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The minimum-contrast estimation of drift and diffusion coefficient parameters for a multidimensional
diffusion process with a small dispersion parameter ¢ based on a Gaussian approximation to the
transition density is presented when the sample path is observed at equidistant times k/n,
k=0,1, ..., n. We study asymptotic results for the minimum-contrast estimator as & goes to 0 and n
goes to oo simultaneously.
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1. Introduction

In this paper we consider a family of d-dimensional diffusion processes defined by the
stochastic differential equations

dXt = b(th a)dt+ SG(Xta ﬁ)dwh IS [O, 1]5 S (0’ 1]5 (1)
Xo = xo,

where (a, B) € ©, X @ﬁ, with ©, and @ being open bounded convex subsets of R” and
RY, respectively. Furthermore, xy and & are known constants, b is an R?-valued function
defined on RY X @, o is an (R? ® R")-valued function defined on RY X ©p, and w is an r-
dimensional standard Wiener process. We assume that the drift b and the diffusion coefficient
o are known apart from the parameters a and . Our data are discrete observations of X at n
regularly spaced time points ¢4 = k/n on the fixed interval [0, 1], that is, (X, )o<i<,. We are
interested in estimating a and 5 based on these observations. The type of asymptotics we
consider is when ¢ goes to 0 and n goes to oo simultaneously.

For the case where the whole path X = {X; 7 € [0, 1]} is observed, parametric inference
for diffusion-type processes with small noise is well developed. The first-order asymptotic
statistical theory has been studied mainly by Kutoyants (1984; 1994). As for higher-order
asymptotics, Yoshida (1992a) showed the validity of asymptotic expansions for statistical
estimators by means of Malliavin calculus with truncation; see also Yoshida (1993; 1996;
2003), Dermoune and Kutoyants (1995), Sakamoto and Yoshida (1996), and Uchida and
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Yoshida (1999). In recent years, the more realistic case of parametric estimation for
discretely observed diffusion processes has also been studied by many researchers; see
Dacunha-Castelle and Florens-Zmirou (1986), Florens-Zmirou (1989), Yoshida (1992c¢),
Genon-Catalot and Jacod (1993), Bibby and Serensen (1995; 2001), Hansen and
Scheinkman (1995), Kessler (1997; 2000), Serensen (1997), Kessler and Serensen (1999),
Jacobsen (2001) and H. Serensen (2001).

Although there have been many applications of small-diffusion asymptotics (for
applications in mathematical finance, see Yoshida (1992b), Kim and Kunitomo (1999),
Takahashi (1999), Kunitomo and Takahashi (2001), Uchida and Yoshida (2001)), very little
work has been done on small-noise asymptotics for estimation for diffusion processes from
discrete-time observations. Genon-Catalot (1990) and Laredo (1990) studied the efficient
estimation of drift parameters of a diffusion process with small noise from discrete
observations under the assumptions that diffusion coefficients are known and the
asymptotics is when ¢ — 0 and n — oo. Serensen (2000) presented martingale estimation
functions for discretely observed diffusion processes with small noise, and showed
consistency and asymptotic normality of the estimators of drift and diffusion coefficient
parameters when ¢ — 0 and # is fixed. Following on from the three papers last mentioned,
our goal is to obtain a consistent, asymptotically normal and asymptotically efficient
estimator of (@, ) in our setting.

This paper is organized as follows. In Section 2, we introduce a contrast function based
on a Gaussian approximation to the transition density and state several preliminary lemmas.
Section 3 presents our main result about the consistency, asymptotic normality and
asymptotic efficiency of the minimum-contrast estimator obtained from the contrast function
constructed in Section 2. Section 4 is devoted to proving the results stated in the previous
sections.

2. The contrast function and preliminary lemmas

We begin by describing the notation and assumptions used in this paper. Suppose that the
parameter and the parameter space can be decomposed as follows: 6 = (a, ) and
® = 0, X BO4. Let ajy, By and 6, denote the true values of a, B and 0, respectively. Let X' ?
be the solution of the ordinary differential equation corresponding to e =0, i.e.
d_)]{?k: b(XY, ag)dt, X)=xo. For a matrix A, [A]>= tr(447). We denote by
C,""”(R? X ©; R™) the space of all functions f satisfying the following two conditions:
(i) f(x, 0) is an R™-valued function on R? X @ that is continuously differentiable with
respect to x and 6 up to order k; and k; respectively;
(i) for |n|=0,1,..., k and |v|=0,1,..., ky, there exists C >0 such that
suppee 0" f| < C(1 + |x|)€ for all x.

Here n=(ny,...,ny) and v=(v,...,v;) are multi-indices, [ = dim(®),
mf=n +-+ng W=vi+--+wv, M=9" -0, 08;=0/0x", i=1,...,d,
O =0y ---0),0;,=0/00/, j=1, ..., 1. Note that v and 0 depend on ©. For example,
v=1,...,vp), 0, =0/0a’ for O,.
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In this paper, we make the following assumptions:

(A1) Equation (1) has a unique strong solution in [0, 1].
(A2) For all m > O sup, E[| X, \’”] < o0. s
(A3) b(x, a) € CT (RY X ©,; RY), G(x ByeC” (W X ©p; R @ R").
(A4) inf,g det[oaT](x p) >0, [OOT] (x, p) € CT ([R{d X Op; R? @ RY).
(AS) a# ag= b(X", a)# b(X?, ag) for at least one value of ¢, and

B # Po = OOT(X p) # O‘OT(X?, Po) for at least one value of 1.

Remark 1. (i) For (Al), there are several well-known types of sufficient conditions for the
existence and uniqueness of a solution of equation (1). For more details, see Ikeda and
Watanabe (1989, Chapter V).

(ii)) To obtain the results in this paper, assumptions (A3) and (A4) can be relaxed. By
using a ‘classical’ localization argument, they can be replaced by mild regularity conditions
about b and o in the neighbourhood of the path of X ?.

Moreover, the following conditions for ¢ and » are assumed:
(B1) limgﬁ(),,,ﬂ,o(mz)’1 =0.
(B2) lim o 1 oo(ey/n) ! < o0.

Let Py be the law of the solution of (1), and Ly the infinitesimal generator of the
diffusion (1):

Lof(x) = Zb(x Dif () + L2 Z[oa 17(x, )00, (x).

i=1 i,j=1

In order to construct the contrast function, it is natural to consider a Gaussian approximation
to the transition density in the same way as in Kessler (1997). Using Lemma 1 in Florens-
Zmirou (1989), we obtain the contrast function

Uen(0) = > {logdetZ; () + & *nPF()Z 1(B) ' Pr(@)},
k=1
where

1
Pk(a) = th - th—l - ;b(th—l’ OL), Ek(ﬂ) = [O'UT](XM’ ﬂ)

Let R denote a function (0, 1] X RY — R for which there exists a constant C such that
|R(a, x)| < aC(1 + |x|)¢ for all a,x. We define G} =o0(wss<ty), Bi(ay a)=
b'(X,,, ap) — b'(X,,, @), and B(x, ag, @) = b(x, ag) — b(x, a). Moreover, in order to
formulate the preliminary lemmas given later, we need the following functions and notation.
For Lemma 4, we define
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1
Ui(a, ag, B) = J BY(X°, ay, )00 17 (X?, B)B(XY, ay, a)ds,
0
1 1
Uxa,ﬁ,ﬁw:=J‘bgdm[aoTKX&/%dS+J‘HHGOTKX?,ﬁwkn7W‘Wﬁf,ﬂﬂds
0 0
1
+ MZJ B'(X°, ag, &)oo' (X°, B)B(X?, ap, a)ds,
0

where M = lim, g ,..(ey/n)"!. Note that U, is only well defined under assumption (B2).
For Lemma 5, let

&2 8—2U (6o) ei a—zU (60)
(9(1,‘8(1]' &m0 \<ii ﬁ 805,-8[3,» &m0 |<i <
=Ljsp sisplsjsq
Cs,n(go) = ) 5
1 0 1 0
— | 73275 Uen(6 — 5577 Uen(6
8\/5 <3ﬁiaajU’ ( O)> A 4 n <3ﬁi3ﬁjU’ ¢ 0)> -
Isisq,lsj<sp I=<i,j=q
and
[i’j [7) <ij< 0
R@:<”(w‘“P ’ )
0 (15 (Oo)1=i,j=4
where

i.j 't 0 iy 9 0
1;7(60) :J <8a,~b(XS’ ao)) oo ] (X, Bo) (aij(Xy ao))dS,

0

]i,j(g):ljl tr (‘9 [GOT])[OUT]—I i[aOT] o017 (XY, Bo)|ds
g 0 2 0 8ﬂ[ aﬁj o .

For Lemma 6, define

0
‘8<m Uf’"w‘”)lg,-gp

Aen = 1 /0
iﬁ%E%WQ

1=j=¢q

Lemma 1. Suppose that assumptions (A1)—(A3) hold. Then,
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. " 1
EGO[Plk(aO)‘gkfl] = R(ﬁ! Xl‘k1>>

&2

2
) ) . e 1
Eq Pl PG =5 i+ R(S ) < r(x ),
4 2
) ) ) € e 1
Eeo[Plkl(QO)PlkZ(ao)Pl]g(ao)‘QZ—l] = R(ﬁ) Xl‘/(1> + R(ﬁ) Xl‘/(l) + R<FJ Xf/;[))
4 s . P P P s . o
{ZHa = o+ E S B + 2 (o

&t &2 1
+ R ;,XW[ + R F’Xtm + R E’X”"l .

Lemma 2. Let f € 6%’]([@1 X ©; R). Assume (A1)—(A3). Then, under Py,
®

:N‘ ™

4
Eo, |[[ Pi(a0)lGi | =
j=1

n 1
lZf (Xt0s 0) — J f(X°, 0)ds
3 0

as € — 0 and n — oo, uniformly in 6 € ©, and

(i)
D (KX, O)Pi(ag) = 0
k=1
as € — 0 and n — oo, uniformly in 6 € ©.

Lemma 3. Let f € C; (R? X ©; R). Assume (A1)~(A3) and (B1). Then the following holds:

(1) Under Py, as € — 0 and n — oo,
n . 1 B
e 23 0 OPLPlan) — | SO Olo0 PN, furds,
k=1 0

uniformly in 0 € ©.
(i1) Moreover, if assumption (B2) holds, then, under Py, as ¢ — 0 and n — oo,

n 1
e 23U OPLPl@ — | SO Oloo NS, furds,
k=1 0

1
+ sz F(X°, 0)B'B/(X°, ay, a)ds,
0

uniformly in 6 € ©, where M = lim, g, .o(ey/n) "
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Lemma 4. Assume (Al)—(A4). Then the following holds:

(1) Under Py, as € — 0 and n — oo,

sup|e*{ U (@, B) = Ueu(ao, B)} — Ui(a, ao, f)| — 0.
0c ©

(i1) Moreover, suppose that (B2) holds. Then, under Py, as € — 0 and n — oo,

sup L Uen(a, B) — Ua(a, B, Bo)| — 0.
0c0
Lemma S. Assume (A1)—(A4) and (B2). Then, under Py, as € — 0 and n — o0,
@
Cen(60) — 21(60),
(i)
sup |Cen(00 + 0) — Ce,n(60)| — 0,

[01=<7¢,n

where 1., — 0.

Lemma 6. Assume (Al)—(A4) and (B2). Then
Aen — N(O, 41(6p))

in distribution, under Py, as € — 0 and n — oo.

3. Main result

Let és,,, = (Oe,n» ﬁAE,n) be a minimum-contrast estimator defined by
Us,n(as,n) = 111£ Us,n(9)~
6O
Our main theorem is as follows.

Theorem 1. Assume (A1)—(AS) and (B2). Then,

éa,n - 90

2

in Py,-probability as ¢ — 0 and n — oo. Moreover, if 0y € © and 1(0y) is positive definite,

(sl(ag,n — ap)
ﬁ(BS,n - ﬁO)

in distribution, under Py, as ¢ — 0 and n — o0.

) — N0, 1(6) ™)
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Remark 2. (i) Let P%’ﬂ be the restriction of Pyg to F, = 0(X,, : 0 < k < n). In the same
way as in Gobet (2001; 2002), under regularity conditions, we can obtain the local
asymptotic normality for the likelihoods as follows. For every u € R” and v € RY, under Py,

dp(’;tovLé‘u,,BoJrU/\/z u T 1/ u T u
log (W (X1 Do<k=n)) — (U> N_§<v> [(90)<U>

in distribution as ¢ — 0 and n — oo, where A is a centred Gaussian variable with covariance
matrix /(6y). For details, see Uchida (2002). If 7(6,) is non-singular, it follows from minimax
theorems that 7(6;)~'! gives the lower bound for the asymptotic variance of regular
estimators. This, together with Theorem 1, shows that the estimator given by (2) is
asymptotically efficient.

(i) It is worth mentioning that the estimators of the drift and diffusion coefficient
parameters in Theorem 1 are asymptotically independent.

(iii) Note also that when (ey/n)~! — 0 the rate of convergence is different for drift and
diffusion coefficient parameters. The estimator of the diffusion coefficient parameter
converges more quickly than the estimator of the drift parameter because it utilizes
information about the diffusion coefficient in the fine structure of the continuous sample
path.

When o(x, f) = o(x), Theorem 1 holds under assumption (Bl) instead of (B2). Let
CH(RY; RY @ R") be the set of all functions f of class C*(RY; R? @ R") such that f and
its first & derivatives have polynomial growth. Instead of assumptions (A3)—(AS), we make
the following assumptions:

(A3') b(x, @) € CP(RI X B R, 0(x) € CHRE R @ RY),
(A4') inf, detloo"](x) > 0, [00T]"'(x) € C{(RY; R @ RY).
(AS") a # ag = b(X?, @) # b(XY, ap) for at least one value of .

Set

9
60!]

.. _ 1 T
I(ao) = (I} (@0))1=i j=ps sz(ao)zjo( 0 h(X?, ao)) [ooT]‘(X‘;)(

3 b(X°, ao)> ds.

We consider the contrast function
n
y -2 T Tq—1
Uen(a) =770 Pi(@oo'] (X, ,)Pu(a),
k=1
and let &, , be a minimum-contrast estimator defined by

Us,n(ds,n) = il’lj Us,n(a)-

acB,

Corollary 1. Suppose o(x, ) = 0(x), and assume (Al), (A2), (A3")—(A5") and (B1). Then

de,n — Ay
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in Py, -probability, as ¢ — 0 and n — oco. Moreover, if ay € ©, and f;,(ao) is positive
definite, then

¢ (@en — a0) — N(O, In(ao)™")

in distribution, under Pg,, as € — 0 and n — oo.

4. Proofs

Proof of Lemma 1. We can proceed in the same way as for Lemma 7 in Kessler (1997). For
details, see Serensen and Uchida (2002).

Proof of Lemma 2. (i) In view of Theorem B in Genon-Catalot (1990) (cf. Theorem 1.3 in
Azencott 1982), sup,<i|f(X,, 0) — f(X?, 0)| = 0,(1) for all 6. Thus, under Py, as ¢ — 0 and

n — 00,
1 n 1
=3 Xy, 0) — J F(X°, 6)ds.
i3 0

Moreover, it follows from the assumption on f and (A2) that

0 [1E ‘
AN - thil,e <OO
% <n;f( )) ]

Therefore, the family of distributions of (1/n)Y }_,f(X,, ,, ) on the Banach space C(®)
with the supremum norm is tight.
(i) Let £(0) = f(X,,_,, O)Pi(ag). From Lemmas 1 and 2 (i), under Py, as ¢ — 0 and

n— 0o,

sup Eg, [sup
&,n 6

d . - 1
;E[gg(enggq] => R(ﬁ, X,“) — 0,

k=1

. ,- ) n £2 1
;E[(&k(e))2|gk—l] o Z{R(n, thl) + R<n3, XMI)} — 0

k=1

It follows from Lemma 9 in Genon-Catalot and Jacod (1993) that 222152(0) — 0 in Py,-
probability as &€ — 0 and »n — oo. Henceforth, let C be a generic positive constant
independent of &, n and, in some cases, other variables (see Yoshida 1992c¢; or Kessler 1997).
Moreover, we may write C,, if it depends on an integer m. In order to prove the tightness of
22:152(’): it is enough to show the following inequalities (cf. Theorem 20 in Appendix I in
Ibragimov and Has’minskii 1981; or Lemma 3.1 in Yoshida 1990):
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n 21
Eg, [(Z 52(9))
k=1

" . 217
eo [(Z ADEDS &;wl)) < Cl6, - 6, “
k=1 k=1

for 6, 6, 6, € ©, where [ > (p + ¢)/2. We define A’AI(G), A‘}{’Z(B) and A’}(:,(O) by

I\
o

3

(O =100 B ands e 0o o]

k-1 Tk=1 j=1

1 .
- ;f(th,p G)bl(Xlk,lz aO)

=: A%,(0) + Al ,(0) — 4} 5(0),

6o
k=1

such that

>

21 n tr 2
] = n2l_l g E@o [(J |f(th—1a H)bi(Xs, aO)dS> ]
k=1 s

noopty _
< j Egy 1/ (X 0P Eq [[B(Xs, an) |G 1] ds
1

where the last estimate is based on Lemma 6 in Kessler (1997),

n e !
l = C21321E(7‘o [(ZJ f(thfw 0)2[00T]ii(xsa ﬁo)dS) :|

=1 k-1

k

= czlsﬂzj Eo,[f (X, 0Eq (001 (X,. o))'|G]_ 1] ds

= CZISZIC,

where the first estimate is based on the Burkholder—Davis—Gundy inequality, and

k=1

> Ak

21 n
1 .
1 <> Ball/ (X 0P (X a0)]
k=1

= (C.
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We thus deduce inequality (3). We obtain inequality (4) in the same way. This completes the
proof. U

Proof of Lemma 3. (i) From Lemma 1,

n o 1 -
ZEeo[gizf(th,]s H)Plkp;((ao)|gz_]] :;Zf(th—l’ 0)[00—T]U(Xlk719 ﬁo)
k=1 k=1

L 1 g2
) o)

z . n 1 -2
ZE90[874f(th,1’ G)Z(Plkpi(ao))zlg’]:—]] - Z{R<nz, th1> + R(8n45 thl)
k=1

k=1
o4
+ R(rzS’ X, .

From Lemma 2(i) and (B1), under Py, as ¢ — 0 and n — oo,

1

> Eole 2f(Xi,,, OP}Pi(a0)|G; ] — Jof(X‘j, O)oo (XY, o)ds,
k=1

> Egle tf(X, s 0 (P PY(@0))’|G) ] — 0.
k=1

Thus, it follows from Lemma 9 in Genon-Catalot and Jacod (1993) that, under Py, as ¢ — 0
and n — oo,

n 1
e 2> f(X, . O)PPi(0g) — J (X2, 0)[oa ™ (X?, Bo)ds.
k=1 0

For tightness of the family of distributions of 8’22221 f(X: s ')P’)CP{{(ao), we use the fact
that
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|

Eg, [(Pi(0))® + (P)(0))*|G}_1]

-0 ;o
sup Eg, lsup e o5 /(X s OPLP(ar)
&,n 0 =1

2

|0
< Eg |— — (X 0
S;IE 0o [ 2 Sl;p; aef( ti—1> )

1 1 0 1 N N
< SsupEy, [Z sup| =5/ (X1, .. 9)‘ {([ooT]”(X,“, Bo) + o0 V(X . Bo))
&n =1 0 n

1 e?
+R E’X”ﬁl +R F’th—l

< 00,

where the last estimate is based on lims_,ojn_m(,sn)’1 =0.

(i) Noting that
i pJ i pJ 1 i J 1 J i
PiP\(a) = P} P{(a0) +- Pj(a0)B}_ (a0, @)+ Pl(c0) B} (a0, @)
1 i J
+ ﬁBk_lqu(aO, a),

it follows from Lemmas 2 and 3(i) and (B2) that under Py, as ¢ — 0 and n — oo,
872 Zf(Xt/(*l’ Q)Plkpjk(a)

=1

o ;o 1 <& . A
= Zf(th—lﬂ O)P) Pi(ao) + 2 ? Zf(X[I:—I’ 0)B)_1 Bl_i(0, @)

k=1 =1
1 o< i j j i
T+ e (X O] Pilan) Bl (@, @) + Plan)B_ (a0, @) |
k=1

— [ TV, s + 047 [ 7X0, 0B B i, s

0 0

uniformly in 6 € ©, where M = lim, g, ...(¢1/7)"". This completes the proof. U]

Proof of Lemma 4. (i) A simple computation yields
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e {Uen(a, f) = Uen(ao, )} = n Y (P(@) — Pul@0)"E; | (B)(Pr(a) + Pi(ao))
k=1

= Z(b(th @) = b(X o, ao) 2L (B)

1
X <2{th 7th7] 7;b(th71’ ao)}

+%{b(X,H, ag) — b(X,, |, a)}).

From Lemma 2, under Py, as € — 0 and n — oo,

e {Upn(a, B) — Ugn(ao, B} — Ui(a, ag, B)

uniformly in 6 € ©.
(ii) It follows from Lemmas 2(i) and 3(ii) that under Py, as ¢ — 0 and n — oo,

Ué‘,n(aa ﬁ) - Uz(a, ﬂ’ ﬂO)
uniformly in 6 € ©. This completes the proof. O

Proof of Lemma 5. We first consider the uniform convergence of C, ,(0). From Lemma 2,
under Py, as ¢ — 0 and n — oo,

T
52 1 52
2_ =7 _ 0 T1-1(y0 0
o Ven®) = =2], (aa,.aajb(Xs’“)> (0017 (X0, BOXY, g, ads ©

o (L bt ' ' b(X?, a) )d
w2 (bt o) a0 B (o ct o Jas,

1 2 1
L U n(0) — —ZMJ ( 0

T
) (%[OOT]_](X& ﬁ)) B(XY, ao, a)ds, (6)

\/ﬁ(?aiaﬂj 0 8(1,-
1 82 1 82
—— U, ,(0 —>J logdet[oo T ds 7
wop:0p, " ? ™ ), ap.op, X B @

1
—i-Jtr
0

1
+ M2J tr [BBT(X(S), ag, @) (% oo™ (XY, ﬁ))] ds
0 iYPj

[oo"1(X7, ﬂo)( [oo "] (X7, ﬁ))]ds

ey
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uniformly in 6 € ©. Now (i) follows from (5), (6) and (7). Next, by the assumptions (A3) and
(A4), the limits of (5), (6) and (7) are continuous with respect to 6, which completes the
proof of (ii). O

Proof of Lemma 6. We set
I

a T
—eo— ”(0@—228—12[(8“ ] ao)) O (ﬁ@} Py (a0)

L=1

=: Z £1(60),

1 0
Us,n(GO)

~ 53R log det Zi—1(Bo)

Z\/”aﬂ,

—Ze*zf Z <W_k 1(/30)> P} P (a)
h,lL=1 J

=) 7(0p).
k=1

In view of Theorems 3.2 and 3.4 in Hall and Heyde (1980), it is sufficient to show that under
Pg,, as € — 0 and n — oo,

> Eql&00)97 10, ®)
k=1
> Eo[74(00)/G7 11— 0, ©)
k=1
> Eq[ELER60)|GE (1 — 4112 (60), (10)
k=1
> B n7(00)|G7 1 — 41)7(60), (11)
k=1
> Eq[Em(00)]G; 11 — 0, (12)
k=1
> Eq[(EL00)*G7 11— 0, (13)
k=1

> Eq [07(00))'1G7_,1 — 0. (14)
k=1
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Using Lemma 1, we obtain

ZE% [£:(00)IG}_\]1 = ZR( Xy ) -0,

n ) i n 1 872
;E%[%(Goﬂgkq] = ;{R<n\/ﬁ’ Xm) +R (”2\/7 thl) }

— 0,

Eeo [ENER(00)|Gr_ (1= 4 b(th > ao)T:le(ﬁo) b(th 1> 0o)
5‘

VR

— 41, (60),
1 1< 0 0
J1,. 72 n _ - - =1 =
;:1 Eg, [7; 17 (60)|G 11 = " k§1{2tr[<—8ﬁjl ~k—l)~k1 (aﬁh k- )~k 1(50)} }

— 41 (0),

n o ., n e 1 _3
;Eeo[gkni(eongk—l] ;{R<n—\/ﬁ’X”1> +R< 2\/_ ka 1> +R< 3\/_ ka 1)}

— 0
- i 41 -n - 1 572 874
;Eﬁo[(gk(eo)) |gk71] = ; R ?7 Xlkfl + R Fa Xl‘k,l + R F: Xt/(,l
— 0,

in Py,-probability, as ¢ — 0 and n — oo, thus proving (8)—(13).
To prove (14), we first obtain several estimates as follows:
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4
74(60))* < 23[ : ( log det B 1(ﬁo)>

0B,

4
(P} P} (ao))4] ,

d o Il
Snrdy [(aﬁjuk 1(ﬂo))

I1,L=1
Eq [(P} PP (0)|Gf_11 < 3 {Eq[(X1, — X1, )" (X1, — Xop )HGE]
1
+ 3 (0" (X s @) g [(X i = Xi )G ]

1
+— (b"(X 1\, a0))* Eg [(P})*(a0)|G)_ 1}

By using a version of Lemma 1, we have

n e’ B et
an[((th—Xm)“)ggkllzk(m,xm + R\, X JHR(—5 X ) (15)

2 1
+R W’th—l +R thl

It then follows from (15) and Lemma 1 that

" - n 1 g2 e
PATHIRTRIEDS {R(— o)+ 8w )+ )
k=1

k=1
et &8
+R(7’ X) +R<F’ X>
— 0,
in Py,-probability, as ¢ — 0 and n — oo. This completes the proof. O

Proof of Theorem 1. First of all, in order to prove consistency of Ob 2, We note that in view of
the compactness of ©, there exists a subsequence (&g, ni) such that ng n, goes to a limit

= (Ooo, Boo) € O.
Next, it follows from Lemma 4(i) and the continuity of U(«a, ag, f) with respect to
(a, B) that under Py, as &y — 0 and n; — oo,

8%( Ey nk(aek Ngo ﬂsk l’l/() €k Ek, nk(OLOn ﬁek 11/) - Ul(aoca aOn ﬁoc) (16)

From the definition of the minimum-contrast estimator 08, . and ap € O,

2 A 2 2 2]
'Sk U£A7n/,(aé‘k,nk) ﬂs,,,nk) - 8kU€k,nk(a05 ﬂé‘/(,l’lk) S 0 (17)
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By (16), (17), (A4) and (AS), we obtain a,, = ay. We have thus deduced that any convergent
subsequence of a. , goes to ap. Thus, the consistency of Qe , 18 proved.

For the consistency of f3;,, using Lemma 4(ii) and the continuity of Ux(a, B, fo) with
respect to (a, ), under Py,, we have

1 R .
n—k Usk,n/;(aw,nk? ﬂs/;,nk) — Us(ay, ﬂoo, ﬂo), (18)

as & — 0 and ny — oo, where we note that ., ,, tends to ao by the previous paragraph.
Moreover, in view of the definition of 6, , and 3y € Op,

1 . 5 1 .
— Usk,nk(ask,nka ﬂsk,nk) s — Usk,nk(aek,nks ﬂo) (19)
n n
It follows from (18) and (19) that Uy(aq, Boc, Po) =< Uz(ag, Bo, o). Moreover, by a version
of Lemma 17 in Genon-Catalot and Jacod (1993),
logdet[oo")(XY, Bo) + d < logdet[o0"1(XY, B) + tr[[00T1(XY, Bo)loo T (XY, Buo)]

with  equality if and only if [00T)(XY, Bx) =[00T1(X?, By).  Hence
Uz(ao, Boos Po) = Uz(ao, Po, Bo). Thus (AS), together with the above inequalities for
U,, implies B = Bo. Therefore, noting that any convergent subsequence of B, tends to
Po, the consistency of S, is proved.

Finally, we prove the asymptotic normality of één Let B(6y; p) =1{0:10 — 6y| < p}. It
ﬁollows from 6y € O that for sufficiently small p > 0, B(6y; p) C ©. By Taylor’s formula, if
Oe,n € B(QO; p)s

De,nSa',n = As,n,

where

1
Dn = || Con(B0 4 1B = 00) i S = €7 @ — o). VB — B
0

It follows from the consistency of ég,n that for sufficiently small p > 0,
Py [0c.n € ©] = Py [0 — b0 < p] — 1,

as ¢ — 0 and n — oco. Moreover, by the consistency of 6. ,, there exists a sequence

{B(6o; Ne.n)} such that ., — 0 and Py [0, € B(Oo; 7:1)] — 1, as € = 0 and n — cc.
Since we obtain

P[0 € O° U B(O0; 1:.0)°] < Pg[0e.0 € O + Po,[6:. € B(Oo; 7c.0)°] — O,

as ¢ — 0 and n — oo, we have 1 (60O UBGm )} 0 in Py, -probability as ¢ — 0 and
n — oo. By Lemma 5(ii), letting R, = D, ,, — C¢ n(00),

| Re.nl 1{95,,,'6@%(60;778,")} = aeBs(;I;)nw) (Con(@) = ConlO] = 0

in Py, -probability, as € — 0 and n — oo. Thus, under Py, as ¢ — 0 and n — oo, we have
R.,» — 0. By using Lemma 5(i), D, , — 21(6p) in Py,-probability, as ¢ — 0 and n — ooc.
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Let I'(0) be the limit of C, ,(0) as ¢ — 0 and n — oco. For details of I'(0), see (5), (6)
and (7) in the proof of Lemma 5. Note that I'(f) is continuous with respect to 6. Since
I1(6o) is positive definite, there exists a positive constant C such that inf,_; |[I(6p)x| > 2C.
For such C > 0, there exist N1(C) > 0 and N,(C) > 0 such that for any ¢ < N;(C) (¢ > 0)
and n > N,(C), and for any 0 € [0, 1], B(6p; #e.n) C © and |I'(6y + 07..,) — ['(60)] < C/2,
where 7., — 0 as ¢ — 0 and n — oo. For such C >0, let C,, be the set defined by

C
Ce,n - {Sup |Cé,n(6) - r(0)| < 5: es,n S B(QO; 775,}1)}
0cO

For any ¢ < N;(C) (¢ > 0) and n > N,(C), and for any |u| < 1, one has, on C; ,,

sup [(=D, + I'(6p))x| < sup

|x|=1 |x|=1

1
<D,, + J (0 + u(Ben — 00))du> x
0

+ sup
|x]=1

1
(r(eo> - L (0o + u(f,., — 90))d14>x

C
= sup |C£,n(0) - r(0)| + 5
[60—001<n¢.n

< C.
Hence, for any ¢ < N{(C) (¢ > 0) and n > N,(C), we obtain, on C, ,,

inf D = inf.[P(B0)x] — sup |(~Des + T(B0))

|x|=1
> C.

Let D,, = {D,, is invertible}. It then follows that for any & < N;(C) (¢>0) and
n > Ny(C), Py,[De,n] = Pg,[Ce,n]- Since it follows from (5), (6) and (7) that under (B2),
Py,[Cen] — 1 as € — 0 and n — oo, we have Py [D.,] — 1 as ¢ = 0 and n — oo.

Let &, = {és,n €0©}nD,,, and E., = D,, on &, and E., =J,,, on & » Where
Jptq 1s the (p+q) X (p+ q) identity matrix. Note that Py [E.,] — 1 as ¢ — 0 and
n— oo. Since |E., —21(0p)|ls,, < |Den —21(0p)| and 1g,, — 1 in Py -probability as
e — 0 and n — oo, we have E,, — 21(0)) in Py, -probability as ¢ — 0 and n — oo. Noting
that S, ,l¢,, = E; ) DenSenle,, = E; \Acnle,, and by Lemma 6, S.,le, — N(O, I(6y)")
in distribution as € — 0 and » — oco. Thus, again using the fact that under Py, as ¢ — 0
and n — oo, g, — 1, we complete the proof. O

Proof of Corollary 1. When o(x, f) = o(x), it is easy to show that Lemmas 4(i), 5 and 6
hold under the assumptions (Al), (A2), (A3'), (A4’) and (B1). In the same way as for the
proof of Theorem 1, we deduce the result. U
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