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We consider directed polymers in a random environment. Under some mild assumptions on the

environment, we prove equivalence between the decay rate of the partition function and some natural

localization properties of the path; some quantitative estimates of the decay of the partition function in

one or two dimensions, or at sufficiently low temperature; and the existence of quenched free energy.

In particular, we generalize to general environments the results recently obtained by Carmona and Hu

for a Gaussian environment. Our approach is based on martingale decomposition and martingale

analysis. It leads to a natural, asymptotic relation between the partition function, and the probability

that two polymers in the same environment, but otherwise independent, end up at the same point.
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1. Introduction

The models we consider in this paper are defined in terms of a random walk and of a

random environment. The process (fSngn>0, fPxgx2Zd ) is a simple random walk on the

d-dimensional integer lattice Zd . More precisely, let � be the path space � ¼
fø ¼ (øn)n>0; øn 2 Zd , n > 0g, let F be the cylindrical � -field on �, and, for all

n > 0, let Sn : ø 7! øn be the projection map. For any x 2 Zd we consider the unique

probability measure Px on (�, F ) such that S1 � S0, . . . , Sn � Sn�1 are independent and

PxfS0 ¼ xg ¼ 1,

PxfSn � Sn�1 ¼ 
� jg ¼ (2d)�1, j ¼ 1, 2, . . . , d,

where � j ¼ (�kj)
d
k¼1 is the jth vector of the canonical basis of Zd . For x ¼ 0 we will write P

instead of P0.

The random environment � ¼ f�(x, n) : x 2 Zd , n > 1g is an independent and identically

distributed (i.i.d.) sequence of random variables which are real-valued, non-constant, and

defined on a probability space (˛, E, Q) such that
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Q[exp( ��(x, n))] ,1, for all � 2 R: (1:1)

(Throughout, Q[Y ] denotes the Q-expectation of a random variable Y .) Let º( �) be the

logarithmic moment generating function of �(x, n),

º( �) ¼ ln Q[exp( ��(x, n))], � 2 R: (1:2)

For any n . 0, define the probability measure �n on the path space (�, F ),

�n(dø) ¼ P[en]
�1enP(dø), (1:3)

where

en ¼ en(�, S) ¼ exp
X

1< j<n

( ��(S j, j)� º( �))

 !
(1:4)

with a parameter � 2 R. Here, the graph f(S j, j)g j>0 may be interpreted as a polymer chain

living in (d þ 1)-dimensional space, constrained to stretch in the (d þ 1)th direction, and

governed by the Hamiltonian

��
X
j>1

�(S j, j),

that is, the so-called directed polymer in the environment �. Note that the term º( �), from

the exponent in (1.4), cancels out in definition (1.3). The reason for including it in (1.4) is to

normalize P[en], which now has expectation equal to 1. If � . 0, then the parameter � . 0

plays the role of the inverse temperature in this interpretation. Since this Hamiltonian is

parametrized by �, the polymer measure �n is random. The polymer is attracted to sites

where the random environment is large and positive, and repelled by sites where the

environment is large and negative. Here are two standard choices for �.

Example 1.1 Gaussian environment. This is the case in which �(x, n) is a standard normal

random variable, so that º( �) ¼ 1
2
�2 (Carmona and Hu 2002).

Example 1.2 Bernoulli environment. This is the case in which �(x, n) takes two different

values a and b with probability p . 0 and 1� p . 0, respectively, so that º( �) ¼
ln(pe�a þ (1� p)e�b) (Bolthausen 1989; Imbrie and Spencer 1988; Song and Zhou 1996). As

discussed by Johansson (2000, Remark 1.8), directed percolation can be understood as the

case of 0 ¼ a . b and zero temperature (�!1), which, however, is outside the scope of

this paper.

We are interested in the behaviour of the path fSkgnk¼1 for large n under the (sequence

of) polymer measures �n. As is the case in many other models in statistical mechanics, one

of the fundamental questions is the asymptotic behaviour of the partition function

Zn ¼ Zn(�) ¼ P[en]: (1:5)

Since Zn is a positive martingale on (˛, E, Q), the following limit exists Q-almost surely:
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Z1 ¼
def

lim
n%1

Zn: (1:6)

The event fZ1 ¼ 0g is measurable with respect to the tail � -field\
n>1

� [�(x, j); j > n, x 2 Zd],

and therefore, by Kolmogorov’s 0–1 law,

QfZ1 ¼ 0g ¼ 0 or 1: (1:7)

We refer to the former case as weak disorder and the latter as strong disorder. It is known

(see, for instance, Song and Zhou 1996) that, for d > 3,

QfZ1 ¼ 0g ¼ 0 if ª1( �) ¼def
º(2�)� 2º( �) , � ln(1� q), (1:8)

where q ¼ PfSn 6¼ 0 for all n > 1g; similar results for weak disorder were obtained by

Bolthausen (1989) and Sinai (1995). Note that ª1( �) is decreasing on (�1, 0], increasing on

[0, 1) and ª1(0) ¼ 0 so that the condition in (1.8) does hold if j�j is small. In dimension

d > 3, this condition amounts to L2-convergence in (1.6), and allows the so-called second

moment method to be used: for small � and d > 3, first Imbrie and Spencer (1988), and then

Bolthausen (1989) with martingale techniques, proved that the polymer is diffusive, that is,

�n[S
2
n] � n as n%1; more recently, Albeverio and Zhou (1996) showed that the invariance

principle holds for almost every environment. On the other hand, for strong disorder, it can be

seen that

QfZ1 ¼ 0g ¼ 1 if ª2( �) ¼def
�º9( �)� º( �) > ln(2d): (1:9)

This was shown by Kahane and Peyrière (1976) for a different model called the Mandelbrot

martingale (or, equivalently, multiplicative chaos), where graphs f(S j, j)g j>0 are replaced by

infinite paths, without loops and starting from the root, on the d-ary tree. Although the

directed polymer we are considering here is more intricate due to correlations, the same

argument applies for deducing (1.9). Note that ª2( �) is decreasing on (�1, 0], increasing on

[0, 1) and ª2(0) ¼ 0 so that the condition in (1.9) roughly says that j�j is large enough.

Recently, Carmona and Hu (2002) proved for the Gaussian environment that, for all � 6¼ 0,

QfZ1 ¼ 0g ¼ 1, d ¼ 1, 2, (1:10)

which, together with (1.8) and (1.9), displays a non-trivial dependence on the dimension.

In the present paper, we consider general environments and present some results mainly

for the strong disorder case, QfZ1 ¼ 0g ¼ 1, including the extension of (1.10) to the non-

Gaussian case. Using martingale analysis, we also obtain natural localization properties

which characterize the strong disorder regime. More precisely, the decay of the partition

function is equivalent to concentration of the path on favourite sites. All the proofs

presented in this paper are self-contained, except for that of Proposition 2.4(b).

Among other interesting subjects related to directed polymers are superdiffusivity and

critical exponents. We do not discuss these here, referring instead to Johansson (2000),

Licea et al. (1996), Petermann (2000) and Piza (1997) for relevant rigorous results.
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2. Results

On the product space (�2, F�2), we consider the probability measure ��2
n ¼ ��2

n (dø, d ~øø),

which we will view as the distribution of the couple (S, ~SS) with ~SS ¼ f ~SSkgk>0 an

independent copy of S ¼ fSkgk>0 with law �n. An important role in the analysis is played

by the random sequence

I n ¼ ��2
n�1(Sn ¼ ~SSn), (2:1)

which conveys some information on the localization of paths under �n; see (2.8) below.

Roughly, large values of I n 2 (0, 1] indicate that the polymer concentrates, at time n, on a

few significant sites, though small values indicate that it spreads out on a large number of

sites. Our basic result relates the partition function Zn and the expected intersection timeP
j<n Ij of two independent polymers in the same environment.

Theorem 2.1. Let � 6¼ 0. Then

fZ1 ¼ 0g ¼
X
n>1

I n ¼ 1
( )

, Q-a:s: (2:2)

Moreover, if QfZ1 ¼ 0g ¼ 1, then there exist c1, c2 2 (0, 1) such that

�c1 ln Zn <
X

1< j<n

Ij < �c2 ln Zn for large enough n, Q-a:s: (2:3)

We make a brief comment on the result. On the one hand, we recall the definition of weak

and strong disorder (see (1.7)), which is natural in view of the high-temperature behaviour (in

higher dimensions) (1.8) and the low-temperature behaviour (1.9). On the other hand, when

the polymer is strongly influenced by the environment, it is strongly attracted to sites with

favourable environment and it follows from definition (2.1) that I n takes large values. Our

result is a rigourous statement of equivalence of these two properties. The decay property of

Zn is reflected in some specific localization property of the path fSngn>1 under the random

measure (1.3). The proof of Theorem 2.1 is based on a general estimate for the summation of

i.i.d. random variables (Lemma 3.1 below) and martingale analysis.

The most interesting case relative to the following, straightforward corollary is an ¼ n,

n > 1.

Corollary 2.2. For � 6¼ 0 and a sequence an %1 of positive numbers, the following

properties are equivalent:

(Z1) There exists c . 0 such that

Q lim
n%1

� 1

an

ln Zn > c

( )
¼ 1: (2:4)

(I1) There exists c . 0 such that
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Q lim
n%1

1

an

X
1< j<n

Ij > c

( )
¼ 1: (2:5)

Remark 2.1. The equivalence presented in Theorem 2.1 was first shown by Carmona and Hu

(2002, Theorem 1.1 and Proposition 5.1) in the Gaussian case.

Some sufficient conditions for (Z1) and (I1) are provided by the following result.

Theorem 2.3. (a) (Z1) in Corollary 2.2 holds for an ¼ n if ª2( �) . ln(2d ); cf. (1.9).

(b) If � 6¼ 0, as n%1, then Q-a.s.,

Z n
¼ O(exp(�c1n

1=3)), if d ¼ 1,

! 0, if d ¼ 2,

�
where c1 is a positive constant.

Theorem 2.3 is proved by estimating the fractional moment Q[ZŁ
n], 0 , Ł , 1; see

Lemma 4.1 below. Besides the quantitative bound for the rate of decay for d ¼ 1 presented

above, we also give the quantitative bound for the fractional moment for d ¼ 1, 2 in the

course of the proof.

Remark 2.2. Theorem 2.3(b) generalizes Theorem 1.1 in Carmona and Hu (2002) to non-

Gaussian environments. Moreover, the proof in this paper sheds more light on the decay rate.

We now go on to discuss sufficient conditions for another localization property of the

polymer chain, described in terms of I n.

Proposition 2.4. Consider the following property:

(I2) There is a constant c 2 (0, 1) such that

lim
n%1

I n > c, Q-a:s: (2:6)

Then we have:

(a) (I2) holds if (Z1) holds with an ¼ n, in particular if ª2( �) . ln(2d ); cf. (1.9) and

Theorem 2.3(a).

(b) (I2) holds if d ¼ 1, 2.

(c) If QfZ1 . 0g ¼ 1, then, in contrast to (I2),

lim
n%1

I n ¼ 0, Q-a:s:

Assume, moreover that, ª1( �) , �ln(1� q); cf. (1.8). Then there is a constant c . 0

such that

I n ¼ O(n�c) in Q- probability: (2:7)
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A natural quantity of interest here, related to localization phenomenon, is the favourite

site for the path at time n. First observe that

max
x2Zd

�n�1(Sn ¼ x)2 < I n < max
x2Zd

�n�1(Sn ¼ x): (2:8)

Therefore, all statements obtained for I n can be translated into those for

maxx2Zd �n�1(Sn ¼ x). In particular, we showed in Proposition 2.4 that the probability of

the favourite site vanishes for weak disorder, but not for strong disorder. In the latter case the

polymer localizes (in a set of lattice points depending on the environment), though in the

former it spreads out somewhat similarly to the usual simple random walk.

Remark 2.3. Proposition 2.4(b) generalizes Theorem 1.2 in Carmona and Hu (2002) to non-

Gaussian environments. To prove this, we refer the readers to some of the arguments in

Carmona and Hu (2002).

Finally, we remark that the ‘quenched free energy’

lim
n%1

1

n
ln Zn

exists Q-a.s. under our assumption (1.1).

Proposition 2.5. The limit

ł( �) ¼ lim
n%1

1

n
Q[ln Zn] 2 (�1, 0]

exists. Moreover, for any 
 . 0, there is an n0 ¼ n0( �, 
) ,1 such that

Q

���� 1

n
ln Zn � Q

1

n
ln Zn

� 	���� . 


( )
< exp � 
2=3n1=3

4

� �
, n > n0: (2:9)

As a consequence,

lim
n%1

1

n
ln Zn ¼ ł( �), Q-a:s:

Remark 2.4. Inequality (2.9) is a concentration inequality with stretched exponential decay

rate. An inspection of our proof reveals that an exponential concentration result can be

obtained by a slightly stronger assumption. In fact, if we assume that there is a � . 0 such

that

Q[exp(�j�(x, n)j2)] ,1, (2:10)

then we obtain the following: for any 
 . 0, there is an n0 ¼ n0( �, 
) ,1 such that
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Q

���� 1

n
ln Zn � ł( �)

���� . 


( )
< exp � 
2n

c

� �
, n > n0, (2:11)

where c ¼ c( �) . 0. See Remark 6.1 below for the proof. Note also that (2.10) is true if

�(x, n) is a Gaussian or Bernoulli random variable as in Example 1.1 or Example 1.2.

Remark 2.5. We can define a similar model by considering a Markov chain

(fSngn>0, fPxgx2ˆ) on a certain state space ˆ instead of the random walk on Zd . The

proofs presented in this paper can be adapted to this generalization.

3. Proof of Theorem 2.1

We first state some technical estimates.

Lemma 3.1. Let 	i, 1 < i < m, be positive, non-constant i.i.d. random variables on a

probability space (˛, E, Q) such that

Q[	1] ¼ 1, Q[	3
1 þ ln2 	1] ,1:

For fÆig1<i<m � [0, 1) such that
P

1<i<m Æi ¼ 1, define a centred random variable

U . �1 by U ¼
P

1<i<m Æi	i � 1: Then there exists a constant c 2 (0, 1), independent of

fÆig1<i<m, such that

1

c

X
1<i<m

Æ2
i < Q

U 2

2þ U

� 	
, (3:1)

1

c

X
1<i<m

Æ2
i < �Q[ln(1þ U )] < c

X
1<i<m

Æ2
i , (3:2)

Q[ln2(1þ U )] < c
X

1<i<m

Æ2
i : (3:3)

Remark 3.1. These estimates are proved in Carmona and Hu (2002) for the Gaussian case

with the help of Brownian motion and making use of Itô’s formula. Here, we present a simple

argument which works in the general case.

We postpone the proof of Lemma 3.1 to the end of the section, and, assuming the

lemma, we begin our proof of Theorem 2.1.

For (2.2) and (2.3) to hold, it is enough to show that

fZ1 ¼ 0g �
X
n>1

I n ¼ 1
( )

, Q-a:s:, (3:4)

and that there exist c1, c2 2 (0, 1) such that

Directed polymers in a random environment 711



X
n>1

I n ¼ 1
( )

� �c1 ln Zn <
X

1< j<n

Ij < �c2 ln Zn for large enough n

( )
, Q-a:s:

(3:5)

The proof of (3.4) and (3.5) is based on Doob’s decomposition for the process �ln Zn.

It is convenient to introduce some more notation. For a sequence (an)n>0 (random or

non-random), we set ˜an ¼ an � an�1 for n > 1. We denote by E n the � -field generated by

f�(x, j); 1 < j < n, x 2 Zdg, and we denote by Q�
n the conditional expectation with respect

to Q given E n.
Let us now recall Doob’s decomposition in this context; any (E n)-adapted process

X ¼ fX ngn>0 � L1(Q) can be uniquely decomposed as

X n ¼ Mn(X )þ An(X ), n > 1,

where M(X ) is an (E n)-martingale and

A0 ¼ 0,

˜An ¼ Q
�
n�1[˜X n], n > 1:

Mn(X ) and An(X ) are called the martingale part and compensator of the process X ,

respectively. If X is a square-integrable martingale, then the compensator An(X
2) of the

process X 2 ¼ f(X n)
2gn>0 � L1(Q) is denoted by hX in and is given by the formula

˜hX in ¼ Q
�
n�1[(˜X n)

2]:

Here, we are interested in Doob’s decomposition of X n ¼ �ln Zn, whose martingale part

and compensator will be henceforth denoted Mn and An, respectively:

�ln Zn ¼ Mn þ An: (3:6)

To compute Mn and An, we introduce

Un ¼ �n�1[exp( ��(Sn, n)� º( �))]� 1:

It is then clear that

Zn=Zn�1 ¼ 1þ Un (3:7)

and hence that

˜An ¼ �Q�
n�1 ln(1þ Un), ˜Mn ¼ �ln(1þ Un)þ Q

�
n�1 ln(1þ Un): (3:8)

In particular,

˜hMin < Q
�
n�1 ln2(1þ Un): (3:9)

On the other hand, we have that

I n ¼
X
jzj1<n

�n�1(Sn ¼ z)2:

We now claim that there is a constant c 2 (0, 1) such that
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1

c
I n < ˜An < cI n, (3:10)

˜hMin < cI n: (3:11)

Indeed, both follow from (3.8), (3.9) and Lemma 3.1; f	ig, fÆig and Q in the lemma play

the roles of fexp( ��(z, n)� º( �))gjzj1<n, f�n�1(Sn ¼ z)gjzj1<n and Q
�
n�1.

We now derive (3.4) from (3.10), (3.11) as follows (the equalities and the inclusions here

being understood as holding Q-a.s.):

X
n>1

I n ,1
( )

¼ fA1 ,1g

¼ fA1 ,1, hMi1 ,1g

� fA1 ,1, lim
n%1

Mn exists and is finiteg

� fZ1 . 0g:

Here, on the third line, we have used a well-known property for martingales; see Durrett

(1995, (4.9), p. 255) or Neveu (1975).

Finally, we prove (3.5). By (3.10), it is enough to show that

fA1 ¼ 1g � lim
n%1
� ln Zn

An

¼ 1

� �
, Q-a:s: (3:12)

Thus, let us suppose that A1 ¼ 1. If hMi1 ,1, then, again by Durrett (1995, (4.9),

p. 255) or Neveu (1975), limn%1 Mn exists and is finite and therefore (3.12) holds. If, on the

other hand, hMi1 ¼ 1, then

� ln Zn

An

¼ Mn

hMin
hMin
An

þ 1! 1, Q-a:s:,

by (3.10), (3.11) and the law of large numbers for martingales; see Durrett (1995, (4.10),

p. 255) or Neveu (1975). This completes the proof of Theorem 2.1. h

Proof of Lemma 3.1. In this proof, we let c1, c2, . . . stand for constants which are

independent of fÆig1<i<m. We have, by direct computation, that

Q[U 2] ¼ c1

X
1<i<m

Æ2
i , Q[U 3] < c2

X
1<i<m

Æ2
i :

Then (3.1) is obtained as follows:
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c1

X
1<i<m

Æ2
i ¼ Q

Uffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ U
p U

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ U
p� 	

< Q
U 2

2þ U

� 	1=2

Q[2U 2 þ U 3]1=2

< c3Q
U 2

2þ U

� 	1=2 X
1<i<m

Æ2
i

 !1=2

:

To prove the other inequalities, it is convenient to define a function j :

(�1, 1)! [0, 1) by j(u) ¼ u� ln(1þ u), so that

�Q[ln(1þ U )] ¼ Q[j(U )]:

Since

1

4

u2

2þ u
< j(u), u . �1,

the left-hand inequality of (3.2) follows from (3.1). The right-hand inequality can be seen as

follows. We have, for any 
 2 (0, 1),

Q[j(U )] ¼ Q[j(U ) : 1þ U > 
]þ Q[j(U ) : 1þ U < 
]

< Q[j(U ) : 1þ U > 
]� Q[ln(1þ U ) : 1þ U < 
]:

Since j(u) < 1
2
(u=
)2 if 1þ u > 
,

Q[j(U ) : 1þ U > 
] < 1
2

�2Q[U 2]

¼ 1
2

�2c1

X
1<i<m

Æ2
i : (3:13)

We now set ª ¼ �Q[ln 	1] > 0 and choose 
 . 0 so small that ln(1=
)� ª > 1. We

introduce another centred random variable V ¼
P

1<i<mÆi(ln 	i þ ª). We then see from

Jensen’s inequality that

f1þ U < 
g ¼ fV � ª < ln(1þ U ) < ln 
g

� f�ln(1þ U ) < �V þ ªg \ f1 < �Vg:

Hence, we have

�Q[ln(1þ U ) : 1þ U < 
] < Q[�V : 1 < �V ]þ ªQf1 < �Vg

< (1þ ª)Q[V 2]

¼ c4

X
1<i<m

Æ2
i :
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This, together with (3.13), proves the right-hand inequality of (3.2).

The proof of (3.3) is similar. Indeed, since jln(1þ u)j < 
�1 ln(
�1)juj if 
 < 1þ u, we

have that

Q[ln2(1þ U ) : 
 < 1þ U ] < 
�2 ln2(
�1)Q[U 2]:

On the other hand,

f1þ U < 
g ¼ fV � ª < ln(1þ U ) < ln 
g

� fln2(1þ U ) < 2V 2 þ 2ª2g \ f1 < �Vg:

Therefore, we obtain

Q[ln2(1þ U ) : 1þ U < 
] < 2Q[V 2]þ 2ª2Qf1 < �Vg

< c5

X
1<i<m

Æ2
i :

h

4. Proof of Theorem 2.3

4.1. A sufficient condition for (Z1) via fractional moments

Lemma 4.1. Suppose that there exist constants c 2 (0, 1), Ł 2 (0, 1) and a sequence

an %1 such that

Q[ZŁ
n] < c exp(�an), n > 1: (4:1)

Then QfZ1 ¼ 0g ¼ 1. If, moreover,X
n>1

exp(��an) ,1 for some � 2 (0, 1),

then (Z1) holds.

Proof. The first statement follows from Fatou’s lemma and the second from the Borel–

Cantelli lemma. h

4.2. Proof of part (a)

We will check (4.1) with an ¼ cn for some c . 0. Set 	(x, j) ¼ exp( ��(x, j)� º( �)) and

Zx
n,m ¼ Px exp

X
1< j<m

( ��(S j, jþ n)� º( �))

 !" #
, n, m > 1: (4:2)

For Ł 2 (0, 1), by the subadditive estimate (uþ v)Ł < uŁ þ vŁ, u, v . 0, we obtain
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ZŁ
n < (2d )�Ł

X
x,jxj1¼1

(	(x, 1)Zx
1,n�1)Ł:

Since Zx
1,n�1 has the same law as Zn�1,

Q[ZŁ
n] < r(Ł)Q[ZŁ

n�1],

where r(Ł) ¼ (2d)1�ŁQ[	(x, 1)Ł]. Note that Ł 7! ln r(Ł) is convex and continuously

differentiable, and that ln(2d ) ¼ ln r(0) . ln r(1) ¼ 0. Therefore r(Ł) , 1 for some

Ł 2 (0, 1) if and only if 0 , d ln r(Ł)=dŁjŁ¼1, which is equivalent to ª2( �) . ln(2d).

4.3. Proof of part (b)

We will check (4.1) with

an ¼ c1n
1=3, if d ¼ 1,

c2

ffiffiffiffiffiffiffiffi
ln n
p

, if d ¼ 2,

�
(4:3)

for constants c1, c2 2 (0, 1). With this in mind, we first prove an auxiliary lemma.

Lemma 4.2. For Ł 2 [0, 1] and ¸ � Zd,

Q[ZŁ
n�1 I n] >

1

j¸jQ[ZŁ
n�1]� 2

j¸j P(Sn =2 ¸)Ł: (4:4)

Proof. Repeating the argument in Liggett (1985, p. 453), we have that

I n >
X
z2¸

�n�1(Sn ¼ z)2

>
1

j¸j �n�1(Sn 2 ¸)2

¼ 1

j¸j (1� �n�1(Sn =2 ¸))2

>
1

j¸j (1� 2�n�1(Sn =2 ¸))

>
1

j¸j (1� 2�n�1(Sn =2 ¸)Ł):

Note also that

Q[ZŁ
n�1�n�1(Sn =2 ¸)Ł] < Q[Zn�1�n�1(Sn =2 ¸)]Ł

¼ P(Sn =2 ¸)Ł:

Therefore,
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Q[ZŁ
n�1 I n] >

1

j¸jQ[ZŁ
n�1]� 2

j¸jQ[ZŁ
n�1�n�1(Sn =2 ¸)Ł]

>
1

j¸jQ[ZŁ
n�1]� 2

j¸j P(Sn =2 ¸)Ł:

h

Assume now that Ł 2 (0, 1), and define a function f : (�1, 1)! [0, 1) by

f (u) ¼ 1þ Łu� (1þ u)Ł:

It is then clear that there are constants c1, c2 2 (0, 1) such that

c1u
2

2þ u
< f (u) < c2u

2 for all u 2 (�1, 1): (4:5)

From (3.7), (4.5) and (3.1), we have that

Q
�
n�1˜ZŁ

n ¼ ZŁ
n�1Q

�
n�1((1þ Un)Ł � 1)

¼ �ZŁ
n�1Q

�
n�1 f (Un)

< �c3Z
Ł
n�1 I n:

Therefore, by (4.4),

QZŁ
n < 1� c3

j¸j

� �
Q[ZŁ

n�1]þ 2c3

j¸j P(Sn =2 ¸)Ł: (4:6)

For d ¼ 1, set ¸ ¼ (�n2=3, n2=3]. Then,

P(Sn =2 ¸) ¼ P

���� Sn

n1=2

���� > n1=6

 !
< 2 exp � n1=3

2

� �
,

so that (4.6) reads

QZŁ
n < 1� c3

2n2=3

� �
Q[ZŁ

n�1]þ 4c3 exp � n1=3

2

� �
:

It is not difficult to conclude (4.1) with an ¼ c1n
1=3 from the above.

For d ¼ 2, we set

¸ ¼ (�n1=2 ln1=4n, n1=2 ln 1=4n]2

to obtain (4.1) with an ¼ c2

ffiffiffiffiffiffiffiffi
ln n
p

in a similar way.
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5. Proof of Proposition 2.4

5.1. Proof of part (a)

This follows directly from (2.5).

5.2. Proof of part (b)

We now state the following lemma which corresponds to Lemma 2.2 in Carmona and Hu

(2002).

Lemma 5.1. Let 	i, 1 < i < m, be positive, non-constant i.i.d. random variables on a

probability space (˛, E, Q) such that

mŁ ¼
def

Q[	Ł1] ,1, for Ł ¼ 
4 and m1 ¼ 1:

For fÆig1<i<m � [0, 1)m such that
P

1<i<mÆi ¼ 1, define a centred random variable

U . �1 by U ¼
P

1<i<mÆi	i � 1: Then

1� 2(m2 � 1)(Æ1 þ Æ2)þ 1

C

X
1<i<m

Æ2
i < Q

	1	2

(1þ U )2

� 	
< m2

ffiffiffiffiffiffiffiffiffi
m�4

p
, (5:1)

m2 � 2(m3 � m2)Æ1 þ
1

C

X
1<i<m

Æ2
i < Q

	2
1

(1þ U )2

" #
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4m�4

p
, (5:2)

where C . 0 is a constant which depends only on m4.

Proof. Since the proofs of (5.1) and (5.2) are similar, we present that of (5.1) only.

Q[	1	2(1þ U )�2]2 < m2
2Q[(1þ U )�4]

< m2
2Q

X
1<i<m

Æi	
�4
i

" #

¼ m2
2m�4,

where, on the second line, we have used the Jensen inequality for the measure fÆig.
To prove the other inequalities, it is convenient to define a function j :

(�1, 1)! [0, 1) by j(u) ¼ (1þ u)�2 � 1þ 2u. By an elementary inequality,

cu2=(2þ u) < j(u), u . �1, we have

Q[	1	2(1þ U )�2] > 1� 2Q[	1	2U ]þ c1Q
	1	2U

2

2þ U

� 	
: (5:3)

On the other hand, we have by direct computation that
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Q[	1	2U ] ¼ (m2 � 1)(Æ1 þ Æ2),

1

c

X
1<i<m

Æ2
i < Q[	1	2U

2] < c
X

1<i<m

Æ2
i ,

Q[	1	2U
3] < c

X
1<i<m

Æ2
i :

Therefore,

1

c

X
1<i<m

Æ2
i < Q[	1	2U

2]

¼ Q

ffiffiffiffiffiffiffiffiffiffi
	1	2
p

Uffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ U
p ffiffiffiffiffiffiffiffiffiffi

	1	2

p
U

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ U
p� 	

< Q
	1	2U

2

2þ U

� 	1=2

Q[2	1	2U
2 þ 	1	2U

3]1=2

< cQ
	1	2U

2

2þ U

� 	1=2 X
1<i<m

Æ2
i

 !1=2

:

Drawing it all together, we obtain (5.1). h

With Lemma 5.1 established, Proposition 2.4(b) is obtained merely by following the

argument in Carmona and Hu (2002, Section 6), using our Lemma 5.1 in place of their

Lemma 2.2. In fact, Carmona and Hu used the specific properties of the Gaussian random

variable only in the proof of Lemma 2.2.

5.3. Proof of part (c)

The first statement is derived using the convergence of I n to 0. We now prove (2.7). Since

QfZ1 . 0g ¼ 1 in the present case – see (1.8) – it is enough to show that

Z2
n�1 I n ¼ O(n�c) (5:4)

in Q-probability. With ª ¼ º(2�)� 2º( �) , �ln(1� q), we compute
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Q[Z2
n�1 I n] ¼ Q[P�2(en�1(�, S)en�1(�, ~SS) : Sn ¼ ~SSn)]

¼ P�2(Q[en�1(�, S)en�1(�, ~SS)] : Sn ¼ ~SSn)

¼ P�2 exp ª
Xn�1

j¼1

1S j¼ ~SS j

8<:
9=; : Sn ¼ ~SSn

0B@
1CA

< P�2 exp Æª
Xn�1

j¼1

1S j¼ ~SS j

8<:
9=;

0B@
1CA

1=Æ

P�2(Sn ¼ ~SSn)
1=Æ9,

using Hölder’s inequality with the conjugate exponents Æ, Æ9. Since
P

j>11S j¼ ~SS j
is

geometrically distributed with failure probability 1� q 2 (0, 1) with q as in (1.8), the first

factor on the right-hand side is bounded for Æª , �ln(1� q). The second factor is

O(n�d=(2Æ9)). From this we obtain (2.7) for arbitrary c , d[1þ ª=ln(1� q)]=2.

6. Proof of Proposition 2.5

Though the first statement is well known, we give a proof here for completeness. Recall the

notation Zx
n,m introduced by (4.2) and note that, for m, n > 1,

Znþm ¼ Zn

X
x

�nfSn ¼ xgZx
n,m:

Since Zx
n,m has the same law as Zm, we have by Jensen’s inequality that

ln Znþm > ln Zn þ
X
x

�nfSn ¼ xgln Zx
n,m:

Recall also the notation E n and Q�
n introduced in the proof of Theorem 2.1. Taking

expectations and using independence, we obtain

Q[ln Znþm] > Q[ln Zn]þ Q
X
x

�nfSn ¼ xgQ�
n[ln Zx

n,m]] ¼ Q[ln Zn]þ Q[ln Zm],

"
that is, Q[ln Zn] is superadditive. From the superadditive lemma we see that

lim
n%1

1

n
Q[ln Zn] ¼ sup

n

1

n
Q[ln Zn] ¼ ł( �):

In order to prove (2.9), we write ln Zn � Q[ln Zn] as a sum of (E j)1< j<n-martingale

differences,

ln Zn � Q[ln Zn] ¼
Xn
j¼1

Vn, j,
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with Vn, j ¼ Q
�
j[ln Zn]� Q

�
j�1[ln Zn]. Set

êen, j ¼ exp
X

1<k<n,k 6¼ j

( ��(Sk , k)� º( �))

 !
, ẐZn, j ¼ P[êen, j]:

Clearly Q
�
j[ln ẐZ n, j] ¼ Q

�
j�1[ln ẐZn, j], and hence,

Vn, j ¼ Q
�
j ln

Zn

ẐZn, j

" #
� Q

�
j�1 ln

Zn

ẐZn, j

" #
:

By (3.2) in Lemma 3.1 with 	� ¼ 	(�, j) ¼ exp( ��(�, j)� º( �)) and Æ� ¼
P[êen, j : S j ¼ �]= ẐZ n, j, we have that

�Q�
j�1 ln

Zn

ẐZn, j

" #
¼ �Q�

j�1 Q ln
X
x

Æx	(x, j)

 !����E n, j

" #" #

2 [0, c],

where E n, j ¼ � [�(�, k); 1 < k < n, k 6¼ j]; note that 	(x, j) is independent of E n, j and that Æ�
is E n, j-measurable. Therefore, for Ł 2 R, we have by Jensen’s inequality that

Q[exp ŁVn, jjE n, j] < ecŁ
�
Q exp ŁQ�

j ln
Zn

ẐZn, j

" #����E n, j

" #

< ecŁ
�
Q

Zn

ẐZn, j

 !Ł����E n, j

24 35

¼ ecŁ
�
Q

X
x

Æx	(x, j)

 !Ł����E n, j

24 35
< ecŁ

�X
x

ÆxQ[	(x, j)ŁjE n, j]

¼ ecŁ
�X

x

ÆxQ[	(x, 1)Ł]

¼ expfcŁ� þ º(Ł�)� Łº( �)g,

where Ł� ¼ maxf0, �Łg. Finally, we conclude that

Q[expjVn, jj] < Q[exp(Vn, j)þ exp(�Vn, j)] < c1 ,1:

Therefore, the large deviation estimate for sums of martingale differences due to Lesigne and

Volný (2001, Theorem 3.2) applies to our case, yielding (2.9). The final statement in

Proposition 2.5 is now a simple consequence of the Borel–Cantelli lemma.
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Remark 6.1. The stronger assumption (2.10) implies the exponential concentration (2.11). In

what follows, ci ¼ ci(�) (i ¼ 1, 2) and ci ¼ ci( �, �) (i ¼ 3, 4, . . .) are positive constants.

Note first that (2.10) implies that º( �) < c1 þ c2�2 for all � 2 R, and hence that

Q[exp(ŁVn, j)jE n, j] < exp(c3 þ c4Ł
2), for all Ł 2 R, (6:1)

by the computations in our proof of Proposition 2.5. By expanding the exponential and using

the fact Q[Vn, jjE n, j] ¼ 0, we can improve (6.1) into the stronger form

Q[exp(ŁVn, j)jE n, j] < exp(c5Ł
2), for all Ł 2 R: (6:2)

It is now straightforward to show that (2.11) follows from (6.2) and a standard Gaussian

estimate for a martingale.

Acknowledgements

We would like to thank Philippe Carmona and Yueyun Hu for sending us the preprint of

their paper prior to its publication. FC wishes to thank the Graduate School of Science of

Kyoto University for its hospitality. FC is partially supported by CNRS UMR 7599,
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