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We study the superposition process of a class of independent renewal processes with long-range

dependence. It is known that under two different scalings in time and space either fractional Brownian

motion or a stable Lévy process may arise in the rescaling asymptotic limit. It is shown here that in a

third, intermediate scaling regime a new limit process appears, which is neither Gaussian nor stable.

The new limit process is characterized by its cumulant generating function and some of its properties

are discussed.
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1. Introduction

This study is concerned with the asymptotic scaling behaviour of sums of independent

random processes with long-range dependence. Specifically, the long-range dependent

process will be a renewal counting process with heavy-tailed inter-renewal times. It is

known that the superposition process of independent copies of such processes, suitably

scaled, may exhibit rescaling limits. In fact, different limit processes may arise depending

on the details of the rescaling scheme.

To explain the framework, consider

1

b(m, T )

Xm
i¼1

(X i
Tt � cTt),

the summation process of m independent and identically distributed copies of a centred

random process fXtg, where b(m, T ) is a normalization constant as m and T tend to infinity.

Taqqu and Levy (1986), and recently Levy and Taqqu (2000), take Xt to be a renewal–

reward process and study the limit under assumptions of heavy tails of both renewal times

and rewards, hence implementing Mandelbrot’s (1969) idea of using renewal–reward

processes with a heavy-tailed distribution of the inter-renewal times to study long-range

dependence phenomena in physics and economics. The scaling limits investigated in

Willinger et al. (1997) and Taqqu et al. (1997) refer to the case Xt ¼
Ð t

0
Zs ds, where fZtg is

an on/off process with heavy-tailed distributions for on periods, off periods, or both. This

application is related to the nature of network traffic, with fZtg being a traffic rate process,

and the results discussed in Willinger et al. (1997) relate a global self-similarity property,
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claimed to be intrinsic to Internet traffic, to the local property of heavy-tailed distributions of

on or off periods. The main result for both of these models is that if m tends to infinity first,

followed by T, then the rescaled process converges to fractional Brownian motion, whereas if

the order of the limit operations is reversed then the limit is a stable Lévy motion.

This motivates the search for a simultaneous limit regime in which one of the parameters

m or T is a function of the other, with the hope of finding a new limiting process which

would provide the ‘missing link’ between fractional Brownian motion and stable Lévy

motion. This is the idea behind this paper, as well as those of Mikosch et al. (2002) for on/

off processes (and the infinite-sources Poisson model) and Pipiras et al. (2002) for a class

of renewal-rate processes. It is shown by Mikosch et al. (2002) that the limit process

depends on the ‘connection rate’, i.e. on the rate of growth of the number of users

m ¼ M(T ) compared to the time scale T Æ�1, where Æ is the regular variation exponent of

the tail of the distribution of the on periods. However, the limiting processes are still the

same as in the double-limit case. That is, if the connection rate is fast, meaning that M(T )

grows faster than T Æ�1, the limit is fractional Brownian motion. If the connection rate is

slow the rescaled process converges to a stable Lévy motion. Analogous results are reported

in Pipiras et al. (2002) for the case of renewal-rate processes.

We investigate the third limiting regime corresponding to an ‘intermediate’ connection

rate, using standard renewal processes with heavy-tailed inter-renewal time distribution, and

derive a new non-Gaussian and non-stable limit process. Section 2 introduces the model,

and Section 3 contains the main convergence result. Section 4 studies various properties of

the limit process. In Section 5 we bring together the results for the underlying heavy-tailed

renewal process required for the proof, some of which may also be of independent interest.

Finally, in Section 6 we give a proof of the theorem based on cumulant generating

functions.

2. A renewal-based model for the arrival process

Consider the renewal process fSng generated by a sequence of independent non-negative

random variables fUkgk>1, i.e. Sn ¼
Pn

k¼1Uk . The inter-renewal times fUkgk>2 are

supposed to be identically distributed with distribution function F(t), while the distribution

of the first inter-renewal time U1 can be different. Our basic assumption is that the inter-

renewal distribution F(t) has a regularly varying tail with exponent 1þ �, 0 , � , 1, i.e.

there exists a slowly varying function L(t) such that

1� F(t) � t�(1þ�)L(t), as t!1: (1)

Thus the variables Uk , k > 2, possess finite expectation � but the variance is infinite. As for

the distribution of the first renewal U1, in the context of our applications it is natural to

choose it to be equal to the equilibrium distribution

F1(t) ¼ 1

�

ð t
0

(1� F(s))ds,
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so that the resulting renewal point process becomes stationary. In particular, this implies that

the corresponding renewal counting process,

Nt ¼ maxfn : Sn < tg,

has stationary increments. The usual pure renewal processes, with the same distribution F(t)

for all renewal intervals, also emerge as we proceed. Henceforth, we denote by Nt the

stationary renewal counting process, while ~NNt corresponds to a pure renewal process.

Let fN (i)
t g, i ¼ 1, . . . , m, be m independent copies of the stationary renewal counting

process fNtg. We are interested in the asymptotic properties of the superposition process

W (m, t) ¼
Xm
i¼1

N
(i)
t ,

which counts the total number of renewal events occurring in corresponding renewal

sequences fS(i)
n g, i ¼ 1, . . . , m, up to time t > 0.

The summation processes discussed in Section 1 have been suggested as models for the

total workload at a network node arising from m independent sources sharing a common

medium, such as a local area network. In the light of such applications the process studied

here can be thought of as a rudimentary packet arrival model with heavy tails, which in a

sense acts as a skeleton for more detailed models designed to capture the workload

behaviour in real systems. In this simple model source i generates one packet at each time

epoch fS(i)
n gn>1. The amount of work from source i up to time t > 0 is N

(i)
t , and W (m, t)

represents the cumulative arrival process of the system counting the accumulated work

generated by all users. We will investigate the behaviour of the (rescaled) process W (m, t)

as the number of sources m grows to infinity and time is suitably rescaled, under the

assumption that the distribution of packet inter-arrival times is heavy-tailed.

3. Convergence result

Our object of interest is the centred and rescaled process

Y (m)(t) ¼ 1

bm

W (m, am t)�
mam t

�

� �
, (2)

where the sequence am governs the rescaling of time and bm is the corresponding

normalization of ‘space’. The centring sequence mamt=� corresponds to the expected value

EW (m, t) ¼ mt=�.

We assume that the scaling sequence am is any sequence such that am !1. The rate of

growth of am relative to m determines the asymptotic behaviour of Y (m) as m!1, and it

is known that the choice of such growth rate conditions results in a fundamental dichotomy

in the asymptotic limit under the rescaling scheme (2). Essentially, if am grows slowly

compared to m then the limit is fractional Brownian motion, and if am grows fast relative

to m the limit is a stable Lévy process. The contribution in this work is the derivation of a
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new limit process under a third, intermediate, limit regime. Thus we will discuss the

following three options:

• fast connection rate (number of users grows faster than rescaling of time),

mL(am)

a
�
m

!1; (FCR)

• slow connection rate (time is rescaled faster than the number of users grows),

mL(am)

a
�
m

! 0; (SCR)

• intermediate connection rate (time is rescaled proportionally to the growth of the

number of users),

mL(am)

a
�
m

! �: (ICR)

The conditions (FCR) and (SCR) are equivalent to the fast- and slow-growth conditions used

in Mikosch et al. (2002), as can be verified similarly to their Lemma 1.

Some further remarks are in order concerning the choice of the rescaling scheme (2). In

this paper the time scale am is taken to be a function of the number of users m, and the

rescaled process W (m, am t) is studied as m tends to infinity. In contrast, Mikosch et al.

(2002) consider the number of users M(T ) in the on/off model and the connection intensity

º(T ) in the M=G=1 model to be functions of a time parameter T, and let T tend to

infinity. The latter limiting scheme is also used by Taqqu and Levy (1986) and Pipiras et al.

(2002) in the renewal–reward process setting. This is in effect an inverse scaling as

compared to (2), which in our case would correspond to the process W (mT , Tt), where

T !1. In the limiting scheme (2) the sequence am can be regarded as an inverse function

of M(T ).

The term ‘connection rate’ is used above in a descriptive sense, only indicating the

relationship between the number of sources and the time interval over which the sources are

active, and should not be thought of as a rate in the sense of number of connected users per

unit of time.

We begin by stating in Theorem 1 the limit results for Y (m) under (FCR) and (SCR)

scaling. The results are in complete analogy with those found by Mikosch et al. (2002) and

Pipiras et al. (2002) for the more complex but related models studied in these papers, in the

case where the heavy tails are parametrized by a single parameter. In our case of simple

renewal processes the proof of convergence under (FCR) can be carried out by modifying

selected parts of the proof of Theorem 2 below (see Section 6.5). The convergence result

under (SCR) will be discussed in a more general framework elsewhere.

Theorem 1. Under assumption (1) and either (FCR) or (SCR) the following limiting relations

hold:

(a) Under condition (FCR), as m!1,
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W (m, am t)� mamt=�

m1=2a
1��=2
m L(am)1=2

) ��3=2��BH (t), � 2
� ¼

2

�(1� �)(2� �)
, (3)

where ) denotes weak convergence of processes in the space of cadlag functions and

BH (t) is standard fractional Brownian motion with index H ¼ 1� �=2.

(b) Under condition (SCR), let L�(u) be a slowly varying function at infinity such that

L(u1=(1þ�)L�(u))=L�(u)1þ� ! 1 as u!1. Then as m!1,

W (m, am t)� mamt=�

(mam)1=(1þ�)L�(mam)
!fdd���(2þ�)=(1þ�)¸Æ(t), (4)

where !fdd denotes convergence of the finite-dimensional distributions and ¸Æ(t) is Æ-

stable Lévy motion with index Æ ¼ 1þ �, such that ¸Æ(t) � SÆ(c
�1=Æ
Æ t1=Æ, 1, 0),

cÆ ¼ (1� Æ)=(ˆ(2� Æ)cos(�Æ=2)).

Our main result establishes a new limit process in the asymptotic regime between parts

(a) and (b) of Theorem 1, corresponding to the condition (ICR), where the appropriate

norming sequence in (2) is seen to be simply bm ¼ am.

Theorem 2. Under assumption (1) and the intermediate growth condition (ICR), as m!1
the weak convergence of processes

Y (m)(t) ¼ 1

am

Xm
i¼1

N
(i)
am t
� am t

�

� �
¼ W (m, am t)� mam t=�

am

) ���1Y�(t) (5)

holds, where Y�(t) is a zero-mean, non-Gaussian and non-stable process with stationary

increments. The limit process is not self-similar, it is continuous and has finite moments of all

orders. The finite-dimensional distributions of the increments of Y�(t) are characterized by

the following cumulant generating function:

log E exp
Xn
i¼1

Łi(Y�(ti)� Y�(ti�1))

( )
¼ 1

�

Xn
i¼1

Ł2
i

ð t i� t i�1

0

ðv
0

exp(Łiu)u�� du dv

þ 1

�

Xn�1

i¼1

Xn
j¼iþ1

ŁiŁ j exp
Xj�1

k¼iþ1

Łk(t k � t k�1)

0@ 1A
3

ð ti� t i�1

0

dv

ð t j� t j�1

0

exp(Ł ju)exp(Łiv)(t j�1 � ti þ uþ v)�� du, (6)

where 0 ¼ t0 , t1 , . . . , t n.

Remark. We have chosen the constant in front of the process Y�(t) in (5) to be negative since

it turns out that the limit process of Y (m)(t) has negatively skewed marginal distributions.

Hence Y�(t) is ‘positively skewed’.
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4. Properties of the limit process

4.1. Elementary properties

Property 1 (Marginal distributions). The cumulant generating function of the marginal

distributions of Y�(t) is

log EeŁY�( t) ¼ Ł2

�

ð t
0

ðv
0

eŁuu�� du dv: (7)

This also can be written as

log EeŁY�( t) ¼ Ł2 t2��

�(1� �)(2� �)
M(1� �, 3� �; Łt), (8)

where

M(a, b; z) ¼ ˆ(b)

ˆ(a)

X1
k¼0

ˆ(aþ k)z k

ˆ(bþ k)k!

is Kummer’s special function from the family of confluent hypergeometric functions.

Proof. Expression (7) follows from (6) with n ¼ 1. To prove (8), observe that for parameter

values with Re b . Re a . 0 Kummer’s function M(a, b; z) possesses the following integral

representation (Abramowitz and Stegun 1992, Formula 13.2.1):

M(a, b; z) ¼ ˆ(b)

ˆ(a)ˆ(b� a)

ð1

0

ezuua�1(1� u)b�a�1 du:

On the other hand, changing the order of integration in the double integral (7), together with

the change of variables u9 ¼ u=t, gives

ð t
0

ðv
0

eŁuu�� du dv ¼ t2��
ð1

0

eŁ tuu��(1� u)du,

and (8) follows. h

Property 2 (Moments). The process Y�(t) has finite moments of all orders. In particular,
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EY�(t) ¼ 0,

EY 2
�(t) ¼ 2

�(1� �)(2� �)
t2��, (9)

Skewness ¼
E[Y 3

�(t)]

E[Y 2
�(t)]3=2

¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(2� �)

p
(1� �)3=2ffiffiffi

2
p

(3� �)
t�=2,

Kurtosis ¼
E[Y 4

�(t)]

E[Y 2
�(t)]2

¼ 3 1þ �(1� �)2(2� �)2

(3� �)(4� �)
t�

 !
:

In general, for k > 1,

EY k
�(t) � (k � 1)k

�(k � 1� �)(k � �)
t k��, as t!1: (10)

Proof. Since the moment generating function of Y�(t) exists for each real Ł, all moments are

finite. Relation (8) yields

log EeŁY�( t) ¼ 1

�

X1
k¼2

(k � 1)k t k��Łk

(k � 1� �)(k � �)k!
:

The cumulants of the marginal distribution are now obtained by differentiation with respect to

Ł:

Ck(t) ¼
dk

dŁk
log EeŁY�( t)

����
Ł¼0

¼ (k � 1)k

�(k � 1� �)(k � �)
t k��: (11)

In our case, since EY�(t) ¼ C1(t) ¼ 0, the first three moments of Y�(t) are equal to the

cumulants. Computations for any higher moment can also be carried out but do not lead to

simple expressions. However, the moments have the same asymptotic behaviour when t!1
as the cumulants, and thus (10) follows from (11). h

Property 3 (Covariance). The covariance function of Y�(t) equals

EY�(t)Y�(s) ¼ � 2
�(t2�� þ s2�� � jt � sj2��), (12)

where the constant � 2
� is defined in (3).

Proof. Since the process Y�(t) has stationary increments, (12) follows from (9):

EY�(t)Y�(s) ¼ 1

2
(var[Y�(t)]þ var[Y�(s)]� var[Y�(t � s)]):

h
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Property 4 (Regularity). The trajectories of the process Y�(t) are Hölder continuous of

order ª, for any 0 , ª , 1.

Proof. This property follows from the general asymptotic form (10) of the moments by

applying the Kolmogorov–Chentsov criterion (Karatzas and Shreve (1991), Theorem 2.8).

h

4.2. Relation to fractional Brownian motion

We have seen above that the first two moments of Y�(t) coincide with the corresponding

moments of the (multiple of) fractional Brownian motion ��BH (t) with index H ¼ 1� �=2,

while higher-order cumulants and moments are different. For comparison with (10),

EBk
H (t) � const t k(1��=2), as t!1:

The Kolmogorov–Chentsov criterion applied to this case yields that fractional Brownian

motion of index H is Hölder continuous of order ª only for 0 , ª , H. Consequently, the

process Y� is more regular than fractional Brownian motion.

Note also that the process Y�(t) has the same covariance function as the (multiple of)

fractional Brownian motion ��BH (t). Since this function is self-similar in the sense of self-

similarity of deterministic functions, the process Y�(t) is second-order self-similar. However,

it is not self-similar in general. The relationship of the limit process Y� to fractional

Brownian motion as well as its scaling properties are further clarified in the next result.

Corollary 1. The process Y�(t) obeys the scaling limit relation

cHY�(t=c)) ��BH (t), H ¼ 1� �

2
, c!1, (13)

in the sense of weak convergence of continuous processes.

Proof. This result is easily derived from (6), by observing that the cumulant generating

function of the finite-dimensional distributions of increments of fractional Brownian motion

with index H ¼ 1� �=2 can be written
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log E exp
Xn
i¼1

Łi(BH (ti)� BH (ti�1))

( )

¼ 1

2

Xn
i¼1

Xn
j¼1

ŁiŁ j cov(BH (ti)� BH (ti�1), BH (tj)� BH (t j�1)Þ

¼ 1

2

Xn
i¼1

Xn
j¼1

ŁiŁ j jti�1 � t jj2�� � jti � t jj2�� þ jti � t j�1j2�� � jti�1 � t j�1j2��
� 


¼ �1

Xn
i¼1

Ł2
i

ð t i� ti�1

0

ðv
0

u�� du dv

þ �1

Xn�1

i¼1

Xn
j¼iþ1

ŁiŁ j

ð t i� t i�1

0

ð t j� t j�1

0

(t j�1 � ti þ uþ v)�� du dv,

where �1 ¼ (1� �)(2� �). By comparing this representation with (6), it is seen that under

the scaling (13) all the exponential factors appearing in (6) are wiped out, leaving only the

Gaussian distribution of the fractional Brownian motion. h

4.3. Relation to stable Lévy motion

In order to indicate the relationship of Y�(t) to a stable Lévy motion, consider the stable

Lévy motion ¸Æ(t) with marginal distributions totally skewed to the right, which appears in

(4). The cumulant generating function of (¸Æ(t1), . . . , ¸Æ(tn)) exists for (Ł1, . . . , Łn) such

that Łi < 0, i ¼ 1, . . . , n (Samorodnitsky and Taqqu 1994, Proposition 1.2.12), even if it

does not characterize the distribution. Since the increments of the process ¸Æ(t) are

independent and ¸Æ(ti)�¸Æ(ti�1) � SÆ(c
�1=Æ
Æ (ti � ti�1)1=Æ, 1, 0), where cÆ is as introduced

in (4), the same proposition yields

log E exp
Xn
i¼1

Łi(¸Æ(ti)�¸Æ(ti�1))

( )
¼
Xn
i¼1

log E exp Łi(¸Æ(ti)�¸Æ(ti�1))f g

¼ � cÆ cos
�Æ

2

� ��1Xn
i¼1

(�Łi)Æ(ti � ti�1)

¼ � 1

�

Xn
i¼1

Ł2
i

ð t i� t i�1

0

ð1
0

eŁi uu�� du dv:

This expression may now be compared with (6).
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4.4. Interpretation as packet arrival model

Recall that an application we have in mind of the summation scheme in (2) is that W (m, t)

counts the accumulated number of packets generated by m independent users sharing a

common medium, when the arrival stream from each source is characterized by a heavy-

tailed interarrival distribution. It follows from Theorem 2, applying (ICR), that for large m,

W (m, t) � mt

�
� am

�
Y�

t

am

� �
� mt

�
� 1

�3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL(am)

p
a1��=2
m Y�

t

am

� �
:

Invoking Corollary 1 as well gives the coarser approximative representation

W (m, t) � 1

�
mt � ��

�3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL(am)

p
B1��=2(t):

This provides a verification of the model for Ethernet-type traffic proposed by Norros (1995).

A more comprehensive discussion of arrival process modeling with long-range dependence

and further references can be found in Kaj (2002).

5. Some properties of renewal processes

To prepare for the proof of Theorem 2 we need structure results for the functionals

E[exp(
Pn

i¼1ŁiN ti )] as well as the precise asymptotics of high-order moments E(Nt � t=�)k ,

and the analogous results for the pure renewal process ~NNt. The technical key to our proof

of Theorem 2 is Proposition 1 below, which is somewhat related to an integral equation in

Kaj and Sagitov (1998, Lemma 3), derived in a different context.

5.1. Moment generating function for the n-dimensional distributions

We give two results for the multivariate moment generating functions of general renewal

processes, not necessarily subject to a tail condition such as (1). It is assumed only that

fNtg is a stationary renewal process with inter-renewal times fUngn>2 having distribution

function F(t) and finite mean value � ¼ E(Un), and that the first renewal time has the

equilibrium distribution F1(t). The notation f ~NNtg is used for the corresponding pure

renewal process with all inter-renewal times having the same distribution function F(t).

Proposition 1. Fix n > 2 and a sequence of time points 0 < t1 < . . . < t n. The moment

generating function of the finite-dimensional distributions of the stationary renewal counting

process fNtg satisfies the recurrence relation
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E exp
Xn
i¼1

ŁiN ti

 !" #
¼ E exp

Xn
i¼2

ŁiN ti

 !" #

þ 1� exp(�Ł1)

1� exp �
Xn
i¼1

Łi

 !ð t1
0

E exp
Xn
i¼2

Łi ~NNti�u

 !" #
dE exp Nu

Xn
i¼1

Łi

 !" #
,

(14)

where ~NNt is the corresponding pure renewal counting process.

Proof. We have

E exp
Xn
i¼1

ŁiN ti

 !" #
� E exp

Xn
i¼2

ŁiN ti

 !" #
¼ E exp

Xn
i¼2

ŁiN ti

 !
(exp[Ł1Nt1 ]� 1)

" #
:

By summing over all jumps in (0, t1] the term on the right-hand side can be written

E exp
Xn
i¼2

ŁiN ti

 !
(exp[Ł1Nt1 ]� 1)

" #

¼ E
X1
j¼1

1fS j< t1g exp
Xn
i¼2

ŁiN ti

 !
(exp[Ł1NS j

]� exp[Ł1NS j� ])

24 35

¼ E
X1
j¼1

1fS j< t1g exp
Xn
i¼2

Łi(Nti � NS j
)

 !
� exp

Xn
i¼1

ŁiNS j�

 !
exp

Xn
i¼2

Łi

 !
(exp[Ł1]� 1)

24 35:
For any j and i > 2, on the set fS j < t1g the increment Nti � NS j

has the same distribution

as Nti�S j
, by stationarity. Now conditional on fS j ¼ ug, Nt�u, t > u, is the pure renewal

process associated with the sequence fSng, n > 2. It follows that

E exp
Xn
i¼1

ŁiN ti

 !" #
� E exp

Xn
i¼2

ŁiN ti

 !" #
¼ exp

Xn
i¼2

Łi

 !
(exp[Ł1]� 1)

3 E
X1
j¼1

1fS j< t1gE exp
Xn
i¼2

Łi ~NNti�S j

 !����FSj

" #
exp

Xn
i¼1

ŁiNS j�

 !24 35:
Moreover,
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exp
Xn
i¼1

ŁiNS j�

 !
¼

exp
Xn
i¼1

ŁiNS j

 !
� exp

Xn
i¼1

ŁiNS j�

 !

exp
Xn
i¼1

Łi

 !
� 1

¼:
˜S j

exp Nu

Xn
i¼1

Łi

 !

exp
Xn
i¼1

Łi

 !
� 1

and so

E exp
Xn
i¼1

ŁiN ti

 !" #
� E exp

Xn
i¼2

ŁiN ti

 !" #

¼
exp

Xn
i¼2

Łi

 !
(exp[Ł1]� 1)

exp
Xn
i¼1

Łi

 !
� 1

E
X1
j¼1

1fS j< t1g E exp
Xn
i¼2

Łi ~NNti�S j

 !����F S j

" #
˜S j

exp Nu

Xn
i¼1

Łi

" # !24 35

¼ 1� exp(�Ł1)

1� exp �
Xn
i¼1

Łi

 ! E

ð t1
0

E exp
Xn
i¼2

Łi ~NNti�u

 !" #
d exp Nu

Xn
i¼1

Łi

" # !" #

¼ 1� exp(�Ł1)

1� exp �
Xn
i¼1

Łi

 !ð t1
0

E exp
Xn
i¼2

Łi ~NNti�u

 !" #
dE exp Nu

Xn
i¼1

Łi

 !377775:
h

Lemma 1. The moment generating function of the finite-dimensional distributions of the

process fNtg is differentiable in the time variable and relates to the corresponding function

for the pure renewal process f ~NNtg as follows:

E exp
Xn
i¼1

Łi ~NNti

 !" #
¼ �

exp
Xn
i¼1

Łi

 !
� 1

Xn
j¼1

@

@ t j
E exp

Xn
i¼1

ŁiN ti

 !" #
: (15)

Proof. We will use a counterpart to the one-dimensional renewal theory in higher dimensions
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developed by Hunter (1974). The author considered the two-dimensional case, but the ideas

are based on two-dimensional Laplace transforms and convolutions, and carry over to any

higher dimension. We will prove our claim for n ¼ 2 as well; the proof for any other n

follows the same pattern. Consider the two-dimensional convolution

A �� B(s, t) ¼
ð s

0

ð t
0

A(s� u, t � v)dB(u, v):

It is commutative with respect to A(s, t) and B(s, t) and, if A(s, t) is differentiable almost

everywhere, then

@

@s
(A �� B)(s, t) ¼ @

@s
A

� �
�� B(s, t)þ A(0, �) �� B(s, t): (16)

Proceeding with the proof, we have

EeŁ1 NsþŁ2 Nt ¼
X1
n¼0

X1
m¼0

eŁ1 nþŁ2 mP(Ns ¼ n, Nt ¼ m), (17)

and the same holds of course for the process f ~NNtg. We will prove that the probability

P(Ns ¼ n, Nt ¼ m) is differentiable in both s and t, and

@

@s
P(Ns ¼ n, Nt ¼ m)þ @

@ t
P(Ns ¼ n, Nt ¼ m)

¼ ��1(P( ~NNs ¼ n� 1, ~NNt ¼ m� 1)� P( ~NNs ¼ n, ~NNt ¼ m)), if n > 1, m > 1,

���1P( ~NNs ¼ n, ~NNt ¼ m), if n ¼ 0 or m ¼ 0:

�
(18)

In view of these relations, the claim of the lemma will follow by differentiating both sides of

(17).

Introduce the bivariate renewal distribution

G(s, t) ¼ P(Un < s, Un < t) ¼ P(Un < s ^ t) ¼ F(s ^ t):

By Corollary 3.1.1 of Hunter (1974), for n, m > 0,

P( ~NNs ¼ n, ~NNt ¼ m) ¼ Hnm �� G�� n^m(s, t), (19)

where

Hnm(s, t) ¼

1� G(s, t)� ��GG�GG(s, t)þ G(s, t), if n ¼ m,

Gn�m(s, t)� Gn�mþ1(s, t)� Gn�m�1 �� G(s, t)þ Gn�m �� G(s, t), if n . m,
��GG�GGm�n(s, t)� ��GG�GGm�nþ1(s, t)� ��GG�GGm�n�1 �� G(s, t)þ ��GG�GGm�n �� G(s, t), if n , m,

8<:
with the notation Ak(s, t) ¼ A�� k(s, t), A(s, t) ¼ A(s, 1), and ��AA�AA(s, t) ¼ A(1, t) for any

function A(s, t). Observe that Gk(s, t) ¼ G�� k(s, 1).

In the stationary case the same argument, with slight modifications, gives for n > 1,

m > 1,

P(Ns ¼ n, Nt ¼ m) ¼ Hnm �� K �� G�� n^m�1(s, t), (20)

Convergence of scaled renewal processes 683



where K(s, t) ¼ F1(s ^ t). Cases where n ¼ 0 or m ¼ 0 are special:

P(Ns ¼ n, Nt ¼ m)

¼
1� K(s, t)� ��KK�KK(s, t)þ K(s, t), if n ¼ m ¼ 0,

Ln�1(s, t)� Ln(s, t)� Gn�1 �� K(s, t)þ Gn �� K(s, t), if n > 1, m ¼ 0,
��LL�LLm�1(s, t)� ��LL�LLm(s, t)� ��GG�GGm�1 �� K(s, t)þ ��GG�GGm �� K(s, t), if n ¼ 0, m > 1,

8<: (21)

where Lk(s, t) ¼ K �� Gk(s, t).

To prove (18) for n, m > 1, consider the probability in (20). Since F1(t) is differentiable,

so is the function K(s, t) for s 6¼ t and

@

@s
K(s, t) ¼ F91(s)1fs, tg:

In particular, for s 6¼ t,

@

@s
K(s, t)þ @

@ t
K(s, t) ¼ F91(s ^ t) ¼ 1� G(s, t)

�
:

Consequently, the convolution (20) is also differentiable, and an application of (16) with

A ¼ K and B ¼ Hnm �� G�� n^m�1 yields

@

@s
P(Ns ¼ n, Nt ¼ m)þ @

@ t
P(Ns ¼ n, Nt ¼ m)

¼ Hnm ��
@

@s
K

� �
�� G�� n^m�1(s, t)þ Hnm ��

@

@ t
K

� �
�� G�� n^m�1(s, t)

¼ ��1Hnm �� (1� G) �� G�� n^m�1(s, t): (22)

The function Hnm(s, t) depends only on the difference jn� mj, so that

Hnm(s, t) ¼ Hn�1 m�1(s, t). Hence, combining (22) and (19), we obtain the first part of (18).

In the case where n ¼ m ¼ 0, observe that K(s, t) ¼ F1(s), which implies

@

@s
K(s, t)þ @

@ t
K(s, t) ¼ F91(s) ¼ 1� G(s, t)

�
: (23)

Thus, differentiating (21) in this case yields

@

@s
P(Ns ¼ 0, Nt ¼ 0)þ @

@ t
P(Ns ¼ 0, Nt ¼ 0) ¼ ���1(1� G(s, t)� ��GG�GG(s, t)þ G(s, t))

¼ ���1H00(s, t),

which gives (18) for n ¼ m ¼ 0 in view of (19).

It remains to prove (18) in the case where only one of n and m is equal to zero. As

earlier, since the function K(s, t) is differentiable almost everywhere, so is the convolution

(Gk �� K)(s, t), and due to (16),
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@

@s
(Gk �� K)(s, t)þ @

@ t
(Gk �� K)(s, t) ¼ Gk ��

@

@s
K

� �
(s, t)þ Gk ��

@

@ t
K

� �
(s, t)

¼ ��1Gk �� (1� G)(s, t): (24)

Further, since Lk(s, t) ¼ K �� Gk(s, t) is differentiable, we can interchange the limits:

@

@s
Lk(s, t) ¼

@

@s
lim
t!1

(K �� Gk)(s, t)
� 


¼ lim
t!1

@

@s
(K �� Gk)(s, t):

Hence

@

@s
Lk(s, t)þ

@

@ t
Lk(s, t) ¼

@

@s
K

� �
�� Gk(s, 1)þ @

@ t
K

� �
�� Gk(s, 1)

¼ ��1(1� G) �� Gk(s, 1)

¼ ��1(Gk(s, t)� Gkþ1(s, t)): (25)

Thus differentiatiation of (21) in view of (24) and (25) yields

@

@s
P(Ns ¼ n, Nt ¼ m)þ @

@ t
P(Ns ¼ n, Nt ¼ m)

¼ ���1 Gn(s, t)� Gnþ1(s, t)� Gn�1 �� G(s, t)þ Gn �� G(s, t), if n > 1, m ¼ 0,
��GG�GGm(s, t)� ��GG�GGmþ1(s, t)� ��GG�GGm�1 �� G(s, t)þ ��GG�GGm �� G(s, t), if n ¼ 0, m > 1,

�
The right-hand side is the function ���1Hnm, where either n or m is equal to zero. But in

this case the right-hand side of (19) is equal to Hnm, and the second part of (18) follows.

h

5.2. Moments of the renewal counting process

As we shall see, the limit of the one-dimensional distributions is determined by the

asymptotic behaviour of the moments EN k
t of the counting process. Introduce as usual the

renewal function U (t) ¼
P1

n¼1F
�n(t). Observe that for a pure renewal process E ~NNt ¼ U (t),

while in the stationary case we have ENt ¼ F1(t)þ F1 � U (t) ¼ t=�. A result due to

Teugels (1968) states that if the renewal distribution F(t) has a regularly varying tail with

index Æ, 1 , Æ , 2, then for the pure renewal process, as t!1,

U (t)� t=� � 1

(Æ� 1)(2� Æ)

t2�Æ

�2
L(t) (26)

and

var ~NNt �
2

(2� Æ)(3� Æ)

t3�Æ

�3
L(t),

where the relation f � cg for some functions f , g and a constant c 2 R is defined as

limx!1 f (x)=g(x) ¼ c.
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It is a well-known fact that all moments of the renewal counting process exist and are

finite (Asmussen 1987). The following proposition extends (26) to cover arbitrary moments

EN k
t and stationary renewal processes.

Proposition 2. If the renewal distribution F(t) has a regularly varying tail with index Æ,
1 , Æ , 2, then for any integer k > 1, as t!1, we have:

(a) for the pure renewal process,

E ~NN k
t �

t

�

� �k

� k � k!ˆ(2� Æ)

(Æ� 1)ˆ(k þ 2� Æ)

t kþ1�Æ

�kþ1
L(t), (27)

E( ~NNt � E ~NNt)
k � (�1)k k

(k � Æ)(k þ 1� Æ)

t kþ1�Æ

�kþ1
L(t); (28)

(b) for the stationary renewal process,

EN k
t �

t

�

� �k

� (k � 1) � k!ˆ(2� Æ)

(Æ� 1)ˆ(k þ 2� Æ)

t kþ1�Æ

�kþ1
L(t), (29)

E Nt �
t

�

� �k

� (�1)k(k � 1)k

(Æ� 1)(k � Æ)(k þ 1� Æ)

t kþ1�Æ

�kþ1
L(t): (30)

In the proof we need some properties of the class Rr of regularly varying functions with

index r. The following are stated in Bingham et al. (1987, Proposition 1.5.7):

(i) If f 2 Rr, then f Æ 2 RÆr.

(ii) If f i 2 Rri
, i ¼ 1, 2, then f1 þ f 2 2 Rr, where r ¼ maxfr1, r2g.

Lemma 2. Further properties of regularly varying functions are as follows:

(iii) If f i 2 Rri
, i ¼ 1, . . . , n, ri 6¼ r j for i 6¼ j, and ci 2 R, then

Pn
i¼1ci f i(x) �

ck f k(x), as x!1, where k is the index of the largest ri, i ¼ 1, . . . , n.

(iv) If f i(x) � aix
rL(x), as x!1, with ai 2 R, L(x) slowly varying and ci 2 R, thenPn

i¼1ci f i(x) �
Pn

i¼1ciaix
rL(x), x!1.

Proof. (iii) Property (ii) yields that
Pn

i¼1ci f i(x) 2 Rr k
, where rk ¼ maxfr1, . . . , rng and

hence
Pn

i¼1ci f i(x) � ck f k(x) ~LL(x), for some slowly varying ~LL(x). We claim that if ri 6¼ r j for

i 6¼ j, even more is true: ~LL(x) ¼ 1. This follows trivially from the representationPn
i¼1ci f i(x) ¼

Pn
i¼1cix

ri Li(x) by dividing by ck f k(x) ¼ ck x
r k Lk(x) and taking x!1.

(iv) Follows from the equality limx!1 (c1 f1(x)þ c2 f2(x))=(xrL(x)) ¼ c1a1 þ c2a2: h

The idea of the proof of Proposition 2 is that arbitrary moments EN k
t can be expressed

as ‘polynomials’ with respect to convolutions of the renewal function, hence the

asymptotics for them can be obtained from Teugels’s result (26). Standard techniques

when dealing with convolutions involve Laplace–Stieltjes (LS) transforms and Karamata’s
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Tauberian theorem (Bingham et al. 1987, Theorem 1.7.1), which states that the behaviour of

a function at infinity is determined by the behaviour of its LS transform at zero.

Denote Vk(t) ¼ EN k
t , where, to start with, no assumptions are made about the

distribution of the first renewal. Note that the LS transforms of Vk(t) and U (t),

vk(s) ¼
ð1

0

e�st dVk(t), u(s) ¼
ð1

0

e�st dU (t),

exist and are finite. We proceed with some supplementary lemmas.

Lemma 3. The LS transforms vk(s) of Vk(t), k > 1, satisfy the recurrence relation

vk(s) ¼ (1þ u(s))
Xk�1

i¼1

k

i

� �
(�1)k�iþ1vi(s)þ (�1)kþ1v1(s), k > 2: (31)

Proof. For k > 0, consider the generalized renewal measure

Zk(t) ¼
X1
n¼1

nk F1 � F �n�1(t):

Observe that Z0(t) ¼ V1(t) and for k > 1,

Vk(t) ¼
X1
n¼1

nk P(N (t) ¼ n) ¼
X1
n¼1

nk(F1 � F �n�1(t)� F1 � F �n(t))

¼ Zk(t)� Zk � F(t):

Thus Vk(t) is the coefficient of the renewal equation

Zk(t) ¼ Vk(t)þ Zk � F(t), (32)

which involves the function Zk(t). By the classical renewal theorem (Asmussen 1987), the

unique solution of (32) is given by

Zk(t) ¼ Vk(t)þ Vk � U (t): (33)

On the other hand, the relation nk � (n� 1)k ¼ �
Pk�1

i¼0 (ki )ni(�1)k�i inserted into Vk(t)

yields

Vk(t) ¼
X1
n¼1

(nk � (n� 1)k)F1 � F �n�1(t)

¼
X1
n¼1

�
Xk�1

i¼0

k

i

� �
ni(�1)k�i

 !
F1 � F �n�1(t)

¼
Xk�1

i¼0

k

i

� �
(�1)k�iþ1Zi(t): (34)
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Hence, by (33),

Vk(t) ¼
Xk�1

i¼1

k

i

� �
(�1)k�iþ1(Vi(t)þ Vi � U (t))þ (�1)kþ1V1(t), (35)

and the recurrence property (31) is just the LS transform counterpart of (35). h

Lemma 4. For any integer k > 1, the LS transform vk(s) can be expressed in terms of the LS

transform u(s) as follows:

vk(s) ¼ v1(s)
Xk
j¼1

ckju(s) j�1, (36)

where ckj ¼ j!fkj g ¼
P j

i¼0(
j
i )(�1) j�i ik , j ¼ 1, . . . , k, and fkj g is the Stirling number of the

second kind.

Proof. The existence of constants ckj, j ¼ 1, . . . , k, such that (36) holds follows from the

recurrence property (31) for vk(s) by a standard induction argument. Indeed, assuming that

(36) is true for vi(s), i < k � 1, we have

vk(s) ¼ (1þ u(s))
Xk�1

i¼1

k

i

� �
(�1)k�iþ1v1(s)

Xi

j¼1

ciju(s) j�1 þ (�1)kþ1v1(s)

¼ v1(s)
Xk�1

i¼1

k

i

� �
(�1)k�iþ1ci1 þ (�1)kþ1

 !

þ v1(s)
Xk
j¼2

Xk�1

i¼ j

k

i

� �
(�1)k�iþ1cij þ

Xk�1

i¼ j�1

k

i

� �
(�1)k�iþ1cij�1

0@ 1Au(s) j�1

þ v1(s)kck�1 k�1u(s)k�1,

so that (36) is true for vk(s) as well, with the constants

ckj ¼

Xk�1

i¼1

k

i

� �
(�1)k�iþ1ci1 þ (�1)kþ1, j ¼ 1,

Xk�1

i¼ j

k

i

� �
(�1)k�iþ1cij þ

Xk�1

i¼ j�1

k

i

� �
(�1)k�iþ1cij�1, 2 < j < k � 1,

kck�1k�1, j ¼ k:

8>>>>>>><>>>>>>>:
Now c11 ¼ 1 yields ck1 ¼ 1 and ckk ¼ k! for all k > 1. Also, for k > 2,

ckj ¼ j(ck�1 j þ ck�1 j�1), j ¼ 2, . . . , k � 1:

Thus if we define the triangular sequence akj ¼ ckj= j!, for j ¼ 1, . . . , k, k > 1, it will satisfy

akk ¼ 1, k > 1, and
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akj ¼ jak�1 j þ ak�1 j�1, j ¼ 2, . . . , k � 1:

This recurrence relation defines the sequence fkj g of Stirling numbers of the second kind (see

Rosen et al. 2000), which gives us the claim of the lemma. h

Lemma 5. If the renewal distribution F(t) has a regularly varying tail with index Æ,
1 , Æ , 2, then, for any integer j > 1,

u(s) j � (�s)� j � jˆ(2� Æ)

Æ� 1

1

� jþ1s jþ1�Æ L(s�1), as s # 0: (37)

Proof. By binomial expansion,

u(s) j � (�s)� j ¼
Xj

r¼1

j

r

� �
u(s)� 1

�s

� �r 1

�s

� � j�r

: (38)

Karamata’s Tauberian theorem applied to Teugels’s estimate (26) gives

u(s)� (�s)�1 � ˆ(2� Æ)

Æ� 1

1

�2s2�Æ L(s�1), as s # 0:

In particular, u(1=s)� s=� 2 R2�Æ and property (i) implies (u(1=s)� s=�)r(s=�) j�r 2
Rr(2�Æ)þ j�r. Property (iii) of Lemma 2 now shows that the dominating term in the expansion

(38) is

j

1

� �
u(s)� 1

�s

� �
1

�s

� � j�1

,

corresponding to the regular variation index

jþ 1� Æ ¼ max
1<r< j

fr(2� Æ)þ j� rg:

Thus, as s # 0,

u(s) j � (�s)� j �
j

1

� �
u(s)� 1

�s

� �
1

�s

� � j�1

� j
ˆ(2� Æ)

Æ� 1

1

�2s2�Æ L(s�1)
1

�s

� � j�1

and the claim of the lemma follows. h

To prove parts (27) and (29) of Proposition 2, we will use Lemma 4 to express the

function vk(s) in terms of the function u(s) and then employ Lemma 5, which describes the

behaviour of the terms of the expansion at zero. Indeed, for a pure renewal process we have
~vv1(s) ¼ u(s), and by Lemma 4,
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~vvk(s) ¼
Xk
j¼1

ckju(s) j,

hence

~vvk(s)� ckk(�s)
�k ¼ ckk(u(s)k � (�s)�k)þ

Xk�1

j¼1

ckju(s) j: (39)

Lemma 5 yields u(1=s)k � (s=�)k 2 Rkþ1�Æ. Moreover, u(1=s) j 2 Rj. Hence, again by

property (iii) of Lemma 2, the dominating term in (39) as s # 0 is k!(u(s)k � (�s)�k) with the

regular variation index

k þ 1� Æ ¼ maxf1, . . . , k � 1, k þ 1� Æg,

so that

~vvk(s)� k!(�s)�k � k!(u(s)k � (�s)�k) � k!
k ˆ(2� Æ)

Æ� 1

1

�kþ1s kþ1�Æ L(s�1): (40)

To finish the proof of (27), it remains to apply Karamata’s Tauberian theorem to (40) (note

that the LS transform of t k is equal to k!s�k).

The proof of (29) is completely analogous; we have only to take into account that

v1(s) ¼ 1=(�s). Again, Lemma 4 implies

vk(s) ¼ 1

�s

Xk
j¼1

ckju(s) j�1,

and consequently

vk(s)� ckk(�s)
�k ¼ ckk

1

�s
(u(s)k�1 � (�s)�(k�1))þ 1

�s

Xk�1

j¼1

ckju(s) j�1:

By an argument analogous to the pure renewal case,

vk(s)� k!(�s)�k � k!
1

�s
(u(s)k�1 � (�s)�(k�1))

� k!
1

�s

(k � 1)ˆ(2� Æ)

Æ� 1

1

�k s k�Æ
L(s�1), (41)

which is equivalent to (29) by Karamata’s Tauberian theorem.

To prove (28), we first consider the shifted moment E( ~NNt � t=�)k . Exploiting the relationPk
j¼0(kj )(�1) j ¼ 0, we obtain
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E ~NNt �
t

�

� �k

¼
Xk
j¼0

k

j

� �
E ~NN j

t

�t
�

� �k� j

¼
Xk
j¼0

k

j

� �
E ~NN j

t �
t

�

� � j
 !

�t
�

� �k� j

: (42)

By (27), just proved, for any j ¼ 0, . . . , k, we have

E ~NN j
t �

t

�

� � j
 !

�t
�

� �k� j

� (�1)k� j j � j!ˆ(2� Æ)

(Æ� 1)ˆ( jþ 2� Æ)

t kþ1�Æ

�kþ1
L(t):

Thus property (iv) of Lemma 2 applied to (42) yields

E ~NNt �
t

�

� �k

�
Xk
j¼0

k

j

� �
(�1)k� j j � j!ˆ(2� Æ)

(Æ� 1)ˆ( jþ 2� Æ)

t kþ1�Æ

�kþ1
L(t)

¼ k(�1)k

(k � Æ)(k þ 1� Æ)

t kþ1�Æ

�kþ1
L(t): (43)

But due to property (iii) of Lemma 2, the expansion

E( ~NNt � E ~NNt)
k ¼

Xk
j¼0

k

j

� �
E( ~NNt � t=�)k� j(�(E ~NNt � t=�)) j

now gives

E( ~NNt � E ~NNt)
k � E( ~NNt � t=�)k ,

hence (28). The proof of (30) is analogous to that of (43). h

6. Proof of Theorem 2

Consider

Z (m)(t) ¼ ��Y (m)(t) ¼ � �

am

W (m, am t)�
mamt

�

� �
, t > 0: (44)

It will be proved that the process fZ (m)(t)g converges weakly in the (ICR) scaling regime to

a process fY�(t)g with finite-dimensional distributions characterized by (6). For convenience,

we write am ¼ a in this section.

6.1. Convergence of one-dimensional distributions

The proof is based on the method of moments. We will prove that all cumulants of the

Convergence of scaled renewal processes 691



marginal distributions of Z (m)(t) defined in (44) converge to those of the limit process

Y�(t), from which convergence of the one-dimensional distributions follows.

Indeed, due to independence, for the cumulant generating function of Z (m)(t) we have

log E expfŁZ (m)(t)g ¼ m log E expf�Ł�(Nat � at=�)=ag:

The k-th order cumulants of Z (m)(t),

C
(m)
k (t) ¼ m

dk

dŁk
(log Ee�Ł�(Nat�at=�)=a)jŁ¼0, k > 1,

are hence determined by the cumulants of the process ��(Nat � at=�)=a, which is a rescaled

and centred renewal counting process up to a constant. It is well known that such cumulants

can be expressed as polynomials with respect to the moments, i.e. there exist constants Ækj,

j ¼ 0, . . . , k, such that

C
(m)
k (t) ¼ m

Xk
j¼0

Ækj(�1) j� jE(Nat � at=�) j=a j: (45)

Moreover, it can be proved that Ækk ¼ 1 for all k. Since a!1 as m!1, by Proposition 2

we have

E Nat �
at

�

� �k

� (�1)k(k � 1)k

�(k � 1� �)(k � �)

(at)k��

�kþ1
L(a), as m!1:

Hence the terms of expansion (45) are regularly varying and property (iii) of Lemma 2 yields

C
(m)
k (t) � Ækk m(�1)k�kE(Nat � at=�)k=ak

� ma��L(a)
(k � 1)k

�(k � 1� �)(k � �)

t k��

�
:

But ma��L(a)! � by assumption (ICR), thus

C
(m)
k (t)! (k � 1)k

�(k � 1� �)(k � �)
t k��,

where the limit expressions are the cumulants of Y�(t) by formula (11). Hence Z (m)(t)

converges in distribution to a random variable Y�(t), where Y�(t) satisfies (7).

6.2. Convergence of n-dimensional distributions

Here we use the asymptotic relation
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log E exp
Xn
i¼1

Łi Z
(m)(ti)

( )
¼ m log E exp �

Xn
i¼1

Łi�(Nati � ati=�)=a

( )

� mE exp �
Xn
i¼1

Łi�(Nati � ati=�)=a

 !
� 1

" #
þO m

a

� �
, as m!1: (46)

For n > 1 and 1 < k < n, put

Łk,n ¼ (Łk , . . . , Łn), t k,n ¼ (t k , . . . , tn),

where 0 ¼ t0 < t1 < . . . < t n, and let

�n(Ł1,n; t1,n) ¼ E exp
Xn
i¼1

Łi(Nti � ti=�

 !" #
be the multivariate moment generating function for the centred renewal process

fNt � t=�g t>0. Similarly, let ~��n(Ł1,n; t1,n) denote the corresponding function for the pure

renewal process f ~NNt � t=�g t>0. By Proposition 1,

�n(Ł1,n; t1,n) ¼ E�n�1(Ł2,n; t2,n)exp(�Ł1 t1=�)þ 1� exp(�Ł1)

1� exp �
Xn
i¼1

Łi

 ! (47)

3

ð t1
0

exp[�Ł1(t1 � u)=�] ~��n�1(Ł2,n; t2,n � u)exp �u
Xn
i¼1

Łi=�

 !
dE exp Nu

Xn
i¼1

Łi

 !" #
:

Here and in what follows the sequel the subtraction t k,n � u ¼ (t k � u, . . . , t n � u) is

interpreted componentwise.

For m > 1 and the given scaling sequence a ¼ am, consider the scaled functions

¸(m)
n (Ł1,n; t1,n) ¼ m(�n(��Ł1,n=a; at1,n)� 1)

¼ mE exp �
Xn
i¼1

Łi�(Nati � ati=�)=a

 !
� 1

" #
,

and, analogously,

~̧̧ (m)
n (Ł1,n; t1,n) ¼ m( ~��n(��Ł1,n=a; at1,n)� 1):

According to (46) it is the limit functions of ¸(m)
n (Ł1,n; t1,n) as m!1 that determine the

cumulant generating function of Y�.

Lemma 6. The limit functions

¸n(Ł1,n; t1,n) ¼ lim
m!1

¸(m)
n (Ł1,n; t1,n), n > 1,

exist and satisfy the system of recursive integral equations
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¸n(Ł1,n; t1,n) ¼ ¸n�1(Ł2,n; t2,n � t1)þ¸1

Xn
i¼1

Łi; t1

 !

� 1� Ł1Xn
i¼1

Łi

0B@
1CA
ð t1

0

eŁ1( t1�u) d¸1

Xn
i¼1

Łi; u

 !

� 1þ Ł1Xn
i¼2

Łi

0B@
1CA
ð t1

0

eŁ1( t1�u) d¸n�1(Ł2,n; t2,n � u),

where, in the case n ¼ 1, we put ¸n�1 ¼ 0.

Proof. The proof is by induction on n. The relation (7), established in the previous

subsection, provides the existence of a limit function ¸1(Ł; t) for the case n ¼ 1. The

integral equation for n ¼ 1 is trivial. Fix n > 2 and assume that ¸n9(Ł1,n9; t1,n9) exist for

n9 < n� 1. It follows, in particular, that the limit functions ¸n�kþ1(Łk,n; t k,n) exist for

2 < k < n.

To study the asymptotic behaviour of ¸(m)
n (Ł1,n; t1,n) as m!1, we apply the defining

scaling relation to (47). This gives

¸(m)
n (Ł1,n; t1,n) ¼ ¸(m)

n�1(Ł2,n; t2,n)e
Ł1 t1 þ I

(m)
1 þ I

(m)
2 þ I

(m)
3 , (48)

where

I
(m)
1 ¼ � a

�
(e�Ł1=a � 1)

ð t1
0

eŁ1( t1�u) ~̧̧ (m)
n�1(Ł2,n; t2,n � u)du,

I
(m)
2 ¼ � a

�
(e�Ł1=a � 1)

ð t1
0

eŁ1( t1�u) 1þ 1

m
~̧̧ (m)

n�1(Ł2,n; t2,n � u)

� �
H (m)(du),

I
(m)
3 ¼ m 1� a(e�Ł1=a � 1)

�Ł1

 !
(eŁ1 t1 � 1),

and the integration in I
(m)
2 is with respect to the signed measure

H (m)(du) ¼ m

� exp u
Xn
i¼1

Łi

 !

a 1� exp �
Xn
i¼1

Łi=a

" # ! dE exp ��Nau

Xn
i¼1

Łi=a

 !" #
� du

0BBBBB@
1CCCCCA:

Since

I
(m)
3 ¼ O

m

a

� �
, as m!1,
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we need only to investigate the terms I
(m)
1 and I

(m)
2 .

To evaluate I
(m)
1 we apply Lemma 1, which implies

E exp
Xn
i¼1

Łi ~NNti�u

 !" #
¼ � �

exp
Xn
i¼1

Łi � 1

 ! d

du
E exp

Xn
i¼1

ŁiN ti�u

 !" #
:

Hence,

d

du
E exp

Xn
i¼1

Łi N ti�u �
1

�
(ti � u)

� �( )" #

¼ � 1

�
exp

Xn
i¼1

Łi � 1

" # !
E exp

Xn
i¼1

Łi ~NNti�u �
1

�
(ti � u)

� �( )" #

þ 1

�

Xn
i¼1

Łi E exp
Xn
i¼1

Łi N ti�u �
1

�
(ti � u)

� �( )" #
,

which can be written

~��n(Ł1,n; t1,n � u) ¼

Xn
i¼1

Łi

exp
Xn
i¼1

Łi

 !
� 1

�n(Ł1,n; t1,n � u)

� �

exp
Xn
i¼1

Łi

 !
� 1

d

du
�n(Ł1,n; t1,n � u):

Under the given rescaling scheme the same relation takes the form
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~̧̧ (m)
n (Ł1,n; t1,n � u) ¼

�
Xn
i¼1

Łi

a 1� exp ��
Xn
i¼1

Łi=a

" # !¸(m)
n (Ł1,n; t1,n � u)

� �

a exp ��
Xn
i¼1

Łi=a

" #
� 1

 ! d

du
¸(m)

n (Ł1,n; t1,n � u)

þ m

�
Xn
i¼1

Łi

a 1� exp ��
Xn
i¼1

Łi=a

" # !� 1

0BBBBB@
1CCCCCA:

If we apply the preceeding identity with the choice of index n� 1, then the induction

hypothesis allows us to replace the coefficients with their asymptotic limits, adding a

remainder term, thus

~̧̧ (m)
n�1(Ł2,n; t2,n � u) ¼ ¸(m)

n�1(Ł2,n; t2,n � u)

þ 1Xn
i¼2

Łi

d

du
¸(m)

n�1(Ł2,n; t2,n � u)þ O
m

a

� �
:

It follows that

I
(m)
1 ¼� Ł1

ð t1
0

eŁ1( t1�u)¸(m)
n�1(Ł2,n; t2,n � u)du

� Ł1Xn
i¼2

Łi

ð t1
0

eŁ1( t1�u) d¸(m)
n�1(Ł2,n; t2,n � u)þ O

m

a

� �
:

Moreover, the integration by parts

Ł1

ð t1
0

eŁ1( t1�u)¸(m)
n�1(Ł2,n; t2,n � u)du ¼ eŁ1 t1¸(m)

n�1(Ł2,n; t2,n)�¸(m)
n�1(Ł2,n; t2,n � t1)

þ
ð t1

0

eŁ1( t1�u) d¸(m)
n�1(Ł2,n; t2,n � u)

gives
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I
(m)
1 ¼¸(m)

n�1(Ł2,n; t2,n � t1)� eŁ1 t1¸(m)
n�1(Ł2,n; t2,n)

� 1þ Ł1Xn
i¼2

Łi

0B@
1CA
ð t1

0

eŁ1( t1�u) d¸(m)
n�1(Ł2,n; t2,n � u)þ O

m

a

� �
:

Turning to I
(m)
2 , this integral is evaluated with respect to the measure

H (m)(du) ¼ m

� exp u
Xn
i¼1

Łi

 !

a 1� exp �
Xn
i¼1

Łi=a

" # ! dE exp ��Nau

Xn
i¼1

Łi=a

 !" #
� du

0BBBBB@
1CCCCCA

¼ � 1Xn
i¼1

Łi

d mE exp �� Nau � au=�

a

Xn
i¼1

Łi

( )
� 1

" # !

þ mE exp �� Nau � au=�

a

Xn
i¼1

Łi

 !
� 1

" #
duþ O

m

a

� �

¼ � 1Xn
i¼1

Łi

d¸(m)
1

Xn
i¼1

Łi; u

 !
þ¸(m)

1

Xn
i¼1

Łi; u

 !
duþ O

m

a

� �
:

Since

Ł1

ð t1
0

eŁ1( t1�u)¸(m)
1

Xn
i¼1

Łi; u

 !
du ¼ �¸(m)

1

Xn
i¼1

Łi; t1

 !
þ
ð t1

0

eŁ1( t1�u) d¸(m)
1

Xn
i¼1

Łi; u

 !
,

by a partial integration, it follows that

I
(m)
2 ¼ ¸(m)

1

Xn
i¼1

Łi; t1

 !
� 1� Ł1Xn

i¼1

Łi

0B@
1CA
ð t1

0

eŁ1( t1�u) d¸(m)
1

Xn
i¼1

Łi; u

 !
þ O

m

a

� �
:

Summarizing,
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¸(m)
n (Ł1,n; t1,n) ¼ ¸(m)

n�1(Ł2,n; t2,n � t1)þ¸(m)
1

Xn
i¼1

Łi; t1

 !

� 1þ Ł1Xn
i¼2

Łi

0B@
1CA
ð t1

0

eŁ1( t1�u) d¸(m)
n�1(Ł2,n; t2,n � u)

� 1� Ł1Xn
i¼1

Łi

0B@
1CA
ð t1

0

eŁ1( t1�u) d¸(m)
1

Xn
i¼1

Łi; u

 !
þ O

m

a

� �
:

Now take m!1 and apply the induction hypothesis to conclude that the limit function

¸n(Ł1,n; t1,n) exists and satisfies the equation

¸n(Ł1,n; t1,n) ¼ ¸n�1(Ł2,n; t2,n � t1)þ¸1

Xn
i¼1

Łi; t1

 !

� 1þ Ł1Xn
i¼2

Łi

0B@
1CA
ð t1

0

eŁ1( t1�u) d¸n�1(Ł2,n; t2,n � u)

� 1� Ł1Xn
i¼1

Łi

0B@
1CA
ð t1

0

eŁ1( t1�u) d¸1

Xn
i¼1

Łi; u

 !
:

This completes the proof of the lemma and the proof of convergence of the finite-dimensional

distributions. h

6.3. Cumulant generating function for the increment process

The logarithmic moment generating function for the increments of the limit process Y� is

given by

ˆn(Ł1,n, t1,n) ¼ log E exp
Xn
i¼1

Łi(Y�(ti)� Y�(ti�1))

( )
:

In particular,

ˆn(Ł1,n, t1,n) ¼ ¸n((Ł1 � Ł2, . . . , Łn�1 � Łn, Łn); t1,n):

Lemma 6 shows that these functions satisfy the recursive system
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ˆn(Ł1,n; t1,n) ¼ ˆn�1(Ł2,n; t2,n � t1)þ¸1(Ł1; t1)

þ Ł2

Ł1

ð t1
0

e(Ł1�Ł2)u d¸1(Ł1; t1 � u)

þ Ł1

Ł2

ð t1
0

e(Ł1�Ł2)u dˆn�1(Ł2,n; t2,n � t1 þ u)

¼: I1 þ I2 þ I3 þ I4: (49)

Note that in the integral terms of Lemma 6 we also made the change of variable u! t1 � u.

To complete the proof of the characterization of the limit process Y� it remains to verify

that the functions given in (6) are the solutions of the integral equation stated above. To this

end, assume that ˆn�1(Ł2,n; t2,n � t1) is given by the representation (6). Then, by (49),

ˆn(Ł1,n; t1,n) ¼
1

�

Xn
i¼1

Ł2
i

ð ti� t i�1

0

ðv
0

exp (Łiu)u�� du dv

þ 1

�

Xn�1

i¼2

Xn
j¼iþ1

ŁiŁ j exp
Xj�1

k¼iþ1

Łk(t k � t k�1)

24 35
3

ð t i� t i�1

0

ð t j� t j�1

0

exp(Ł ju)exp(Łiv)(t j�1 � ti þ uþ v)�� du dv

þ I3 þ I4,

and it remains to establish that

I3 þ I4 ¼
1

�

Xn
j¼2

Ł1Ł j exp
Xj�1

k¼2

Łk(t k � t k�1)

" #

3

ð t1
0

ð t j� t j�1

0

exp(Ł ju)exp(Ł1v)(t j�1 � t1 þ uþ v)�� du dv: (50)

But by the induction hypothesis, changing the order of integration, and with the change of

variable u9 ¼ t1 þ v� u,
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I3 ¼ �
Ł1Ł2

�

ð t1
0

e�(Ł1�Ł2)(u� t1)

ðu
0

eŁ1vv�� dv du

¼ � Ł1Ł2

�

ð t1
0

ð t1
v

e�(Ł1�Ł2)(u�v� t1) du eŁ2vv�� dv

¼ � Ł1Ł2

�

ð t1
0

ð t1
v

e(Ł1�Ł2)u du eŁ2vv�� dv

¼ � Ł1Ł2

�

ð t1
0

e(Ł1�Ł2)u

ðu
0

eŁ2vv�� dv du:

Further, since

d

dw
ˆn�1(Ł2,n; t2,n � t1 þ w) ¼ Ł2

2

�

ð t2� t1þw

0

exp (Ł2v)v�� dvþ 1

�

Xn
j¼3

Ł2Ł j exp
Xj�1

k¼3

Łk(t k � t k�1)

" #

3

ð t j� t j�1

0

exp(Ł jv)exp[Ł2(t2 � t1 þ w)](t j�1 � t1 þ wþ v)�� dv,

we obtain

I4 ¼
Ł1Ł2

�

ð t1
0

exp[(Ł1 � Ł2)u]

ð t2� t1þu

0

exp(Ł2v)v�� dv du

þ 1

�

Xn
j¼3

Ł1Ł j exp
Xj�1

k¼3

Łk(t k � t k�1)

" #

3

ð t1
0

exp[(Ł1 � Ł2)u]exp[Ł2(t2 � t1 þ u)]

ð t j� t j�1

0

exp(Ł jv)(t j�1 � t1 þ uþ v)�� dv du

and (50) follows. h

6.4. Tightness

To finish the proof of the convergence result in Theorem 2, it remains to establish tightness

as the sequence of laws of Y (m) converges to the law of ���1Y�. As usual the trajectories

of Y (m) are considered to be elements in the Skorokhod space D(0, T ) of cadlag functions

on a real interval [0, T ], equipped with the Skorokhod topology. To prove tightness in

D(0, T ) for any fixed T, fix 0 , � , 1 and consider time points 0 , t1 , t , t2 , T . By

stationarity of Y (m),

E(jY (m)(t)� Y (m)(t1)j jY (m)(t2)� Y (m)(t)j)

< var(Y (m)(t � t1))1=2 var(Y (m)(t2 � t))1=2
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By (45),

var(Y (m)(t)) ¼ C
(m)
2 (t)

�2
¼ m

a2
E Nat �

at

�

� �2

:

As proved in Proposition 2, the function E(Nt � t=�)2 is regularly varying and

E Nt �
t

�

� �2

� 2

�(1� �)(2� �)�3
t2��L(t), as t!1: (51)

The Potter bounds for a regularly varying function (Bingham et al. 1987, Theorem 1.5.6)

yield that, for any E . 0, there exists m0 such that

E(Nat � at=�)2

E(Na � a=�)2
, (1þ E)maxft2��þE, t2���Eg, as m > m0:

Hence, for m > m0,

E(jY (m)(t)� Y (m)(t1)j jY (m)(t2)� Y (m)(t)j)

<
m

a2
(E[Na( t� t1) � a(t � t1)=�]2)1=2(E[Na( t2� t) � a(t2 � t)=�]2)1=2

<
m

a2
(1þ E)E(Na � a=�)2C(t1, t, t2),

where

C(t1, t, t2) ¼ maxf[(t � t1)(t2 � t)]1�(��E)=2, [(t � t1)(t2 � t)]1�(�þE)=2g

< maxf(t2 � t1)2��þE, (t2 � t1)2���Eg:

Since (51) and the condition (ICR) imply that (m=a2)E(Na � a=�)2 ! � 2
��
�2, we have that,

for any � . 0, there exists m1 such that

E(jY (m)(t)� Y (m)(t1)j jY (m)(t2)� Y (m)(t)j)
< (1þ E)(� 2

��
�2 þ �)maxf(t2 � t1)2��þE, (t2 � t1)2���Eg:

for m > m1. Take E , 1� �. Then the desired tightness property follows from Billingsley

1968, Theorem 15.6).

6.5. Proof of the convergence of Y (m) under condition (FCR)

Selected parts of the proof of Theorem 2 can be modified to provide the limit result (3) for

the process Y (m)(t) under condition (FCR) with the normalizing sequence

bm ¼ (ma2��
m L(am))1=2: (52)

Since in this case the limit process is Gaussian, it is enough to show that the marginal

distributions of Y (m)(t) converge to Gaussian distributions and that the covariance function

converges to that of a multiple of fractional Brownian motion.
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The convergence of the marginal distributions of Y (m)(t) under the new scaling bm ¼ b

can be obtained by the method of moments along the same lines as for the marginals of

Z (m)(t) in Section 6.1. Now the cumulants of Y (m)(t) read as follows:

D
(m)
k (t) ¼ m

dk

dŁk
(log EeŁ(Nat�at=�)=b)jŁ¼0 ¼ m

Xk
j¼0

ÆkjE(Nat � at=�) j=b j:

Continuing as earlier, due to Proposition 2 we have

D
(m)
k (t) � Ækk mE(Nat � at=�)k=bk

� mak��L(a)

bk
(�1)k(k � 1)k

�(k � 1� �)(k � �)

t k��

�kþ1
:

Observe that (52) and condition (FCR) yield

mak��L(a)

bk
¼ 1, if k ¼ 2,

(ma��L(a))1�k=2 ! 0, if k . 2:

�
Hence,

D
(m)
k (t)! ��3� 2

� t
2��, if k ¼ 2,

0 if k . 2,

�
(53)

and since D
(m)
1 (t) ¼ 0, it follows that the cumulants of the random variable Y (m)(t) converge

to those of a Gaussian random variable with the same distribution as ��3=2��BH (t).

It remains to prove that the covariance function of the process Y (m)(t) converges to that

of ��3=2��BH (t). But the process Y (m)(t) has stationary increments, whence

E[Y (m)(t)Y (m)(s)] ¼ 1

2
(var[Y (m)(t)]þ var[Y (m)(s)]� var[Y (m)(t � s)]),

and the convergence follows from (53).
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