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We show in general how the substitution matrix and gap penalty function for local sequence

alignments can be chosen such that the score statistic grows at a logarithmic rate when the two

sequences are unrelated. The method used is the construction of a mixture distribution in which

sequences with large scores are generated with uniformly higher likelihood. This distribution is also

used for the importance sampling of the p-value of the score. An upper bound of this p-value is

computed and compared against the simulated value.
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1. Introduction

In the past decade, there has been tremendous progress in the understanding of the

asymptotic behaviour of the local alignment score of two sequences; see, for example,

Arratia and Waterman (1994), Dembo et al. (1994), Neuhauser (1994), Siegmund and Yakir

(2000a; 2000b) and references therein. Heuristical approximations of the p-value of the

scores have been obtained by Mott and Tribe (1999). Of interest are sequences of

nucleotides or amino acids; a comprehensive account of the background to this topic is

provided in Waterman and Vingron (1994) and Waterman (1995). The software program

BLAST (see Altschul et al. 1990), currently in widespread use, implements an efficient

search algorithm to approximate the scores, which are assigned according to the number

and length of the gaps and the quality of the matches in the alignment, as measured from a

substitution matrix.

When an equation (to be defined in Section 2) that is dependent on the substitution

matrix and gap penalty function has a positive solution, a distribution Q can be constructed

such that sequences having large scores are generated with uniformly higher likelihood

compared to the null model in which the two sequences are unrelated. By using a change-

of-measure argument, we obtain an upper bound for the p-value of the local alignment

score that decays exponentially, thus ensuring that the score grows logarithmically with

respect to the length of the sequences. The distribution Q can also be used to perform

importance sampling of the p-value of the score. For efficient computation, an algorithm is
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presented that computes the likelihood ratio dQ=dP recursively, so that the computation

time needed to estimate the p-value by generating the sequences from the distribution Q is

comparable to that of direct Monte Carlo.

The hidden Markov model, which justifies the local alignment score as a maximum

likelihood statistic (see Durbin et al. 1998), is introduced in Section 4. This model suggests

a modification of the substitution matrix which would ensure that the equation defined in

Section 2 has a positive solution. In Section 5, upper bounds of the p-value are obtained

using random walk theory and exponential tilting. These upper bounds are then compared

against the importance sampling estimates of the p-value in Section 6. The choice of

appropriate gap penalty functions is also examined, and the paper concludes with an

example that computes an upper bound for the longest common subsequence problem.

2. Choosing substitution matrices and gap penalty functions in
the logarithmic region

Let x ¼ fx1, . . . , xmg and y ¼ fy1, . . . , yng be two sequences of independent and

identically distributed random variables taking values in a finite alphabet A, with xi

having distribution � and yj distribution �. Let g : f0, 1, . . .g ! [0, 1] be a non-

decreasing gap penalty function with g(0) ¼ 0 and K : A3A ! [�1, 1) a substitution

matrix. We call z ¼ f(i t, j t) : 1 < t < ug an alignment of u (¼ uz) matches if 1 <

i1 , . . . , iu < m, 1 < j1 , . . . , ju < n and, for all 1 < t < u � 1, either i t þ1 ¼ i t þ 1

or j tþ1 ¼ j t þ 1 (or both). For each alignment z, define

Sz(x, y) ¼
Xu

t¼1

K(xi t
, yj t

) �
Xu�1

t¼1

g(i tþ1 � i t � 1 þ j tþ1 � j t � 1): (2:1)

Let Z denote the class of all alignments and let the local alignment score

H m,n ¼ H m,n(x, y) ¼ max
z2Z

Sz(x, y): (2:2)

K(x, y) is large when x ¼ y and also if x can be substituted easily by y or vice versa in the

evolutionary process. Gaps are allowed in the alignment z to model for the insertion and

deletion of segments in the sequences but are penalized through the gap penalty function.

Hence a large value of H m,n indicates a strong possibility that a segment each of x and y is

descended from a recent common ancestor.

Let j � j denote the number of elements in a finite set. jZj increases exponentially with

m, n and hence an affine penalty function of the form g(k) ¼ ˜þ �k for k > 1 is used, as

the value of H m,n can then be computed in O(mn) time and memory (Gotoh 1982). ˜þ �
is known as the gap opening penalty, and � the gap extension penalty.

Consider the null hypothesis in which x and y are unrelated. If E[K(x1, y1)] . 0, then

H m,n increases linearly with min(m, n) and we lie in the so-called linear region. In this

situation, H m,n is not useful for determining if x and y are related. It has been shown that

under the conditions
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E[K(x1, y1)] , 0 and PfK(x1, y1) . 0g . 0, (2:3)

if g(1) ¼ 1 (Dembo et al. 1994) or if ˜ increases at a logarithmic rate (Siegmund and Yakir

2000b), then H m,n is of the order of log(mn) and we are said to lie in the logarithmic region.

No conclusions have been drawn, however, for the case of g finite and fixed. In practice, for

such g, the transition between the linear and logarithmic region is determined empirically. In

the next theorem we shall show, using the underlying model, how (K, g) can be chosen

appropriately to lie in the logarithmic region.

Theorem 1. Let (K, g) be chosen such that

(I) the convex function

h(Ł) ¼ 1 þ 2
X
k>1

e�Ł g(k)

 ! X
x, y2A

eŁK(x, y)�(x)�(y)

has a positive solution, with the larger solution denoted by ~ŁŁ.

Then:

(i) PfH m,n > bg < nme�~ŁŁb;

(ii) for any E . 0, PfH m,n > (1 þ E) log(nm)=~ŁŁg ! 0 as nm ! 1;

(iii) limn!1 n�1EH n,n ¼ 0.

Remark. Let the moment generating function

¸(Ł) ¼
X

x, y2A
eŁK(x, y)�(x)�(y): (2:4)

As ¸9(0) ¼ E[K(x1, y1)], under condition (2.3), ¸(Ł) , 1 for some Ł . 0 and hence if g

chosen large enough, condition (I) is satisfied. Furthurmore, as g(1) ! 1, ~ŁŁ ! Ł, the

positive root of the equation ¸(Ł) ¼ 1. It follows from Dembo et al. (1994) that

PfH m,n < (1 � E)log(mn)=Łg ! 0 as nm ! 1 for all E . 0. Thus Theorem 1 is consistent

with the work of Siegmund and Yakir (2000b) in the sense that, for large g, m and n,

H m,n=log(mn) is approximately 1=Ł under the null hypothesis.

Proof. Let s . 0 be such that

1 þ 2
X
k>1

e�~ŁŁ g(k) ¼ es: (2:5)

Then by condition (I),

f ~ŁŁ(x, y) ¼ e
~ŁŁK(x, y)þs�(x)�(y), for x, y 2 A, (2:6)

is a probability mass function.

Let Hi, j ¼ Hi, j(x1, . . . , xi, y1, . . . , yj). We shall construct a mixture distribution Q with

state space Am 3An in the following manner :
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1. Pick (i1, j1) uniformly from f1, . . . , mg3 f1, . . . , ng and let xi � � for i , i1,

yj � � for j , j1 and (xi1 , yj1 ) � f ~ŁŁ.

2. Define recursively, for t > 1, i tþ1 ¼ i t þ 1 þ � t and j tþ1 ¼ j t þ 1 þ � t, where

Pf(� t, � t) ¼ (k, 0)g ¼ Pf(� t, � t) ¼ (0, k)g ¼ e�~ŁŁ g(k)�s, for k ¼ 0, 1, . . . : (2:7)

If i tþ1 < m and j tþ1 < n, let xi � � for i t , i , i tþ1, yj � � for j t , j , j tþ1 and

(xi tþ1
, yj tþ1

) � f ~ŁŁ.

3. Repeat step 2 until u ¼ minft : Hi t , j t
> b, i tþ1 . m or j tþ1 . ng, let xi � � for

i . iu and yj � � for j . ju. Let z ¼ f(i t, j t) : 1 < t < ug, Qz be the measure of

(x, y) generated together with alignment z and Q ¼
P

z2ZQz.

If (x, y) belongs to the set A ¼ f(x, y) : H m,n(x, y) > bg, then there exists an alignment

z such that Sz(x, y) > b and Hiu�1, ju�1 , b. Then as s . 0 (see (2.5)),

dQ

dP
(x, y) >

dQz

dP
(x, y) (2:8)

¼ (nm)�1 exp
Xu

t¼1

[~ŁŁK(xi t
, yj t

) þ s]

( )
exp �

Xu�1

t¼1

[~ŁŁg(i tþ1 � i t � 1 þ j tþ1 � j t � 1) þ s]

( )

¼ (nm)�1 exp[~ŁŁSz(x, y) þ s]

> (nm)�1e
~ŁŁb:

(i) then follows from (2.8) since

P(A) ¼ EQ

dP

dQ
1A

� �
: (2:9)

(ii) follows directly from (i) by letting b ¼ (1 þ E)~ŁŁ�1 log(nm), while (iii) follows from (ii)

and because n�1 H n,n is bounded above by maxx, y2A K(x, y). h

3. Importance sampling

Let G(xr, yr) ¼ supz2Z[Sz(xr, yr) � g(r � iu) � g(r � ju)] and f r(Ł) ¼ log(E exp[ŁG(xr,

yr)]) be its log moment generating function. In Bundschuh (2002), r is chosen to be

moderately large and f r(Ł) is approximated by a Monte Carlo estimate f̂f r(Ł) using an

importance sampling algorithm in which a modification of step 2 (see (2.7)) is executed

recursively with Ł, the positive root of ¸(Ł) ¼ 1, replacing ~ŁŁ. Then p-values of the local

alignment score can be estimated by fitting a conjectured asymptotic Gumbel-type

distribution with the root of f̂f r(Ł) ¼ 0 as one of its parameters.

In this paper, we propose using the mixture distribution Q or a modified version of it for

importance sampling of p ¼ PfH m,n > bg directly. One advantage of our estimator is that

it does not rely on any asymptotic theory of H m,n and hence can also be used for an
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independent verification of numerical approximations based on such asymptotics. We

consider the following unbiased estimators of p: the importance sampling estimator,

p̂pI ¼ B�1
XB

‘¼1

dP

dQ
(x(‘), y(‘))1fH m, n(x(‘),y(‘))>bg, (3:1)

where (x(‘), y(‘)), 1 < ‘ < B, are generated independently from Q; and the direct Monte Carlo

estimator,

p̂pD ¼ B�1
XB

‘¼1

1fH m, n(x(‘),y(‘))>bg, (3:2)

where (x(‘), y(‘)), 1 < ‘ < B, are generated independently from �m 3 � n. By (2.8),

var( p̂pI) ¼ B�1 EQ

dP

dQ
(x, y)1fH m, n>bg

	 
2
( )

� p2

 !
(3:3)

¼ B�1 EP

dP

dQ
(x, y)1fH m, n>bg

	 

� p2

� �

< B�1 p(nme�~ŁŁb � p),

where EP refers to (x, y) � �m 3 � n. Hence var( p̂pI)=var( p̂pD) < (nme�~ŁŁb � p)=(1 � p) ! 0

as b ! 1. The use of exponential tilting for the importance sampling of large-deviation

probabilities as in (3.1) has a long history and have been used successfully in many

sequential analysis and change-point detection problems (Siegmund 1976; Lai and Shan

1999; Chan and Lai 1999; 2000).

The finite-state automaton which has been used to describe the computation of the local

alignment score for affine penalty functions g(k) ¼ ˜þ �k, for k > 1 (Durbin et al. 1998),

can also be used to understand the recursive computation of the likelihood ratio

(dP=dQ)(x, y). Let there be three states : M signifing a match; I x signifying an unaligned

letter in the x sequence; and I y signifying an unaligned letter in the y sequence. A starting

point is picked from f1, . . . , mg3 f1, . . . , ng with starting state M , and the sequence of

states generated from the transitions M $ I x and M $ I y will determine the alignment

z. For example, if the starting point is (2, 3) and the sequence of states is

M ! I x ! M ! M ! I y ! I y ! M , then the sequence of pairs ‘emitted’ by these states

is (x2, y3), (x3, �), (x4, y4), (x5, y5), (�, y6), (�, y7), (x6, y8) and the alignment

z ¼ f(2, 3), (4, 4), (5, 5), (6, 8)g, with � denoting a gap space.

Let W1, . . . , W r denote the sequence of states corresponding to alignment z. Then by

(2.8), we can write

dQz

dP
(x, y) ¼ (nm)�1es

Yr

k¼1

Lk ,

where
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Lk ¼
e
~ŁŁK(xi t , y j t ), if W k is the t th M state ,

e�~ŁŁ(˜þ�), if W k ¼ I x or I y and W k�1 ¼ M ,

e�~ŁŁ�, if W k ¼ W k�1 ¼ I x or I y:

8<
: (3:4)

For known sequences x and y, we shall construct counters VM (i, j), VX (i, j) and VY (i, j)

for 0 < i < m, 0 < j < n, to update the sum of likelihood over Z when the finite-state

automaton visits the states M , I x and I y respectively at (i, j). For example, the alignment

z ¼ f(2, 3), (4, 4), (5, 5), (6, 8)g contributes a likelihood of

(nm)�1 esþ~ŁŁK(x2, y3) to VM (2, 3),

(nm)�1 esþ~ŁŁ[K(x2, y3)�(˜þ�)] to VX (3, 3),

(nm)�1 esþ~ŁŁ[K(x2, y3)�(˜þ�)þK(x4, y4)] to VM (4, 4),

..

. ..
.

(nm)�1 esþ~ŁŁ[K(x2, y3)�(˜þ�)þK(x4, y4)þK(x5, y5)�(˜þ�)��] to VY (6, 7):

In the simulation of Q, we consider the finite-state automaton to have stopped whenever a

match state M at (i, j) satisfies Hi, j > b (see step 3 in the construction of Q in the proof of

Theorem 1). We shall define counter VE(i, j) to record the sum of likelihood when this

occurs. Thus if H6,8 , b, z contributes a likelihood of (nm)�1esþ~ŁŁSz(x,y) to VM (6, 8) while if

H6,8 > b, the likelihood is contributed instead to VE(6, 8). The values of these counters can

be obtained from the initialization VM (i, j) ¼ VX (i, j) ¼ VY (i, j) ¼ 0 when i ¼ 0 or j ¼ 0

and the recurrence relations

VE(i, j) ¼ e
~ŁŁK(xi , y j)[VM (i � 1, j � 1) þ VX (i � 1, j � 1) (3:5)

þ VY (i � 1, j � 1) þ (nm)�1es]1fHi, j>bg,

VM (i, j) ¼ e
~ŁŁK(xi , y j)[VM (i � 1, j � 1) þ VX (i � 1, j � 1)

þ VY (i � 1, j � 1) þ (nm)�1es]1fHi, j,bg

VX (i, j) ¼ e�~ŁŁ(˜þ�)VM (i � 1, j) þ e�~ŁŁ�VX (i � 1, j),

VY (i, j) ¼ e�~ŁŁ(˜þ�)VM (i, j � 1) þ e�~ŁŁ�VY (i, j � 1),

for 1 < i < m and 1 < j < n, where the term (nm)�1es accounts for a new match starting at

(i, j). The likelihood ratio is
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dQ

dP
(x, y) ¼

X
z2Z

dQz

dP
(x, y) (3:6)

¼
Xn

i¼1

Xn

j¼1

VE(i, j) þ
X

i¼m or j¼n

VM (i, j)

þ
Xm�1

i¼1

Xn�1

j¼1

[(1 � e�s)(e�(m�i�1)� þ e�(n� j�1)�)=2]VM (i, j),

where the coefficient of VM (i, j) in the last line of (3.6) is the probability under Q that the

match at (i, j) is the last one given that Hi, j , b. Numerical examples involving the

estimator (3.1) using the algorithm (3.5)–(3.6) will be presented in Section 6 and compared

with the direct Monte Carlo estimator (3.2). The p-values computed are then used to examine

the sharpness of an upper bound of PfH m,n > bg derived in Section 5.

4. On substitution matrices and the hidden Markov model

Let q be a probability mass function on A3A and let H1 be the hypothesis that there

exists an alignment z between two sequences x and y such that

Pf(xi, yj) ¼ (x, y)g ¼ q(x, y), if (i, j) ¼ (it, j t) for some 1 < t < u,

�(x)�(y), otherwise:

�
(4:1)

Let H0 be the hypothesis that

Pf(xi, yj) ¼ (x, y)g ¼ �(x)�(y), for all 1 < i < m and 1 < j < n: (4:2)

If

K(x, y) ¼ log
q(x, y)

�(x)�(y)

	 

(4:3)

and g(1) ¼ 1 (no gaps allowed), then H m,n (see (2.1) and (2.2)) is a maximum likelihood

ratio statistic for testing H0 against H1. PAM and BLOSUM matrices are substitution

matrices of the form (4.3) and differ only in the derivation of q.

For the affine penalty function g(k) ¼ ˜þ �k with ˜ and � finite, the score H m,n can

also be expressed as a maximum likelihood ratio statistic by considering the hidden Markov

model as discussed in Durbin et al. (1998, Chapter 4). In the hidden Markov model, the

states M , I x and I y follow a Markov chain with transition matrix

�2Æ Æ Æ
1 � E E 0

1 � E 0 E

0
@

1
A

with 0 , Æ , 1=2 and 0 , E , 1. Let
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K(x, y) ¼ log
q(x, y)

�(x)�(y)

	 

þ log(1 � 2Æ), for x, y 2 A, (4:4a)

˜ ¼ �log
Æ(1 � E)
1 � 2Æ

	 

þ log E (4:4b)

� ¼ �log E: (4:4c)

The alignment z with u matches, v gap spaces (�) and w gaps has u � 1 � w transitions from

M to M , w each from M to I and from I to M , and v � w from I to I and hence, taking the

likelihood of the alignment z into account, the likelihood ratio between H1 and H0 for an

alignment z is

Yu

t¼1

q(xi t
, yj t

)

�(xi t
)�(yj t

)

 !
(1 � 2Æ)u�1�wÆw(1 � E)wEv�w

¼ exp
Xu

t¼1

K(xi t
, yj t

) � w˜� v�

 !
=(1 � 2Æ)

¼ eSz(x,y)=(1 � 2Æ):

Thus Sz(x, y) � log(1 � 2Æ) is the log-likelihood ratio statistic for the alignment z and H m,n

is a maximum likelihood ratio statistic.

Lemma 1. If (K, g) are defined as in (4.4), then condition (I) is satisfied.

Proof .By (2.4) and (4.4),

h(1) ¼ 1 þ 2
X
k>1

e�(˜þk�)

 ! X
x, y2A

eK(x, y)�(x)�(y): (4:5)

¼ 1 þ 2
Æ(1 � E)

(1 � 2Æ)(1 � E)

� � X
x, y2A

q(x, y)(1 � 2Æ)

¼
X

x, y2A
q(x, y) ¼ 1:

h

By (4.4a), we can carry out a correction of log(1 � 2Æ) in the PAM and BLOSUM

matrices. Then by Lemma 1 and Theorem 1, (K, g) would automatically lie in the

logarithmic region. In practice, however, such corrections are not performed as Æ is often

considered to be small and the correction of log(1 � 2Æ) would then not be significant.
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5. A sharper upper bound

While Theorem 1(i) is useful for showing that (K, g) lies in the logarithmic region, it can

be too crude for estimating p-values. The next theorem provides a sharper upper bound for

PfH m,n > bg. A numerical implementation of this theorem will be illustrated in an

example in Section 6.

Theorem 2. Let (K, g) be chosen to satisfy condition (I) and define ł(Ł) ¼ logh(Ł). Let

b . 0 and u0 ¼ db=maxx, y2AK(x, y)e be the minimal number of matches needed for an

alignment score to exceed b, where dxe is the smallest integer greater than or equal to x. Let

	 be a measure with support on [~ŁŁ, 1) and define


 ¼ min
u2Z,u0<u<min(m,n)

u

ð
e�uł(Ł)d	(Ł):

Then

PfH m,n > bg < nm

ð
(bŁþ 1)e�Łbd	(Ł)=
: (5:1)

If fK(x, y) : x, y 2 Ag [ fg(k) : k > 1g is lattice with span k and b is a multiple of k, we

can replace the right-hand side of (5.1) by nm
Ð

[bk�1(1 � e�kŁ) þ 1]e�Łbd	(Ł)=
.

Proof. Let Z i, j ¼ fz 2 Z : (i, j) 2 zg where (i, j) 2 f1, . . . , mg3 f1, . . . , ng, and

let the random variable

Ui , j ¼ maxfjzj : z 2 Z i , j , Sz(x, y) > bg, (5:2)

where, by convention, max˘ ¼ 0. We shall show later in the proof that

‘Ł(¼ ‘Ł,i, j) ¼
X1
u¼1

e�uł(Ł) P max
z2Z i , j

Sz(x, y) > b; Ui, j ¼ u

( )
< (bŁþ 1)e�Łb (5:3)

for all Ł > ~ŁŁ. Assuming first that (5.3) is true,

Xm

i¼1

Xn

j¼1

X1
u¼1

e�uł(Ł) P max
z2Z

i , j
Sz(x, y) > b; Ui , j ¼ u

( )
< nm(bŁþ 1)e�Łb: (5:4)

Let the random variable U ¼ maxfjzj : z 2 Z, Sz(x, y) > bg. Now if H m,n > b and U ¼ u,

we can find some z0 such that Sz0
(x, y) > b with jz0j ¼ u. Let z0 ¼ f(i t, j t) : 1 < t < ug.

Then, for each (i t, j t), 1 < t < u, z0 2 Z i t
, j t

and Uit
, j t

¼ u. Hence it follows that

Xm

i¼1

Xn

j¼1

X1
u¼1

e�uł(Ł) P max
z2Z

i , j
Sz(x, y) > b, Ui, j ¼ u

( )
>
X1
u¼1

ue�uł(Ł) PfH m,n > b, U ¼ ug:

(5:5)

From (5.4)–(5.5) and integrating Ł over the measure 	,
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PfH m,n > bg <
Xmin(m,n)

u¼u0

u

ð
e�uł(Ł)d	(Ł)PfH m,n > b, U ¼ ug (5:6)

< nm

ð
(bŁþ 1)e�Łbd	, (Ł),

and Theorem 2 is proved.

To show (5.3), we observe that

max
z2Z

i , j
Sz(x, y) ¼ max

z2Z(1)
Sz(x, y) þ max

z2Z(2)
Sz(x, y) � K(xi , yj), (5:7)

where Z(1)(¼ Z(1)

i , j) ¼ fz 2 Z : (i1, j1) ¼ (i, j)g and Z(2)(¼ Z(2)

i , j) ¼ fz 2 Z : (iu, ju)

¼ (i, j)g. In other words, Z(1) consists of all alignments with (i, j) as the first match

and Z(2) consists of all alignments with (i, j) as the last match. For z 2 Z(2), let

S9z(x, y) ¼ Sz(x, y) � K(xi , yj).

If S9z(2) (x, y) ¼ w for some z(2) 2 Z(2) and Sz(1) (x, y) > b � w for some z(1) 2 Z(1), then by

(5.7), Sz(x, y) > b, where z ¼ z(1) [ z(2), and hence by (5.2), Ui , j > U (2) þ U
(1)
b�w � 1,

where

U (2) ¼ min jzj : z 2 Z(2), Sz(x, y) ¼ max
z92Z(2)

Sz9(x, y)

� �
, (5:8a)

U (1)
c ¼ minfjzj : z 2 Z(1), Sz(x, y) > cg (5:8b)

Then as ł(Ł) > 0 for Ł > ~ŁŁ, it follows that

‘Ł ¼
X1
u¼1

e�uł(Ł) P max
z2Z i , j

Sz(x, y) > b, Ui, j ¼ u

( )
(5:9)

<

ð1
�1

X1
v¼1

e�(v�1)ł(Ł) P max
z2Z(2)

S9z(x, y) 2 dw, U (2) ¼ v

� �

3
X1
r¼1

e�rł(Ł) P max
z2Z(1)

Sz(x, y) > b � w, U
(1)
b�w ¼ r

� �
:

We shall show in the Appendix, using a technique similar to the proof of Theorem 1, that

X1
r¼1

e�rł(Ł) P max
z2Z(1)

Sz(x, y) > c, U (1)
c ¼ r

� �
< min(1, e�Łc): (5:10)

Let U (2)
c ¼ minfjzj : z 2 Z(2), S9z(x, y) > cg. Then U (2) > U (2)

c for all c < maxz2Z(2) S9z(x, y).

By (5.9), (5.10) and considering the two separate cases c . 0 and c < 0, it follows that
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‘Ł <
X1
v¼1

e�(v�1)ł(Ł) e�Łb

ðb

�1
eŁw P max

z2Z(2)
S9z(x, y) 2 dw, U (2) ¼ v

� � 
(5:11)

þ P max
z2Z(2)

S9z(x, y) > b; U (2) ¼ v

� ��

¼ Łe�Łb
X1
v¼1

e�(v�1)ł(Ł)

ðb

�1
eŁªP max

z2Z(2)
S9z(x, y) > ª, U (2) ¼ v

� �
dª

< Łe�Łb
X1
v¼1

e�(v�1)ł(Ł)

ðb

�1
eŁªP max

z2Z(2)
S9z(x, y) > ª, U (2)

ª ¼ v

� �
dª

since Ł
Ð w

�1 eŁªdª ¼ eŁw for w < b. We shall also show in the Appendix, as in (5.10), that

X1
v¼1

e�(v�1)ł(Ł) P max
z2Z(2)

S9z(x, y) > ª, U (2)
ª ¼ v

� �
< min(1, e�Łª): (5:12)

Equation (5.3) then follows from (5.9) and (5.11)–(5.12), bringing the summation in the last

line of (5.11) inside the integral and considering the two cases ª < 0 and ª . 0. For the

lattice case, it follows by (5.10), (5.12), the arguments of (5.9), (5.11) and

(1 � e�kŁ)
P

ª<w,ª2kZeŁª ¼ eŁw for w 2 kZ, that

‘(Ł) <
X
w2kZ

X1
v¼1

e�(v�1)ł(Ł) P max
z2Z(2)

S9z(x, y) ¼ w; U (2) ¼ v

� �

3
X1
r¼1

e�rł(Ł) P max
z2Z(1)

Sz(x, y) > b � w, U
(1)
b�w ¼ r

� �

<
X1
v¼1

e�(v�1)ł(Ł) e�Łb
X

w<b,w2kZ

eŁw P max
z2Z(2)

S9z(x, y) ¼ w, U (2) ¼ v

� � 

þ P max
z2Z(2)

S9z(x, y) > b þ k, U (2) ¼ v

� ��

¼ (1 � e�kŁ)e�Łb
X1
v¼1

e�(v�1)ł(Ł)
X

ª<b,ª2kZ

eŁªP max
z2Z(2)

S9z(x, y) > ª, U (2) ¼ v

� �

< (1 � e�kŁ)e�Łb
X1
v¼1

e�(v�1)ł(Ł)
X

ª<b,ª2kZ

eŁªP max
z2Z(2)

S9z(x, y) > ª, U (2)
ª ¼ v

� �

< [bk�1(1 � e�kŁ) þ 1]e�Łb,

and hence the result for the lattice case follows from the arguments of (5.4)–(5.6). h
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6. Examples

Example 1. Consider jAj ¼ 4 and � ¼ � uniform distributions on A. Let

K(x, y) ¼ 1, if x ¼ y

�1 if x 6¼ y,

�

and gap penalty g(k) ¼ ˜þ k. Simulations are performed using estimators (3.1) and (3.2),

while for an upper bound using (5.1) we consider 	 to be a discrete measure with

	((1 þ r=100)~ŁŁ) ¼ er=q, for r ¼ 0, . . . , 99: (6:1)

Various values of q were tried, and it was found that q ¼ 40 gave the sharpest upper bound.

These values are compared against the simulated values in Table 1.

It would seem from (5.6) that a good choice of 	 would be such that


u ¼ u
Ð

e�uł(Ł)d	(Ł) is close to 
 for a wide range of values of u > u0. This is true for

(6.1) with q ¼ 40 as can be seen in Table 2, thus suggesting that 	 can be chosen

essentially dependent only on (K, g).

Table 2. List of values of 
u for q ¼ 40.

˜ ¼ 4

u 15 16 17 18 19 20 21 22 23 24


u 224.9 223.3 221.9 220.8 219.9 219.1 218.4 217.9 217.5 217.1

u 25 26 27 28 29 30 31 32 33 34


u 216.8 216.6 216.5 216.3 216.3 216.2 216.2 216.2 216.3 216.4

˜ ¼ 5

u 15 16 17 18 19 20 21 22 23 24


u 252.7 251.1 249.7 248.7 247.8 247.1 246.5 246.1 245.7 245.4

u 25 26 27 28 29 30 31 32 33 34


u 245.2 245.1 245.0 244.9 244.9 244.9 245.0 245.1 245.2 245.3

Table 1. Estimates of PfH500,500 > bg. For simulations, B ¼ 10 000 repetitions.

b ˜ ~ŁŁ Upper bound (5.1) Direct MC (3.2) Importance sampling (3.1)

15 4 1.069 9:764 3 10�3 (5:4 � 1:0) 3 10�3 (6:036 � 0:051) 3 10�3

17 4 11:208 3 10�4 (2:0 � 2:0) 3 10�4 (6:962 � 0:062) 3 10�4

19 4 12:967 3 10�5 0 (7:802 � 0:073) 3 10�5

15 5 1.090 7:909 3 10�3 (5:4 � 1:0) 3 10�3 (5:457 � 0:040) 3 10�3

17 5 8:705 3 10�4 0 (6:086 � 0:046) 3 10�4

19 5 9:656 3 10�5 0 (6:714 � 0:054) 3 10�5
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Example 2. It follows by applying Theorem 1 on the BLOSUM62 matrix that the gap penalty

functions g(k) ¼ 18 þ k and g(k) ¼ 13 þ 3k lie in the logarithmic region. The upper bound

obtained using Theorem 2 with the discrete measure (6.1) for optimal q is approximately 10

times the asymptotic upper bound computed in Storey and Siegmund (2001), as can be seen

in Table 3.

For smaller gap penalty functions, for example, g(k) ¼ 11 þ k or g(k) ¼ 9 þ 2k,

condition (I) fails to hold. Rather than computing the upper bound, we compute a Monte

Carlo estimate based on a modification of the mixture distribution Q. Let ¨1 ¼
fŁ : ¸(Ł) , 1g, where ¸(Ł) is defined in (2.4). For Ł 2 ¨1, let c(Ł) 2 (0, 1) satisfy the

equation

¸(Ł)(1 þ 2c(Ł)
X
k>1

e�Ł g(k)) ¼ 1:

Pick Ł̂Ł to maximize c(Ł) over ¨1 and define es ¼ 1 þ 2c(Ł̂Ł)
P

k>1e�Ł̂Ł g(k) instead of (2.5).

Simulate (x, y) in steps 1–3 of the proof of Theorem 1 with Ł̂Ł replacing ~ŁŁ and (2.7) replaced

by

Pf(� t, � t) ¼ (0, 0)g ¼ ¸(Ł̂Ł),

Pf(� t, � t) ¼ (k, 0)g ¼ Pf� t, � t) ¼ (0, k)g ¼ ¸(Ł̂Ł)c(Ł̂Ł)e�Ł̂Ł g(k), for k ¼ 1, 2, . . . :

The recursive computation of VX and VY in (3.5) is replaced by

VX (i, j) ¼ e�Ł̂Ł(˜þ�)c(Ł̂Ł)VM (i � 1, j) þ e�Ł̂Ł�VX (i � 1, j),

VY (i, j) ¼ e�Ł̂Ł(˜þ�)c(Ł̂Ł)VM (i, j � 1) þ e�Ł̂Ł�VY (i, j � 1):

The simulation results in Table 4 show that the importance sampling estimator is effective

even in the estimation of a probability of the order of 10�6, whereas the direct Monte Carlo

estimator breaks down completely. The numerical estimates from Altschul and Gish (1996)

are determined empirically by fitting a Gumbel-type distribution, while the estimates from

Table 3. Estimates of PfH500,500 > 81g.

˜ � ~ŁŁ q Upper bound (5.1) Storey–Siegmund

18 1 0.2882 12 2:87 3 10�6 0:21 3 10�6

13 3 0.2857 13 3:57 3 10�6 0:22 3 10�6

Table 4. Estimates of PfH500,500 > 81g. For simulations, B ¼ 5000 repetitions.

˜ � Importance sampling (3.1) Direct MC (3.2) Storey–Siegmund Altschul–Gish

11 1 (2:74 � 0:15) 3 10�6 0 4:6 3 10�6 2:3 3 10�6

9 2 (1:484 � 0:072) 3 10�6 0 2:2 3 10�6 1:3 3 10�6
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Storey and Siegmund (2001) are based on the theoretical results of Siegmund and Yakir

(2000b).

By Lemma 1 and (4.4) (with a
ffiffiffi
2

p
log base as used in BLOSUM matrices) it also

follows that a correction of 0:5 in every entry of the substitution matrix would ensure that

the local alignment score increases at a logarithmic rate when g(k) ¼ 7 þ 2k. A refinement

of condition (I) is possible which we believe will show that g(k) ¼ 11 þ k lies in the

logarithmic region. However, the verification of this is computationally very intensive.

Example 3. Let x ¼ fx1, . . . , xng, y ¼ fy1, . . . , yng and let � ¼ � be uniform distributions

on A ¼ f0, 1g. Consider the problem of finding the expected length of the longest common

subsequence between x and y. This is equivalent to letting

K(x, y) ¼ 1, if x ¼ y,

�1, if x 6¼ y,

�

g(k) ¼ 0 for all k, and finding n�1EH n,n. For any consecutive string of 1s or consecutive

string of 0s, there is no loss of generality in trying to align the beginning of the string first.

Hence H n,n(x, y) ¼ maxz2Z1
Sz(x, y), where Z1 is the class of all alignments in Z such that,

for 1 < t < u � 1, xi 6¼ xi tþ1
for all i t , i , i tþ1 and yj 6¼ yj tþ1

for all j t , j , j tþ1. Let

Ka(0, 0) ¼ Ka(1, 1) ¼ 1 � a, Ka(0, 1) ¼ Ka(1, 0) ¼ �1, ga(k) ¼ ka=2 for k > 1, and

H (a)
m,n ¼ maxz2Z1

S(a)
z (x, y), where S(a)z(x, y) is the score for alignment z using the pair

(Ka, ga). Then

S(a)
z (x, y) ¼ Sz(x, y) � (iu � i1 þ ju � j1 þ 2)a=2 > Sz(x, y) � na,

implying that

n�1 H (a)
n,n(x, y) > n�1 H n,n(x, y) � a, for all x, y: (6:2)

Let us consider the following condition:

(II) There exists a positive solution Ła to the equation

1 þ 2
X
k>1

e
�(Ł ga(k)þk log 2)

 ! X
x, y2A

eŁKa (x, y)�(x)�(y) ¼ 1:

If (II) is satisfied, we let sa > 0 be such that

e�sa ¼
X

x, y2A
eŁa Ka(x, y)�(x)�(y) ¼ eŁa(1�a)=2: (6:3)

We can generate distribution Q(a) as in the proof of Theorem 1 with

Pf(� t, � t) ¼ (k, 0)g ¼ Pf(� t, � t) ¼ (0, k)g ¼ e
�(Ła ga(k)þklog 2)�sa

, for k ¼ 0, 1, . . . ,

in place of (2.7), and whenever i tþ1 < m and j tþ1 < n in step 2 we let xi ¼ 1 � xi tþ1
for

i t , i , i tþ1 and yj ¼ 1 � yj tþ1
for j t , j , j tþ1 instead of uniformly distributed on A.

Note that, by (6.3),
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Pf(xi t
, yj t

) ¼ (x, y)g ¼ eŁa Ka(x, y)þsa
¼

1=2, if (x, y) ¼ (0, 0),

1=2, if (x, y) ¼ (1, 1),

0, otherwise:

8<
:

If H (a)
n,n > b, then there exists z 2 Z1 with u matches and v gap spaces (�) such that

S(a)
z (x, y) > b and Hiu�1, ju�1 , b, so that

dQ(a)

dP
(x, y) >

dQ(a)
z

dP
(x, y)

¼ n�2 exp[ŁaS(a)
z (x, y) þ sa � v log 2]=(1=2)v > n�2eŁa b, (6:4)

since sa > 0. The factor of (1=2)v in the second line of (6.4) is due to the fact that xi is fixed

for i t , i , i tþ1 and yj fixed for j t , j , j tþ1 when generated under Q(a), whereas it has

probability 1=2 of taking either 0 or 1 under P. By (6.4), limn!1 n�1EH (a)
n,n ¼ 0 as in

Theorem 1. Hence limn!1 n�1EH n,n < a by (6.2). It can be shown numerically that

condition (II) is satisfied for 0 , a , 0:858 68 so that limn!1 n�1EH n,n < 0:858 68. This is

a modest improvement on the upper bound of 0:866 66 obtained by Chvátal and Sankoff

(1975).

Appendix

Proof of (5.10). We need only consider c . 0, since the case c , 0 follows from ł(Ł) > 0.

Let s1(Ł) be such that 1 þ 2
P

k>1e�Ł g(k) ¼ es1 (Ł) and s2(Ł) such that

fŁ(x, y) ¼ eŁK(x, y)þs2(Ł)�(x)�(y), for x, y 2 A,

is a probability mass function. Then by condition (I),

ł(Ł) ¼ log h(Ł) ¼ s1(Ł) � s2(Ł): (A:1)

Construct a mixture distribution Q(1) as follows:

1. Let (i1, j1) ¼ (i, j), xi � � for i , i1, yj � � for j , j1 and (xi1 , yj1 ) � fŁ.

2. Define recursively, for t > 1, i tþ1 ¼ i t þ 1 þ � t and j tþ1 ¼ j t þ 1 þ � t, where

Pf(� t, � t) ¼ (k, 0)g ¼ Pf(� t, � t) ¼ (0, k)g ¼ e�Ł g(k)�s1(Ł), for k ¼ 0, 1, . . . : (A:2)

If i tþ1 < m and j tþ1 < n, let xi � � for i t , i , i tþ1, yj � � for j t , j , j tþ1 and

(xi tþ1
, yj tþ1

) � fŁ.

3. Let z( t) ¼ f(ik , jk) : 1 < k < tg and repeat step 2 until U ¼ minft : Sz( t) > c or

i tþ1 . m or j tþ1 . ng. Let z ¼ z(U ), xi � � for i . iU and yj � � for j . jU. Let

Q(1)
z be the measure of (x, y) generated together with alignment z and

Q(1) ¼
P

z2Z(1) Q
(1)
z .
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If (x, y) 2 Au ¼ f(x, y) : maxz2Z(1) Sz(x, y) > c, U (1)
c ¼ ug (see (5.8b)), then there exists

some z 2 Z(1) with u matches such that Sz(x, y) > c. By the arguments of (2.8) and (A.1),

dQ(1)

dP
(x, y) >

dQ(1)
z

dP
(x, y) ¼ exp[ŁSz(x, y) þ us2(Ł) � (u � 1)s1(Ł)] (A:3)

> exp[Łc � uł(Ł)]

since s1(Ł) > 0. By (A.3),

X1
u¼1

e�uł(Ł) P(Au) ¼
X1
u¼1

e�uł(Ł)EQ(1)

dP

dQ(1)
(x, y)1Au

� �
< e�Łc

X1
u¼1

(EQ(1) 1Au
) < e�Łc: (A:4)

h

Proof of (5.12). As ł(Ł) > 0, we need only consider ª . 0. In this proof, we shall label the

matches of z ¼ f(i t, j t) : 1 < t < vg in decreasing order instead of the conventional

increasing order. Thus i1 . . . . . iv. Construct a mixture distribution Q(2) as follows:

1. Let (i1, j1) ¼ (i, j), xi � � for i > i1 and yj � � for j > j1.

2. Define recursively, for t > 1, i tþ1 ¼ i t � 1 � � t and j tþ1 ¼ j t � 1 � � t, where (� t, � t)

are distributed as in (A.2). If i tþ1 > 1 and j tþ1 > 1, let xi � � for i t . i . i tþ1,

yj � � for j t . j . j tþ1 and (xi tþ1
, yj tþ1

) � fŁ.

3. Let z( t) ¼ f(ik , jk) : 1 < k < tg and repeat step 2 until U ¼ minft : S9z( t) (x, y) > ª or

i tþ1 , 1 or j tþ1 , 1g. Let z ¼ z(U ), xi � � for i , iU and yj � � for j , jU. Let Q(2)
z

be the measure of (x, y) generated together with alignment z and Q(2) ¼
P

z2Z(2) Q(2)
z

.

Now if (x, y) 2 A(2)
v ¼ f(x, y) : maxz2Z(2) S9z(x, y) > ª, U (2)

ª ¼ vg (see the line after

(5.10)), then there exists some z 2 Z(2) with v matches such that S9z(x, y) > ª. By the

arguments of (2.8) and (A.1),

dQ(2)

dP
(x, y) >

dQ(2)
z

dP
(x, y) ¼ expfŁS9z(x, y) þ (v � 1)[s2(Ł) � s1(Ł)]g

> exp[Łª� (v � 1)ł(Ł)],

and (5.12) can be shown by the arguments of (A.4). h
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Chvátal, V. and Sankoff, D. (1975) Longest common subsequences of two random sequences. J. Appl.

Probab., 12, 306–315.

Dembo, A., Karlin, S. and Zeitouni, O. (1994) Limit distribution of maximal non-aligned two-

sequence segmental score. Ann. Probab., 22, 2022–2039.

Durbin, R., Eddy, S., Krogh, A. and Mitchison, G. (1998) Biological Sequence Analysis. Cambridge:

Cambridge University Press.

Gotoh, O. (1982) An improved algorithm for matching biological sequences. J. Mol. Biol., 162, 705.

Lai, T.L. and Shan, J. (1999) Efficient recursive algorithms for detection of abrupt changes in signal

and control systems. IEEE Trans. Automat. Control, 44, 952–966.

Mott, R. and Tribe, R. (1999) Approximate statistics of gapped alignments. J. Comput. Biol., 6,

91–112.

Neuhauser, C. (1994) A Poisson approximation for sequence comparisons with insertions and

deletions. Ann. Statist., 22, 1603–1629.

Siegmund, D. (1976) Importance sampling in the Monte Carlo study of sequential tests. Ann. Statist.,

4, 673–684.

Siegmund, D. and Yakir, B. (2000a) Tail probabilities for the null distribution of scanning statistics,

Bernoulli, 6, 191–213.

Siegmund, D. and Yakir, B. (2000b) Approximate p-values for local sequence alignments. Ann.

Statist., 28, 657–680.

Storey, J.D. and Siegmund, D. (2001) Approximate p-values for local sequence alignments: numerical

studies. J. Comput. Biol., 8, 549–556.

Waterman, M.S. (1995) Introduction to Computational Biology: Maps, Sequences and Genomes.

London: Chapman & Hall.

Waterman, M.S. and Vingron, M. (1994) Sequence comparison and Poisson approximation. Statist.

Sci., 9, 367–381.

Received August 2001 and revised May 2002

p-values for sequence alignments 199


