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We consider weighted sums
P

k pnk X k of independent and identically distributed random variables

(X n) and compare the tail probabilities of these sums with the moment conditions on X 1, that is, we

prove various results of Baum–Katz type. Some special examples of weights pnk originating from

summability are discussed.
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1. Introduction

The tail behaviour of partial sums of independent and identically distributed (i.i.d.) random

variables X , X 1, X2, . . . depends on moment conditions on X . Whereas if the moment

generating function exists in a neighbourhood of zero there are large-deviation principles

giving precise information on the tail behaviour, at the other end of the scale, namely if

only lower-order moments exist, we have less precise information on the tails of the

distribution function of Sn ¼
Pn

j¼1X j, which can be expressed in the so-called Baum–Katz

laws. These theorems reflect exactly the moments available. Starting with papers by Erdös,

Katz, and Baum and Katz, various results have evolved. We formulate one version; see, for

example, Baum and Katz (1965). Throughout our paper X , X k , k 2 N, denote i.i.d. random

variables.

Theorem 1.

(a) Let ª . 1, maxf�1
2
, ª�1 � 1g , � < 0. Then the following statements are equivalent:

(i) E(jX jª) ,1, E(X ) ¼ �.

(ii)
P1

n¼1n
ª(�þ1)�2P(jSn � n�j . �n�þ1) ,1, for all � . 0.

(iii)
P1

n¼1n
ª(�þ1)�2P(supk>njSk � k�j=k�þ1 . �) ,1, for all � . 0.

(b) Let ª . 0, � . maxf0, ª�1 � 1g. Then the following statements are equivalent:

(i) E(jX jª) ,1.

(ii)
P1

n¼1n
ª(�þ1)�2P(jSnj . �n�þ1) ,1, for all � . 0.

(iii)
P1

n¼1n
ª(�þ1)�2 P(supk>njSk j=k�þ1 . �) ,1, for all � . 0.
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Remark. Related statements are given in the literature for the case ª ¼ 1 and other parameter

constellations. Note that if � , ª�1 � 1 then the sums in (ii) and (iii) always converge.

The aim of the present paper is to give Baum–Katz type results for weighted sums Tn. There

are a few scattered results of this type in the literature, for example in Wang et al. (1998), but

there no equivalences are developed. The special case of Cesàro summability applied to

random variables is discussed in Gut (1993). Liang and Su (1999) and Liang (2000) give

versions of these results for random variables with a specific dependence structure. Doev

(1989) treats some summability methods, such as Euler and Borel summability, but there are

some problems with Doev’s proofs. Our goal is twofold: on the one hand, we give some

results on general classes of weights; on the other hand, we are interested in weights

originating from summability. Here, in particular, the logarithmic method of summability,

which plays an important role in the context of the almost sure central limit theorems, and

methods of random walk type are discussed below, with the special cases of Euler and Borel.

We also apply our results to Riesz methods. Exact moment conditions for complete

convergence of the corresponding weighted sums are given as applications.

2. Main results

We provide various results depending on the structure of weights pnk . First consider

weights pk > 0 with partial sums Pn ¼
Pn

k¼1 pk . Occasionally we will need the condition

that there exist some n0 2 N and constants c1, c2 . 0 such that

pk > c1 max
1<�<n

p� for at least c2n indices k 2 f1, . . . , ng, for all n > n0: (2:1)

Theorem 2. Let ( pk)1k¼1 be a sequence of weights. For given � 2 R, define

qn ¼ n�þ1 max1<�<n p� for n 2 N. Consider the following conditions:

(i) E(jX jª) ,1, E(X ) ¼ 0.

(i9) E(jX jª) ,1.

(ii)
P1

n¼1n
ª(�þ1)�2 P(j

Pn
k¼1 pk X k j . �qn) ,1, for all � . 0.

(iii)
P1

n¼1n
ª(�þ1)�2 P(j

Pn
k¼1 pnþ1�k X k j . �qn) ,1, for all � . 0:

(iv)
P1

n¼1n
ª(�þ1)�2 P(supk>nj

Pk
j¼1 pjX jj=qk . �) ,1, for all � . 0.

Then the following statements hold:

(a) Let ª . 1, maxf�1
2
, ª�1 � 1g , � < 0. Then (i) ) (ii), (iii). Obviously (iv) )

(ii). Further, (ii) ) (iv) provided that (i) and max1<k<2 j pk=max1<k<2 jþ1 pk $ � . 0

hold for all j 2 N. If in addition (2.1) holds, then (i) , (ii).

(b) Let ª . 0, � . maxf0, ª�1 � 1g. Then the corresponding conclusions from (a) hold

with (i) replaced by (i9).

Remarks. We first remark that, for the conclusions concerning (i), (ii) and (iii), the weights

pk may obviously also depend on n:
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Secondly, under condition (2.1) we have qn � n�Pn , namely 1 < qn=(n�Pn) < 1=c1c2,

and then the result holds with qn replaced by n�Pn.

Thirdly, for the conclusion (ii) ) (i9) in (b) it is sufficient to have convergence of the

sum in (ii) for one �0 . 0 only. If � , 0 the same holds true in (a) for (ii) ) (i).

Example. Let pk ¼ kÆ for some Æ > 0. Then

Pn �
nÆþ1

Æþ 1
¼ qn n

��

Æþ 1
as n!1:

Obviously condition (2.1) is satisfied.

The case of pk ¼ kÆ with �1 < Æ , 0 is not covered properly by Theorem 2. For this

case we have the following theorem, where we restrict ourselves to the essentials.

Naturally the results can be extended as in Theorem 2. Setting logþ x ¼ maxf2, log xg, we

obtain:

Theorem 3.

(a) Let �1 , Æ , 0 and Sn ¼
Pn

k¼1k
ÆX k. Consider the moment condition

E(jX jª) ,1: (2:2)

(i) If 0 , ª , 1=jÆj and � . maxf0, ª�1 � 1g, then (2.2) is equivalent to

X1
n¼1

nª(�þ1)�2 P(jSnj . �n�þÆþ1) ,1, for all � . 0:

(ii) If ª ¼ 1=jÆj and � . 0, then (2.2) is equivalent to

X1
n¼1

nª(Æþ�þ1)�1

logþn
P(jSnj . �n�þÆþ1) ,1, for all � . 0:

(iii) If ª . 1=jÆj and � . 0, then (2.2) is equivalent to

X1
n¼1

nª(Æþ�þ1)�1 P(jSnj . �n�þÆþ1) ,1, for all � . 0:

If ª . 1 and maxf1=2, 1=ª� Æg � 1 , � < 0 the respective statements hold true with

condition (2.2) replaced by

E(jX jª) ,1, E(X ) ¼ 0: (2:3)

(b) Let Æ ¼ �1, that is, Sn ¼
Pn

k¼1X k=k. Now the moment condition is

E(jX jª=(logþX )2ª) ,1: (2:4)

(i) If 0 , ª , 1 and � . ª�1 � 1, then (2.4) is equivalent to

X1
n¼1

nª(�þ1)�2

(logþn)ª
P(jSnj . �n� log n) ,1, for all � . 0:
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(ii) If ª ¼ 1 and � . 0, then (2.4) is equivalent to

X1
n¼1

n��1

(logþn)2
P jSnj . �n� log n

� �
,1, for all � . 0:

(iii) If ª . 1 and � . 0, then (2.4) is equivalent to

X1
n¼1

nª��1

(logþn)ª
P jSnj . �n� log n) ,1, for all � . 0:
�

Remarks. Part (a) with � ¼ 0 is closely related to Theorem 2.2 in Gut (1993). Part (b) gives

a Baum–Katz result for the logarithmic summability method applied to the sequence (X k):
Note that Theorem 2.4 in Li et al. (1995), after using Corollary 1 (in Section 3 below)

twice, essentially reduces to Theorems 2 and 3 (see also Theorem A in Liang 2000).

Next we deal with the general but typical situation where the weights follow a continuous

pattern.

Theorem 4. Let X , X k, k 2 Z, be i.i.d. random variables and �: R! R be continuous,

decreasing and integrable on [0, 1). Further, assume that �(x) ¼ �(�x) for all x $ 0.

Define

Tn ¼
X1
k¼�1

�
k

nÆ

� �
1

nÆ
X k

with some Æ 2 (0, 1] (where we implicitly assume almost sure convergence of the sums).

(a) Assume ª $ 1 and � . 0: Then the following are equivalent:

(i) E(jX jª) ,1.

(ii)
P1

n¼1n
ª(Æþ�)�1�Æ P jTnj . n��

� 
,1, for all � . 0.

If ª . 1 and maxf�Æ=2, Æ(1=ª� 1)g , � < 0, then (ii) is equivalent to E(jX jª) ,1 and

E(X ) ¼ 0.

(b) Assume 0 , ª , 1 and � . Æ(1=ª� 1) and that
Ð1

0
(�(t))ª dt ,1: Then (i) and (ii)

are equivalent.

Remark. The same result holds for

T 9n :¼
Xmn

k¼�mn

�
k

nÆ

� �
1

nÆ
X k

for mn 2 N satisfying mn=n
Æ !1:
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3. Proofs

We begin with a lemma which can be found in a paper by Sztencel (1981). For the sake of

completeness we repeat its proof.

Lemma 1. Suppose we have symmetric, independent random variables X1, X 2, . . . , X n and

weights 0 < ak < 1, 1 < k < n. Then, for all � . 0,

1

2
P min

1<k<n
fakg

				Xn
k¼1

X k

				 . �

 !
< P

				Xn
k¼1

ak X k

				 . �

 !
< 2P

				Xn
k¼1

X k

				 . �

 !
:

Proof. For the second inequality assume, without loss of generality, that

0 < a1 < a2 < . . . < an < 1 and put a0 ¼ 0. Then we have, with

S j ¼
P j

k¼1X k , b j ¼ a j � a j�1, 1 < j < n, thatXn
k¼1

ak X k ¼
Xn
k¼1

bk Sk and
Xn
k¼1

bk ¼ an < 1:

Now use Lévy’s inequality, and note that S j < �, 1 < j < n implies
Pn

j¼1b j S j < �, hence

P
Xn
k¼1

ak X k . �

 !
¼ P

Xn
j¼1

b j S j . �

 !
< P max

1< j<n
S j . �


 �
< 2 P Sn . �ð Þ:

To verify the first inequality put ~XX k ¼ ak X k and use the second inequality to obtain

P
Xn
j¼1

min1< j<nfa jg
a j

~XX j . �

 !
< 2P

Xn
j¼1

~XX j . �

 !
,

which contains the desired inequality. Note that the first inequality is trivial if a j ¼ 0 for

some j. h

Corollary 1. Suppose we have given symmetric, independent random variables

X 1, X2, . . . , X n and weights 0 < ~aa j < a j, 1 < j < n, n 2 N. Then

P
Xn
k¼1

ak X k . �

 !
>

1

2
P
Xn
k¼1

~aak X k . �

 !
:

Proof. Put Yk ¼ ak X k , so ~aak=ak Yk ¼ ~aak X k and the second inequality in Lemma 1 yields

the corollary. h

Remark. If the sums in Corollary 1 converge as n!1, the inequality holds with n ¼ 1 as well.

Next we state some auxiliary results that are needed to find appropriate moment

conditions.

Lemma 2. Let X , X 1, X2, . . . be i.i.d. and symmetric, (mn)
1
n¼1 a sequence of positive

integers, pnk, 1 < k < mn, n 2 N, positive weights, and (ºn)
1
n¼1 a positive sequence. Then

P(j
Pmn

k¼1 pnk X k j . ºn)! 0, n!1, implies
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mnP jX j . 2ºn max
1<k<mn

1

pnk

� �
<
Xmn

k¼1

P(jpnk X k j . 2ºn)! 0, n!1:

Proof. By Lévy’s inequality we have

P max
1< j<mn

				X
j

k¼1

pnk X k

				 . ºn

 !
< 2P

				Xmn

k¼1

pnk X k

				 . ºn

 !
! 0, n!1:

Hence, as n!1,

Ymn

j¼1

P(jpnjX jj < 2ºn) ¼ P max
1< j<mn

jpnjX jj < 2ºn


 �
> P max

1< j<mn

				X
j

k¼1

pnk X k

				 < ºn

 !
! 1:

Using the fact that P(j pnjX jj < 2ºn)! 1, n!1 uniformly in j and that log(1þ x) � x as

x! 0, we find that

mnP jX j . 2ºn max
1<k<mn

1

pnk

� �
<
Xmn

j¼1

P(j pnjX jj . 2ºn)! 0, n!1:

h

Remark. Under these assumptions we have, uniformly in 1 < l < mn,

P
Xmn

k¼1
k 6¼ l

pnk X k

							
							 < 3ºn

0
B@

1
CA! 1, n!1,

since

P
Xmn

k¼1
k 6¼ l

pnk X k

							
							 . 3ºn

0
B@

1
CA < P

				Xmn

k¼1

pnk X k

				 . ºn

 !
þ P jpnlX lj . 2ºnð Þ

< P

				Xmn

k¼1

pnk X k

				 . ºn

 !
þ
Xmn

k¼1

P jpnk X k j . 2ºnð Þ

! 0, n!1,

where the last expression does not depend on l.

Lemma 3. Under the assumptions of Lemma 2 there exists some n0 2 N such that

mnP jX j . 4ºn max
1< l<mn

1

pnl

� �
<
Xmn

k¼1

P(j pnk X k j . 4 ºn) < 2 � P
				Xmn

k¼1

pnk X k

				 . ºn

 !
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for all n $ n0.

Remark. This implies a version of Theorem 2.5 in Gut (1992) in the case of symmetric

random variables with explicit inequalities.

Proof. The left inequality follows from Lemma 2. To prove the right inequality, note that

with

Ak ¼ j pnk X k j . 4ºnf g, Bk ¼
Xmn

j¼1
j 6¼k

pnjX j

								

								
< 3ºn

8>><
>>:

9>>=
>>;,

we have

P

				Xmn

k¼1

pnk X k

				 . ºn

 !
> P

[mn

k¼1

(Ak \ Bk)

 !

>
Xmn

k¼1

p(Ak \ Bk)� P Ak \
[k�1

�¼1

(A� \ B�)

 ! !

>
Xmn

k¼1

P(Ak \ Bk)�
Xk�1

�¼1

P(Ak \ A�)

 !

>
Xmn

k¼1

P(Ak) P(Bk)�
Xk�1

�¼1

P(A�)

 !

>
1

2

Xmn

k¼1

P(Ak)

for n large enough, by Lemma 2 and the remark following its proof. h

The following lemma will be useful in showing the necessity of the moment conditions.

Its proof consists of a well-known argument but is stated for the sake of completeness.

Lemma 4. Suppose we have some 
 . �1 and a strictly increasing function

ł: (0, 1)! (0, 1). Then

X1
n¼1

n
P jX j . ł(n)ð Þ ,1 if and only if E ł�1(jX j)
� 
þ1

 �

,1:

Proof. It is well known that, for 
 . �1,
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EjY j
þ1 ,
X1
n¼1

n
P jY j . nð Þ ,1:

Taking into account that P jX j . ł(n)ð Þ ¼ P ł�1(jX j) . n
� 

this proves the lemma when

applied to Y ¼ ł�1(jX j). h

Proof of Theorem 2. (ii), (iii) is obvious since the sums involved have the same

distribution function. In the case where X is symmetric the inclusion (i)) (ii) follows

from Theorem 1 and the observation

P

				Xn
k¼1

pk X k

				 . �qn

 !
¼ P

				Xn
k¼1

pk

max1<�<n p�
X k

				 . �n�þ1

 !
< 2P

				Xn
k¼1

X k

				 . �n�þ1

 !

by an application of Lemma 1.

In this proof we discuss in detail how the general case works. In later proofs the same

arguments can be applied and will be omitted. Note that

1

qn

Xn
k¼1

pk X k �!
p

0, n!1: (3:1)

Using the Marcinkiewicz–Zygmund (cf. Chow and Teicher 1978) and cr inequalities (cf.

Loève 1977), we can prove (3.1) for 0 , ª , 2 by observing that

P

				 1

qn

Xn
k¼1

pk X k

				 . �

 !
<

1

(�qn)ª
E

				Xn
k¼1

pk X k

				
ª

 !

<
1

(�qn)ª
E

Xn
k¼1

pk jX k j
 !ª

0
@

1
A

<
1

(�qn)ª

Xn
k¼1

p
ª
kE jX jªð Þ

< n1�(�þ1)ªE jX jªð Þ ! 0 (n!1);

If ª > 2 the Markov inequality yields

P

				 1

qn

Xn
k¼1

pk X k

				 . �

 !
<

1

�2n1þ2�
E(X 2)! 0, n!1:

Thus with m(Y ) denoting a median of the random variable Y , for any � . 0 we have

m
1

qn

Xn
k¼1

pk X k

 !
<

�

2

for all large enough n. For these n it follows that
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P

				Xn
k¼1

pk X k

				 . �qn

 !
< P

				 1

qn

Xn
k¼1

pk X k � m
1

qn

Xn
k¼1

pk X k

 !				 . �

2

 !

< 2P

				 1

qn

Xn
k¼1

pk X
s
k

				 . �

2

 !
,

where the last step is due to the symmetrization inequality (e.g. Lemma 6.16 in Petrov 1995);

note that (
P

pk X k)
s¼d
P

pk X
s
k .

For the proof of (ii)) (i) note that a successive application of the symmetrization

inequality, Corollary 1 (twice) and Lemma 3 yields

1 .
X1
n¼1

nª(�þ1)�2 P

				Xn
k¼1

pk X
s
k

				 . �qn

 !

>
1

2

X1
n¼1

nª(�þ1)�2 P
X

k: pk>c1 max
1<�<n

p�

pk

max
1<�<n

p�
X s

k

							
							 . �n�þ1

0
B@

1
CA

>
1

4

X1
n¼1

nª(�þ1)�2 P
X

k: pk>c1 max
1<�<n

p�

X s
k

							
							 . �n�þ1=c1

0
B@

1
CA

>
c2

4c

X1
n¼1

nª(�þ1)�1 P jX sj . 4�n�þ1=c1

� 
:

For the application of Lemma 3 note that ª(�þ 1)� 2 . �1 and that the argument from

Baum and Katz (1965, p. 110), can be applied to show that

P
X

k: pk>c1max1<�< n p�

X s
k

					
					 . �n�þ1=c1

 !
! 0, n!1:

Finally by Lemma 4 the inequality above yields EjX sjª ,1 and thus EjX jª ,1.

Now in the case ª . 1 it follows immediately from Theorem 1 of Pruitt (1966) that

1

Pn

Xn
k¼1

pk X k �!
p

E(X ) ¼ �, n!1:

Now assume � 6¼ 0. Since we know that, by (2.1),

c1c2 <
Pn

nmax1<k<n pk
< 1

it follows that
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P

				 1

qn

Xn
k¼1

pk X k

				 > c1c2j�j
2

 !
! 1, n!1,

and the series in (ii) diverges for � , c1c2j�j=2. This contradicts (ii) and hence E(X ) ¼ 0.

It remains to show that (ii)) (iv) in the case of symmetric random variables. Note that

the converse direction is obvious. Following the method of Baum and Katz (1965), we use

Lévy’s inequality after some manipulations and find

X1
n¼1

nª(�þ1)�2 P sup
k>n

				Xk
j¼1

pjX j

				=qk . �

0
@

1
A

<
X1
i¼1

2i � 2(iþ1)(ª(�þ1)�2) P sup
k>2i

				Xk
�¼1

p�X �

				=qk . �

 !

<
X1
i¼1

2(iþ1)(ª(�þ1)�1)
X1
j¼i

P sup
2 j<k,2 jþ1

				Xk
�¼1

p�X�

				 . �q2 j

 !

< c
X1
j¼1

2( jþ1)(ª(�þ1)�1) P sup
2 j<k,2 jþ1

				Xk
�¼1

p�X �

				 . �q2 j

 !

< c
X1
j¼1

2( jþ1)(ª(�þ1)�1) 2P

				X2
jþ1

�¼1

p�X �

				 . �q2 jþ1

q2 j

q2 jþ1

0
@

1
A

< 2c
X1
j¼1

2( jþ1)(ª(�þ1)�1) P

				X2
jþ1

�¼1

p�X �

				 . ��q2 jþ1

0
@

1
A

< ~cc
X1
n¼1

nª(�þ1)�2 P

				Xn
�¼1

p�X�

				 . ��qn

 !
,1,

where we have used that, for 2 j < n , 2 jþ1,

P
Xn
k¼1

pk X k . º

 !
> P

X2 j

k¼1

pk X k . º,
Xn

k¼2 jþ1

pk X k > 0

0
@

1
A

>
1

2
P
X2 j

k¼1

pk X k . º

0
@

1
A

and that
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X2 jþ1�1

n¼2 j

nª(�þ1)�2 > c�2( jþ1)(ª(�þ1)�1):

h

Proof of Theorem 3. We shall only show part (b). The proof of part (a) follows along the

same lines (see also Gut 1993, Theorem 2.2). For the sufficiency part we choose, without loss

of generality, � ¼ 3 j with some fixed value of j to be specified later. Then we use the

Hoffmann-Jørgensen inequality (see Hoffmann-Jørgensen 1974) in its iterated form (cf. Jain

1975), yielding that, for any j 2 N, there exist constants c1 j, c2 j . 0 such that

P(jSnj . 3 j n� log n) < c1 j P max
1<k<n

				 1

k
X k

				 . n� log n

 !
þ c2 j(P(jSnj . n� log n))2 j

< c1 j

Xn
k¼1

P(jX j . k n� log n)þ c2 j(P(jSnj . n� log n))2 j

¼ I þ II (say):

By the Markov inequality we find that

P(jSnj . n� log n) ¼ O(1)
n1�ª (1þ�), 0 , ª , 1,

n�� ª, ª ¼ 1

n�� ª9, with 1 , ª9 , ª, ª9 < 2,

8<
: (3:2)

where we have used the cr inequality (cf. Loève 1977) and, in the case ª . 1, also the

Marcinkiewicz–Zygmund inequality (cf. Chow and Teicher 1978). So, under our assumptions

the term II is sufficiently small after choosing j large enough. The main term is the first one.

For example, in case 0 , ª , 1, we have

X1
n¼1

nª(�þ1)�2

(logþn)ª

Xn
k¼1

P(jX j . kn� log n) ¼
X1
n¼1

nª(�þ1)�2

(logþn)ª

Xn
k¼1

X
�.k n� log n

b�,

where b� ¼ P(�� 1 < jX j , �). Now an asymptotic evaluation of this sum shows that it

converges under the given moment condition. Similar arguments give the other cases.

For the necessity part we use Lemma 3, that is, we have, for 0 , ª , 1,

X1
n¼1

nª(�þ1)�2

(logþn)ª

Xn
k¼1

P jX j . kn� log n
� 

,1,

and note that replacing k by n yields the moment condition. In the corresponding

calculations, for ª . 1 use just the first summand in the inner sum, whereas for ª ¼ 1 the

whole sum has to be used. h

Proof of Theorem 4. We may assume X to be symmetric, with the general case following by

the same argument as used in the proof of Theorem 2. First we show (i)) (ii). Using the
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Marcinkiewicz–Zygmund (cf. Chow and Teicher 1978) and cr inequalities (cf. Loève 1977),

we find

E jTnjªð Þ <
X1
k¼�1

�
k

nÆ

� �
1

nÆ

� �ª

E(jX jª)

<
c

nÆ(ª�1)

ð1
�1

�(t)ð Þª dt ,1, (3:3)

for 0 , ª < 2.

Further, we find by the Hoffmann–Jørgensen inequality (Hoffmann–Jørgensen 1974) in

its iterated form (Jain 1975) that, for any j 2 N, there exist constants c1 j, c2 j . 0 such that

P jTnj . 3 j n�
� 

< c1 j P max
k2Z

				� k

nÆ

� �
1

nÆ
X k

				 . n�

 !
þ c2 j P jTnj . n�

� � 2 j

< c1 j

X
j2Z

P jX j . nÆþ�

� j=nÆð Þ

 !
þ c2 j P jTnj . n�

� � 2 j

:

Thus we obtain (we choose, again without loss of generality, � ¼ 3 j with some fixed value of

j to be specified later on)

X1
n¼1

nª(Æþ�)�1�Æ P Tn . 3 j n�
� 

< c1 j

X1
n¼1

nª(Æþ�)�1�Æ
X
j2Z

P jX j . nÆþ�

� j=nÆð Þ

 !
þ c2 j

X1
n¼1

nª(Æþ�)�1�Æ P jTnj . n�
� � 2 j

¼ I þ II :

By (3.3) we find, for ª 2 (0, 2),

II < c2 j

X1
n¼1

nª(Æþ�)�1�Æcªn
�2 j((Æþ�)ª�Æ) ,1,

if we choose j large enough since (Æþ �)ª� Æ . 0 under our assumptions in (a) and (b).

For ª > 2 we obtain, again for large enough j,

II < c2 jc2

X1
n¼1

nª(Æþ�)�1�Æn�2 j(Æþ2�) ,1:

For the first term we set b� ¼ P(�� 1 < jX j , �) and obtain with a constant c, possibly

varying from line to line,
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I < c
X1
n¼1

nª(Æþ�)�1�Æ
X
k2Z

P

				� k

nÆ

� �
1

nÆ
X k

				 . n�

 !

< c
X1
n¼1

nª(Æþ�)�1�Æ
X
k2Z

X
�>maxfnÆþ�=�(k=nÆ),1g

b�

< c
X1
n¼1

nª(Æþ�)�1�Æ
X1
�¼1

b�
X

�(k=nÆ)>nÆþ�=�

1:

Note that the inner sum vanishes if nÆþ�=� . �(0), that is, n . ��(0)ð Þ1=(Æþ�)
. Thus

I < c
X1
�¼1

b�
X

1<n< ��(0)ð Þ1=(Æþ�)

nª(Æþ�)�1�Æ
X

jkj<��1(nÆþ�=�)nÆ

1

< c
X1
�¼1

b�
X

1<n< ��(0)ð Þ1=(Æþ�)

nª(Æþ�)�1��1 nÆþ�

�

� �
:

Now assume ª > 1 and observe that since by monotonicity and � 2 L1[0, 1) we have

lim y!1 y�(y) ¼ 0, implying ��1(��1) ¼ o(�) as �!1.

Substituting w ¼ tÆþ�=� and later v ¼ ��1(w), it is easy to see that

X
1<n< ��(0)ð Þ1=(Æþ�)

nª(Æþ�)�1��1 nÆþ�

�

� �
< ��1 1

�

� �
þ c

ð(��(0))1=(Æþ�)

1

tª(Æþ�)�1��1 tÆþ�

�

� �
dt

¼ o(�)þ c

ð�(0)

1=�
(�w)ª�1=(Æþ�)��1(w)(� w)1=(Æþ�) dw

w

¼ o(�)þ c�ª
ð�(0)

1=�
wª�1��1(w) dw

¼ o(�)þ c�ª
ð��1(1=�)

0

w(�(w))ª�1 d�(w)

< c�ª,

since the integral is bounded due to the continuity of � and the fact that
Ð1

0
�ª(v) dv ,1.

Hence I ,1. Similar arguments apply for the case ª 2 (0, 1).

For the proof of (ii) ) (i) we proceed as in Theorem 1. Without loss of generality, we

assume �(1) . 0 and apply the Corollary 1 twice and Lemma 3 to obtain, with some

constant c . 0,

Baum–Katz laws for certain weighted sums 997



1 .
X1
n¼1

nª(Æþ�)�1�Æ P jTnj . �n�
� 

¼ 2
X1
n¼1

nª(Æþ�)�1�Æ P Tn . �n�
� 

>
X1
n¼1

nª(Æþ�)�1�Æ P
X
jkj<nÆ

�
k

nÆ

� �
1

nÆ
X k . �n�

 !

>
1

2

X1
n¼1

nª(Æþ�)�1�Æ P
X
jkj<nÆ

X k .
�nÆþ�

�(1)

 !

> c
X1
n¼1

nª(Æþ�)�1 P jX j . 4
�nÆþ�

�(1)

 !
,

and by Lemma 4 we have EjX jª ,1. h

4. Application to weights originating from summability

Given a matrix P ¼ (pnk)1n,k¼0, we say that a real sequence (sn) converges to a limit s with

respect to the summability method P, sn ! s(P), if
P

k pnk sk ! s, n!1, (see Zeller and

Beekmann 1970). The Cesàro methods (CÆ) with pnk ¼ (n�kþÆ�1
n�k )=(nþÆn ) for 0 < k < n and

Æ . 0 are well known, in particular the arithmetic mean (C1).

4.1. Euler, Borel and random walk methods of summability

In the case of the Euler method we have the weights

pnk ¼
n

k

� �
pk(1� p)n�k , 0 < k < n,

for some p 2 (0, 1) whereas in the case of the Borel method we have

pnk ¼ e�n n
k

k!
, k 2 N0:

More generally, one can consider i.i.d. integer-valued random variables Yi with partial sums

Wn, and define weights pnk ¼ P(Wn ¼ k) to obtain so-called random walk methods of

summability; see, for example, Bingham and Maejima (1985). Under appropriate conditions

on Yi it is well known (see Petrov 1975) that

pnk � 1=
ffiffiffi
n
p

for jk � nE(Y1)j < M
ffiffiffi
n
p

(4:1)

for an arbitrary constant M . 0. Furthermore, under stronger conditions, we obtain an

asymptotic expansion of the weights which can also be found in Petrov (1975). For example,

in the case of the Euler method we have, say,
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pnk ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2�np(1� p)
p exp � (k � np)2

2np(1� p)

( )
1þ

c3 H3

k � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np(1� p)
p
� �

ffiffiffi
n
p

0
B@

1
CA

þ 1

1þ
				 k � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np(1� p)
p

				
3
� o 1

n

� �
¼:
X3

�¼1

p
(�)
nk

uniformly in k with some constant c3 and the third Hermite polynomial H3: A similar

Edgeworth expansion holds for Borel weights (and also for weights deriving from suitable

random walk methods). This leads to the following result.

Corollary 2. With the notation introduced above, we have for the Euler or the Borel method

with associated weighted sums Tn, for ª . 1,

E(jX jª) ,1, E(X ) ¼ 0,
X1
n¼1

n(ª�3)=2P jTnj . �ð Þ ,1, for all � . 0:

Proof. Decomposing Tn ¼
P

pnk X k into the sums corresponding to the weights p
(�)
nk and

applying Theorem 4 to each of the summands shows the sufficiency of the moment condition.

For example, for � ¼ 1 we have Æ ¼ 1
2

and �(x) ¼ e�x
2=(2 p(1� p))=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�p(1� p)
p

, and similarly

for � ¼ 2. For the remainder term (� ¼ 3) we proceed as follows: Define

p�nk :¼ n�1=2 1þ
				 k � npffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

np(1� p)
p

				
3

 !�1

:

Then use Corollary 1 to conclude

P

				X
k

p
(3)
nk X k

				 . �

 !
< P

X
k

j p(3)
nk j jX k j . �

 !
< P

X
k

p�nk jX k j . �n1=2

 !

< P

				X
k

p�nk (jX k j � E(jX k j))
				 . �n1=2=2

 !

þ P

				X
k

p�nk E(jX k j)
				 . �n1=2=2

 !

< P

				X
k

p�nk (jX k j � E(jX k j))
				 . �n1=2=2

 !
þ 0,

for n large enough. Then apply Theorem 4 again. Note that the shift in the argument of the

function �(:) does not matter for i.i.d. random variables.

Necessity follows with the help of (4.1), Corollary 1 (set weights to zero for
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jk � n�j .
ffiffiffi
n
p

), then Lemma 3 with mn ¼ c
ffiffiffi
n
p

with some c . 0, and finally Lemma 4

with ł(x) ¼ c� x
1=2. h

Remarks. We first observe that a similar theorem can be proved for ª 2 (0, 1] using a higher-

order Edgeworth expansion, and also for other random walk methods.

Secondly, it is well known that X n�!
a:s:

�(C1) if and only if E(jX j) ,1 and E(X ) ¼ �,

but X n�!
a:s:

�(E p) if and only if E(X 2) ,1 and E(X ) ¼ � (for 0 , p , 1). For complete

convergence we have in the case of the C1 mean that the existence of the second moment is

necessary and sufficient (see Gut 1993, Theorem 2.1) and for the Euler or Borel means that

the third moment exists. This follows from Corollary 2.

4.2. Riesz and related methods

Let p . 1 and define ºn ¼ n1= p exp (n1�1= p) and �(n) ¼ n1= p, n 2 N. Then the following

summability methods are closely related to the C1= p method: the Riesz method, Rp, where

we say that sn ! s(Rp) if, with ak ¼ sk � sk�1, k 2 N(s0 :¼ 0),

1

ºn

Xn
k¼1

(ºn � ºk)ak ! s, n!1;

and the moving average method, Mp, where we say that sn ! s(Mp) if

1

u�n

X
n,k<nþu�(n)

sk ! s, n!1, for all u . 0:

It is well known that the Rp and Mp methods are equivalent (Bingham and Goldie 1988) and

are both weaker than the Cesàro method C1= p (Jurkat et al. 1975). However, applied to i.i.d.

random variables for fixed p, all these methods are equivalent – for example,

X k �!
a:s:

�(Rp, Mp, C1= p), E(jX j p), E(X ) ¼ �

holds (Bingham and Goldie 1988).

What can be said about Baum–Katz type results? Note that the following statements are

equivalent:

X1
n¼1

nrP

				 1

u�(n)

X
n,k<nþu�(n)

X k

				 . �n�
 !

,1, for all u, � . 0;

X1
‘¼1

‘ p(rþ1)�1P

				 1‘
X‘
k¼1

X k

				 . �‘ p�
 !

,1, for all � . 0:

Hence the M� case can be embedded in the usual arithmetic mean case. If

r ¼ ª(�þ 1=p)� 1� 1=p, we can use Theorem 1 to deal with the second statement. For

the Riesz method we have:
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Theorem 5. Let be given p . 1, 1=(2 p) , 
 < 1=p and ª . 1=( p
)(> 1) and define

X 0 ¼ 0. Then the following statements are equivalent:

(i) E(jX jª) ,1, E(X ) ¼ 0,

(ii)
X1
n¼1

n
ª�1�1= pP

				 1

exp(n1�1= p)

Xn
k¼1

(ºn � ºk)(X k � X k�1)

				 . n


 !
,1,

(iii)
X1
n¼1

n
ª�1�1= pP

				Xn
k¼1

exp(k1�1= p)X k

				 . exp(n1�1= p)n


 !
,1:

Note that (iii) cannot be treated with Theorem 1 since condition (2.1) is not satisfied. A

corresponding result holds for 
 . 1=p, but then condition (i) should read E(jX jª) ,1 only.

Proof. Comparing (i) with (iii), one uses the same arguments as in the proofs of Theorem 2

and 3. That (ii) and (iii) are equivalent follows with Abel’s partial summation and

Corollary 1. h

Corollary 3. Let p . 1. A sequence (X n) of i.i.d. random variables converges completely in

the sense of:

(i) the Rp or the Mp method if and only if E(jX1j pþ1) ,1;

(ii) the Cesàro method C1= p if and only if E(jX 1jmaxf2, pg) ,1 for p 6¼ 2 and

E(jX1j2 logþjX 1j) ,1 for p ¼ 2, respectively.

Proof. Use Theorem 1.2 in Gut (1993) for part (ii). For (i) use Theorem 5 above with


 ¼ 1= p for the Riesz means and the equivalence above Theorem 5 with

r ¼ ª(�þ 1=p)� 1=p� 1 together with Theorem 2 for the moving average case. h

Hence we may not distinguish between the Riesz and the moving average method, but

both can be distinguished from the Cesàro method with the help of a Baum–Katz theorem.
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