )

Pn(dx, 0), x < �,

we define a ‘pilot’ sequence ~QQn by
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d ~QQn(x) ¼ 1

Æn(x)
Pn(dx, 0), x < �,

~QQnf{g ¼ min( ~QQn(�, 1), Qnf{g): (31)

Note that ~QQn is not a true estimator, because it cannot be computed from the data alone.

Fortunately, it does not have to be. We define ~PPn ¼ ~QQn K n and note that ~PPn(�, 0) ¼ Pn(�, 0).

Lemma 3. Suppose the random closed set W and the line segment process � are jointly

ergodic. Then the pilot sequence ~QQn and the true Qn converge in the sense that�����
ð:

0

d ~QQn �
ð:

0

dQn

�����[0,�] ! 0 and j ~QQnf{g � Qnf{gj ! 0

in probability.

Proof. Integration by parts yields that ~QQn(0, x] is equal to

�
ðx

0

kn

ð1
y

(l � y)d�n(l ) þ (jWnj þ kn y)�n(y, 1)

ð1
y

(l � y)d�n(l )

 !2
Pn((0, y], 0)dy

þ Pn((0, �], 0)
jWnj þ kn�ð1

�
(l � �)d�n(l )

þ Pn((0, x], 0)
jWnj þ kn�ð1

x

(l � x)d�n(l )

:

A similar expression holds for Qn, but with Pn replaced by Pn. If, for n large enough,

�n(�, 1) is positive, then the integrand will be bounded and we can use the dominated

convergence theorem in combination with Lemma 2 to get the (pointwise) convergence of
~QQn(0, x] and Qn(0, x]. The same argument holds if we replace (0, x] by (0, x). Hence, by

monotonicity, the uniform convergence follows. h

We now come to the core of our consistency proof. We show that the NPMLE P̂Pn and

our pilot sequence ~PPn ¼ ~QQn K n converge. Together with the consistency of ~QQn, this will

yield consistency of the NPMLE.

Lemma 4. Suppose the random closed set W and the line segment process � are jointly

ergodic. Then �����
ð:

0

P̂Pn(dy, �) �
ð:

0

~PPn(dy, �)

�����[0,�] ! 0

for � ¼ 0, 1, 2, and

jP̂Pn(Y ¼ �, ˜ ¼ 3) � ~PPn(Y ¼ �, ˜ ¼ 3)j ! 0
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in probability.

Proof. We prove a stronger result, namely that P̂Pn and ~PPn converge in Hellinger distance. The
~QQn only put mass on the uncensored observations. This ensures that Q̂Qn � ~QQn. Moreover, the

Radon–Nikodym derivative d ~QQn=dQ̂Qn is square integrable with respect to Q̂Qn. By Lemma 7,

it follows that the submodel consisting of the straight line t ~QQn þ (1 � t)Q̂Qn (0 < t < 1) is

Hellinger differentiable. By Lemma 8, the straight line t ~QQn K n þ (1 � t)Q̂Qn K n (0 < t < 1) is

Hellinger differentiable as well. By Lemma 7 it has score (d ~QQn K n=dQ̂Qn K n) � 1.

Our ‘NPMLE’ Q̂Qn does not maximize the likelihood of our data. However, it is the

solution of the score equations that belong to the model that says that our data (the pieces)

are all independent. One of these score equations isð
d ~QQn K n

dQ̂Qn K n

� 1

 !
dPn ¼ 0: (32)

We may expand this equation intoð
d ~QQn K n

dQ̂Qn K n

 !
d(Pn � ~QQn K n) þ

ð
d ~QQn K n

dQ̂Qn K n

� 1

 !
d ~QQn K n ¼ 0: (33)

It can be shown (cf. van de Geer, 1993) that the second summand is not less than the squared

Hellinger distance between ~QQn K n and Q̂Qn K n. Hence, if we can show convergence to zero of

the first summand, we can conclude that ~QQn K n and Q̂Qn K n converge in Hellinger distance. So

we consider the first summandð
d ~QQn K n

dQ̂Qn K n

d(Pn � ~QQn K n) ¼
ð

d ~PPn

dP̂Pn

d(Pn � ~PPn)

¼
ð�

0

d ~PPn(dy, 0)

dP̂Pn(dy, 0)
d(Pn(dy, 0) � ~PPn(dy, 0))

þ
ð�

0

~gg n(y)

ĝg n(y)
d(Pn(dy, 1) � ~PPn(dy, 1))

þ
ð�

0

~hhn(y)

ĥhn(y)
d(Pn(dy, 2) � ~PPn(dy, 2))

þ
~PPn(Y ¼ �, ˜ ¼ 3)

P̂Pn(Y ¼ �, ˜ ¼ 3)
(Pn(Y ¼ �, ˜ ¼ 3) � ~PPn(Y ¼ �, ˜ ¼ 3)):

Because Pn(dy, 0) ¼ ~PPn(dy, 0), the first summand is zero. Convergence to zero of the fourth

term is immediate from Lemma 2. Convergence of the second and third term is a matter of

routine analysis. h

Lemma 5. Suppose the random closed set W and the line segment process � are jointly

ergodic. Then the NPMLE sequence Q̂Qn and the true Qn converge in the sense that
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�����
ð:

0

dQ̂Qn �
ð:

0

dQn

�����[0,�] ! 0 and jQ̂Qnf{g � Qnf{gj ! 0

in probability.

Proof. Because, by definition, P̂Pn ¼ Q̂Qn K n we have

dQ̂Qn(x) ¼ 1

Æn(x)
P̂Pn(dx, 0):

Also, recall that Pn(�, 0) ¼ ~PPn(�, 0), so that

d ~QQn(x) ¼ 1

Æn(x)
Pn(dx, 0) ¼ 1

Æn(x)
~PPn(dx, 0):

Hence we are in a very similar situation to Lemma 3. To prove our lemma we perform

integration by parts and then use Lemma 4 instead of Lemma 2. h

We have arrived at our final result.

Theorem 2. Suppose the random closed set W and the line segment process � are jointly

ergodic. Then

kF̂Fn � Fk[0,�] ! 0 and j�̂�n � �j ! 0

in probability.

Proof. By (17) and (18) it suffices to prove uniform convergence of

ĝgn(x) ¼
ð�

x

1

jWnj þ kn y
dQ̂Qn(y) þ Q̂Qnfyg

jW j þ k�

to g(x), which is defined similarly in terms of Qn. We have already established convergence

of Q̂Qnfyg and Qnfyg. Integration by parts yields

ð�
x

1

jWnj þ kn y
dQ̂Qn(y) ¼ �

ð�
x

Q̂Qn(0, y]
�kn

(jWnj þ kn y)2
dy

þ Q̂Qn(0, �]
1

jWnj þ kn�
� Q̂Qn(0, x]

1

jWnj þ knx
:

We now use the previous lemma and the dominated convergence theorem (the integrand is

evidently bounded) to obtain the convergence. The same argument holds if we replace the set

(x, �] by [x, �]. Hence, by monotonicity, the uniform convergence follows. h
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Appendix. Nonparametric missing data problems

In this appendix we review some semi-parametric theory. See also Bickel et al. (1993) or

van der Vaart (1998, Chapter 25).

Let X be a random variable on some (measurable) space X with unknown distribution

Q0 2 Q and let Y be a random variable in another space Y. Using a Markov kernel K, we

can define the ‘mixture’ P ¼ QK as

P(dy) ¼ QK(dy) ¼
ð
X

K(dy, x)dQ(x): (34)

P is a probability measure on the space Y. The Markov kernel K models a mechanism that

causes some sort of ‘missingness’, for instance by means of (random) censoring. We suppose

K is known and observe an i.i.d. sample Y1, . . . , Yn with common distribution P0 ¼ Q0 K.

The model for the distribution of a generic observation Y is of course P ¼ QK ¼
fQK : Q 2 Qg and the objective is to estimate Q0.

The fact that we only observe Y and not X may cause a lack of identifiability. We may

well have that QK ¼ Q9K while Q 6¼ Q9. We have paid special attention to this in this

paper.

If the model P is not dominated by a single sigma-finite measure, score functions are

defined through ‘differentiable submodels’ of P. The collection of all score functions is

called the ‘tangent set’ of the model P at P and denoted _PP(P). Since score functions are

square integrable and integrate to zero (e.g. van der Vaart 1998, Lemma 25.14) the tangent

set _PP(P) can be identified with a subset of L0
2(P). We call a problem ‘completely

nonparametric’ if _PP(P) ¼ L0
2(P). This situation typically occurs when Q consists of all

probability measures on X .

We say that P̂Pn ¼ Q̂Qn K solves the score equations (and even call it the NPMLE) ifð
g dPn ¼ 0, for all g 2 _PP P̂Pn): (35)

We now list a few useful properties of Q and P ¼ QK which are easy to prove.

Lemma 6. If Q is convex then so is P ¼ QK.

Lemma 7. Suppose that Q is convex. If Q � Q9 and dQ=dQ9 2 L2
0(Q9) then t 7! tQ þ

(1 � t)Q9 is differentiable at Q9 with score

dQ

dQ9
� 1:

Lemma 8. If t 7! Qt is a differentiable submodel through Q 2 Q with score function g, then

t 7! Pt ¼ Qt K is a differentiable submodel through P ¼ QK 2 P with score EQ(g(X )jY ).

Proof. For a proof refer to Bickel et al. (1993, Proposition A.5.5) or Le Cam and Yang

(1988, Proposition 4). h
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By Lemma 8 the score equations for a missing data problem take the special formð
EQ̂Qn

(g(X )jy)dPn(y) ¼ 1

n

X
i

EQ̂Qn
(g(X i)jYi) ¼ 0, for all g 2 _QQ(Q̂Qn): (36)

If every square-integrable function is a score, then we can take g(x) ¼ 1A(x) � Q̂Qn(A) for

any measurable set A to obtain the so-called self-consistency equations

Q̂Qn(A) ¼
ð

EQ̂Qn
(1A(X )jy)dPn(y) ¼ 1

n

X
Q̂Qn(X i 2 AjYi): (37)

Solving these equations iteratively is an instance of the EM algorithm (Dempster et al.

1977). When we start the iterations with an initial guess Q(0)
n then all subsequent iterates

will be dominated by it. Hence we can never do better than compute a ‘sieved’ NPMLE

over the model fQ 2 Q : Q � Q(0)
n g.
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