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1. Introduction

The problem of describing sets of multi-way contingency tables that are induced by fixing a

number of lower-dimensional marginals has been the focus of many research efforts in

recent years. These sets arise in a variety of contexts such as disclosure limitation (Dobra

2002; Fienberg et al. 1998; 2001) and the calibration of test statistics (Agresti 1992;

Diaconis and Efron 1985; Mehta 1994). Diaconis and Sturmfels (1998) proposed a general

algorithm for generating random draws from a set of tables with given fixed marginals.

Their approach is extremely appealing because, in theory, it can be used for arrays of any

dimension. Despite its generality, the power of this sampling procedure is limited because it

requires access to a Markov basis – a finite set of data swaps which allow any two tables

with the same fixed marginals to be connected. In addition to sampling, Markov bases can

be employed to enumerate all the integer tables with a given set of marginals. As a

consequence, Markov bases allow one to create a ‘replacement’ for a database consisting of

a k-way contingency table, when such a replacement is needed to protect the individuals

with rare characteristics whose identity might be disclosed by the release of a number of

marginals (Willenborg and de Waal 2001).

Diaconis and Sturmfels (1998) and Dinwoodie (1998) suggest computing a Markov basis

by finding a Gröbner basis (Cox et al. 1992) of a well-specified polynomial ideal, but their

method is difficult to employ even for tables with three dimensions because of the

computational complexity of computing Gröbner bases.

The statistical theory on graphical models (Madigan and York 1995; Whittaker 1990;

Lauritzen 1996) shows that the conditional dependencies induced by a set of fixed

marginals among the variables cross-classified in a table of counts can be visualized by

means of an independence graph. In particular, a lot of attention has been given to
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decomposable graphs (Lauritzen 1996), a special class of graphs that can be ‘broken’ into

components such that (i) every component is associated with exactly one fixed marginal,

and (ii) no information is lost in the decomposition process, that is, no marginal is ‘split’

between two components.

Our aim is to show how graphical models could help us identify special settings in which

we could develop efficient techniques for considerably reducing and possibly eliminating the

amount of computations needed to identify a Markov basis. After presenting some notation

and definitions in Section 2, in Section 3 we introduce decomposable sets of marginals and

discuss some of their properties. In Section 4 we prove that primitive data swaps or moves

are the only moves that have to be included in a Markov basis associated with a set of

decomposable marginals and give explicit formulae for dynamically generating such bases.

In the last section we make some concluding remarks.

2. Data swapping and Markov bases

A table of counts n is a k-dimensional array of non-negative integer numbers. Each variable

X j, j ¼ 1, 2, . . . , k, recorded in such a table can take a finite number of values

xj 2 I j :¼ f1, 2, . . . , I jg. Let I ¼ I 1 3 I 2 3 . . . 3 I k . A cell entry n(i), i 2 I , in table n

is a non-negative integer representing the number of units or individuals sharing the same

attributes i. By considering an ordering of the cell indices in I (e.g., lexicographic), the

multi-way array n can be transformed into a linear list of counts (i.e., vector) n.

Let D ¼ fi1, i2, . . . , i lg denote an arbitrary subset of K ¼ f1, 2, . . . , kg. The D-

marginal nD of n is the contingency table with marginal cells iD 2 I D :¼ I i1 3 . . . 3 I i l
and entries given by

nD(iD) ¼
X

i2I KnD

n(iD, i):

The marginals nD1
and nD2

are called overlapping if D1 \ D2 ¼ ˘, otherwise they are non-

overlapping.

Two tables n1 and n2 are equal if all their cell entries are equal, and in this case we write

n1 ¼ n2. If all the counts in table n1 are zero, we write n1 ¼ 0. The sum of two tables n1

and n2 is another table n3 :¼ n1 þ n2 with entries n3(i) ¼ n1(i)þ n2(i). Similarly, the

difference between n1 and n2 is an array n4 :¼ n1 � n2 with entries n4(i) ¼ n1(i)� n2(i).

When moving table entries from one cell to the other, some of the cell entries could be

increased and other cell entries could be decreased, hence a data swap or move associated

with n is an array f ¼ f f (i)gi2I containing integer entries, that is, f (i) 2
f. . . , �2, �1, 0, 1, 2, . . .g, for all i 2 I . A primitive move has two entries equal to 1,

two entries equal to �1, while the remaining entries are 0. Intuitively, a move can be

viewed as the difference between the post-swapped and the pre-swapped tables. The table

created by repeatedly applying data swaps to the original table is sometimes required to be

consistent with the marginals that were previously made public (Willenborg and de Waal
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2001). Consequently, we are interested in data swaps that leave a number of marginals

unchanged.

Definition 2.1. Let D1, D2, . . . , Dr be subsets of K. A move f for D1, D2, . . . , Dr is a data

swap that preserves the marginal tables specified by the index sets D1, D2, . . . , Dr, that is,

f Dj
¼ 0 for all j ¼ 1, 2, . . . , r.

Denote by T(n)(D1, . . . , Dr) the set of all tables with non-negative elements that have

their fD1, D2, . . . , Drg-marginals equal to the corresponding marginals of n. A move f is

admissible for n if nþ f belongs to T(n)(D1, . . . , Dr). Since f preserves the fD1, D2, . . . ,

Drg-marginals of n, we have nþ f 2 T(n)(D1, . . . , Dr) if and only if (nþ f)(i) > 0, for all

i 2 I .

Definition 2.2. A Markov basis M is a finite collection of moves that preserve the

fD1, . . . , Drg-marginals and connect any two k-way tables that have the same

fD1, . . . , Drg-marginals. In other words, for any table x that belongs to T(n)(D1, . . . , Dr),

there exists a sequence of moves f1, f2, . . . , f s in M such that

x� n ¼
Xs
j¼1

f j, and nþ
Xs9
j¼1

f j 2 T(n)(D1, . . . , Dr), (2:1)

for 1 < s9 < s. What (2.1) says is that the table n is transformed into x by employing moves

in M. Since a Markov basis M depends only on the index sets I D1
, . . . , I Dr

, we will say

that M is a Markov basis for T(D1, . . . , Dr), where

T(D1, . . . , Dr) ¼ fT(n)(D1, . . . , Dr): n is a table of countsg:

Diaconis and Sturmfels (1998) prove that a Markov basis M for T(D1, . . . , Dr) always

exists.

3. Special configurations of marginals

In this section we closely follow the notation and definitions relating to graph theory

introduced in Lauritzen (1996) and Dobra and Fienberg (2000). A brief introduction with

the basic graph terminology needed to understand the results that follow is given in the

Appendix.

Consider a set of marginals nD1
, nD2

, . . . , nDr
such that their index sets cover K, that is,

K ¼ D1 [ D2 [ . . . [ Dr. We always assume that there are no redundant configurations in

this sequence, that is, there are no r1, r2 such that Dr1
� Dr2

. We visualize the dependency

patterns induced by D1, D2, . . . , Dr by constructing an independence graph. Each vertex in

this graph represents a variable X j, j 2 K. We draw an edge between two vertices if and

only if the two-dimensional array defined by the variables associated with these vertices is a

marginal of some nDl
.
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Definition 3.1. The independence graph G ¼ G(D1, D2, . . . , Dr) associated with nD1
,

nD2
, . . . , nDr

is a graph with vertex set K ¼ D1 [ D2 [ . . . [ Dr and edge set E given by

E :¼ (u, v) : fu, vg � Dj, for some j 2 f1, . . . , rg
� �

:

Log-linear models are the usual way of representing and studying contingency tables with

fixed marginals (Bishop et al., 1975). If the minimal sufficient statistics of a log-linear

model define a decomposable independence graph, the model is said to be decomposable.

By analogy with log-linear models theory, we introduce decomposable sets of marginals.

Definition 3.2. The set of marginals nD1
, nD2

, . . . , nDr
is called decomposable if its

corresponding independence graph G ¼ G(D1, D2, . . . , Dr) is decomposable and the

cliques C(G) of G are the index sets associated with nD1
, nD2

, . . . , nDr
, that is,

C(G) ¼ fD1, D2, . . . , Drg:

Therefore a decomposable set of marginals could represent the minimal sufficient

statistics of a decomposable log-linear model.

Definition 3.3. The marginals nD1
, nD2

, . . . , nDr
are consistent if, for any r1, r2, the

(Dr1
\ Dr2

)-marginal of nDr1
is equal to the (Dr1

\ Dr2
)-marginal of nDr2

.

The consistency of a set of marginals does not necessarily imply the existence of a table

having this particular set of marginal totals – see, for example, Vlach (1986). To be more

precise, T(n)(D1, . . . , Dr) could be empty even if nD1
, nD2

, . . . , nDr
are consistent. In the

special case of consistent and decomposable marginals, however, T(n)(D1, D2, . . . , Dr) is

never empty (Dobra 2002).

Decomposable sets of marginals have many other exceptional properties that have been

well documented in the literature. For example, the corresponding maximum likelihood

estimates can be expressed in closed form (Lauritzen 1996; Whittaker 1990). Additionally,

Dobra and Fienberg (2000) obtain formulae for calculating sharp upper and lower bounds

for cell entries of tables in T(n)(D1, D2, . . . , Dr) given that the marginals are consistent and

decomposable.

4. Markov bases for decomposable sets of marginals

The special structural properties of decomposable graphs can be further exploited to derive

a Markov basis of primitive moves for T(D1, . . . , Dr) if nD1
, nD2

, . . . , nDr
is a

decomposable set of marginals.

The simplest decomposable graph has two vertices and no edges. This graph is the

independence graph associated with the two one-way marginals of a two-way table. It turns

out that it is straightforward to describe a Markov basis in this case (Diaconis and Gangolli,

1995; Diaconis and Sturmfels, 1998).
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Proposition 4.1. Consider a two-way contingency table n ¼ fn(i, j) : (i, j) 2 I1 3 I2g with

fixed row sums n1 :¼ fniþ : i 2 I1g and column sums n2 :¼ fnþ j : j 2 I2g. For some

indices i1, i2, j1, j2 chosen such that 1 < i1 , i2 < I1 and 1 < j1 , j2 < I2, we define a

table f i1 i2; j1 j2 ¼ f f i1 i2; j1 j2 (i, j) : (i, j) 2 I 1 3 I 2g by

f i1 i2; j1 j2 (i, j) ¼
1, if (i, j) 2 f(i1, j1), (i2, j2)g,
�1, if (i, j) 2 f(i1, j2), (i2, j1)g,
0, otherwise.

8<
: (4:1)

Then

�f i1 i2; j1 j2 : 1 < i1 , i2 < I1, 1 < j1 , j2 < I2

� �
(4:2)

is a Markov basis for the class of tables with fixed row sums n1 and column sums n2.

Proof. The one-way marginals of f i1 i2; j1 j2 are zero, hence f i1 i2; j1 j2 will leave n1 and n2

unchanged. By making use of computational algebra techniques, Sturmfels (1995) gives a

complete proof of the fact that the set of moves described in (4.2) is indeed a Markov basis.

The number of moves in this Markov basis is 2 � ( I1

2 ) � ( I2

2 ). h

The set of primitive moves we described above allows one to transform a given two-way

table into any other two-way table with the same row and column totals. Proposition 4.1 is

the starting point for developing Markov bases for an arbitrary decomposable graphical

structure. Consider the case of a k-way contingency table n with two fixed marginals nD1

and nD2
. The corresponding independence graph G(D1, D2) is decomposable since it has

exactly two cliques, D1 and D2.

We show that the Markov basis F (D1, D2) for T(D1, D2) is the union of the Markov

bases of one or more two-way tables with fixed one-way marginals. We distinguish two

cases. If D1 \ D2 ¼ ˘, the two fixed marginals are non-overlapping. Introduce two new

variables Y1 and Y2 with level sets I D1
and I D2

, respectively. Take the two-way table n9
that cross-classifies Y1 and Y2. This table has fixed row sums nD1

and fixed column sums

nD2
. The basis F (D1, D2) for T(D1, D2) will be the Markov basis of moves for the two-way

table n9 as described in Proposition 4.1.

Otherwise, if the two fixed marginals are overlapping, we have D1 \ D2 6¼ ˘. For every

i0D1\D2
2 I D1\D2

, define a table n
i0
D1\D2 ¼ fni

0
D1\D2 (i)gi2I Kn(D1\D2)

with entries n
i0
D1\D2 (i) ¼

n(i, i0D1\D2
). This table has two fixed marginals: n

i0
D1\D2

D1nD2
¼ nD1

(i, i0D1\D2
)

n o
i2I D1nD2

and

n
i0
D1\D2

D2nD1
¼ nD2

(i, i0D1\D2
)

n o
i2I D2nD1

.

The D1 \ D2 ¼ ˘ shows how to construct a Markov basis F i0
D1\D2 for n

i0
D1\D2 that

preserves the two non-overlapping marginals n
i0
D1\D2

D1nD2
and n

i0
D1\D2

D2nD1
. It follows that a Markov

basis of moves for table n that preserves the marginals nD1
and nD2

is given by

F (D1, D2) ¼
[

i0
D1\D2

2I D1\D2

F i0
D1\D2 : (4:3)
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Therefore F (D1, D2) contains only primitive moves and represents a Markov basis for

T(D1, D2).

Example 1. Consider a four-way table n with fixed three-way marginals x :¼ nf1,2,3g and

y :¼ nf2,3,4g. The corresponding independence graph G is represented in Figure 1. The edge

f2, 3g is a separator for f1, 2, 3g and f2, 3, 4g. In addition, f1, 2, 3g and f2, 3, 4g are

complete in G, hence G is a decomposable graph with two cliques. Consider the set of

contingency tables

fni0
2
,i0

3 ¼ fni02,i0
3 (i1, i4) : (i1, i4) 2 I1 3 I4g : i02 2 I2, i03 2 I 3g,

where ni
0
2
,i0

3 (i1, i4) ¼ n(i1, i02, i03, i4). For every table ni0
2
,i0

3 , we know its row and column sums:

ni0
2
,i0

3

1
:¼ fx(i1, i02, i03): i1 2 I1g and ni0

2
,i0

3

2
:¼ fy(i02, i03, i4): i4 2 I 4g, respectively. The Markov

basis F i0
2
,i0

3 that leaves unchanged the one-way marginals of the table ni0
2
,i0

3 can be obtained as

in Proposition 4.1. A Markov basis of primitive moves that preserves the marginals x and y is

the union F (f1, 2, 3g, f2, 3, 4g) ¼ fF i0
2
,i0

3 : (i02, i03) 2 I2 3 I3g.

We introduce the set of primitive moves associated with an arbitrary decomposable graph

G.

Definition 4.1. Let C(G) ¼ fD1, D2, . . . , Drg be the set of cliques of a decomposable graph

G. We let T ¼ (C(G), ET ) be a tree having the star property on the set of cliques of G. For

every edge (Dj, Di) 2 ET , we consider the vertex sets V j and Vi as in (A.1). The set of

primitive moves associated with the decomposable graph G is given by

F (G) ¼ F (D1, D2, . . . , Dr) :¼
[

(Dj,Di)2ET
F (V j, Vi), (4:4)

where F (V j, Vi) was defined in (4.3).

3

2

41

Figure 1. A decomposable graph with four vertices and two cliques
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By removing an edge (Dj, Di) from T , we create two connected components T (V j) and

T (Vi). We think about V j and Vi as being the cliques of a graph G ij with vertices

V j [ Vi ¼ K and edges

Eij :¼ f(u, v) : fu, vg � V j or fu, vg � Vig:

The tree T has the star property, hence Sij :¼ Dj \ Di separates V jnSij from VinSij in G ij. As

a result, G ij is the independence graph of a decomposable model with two cliques and we

know that the set of primitive moves corresponding to G ij is F (V j, Vi). Equation (4.4)

essentially says that the set of primitive moves for a decomposable model with independence

graph G is just the union of the sets of primitive moves associated with the two-clique models

induced by each minimal vertex separator of G. We have to show that Definition 4.1 is

correct.

Proposition 4.2. The set of primitive moves defined in (4.4) is indeed a set of moves for the

class of tables T(D1, D2, . . . , Dr).

Proof. Let f 2 F (D1, D2, . . . , Dr). Then f 2 F (V j, Vi) for some (Dj, Di) 2 ET . For any

arbitrary clique D 2 C(G), we have either D � V j or D � Vi. Since fV j
¼ 0 and fVi

¼ 0, it

follows that we also have f D ¼ 0. h

Next we will state and prove a series of results that will help us prove the main theorem

of the paper. Most of these propositions should be self-explanatory. However, it is worth

mentioning the intuition that triggered them: if we delete a vertex that belongs to exactly

one clique from a decomposable graph, along with the edges incident to it, we obtain a

graph that is still decomposable (Blair and Barry 1993). Consequently, by collapsing across

a variable associated with such a vertex, all the conditional dependencies existing among

the remaining variables are preserved.

The set of primitive moves associated with a two-clique model induces a set of primitive

moves for a two-clique model embedded in it. Collapsing across some of the variables not

contained in both cliques preserves the structure of the moves in (4.4).

Proposition 4.3. Let n be a table with two fixed marginals nD1
and nD2

. The corresponding

independence graph G is decomposable and has two cliques D1, D2. The separator of G is

S :¼ D1 \ D2. Consider a vertex set D such that S � D � D1. Define a map � which assigns

to every f 2 F (D1, D2) its (D [ D2)-marginal, that is, �(f) ¼ f D[D2
. Then the following are

true:

(a) For any f 2 F (D1, D2), �(f) 2 F (D, D2) or �(f) ¼ 0.

(b) The map � : F (D1, D2)! F (D, D2) is surjective.

(c) For every table x 2 T(n)(D1, D2) and every move g 2 F (D, D2) such that

xD[D2
þ g 2 T(n)(D, D2), (4:5)

there exists f 2 F (D1, D2) with �(f) ¼ g and
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xþ f 2 T(n)(D1, D2): (4:6)

Proof. To simplify the notation, assume that S ¼ ˘. We consider the marginals nD1
, nD2

and

nD, along with their associated vectors nD1
, nD2

and nD. The table nD can be obtained from

nD1
by collapsing across the variables in D1nD.

(a) In Proposition 4.1, we constructed F (D1, D2) by considering the two-way table with

row marginal nD1
and column marginal nD2

. A primitive move f 2 F (D1, D2) was obtained

by choosing two ‘row’ indices i1D1
and i2D1

, and two ‘column’ indices i1D2
and i2D2

. Then the

table f is given by

f (iD1
, iD2

) ¼
�1, if (iD1

, iD2
) 2 f(i1D1

, i1D2
), (i2D1

, i2D2
)g,

�1, if (iD1
, iD2

) 2 f(i1D1
, i2D2

), (i2D1
, i1D2

)g,
0, otherwise:

8<
:

Let f1 ¼ �(f). We have

f1(iD[D2
) ¼ f1(iD, iD2

) ¼
X

j2I D1nD

f ( j, iD, iD2
):

We distinguish two cases.

(i) i1D ¼ i2D. Since i1D1
6¼ i2D1

, we need to have i1
D1nD 6¼ i2

D1nD. It follows that

f 1(i1D, irD2
) ¼ f (i1D1

, irD2
)þ f (i2D1

, irD2
) ¼ 0, for r ¼ 1, 2:

Clearly, f 1(i1D, iD2
) ¼ 0 if iD2

=2 fi1D2
, i2D2
g. Moreover, for iD 6¼ i1D, f 1(iD, iD2

) ¼ 0.

Hence �(f) ¼ f1 ¼ 0.

(ii) i1D 6¼ i2D. It follows that

f 1(iD, iD2
) ¼ f (ir1

D1
, ir2

D2
), if (iD, iD2

) ¼ (ir1

D , ir2

D2
), where r1, r2 2 f1, 2g,

0, otherwise:

�

Thus �(f) ¼ f1 2 F (D, D2).

(b) In order to prove that � is surjective, we pick an arbitrary move g 2 F (D, D2). We

choose an index i0
D1nD 2 I D1nD and define the move f ¼ f (i)f gi2I D1[D2

by

f (i) ¼ f (iD1nD, iD[D2
) :¼ g(iD[D2

), if iD1nD ¼ i0
D1nD,

0, otherwise:

�

It is easy to see that f 2 F (D1, D2) and �(f) ¼ g.

(c) The move g 2 F (D, D2) is given by

g(iD, iD2
) ¼

1, if (iD, iD2
) 2 f(i1D, i1D2

), (i2D, i2D2
)g,

�1, if (iD, iD2
) 2 f(i1D, i2D2

), (i2D, i1D2
)g,

0, otherwise,

8<
:

where i1D, i2D 2 I D and i1D2
, i2D2

2 I D2
. A move f 2 F (D1, D2) such that f D[D2

¼ g is

obtained by choosing two indices i1
D1nD and i2

D1nD in I D1nD. Then
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f (i) ¼ f (iD1
, iD2

) ¼
1, if i 2 f(i1

D1nD, i1D, i1D2
), (i2

D1nD, i2D, i2D2
)g,

�1, if i 2 f(i1
D1nD, i1D, i2D2

), (i2
D1nD, i2D, i1D2

)g,
0, otherwise:

8<
: (4:7)

For any i1
D1nD, i2

D1nD in I D1nD, the corresponding move f defined in (4.7) satisfies

(xþ f)Dl
¼ xDl

¼ nDl
for l ¼ 1, 2, and (xþ f )(i) > 0 for every

i 2 Inf(i1
D1nD, i1D, i2D2

), (i2
D1nD, i2D, i1D2

)g. Therefore we have to choose i1
D1nD, i2

D1nD such that

(xþ f )(i1D1nD, i1D, i2D2
) ¼ x(i1D1nD, i1D, i2D2

)� 1 > 0,

(xþ f )(i2D1nD, i2D, i1D2
) ¼ x(i2D1nD, i2D, i1D2

)� 1 > 0: (4:8)

In this case, (4.6) holds. From (4.5), we obtain that

(xD[D2
þ g)(i1D, i2D2

) > 0, (xD[D2
þ g)(i2D, i1D2

) > 0: (4:9)

But

(xD[D2
þ g)(i1D, i2D2

) ¼ xD[D2
(i1D, i2D2

)� 1,

¼
X

jD1nD2I D1nD

x( jD1nD, i1D, i2D2
)� 1: (4:10)

Inequalities (4.9) and equation (4.10) imply thatX
jD1nD2I D1nD

x( jD1nD, i1D, i2D2
) > 1,

hence there has to exist an index i1
D1nD 2 I D1nD with x(i1

D1nD, i1D, i2D2
) > 1. Similarly, there

has to exist another index i2
D1nD 2 I D1nD with x(i2

D1nD, i2D, i1D2
) > 1. With this choice, (4.8)

holds. h

The following proposition extends Proposition 4.3 to an arbitrary decomposable model.

Proposition 4.4. Let n be a table with fixed marginals nD1
, . . . , nDr

such that

C(G) ¼ fD1, . . . , Drg is the set of cliques of a decomposable graph G. Consider a tree

T ¼ (C(G), ET ) having the star property for G. Assume that the clique Dr is terminal in T
and let A :¼

Sr�1
j¼1 Dj. Define a map � which assigns to every f 2 F (D1, D2, . . . , Dr) its

A-marginal, i.e. �(f) ¼ f A. Then the following are true:

(a) For any f 2 F (D1, D2, . . . , Dr), �(f) 2 F (D1, . . . , Dr�1) or �(f) ¼ 0.

(b) The map � is surjective on F (D1, . . . , Dr�1).

(c) For every table x 2 T(n)(D1, D2, . . . , Dr) and every move g 2 F (D1, . . . , Dr�1) such

that

xA þ g 2 T(n)(D1, D2, . . . , Dr�1), (4:11)

there exists f 2 F (D1, D2, . . . , Dr) with �(f) ¼ g and
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xþ f 2 T(n)(D1, D2, . . . , Dr): (4:12)

Proof. (a) Since the clique Dr is terminal in T , there exists a unique clique in C(G), say D9,

such that (Dr, D9) 2 ET . The set of primitive moves corresponding to the edge (Dr, D9) is

F (A, Dr), and we assume that f 2 F (A, Dr). By definition, f A ¼ 0, hence �(f) ¼ 0.

The subgraph G9 ¼ G(D1 [ . . . [ Dr�1) is decomposable, and C(G9) ¼ fD1, . . . , Dr�1g.
Let T 9 be the subtree obtained by removing Dr from T , that is,

T 9 ¼ (C(G9), ET nf(Dr, D9)g). Consider an arbitrary edge (Dj, Di) 2 ET nf(Dr, D9)g. Let

T j ¼ (K j, E j) and T i ¼ (Ki, E i) be the two subtrees obtained by removing the edge

(Dj, Di) from T , with Dj 2 K j and Di 2 Ki. Without loss of generality, we assume that we

always have Dr 2 K j.

By removing the same edge from the tree T 9, we obtain the subtrees T 9j ¼
(K jnfDrg, E jnf(Dr, D9)g) and T i. We define the vertex sets V j, V 9j and Vi by

V j :¼
[
D2K j

D, V 9j :¼
[

D2K jnfDrg
D, Vi :¼

[
D2Ki

D:

With this notation, according to Lemma A.1, the tree T 9 will have the star property for the

graph G9, and consequently the set of primitive primitive associated with G9 is

F (G9) ¼ F (D1, . . . , Dr�1) ¼
[

(Dj ,Di)2ET nf(Dr ,D9)g
F (V 9j, Vi): (4:13)

Consider an arbitrary move f 2 F (D1, D2, . . . , Dr) such that f =2 F (A, Dr). From (4.4), we

see that there must exist some edge (Dj, Di) 2 ET nf(Dr, D9)g such that f 2 F (V j, Vi). We

have Dj 6¼ Dr and Dj � V j, thus V 9j 6¼ ˘. In addition, we have V 9j � V j and A ¼ V 9j [ Vi.

By employing Proposition 4.3, we obtain that �(f) 2 F (V 9j, Vi) � F (D1, . . . , Dr�1) or

�(f) ¼ 0.

(b) In order to prove that � is surjective on F (D1, . . . , Dr�1), we pick an arbitrary move

g in F (D1, . . . , Dr�1). From (4.13), we see that there is an edge (Dj, Di) 2 ET nf(Dr, D9)g
such that g 2 F (V 9j, Vi). Since V 9j � V j, Proposition 4.3 tells us that there must exist some

f 2 F (V j, Vi) � F (D1, . . . , Dr) such that �(f) ¼ g.

(c) Again, (4.13) shows that it is possible to find an edge (Dj, Di) 2 ET nf(Dr, D9)g such

that g 2 F (V 9j, Vi). This means that xA þ g 2 T(x)(V 9j, Vi). We have V 9j � Vi and

V 9j \ Vi ¼ V j \ Vi. From Proposition 4.3, we learn that there exists a move

f 2 F (V j, Vi) � F (D1, D2, . . . , Dr) such that xþ f 2 T(x)(V j, Vi). But we also have

T(x)(V j, Vi) � T(x)(D1, D2, . . . , Dr) ¼ T(n)(D1, D2, . . . , Dr), hence (4.12) is true. h

We are now ready to present and prove the main theorem of the paper.

Theorem 4.5. Let G be a decomposable graph with cliques C(G) ¼ fD1, D2, . . . , Drg. Then
the set of primitive moves F (G) ¼ F (D1, D2, . . . , Dr) defined in (4.4) is a Markov basis for

the class of tables T(D1, D2, . . . , Dr).

Proof. The proof is by induction. If G decomposes in r ¼ 2 cliques, then we know from
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Proposition 4.1 that F (D1, D2) is a Markov basis for T(D1, D2). Suppose the theorem holds

for any decomposable graph with r � 1 cliques. We want to prove that the theorem is true for

a decomposable graph with r cliques.

The original table n is in the set T(n) ¼ T(n)(D1, D2, . . . , Dr). Take an arbitrary table

x 2 T(n). We have to show that there exist f1, . . . , f l 2 F (D1, D2, . . . , Dr) such that

x� n ¼
P l

i¼1f i, and

nþ
Xl9
i¼1

f i 2 T(n)(D1, D2, . . . , Dr), (4:14)

for 1 < l9 < l. Let T ¼ (C(G), ET ) be a tree having the star property for G, and assume that

the clique Dr is terminal in T . Denote A :¼
Sr�1

j¼1 Dj. Consider the map � which assigns to

every f 2 F (D1, D2, . . . , Dr) its A-marginal, i.e. �(f) ¼ f A.

The marginals nA and xA lie in the set T(n)(D1, . . . , Dr�1). From the induction

hypothesis we know that F (D1, . . . , Dr�1) is a Markov basis for T(n)(D1, . . . , Dr�1), so

there exists a sequence of moves g1, . . . , g l1 2 F (D1, . . . , Dr�1) such that

xA � nA ¼
Xl1
i¼1

gi and nA þ
Xl91
i¼1

gi 2 T(n)(D1, D2, . . . , Dr�1),

for 1 < l91 < l1. Proposition 4.4 tells us that the sequence of moves g1, . . . , g l1 translates into

another sequence of moves f1, . . . , f l1 in F (D1, D2, . . . , Dr) such that, for every

1 < l91 < l1, we have f l91A ¼ g l91 , and

nþ
Xl91
i¼1

f i 2 T(n)(D1, D2, . . . , Dr): (4:15)

We obtain a table x9 2 T(n)(D1, D2, . . . , Dr), given by

x9� n ¼
Xl1
i¼1

f i, (4:16)

such that the marginals x9A and xA are the same. Moreover, since we employed moves in

F (D1, . . . , Dr), the marginals x9Dr
and nDr

are also equal, and hence x9 2 T(x)(A, Dr). This

implies that we can find a series of moves f l1þ1, . . . , f l in F (A, Dr) which transform the

table x9 into x, that is,

x� x9 ¼
Xl

i¼ l1þ1

f i, x9þ
Xl9

i¼ l1þ1

f i 2 T(x)(A, Dr) � T(n)(D1, D2, . . . , Dr), (4:17)

for 1 < l9 < l. From (4.15)–(4.17) we obtain (4.14), which completes the proof. h

Example 2. The graph G in Figure 2 has 11 vertices and 28 edges. This is a decomposable

graph with the set of cliques C(G) ¼ fD1, D2, D3, D4g, where D1 :¼ f1, 3, 4, 11g,
D2 :¼ f3, 4, 7, 8, 9, 11g, D3 :¼ f2, 3, 9, 10g and D4 :¼ f4, 5, 6, 7g. The tree T on C(G)

with edge set
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ET ¼ (D2, D1), (D3, D2), (D4, D2)f g,

has the star property, therefore the separators of G are S2 :¼ D2 \ D1 ¼ f3, 4, 11g,
S3 :¼ D3 \ D2 ¼ f3, 9g, and S4 :¼ D4 \ D2 ¼ f4, 7g. The set of primitive moves associated

with G is

F (G) ¼ F (D1, D2 [ D3 [ D4) [ F (D3, D1 [ D2 [ D4) [ F (D4, D1 [ D2 [ D3):

Assume we are given an eleven-way table n with fixed marginals nD1
, nD2

, nD3
and nD4

. The

independence graph associated with these marginals is G. Theorem 4.5 shows that F (G) is a

Markov basis for T(D1, D2, D3, D4).

The family of Markov bases we identified is extremely appealing to the potential user

since one does not even need to actually list the set of moves F (D1, D2, . . . , Dr). Any

Markov basis could grow extremely large due to the size of the original table n, hence

handling it might become quite problematic. The procedure we outline below gets around

this obstacle by dynamically generating moves in F (D1, D2, . . . , Dr). The first step consists

of computing the number of moves associated with every edge of the tree T . We uniformly

generate a primitive move in F (D1, D2, . . . , Dr) by choosing an edge in ET with

probability proportional to the number of primitive moves associated with it, then uniformly

selecting a move from the set of primitive moves corresponding to the edge we picked.

Algorithm 4.6. Let T ¼ (C(G), ET ) be a tree having the star property for G. The set of

separators S(G) ¼ fS2, . . . , Srg associated with C(G) ¼ fD1, . . . , Drg will be given by

S(G) ¼ fDj \ Dj : (Dj, Di) 2 ET g.

1. For every Sl 2 S(G):

(a) Let (Dj, Di) 2 ET with Sl ¼ Dj \ Di. Consider the subtrees T j and T i obtained

11

1

2 3 4 5

67910

8

Figure 2. A decomposable graph with eleven vertices and four cliques
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by removing the edge (Dj, Di) from T , and let V j and Vi be the vertex sets

associated with these subtrees, as defined in (A.1).

(b) Calculate the weight wl representing the number of primitive moves corresponding

to the edge (Dj, Di):

wl  2 �
Y

v2V jnS l

Iv
2

� �
�
Y

v2VinSl

Iv
2

� �2
4

3
5
Q

v2Sl Iv :

2. Normalize the weights w2, . . . , wr.

3. To uniformly select a move in F (G):

(a) Randomly select an edge (Dj, Di) 2 ET with probability P(Sl) ¼ wl, where

Sl ¼ Dj \ Di.

(b) Uniformly pick a move in F (V j, Vi), where V j and Vi were defined in (A.1).

5. Conclusions

Many techniques that work well for low-dimensional examples are almost impossible to use

for problems that arise in practice due to the huge computational effort they usually require.

This paper demonstrates that graphical modelling is a very powerful tool for effectively

overcoming major issues related to scaling up algorithms to make them suitable for use in

high-dimensional applications. We represented the dependency patterns induced by a

number of fixed marginals by means of graphs and, by doing so, we identified Markov

bases for an entire family of sets of tables. We proved that a Markov basis for a

decomposable model with r cliques can be expressed as a union of Markov bases associated

with r � 1 models with two cliques. Since the Markov basis of a model with two cliques is

the set of primitive moves corresponding with one or more two-way tables with fixed one-

way marginals, we deduce that the general decomposable case essentially reduces to the

two-way case.

It seems important to point out that more results can be derived by exploiting techniques

borrowed from the graphical models literature, namely decompositions of graphs by means

of separators. Dobra and Sullivant (2003) have developed a divide-and-conquer algorithm

for significantly reducing the time needed to find a Markov basis when the underlying

independence graph is not decomposable, but can be at least partially decomposed, though

the resulting components of the decomposition may correspond to more than one fixed

marginal.

Appendix. Graph Theory

A graph G is a pair (K, E), where K ¼ f1, 2, . . . , kg is a finite set of vertices and

E � K 3 K is a set of edges linking the vertices. Our interest is in undirected graphs for

which (u, v) 2 E implies (v, u) 2 E. For any vertex set A � K, we define the edge set

associated with it as
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E(A) :¼ f(u, v) 2 Eju, v 2 Ag:

Let G(A) ¼ (A, E(A)) denote the subgraph of G induced by A. Two vertices u, v 2 K are

adjacent if (u, v) 2 E. A set of vertices in G is independent if no two of its elements are

adjacent. An induced subgraph G(A) is complete if the vertices in A are pairwise adjacent in

G. We also say that A is complete in G. A complete vertex set A in G that is maximal is a

clique.

Let u, v 2 K. A path (or chain) from u to v is a sequence u ¼ v0, . . . , vn ¼ v of distinct

vertices such that (vi�1, vi) 2 E for all i ¼ 1, 2, . . . , n. The path is a cycle if the end points

are allowed to be the same, u ¼ v. If there is a path from u to v we say that u and v are

connected. The sets A, B � K are disconnected if u and v are not connected for all u 2 A,

v 2 B. The connected component of a vertex u 2 K is the set of all vertices connected with

u. A graph is connected if all the pairs of vertices are connected.

The set C � K is a uv-separator if all paths from u to v intersect C. The set C � K

separates A from B if it is a uv-separator for every u 2 A, v 2 B. C is a separator of G if

two vertices in the same connected component of G are in two distinct connected

components of GnC or, equivalently, if GnC is disconnected. In addition, C is a minimal

separator of G if C is a separator and no proper subset of C separates the graph. Unless

otherwise stated, the separators we work with will be complete.

A tree is a connected graph with no cycles. In a tree, there is a unique path between any

two vertices. The vertex u is called terminal in a tree if there is only one edge linking u

with the remaining vertices.

Definition A.1. The partition (A1, S, A2) of K is said to form a decomposition of G if S is a

minimal separator of A1 and A2.

In this case (A1, S, A2) decomposes G into the components G(A1 [ S) and G(S [ A2). The

decomposition is proper if A1 and A2 are not empty.

Definition A.2. The graph G is decomposable if it is complete or if there exists a proper

decomposition (A1, S, A2) into decomposable graphs G(A1 [ S) and G(S [ A2).

Assume that G is decomposable and let C(G) :¼ fD1, D2, . . . , Drg be the set of cliques

of G. Since G is decomposable, it is possible to order the vertex sets in C(G) in a perfect

sequence (Blair and Barry 1993). If we denote H j :¼ D1 [ D2 [ . . . [ Dj and

S j :¼ H j�1 \ Dj, it follows that, for every j ¼ 2, . . . , r, (H j�1nS j, S j, DjnS j) is a

decomposition of G(H j) (Lauritzen 1996). We let S(G) :¼ fS2, . . . , Srg be the set of

separators of the graph G associated with C(G).

Let T ¼ (C(G), ET ) be a tree defined on the set of cliques of the decomposable graph G.

Definition A.3 The Star Property. Take Dj 2 C(G) and let S ¼ Dj \ Di for some

(Dj, Di) 2 ET . Let T j ¼ (K j, E j) and T i ¼ (Ki, E i) be the two subtrees obtained by

removing the edge (Dj, Di) from T , with Dj 2 K j and Di 2 Ki. Consider the vertex sets
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V j :¼
[
D2K j

D and Vi :¼
[
D2Ki

D: (A:1)

The tree T is said to have the star property for G if, for every edge (Dj, Di) 2 ET ,
(V jnS, S, VinS) is a decomposition of G.

Blair and Barry (1993) show that it is always possible to construct a tree T that has the

star property. In addition, they show that such S � V is a minimal separator of G if and

only if S ¼ Dj \ Di for some edge (Dj, Di) 2 ET . The set of separators S(G) associated

with C(G) will be given by S(G) ¼ fDj \ Di : (Dj, Di) 2 ET g.
By removing a terminal clique from such a tree, the star property is preserved, as shown

in the next result.

Lemma 1. Let T ¼ (C(G), ET ) be a tree defined on the set of cliques of a decomposable

graph G. Assume that T has the star property for G. Let D be a terminal clique in T and let

D9 be the the unique clique in C(G) such that (D, D9) 2 ET . We consider

T 9 ¼ (C(G)nfDg, ET nf(D, D9)g) to be the tree obtained by removing D from T . Then T 9
is a tree with the star property for the decomposable graph G9 defined by the set of cliques

C(G)nfDg.

Proof. Consider an arbitrary edge (Dj, Di) 2 ET nf(D, D9)g. As before, we let T j ¼ (K j, E j)
and T i ¼ (Ki, E i) be the two subtrees obtained by removing the edge (Dj, Di) from T , with

Dj 2 T j and Di 2 T i. Let V j and Vi the vertex sets defined in (A.1).

We can assume that D 2 K j. If we were to remove the edge (Dj, Di) from T 9, we would

obtain the subtrees T 9j ¼ (K jnfDg, E jnf(D, D9)g) and T i ¼ (Ki, E i). The vertex set

associated with T 9j is

V 9j :¼
[

D 02K jnfDg
D 0:

Since D is terminal in ET , we have Dj 6¼ D, hence V 9j 6¼ ˘. The vertex set S :¼ Dj \ Di

which is a separator for G, is also a separator for G9. Moreover, (V jnS, S, VinS) is a

decomposition of G. From V 9j � V j, it follows that (V 9jnS, S, VinS) will be a decomposition

of G9. Therefore the tree T 9 has the star property for G9. h
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