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A new nonparametric regression technique is proposed which involves the extension of local

polynomial fitting to the empirical likelihood context, where the distribution of the stochastic error is

not fully specified. The aim of this extension is to reduce the possible modelling bias of parametric

likelihood and to allow one to use the auxiliary information about the stochastic error in the local

polynomial fitting. The asymptotic bias and variance, consistency and asymptotic distribution of the

proposed estimators are established. The proposed estimators are shown to inherit the main advantage

of the local polynomial estimator based on the parametric likelihood over the Nadaraya–Watson

kernel estimator near the boundaries. Moreover, the proposed estimators can be more flexible and

efficient than the parametric likelihood based local polynomial estimator when the distribution of the

stochastic error is misspecified. The new method is illustrated with applications to some simulated and

real data sets.
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1. Introduction

The method of empirical likelihood, introduced by Owen (1988), is commonly employed to

deal with the possible modelling bias of parametric likelihood. In the present paper, a new

estimator for a nonparametric function is developed by incorporating this method into the

framework of local polynomial modelling. By local polynomial expansion we reduce the

nonparametric function estimation problem to several parametric estimation problems. Then

the empirical likelihood approach can be applied to each parametric problem. Unlike the

parametric likelihood based estimators (here ‘parametric likelihood’ means the likelihood

based on the parametric model of the stochastic error in the regression case; see, for

example, Fan and Gijbels 1996), the new estimator only requires one to specify some

conditional estimating equations rather than the full probabilistic mechanism for the

observations. It thus allows one to relax not only the assumptions imposed on the form of a

regression function but also those imposed on the stochastic error.

By way of illustration, we consider the regression model

Y ¼ Ł(X )þ 
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with response Y , covariate X , regression function Ł, and stochastic error 
: Given X , 
 is

assumed to be symmetrically distributed, that is, Ł(X ) is the centre of symmetry of Y . This

model is just the symmetric location model when Ł is restricted to a finite-dimensional

parametric space, which has been well studied (see Bickel et al. 1993, pp. 75 and 400–405).

Here we consider the nonparametric case where Ł is a nonparametric function from [0, 1] to

R1 with pþ 1 continuous derivatives. To use the information about 
, we let

0 ¼ s0 , s1 , . . . , sk0
and Sk ¼ [sk�1, sk), 1 < k < k0: Set Hk y, Ł(x)ð Þ ¼ I(y� Ł(x)

2 Sk)� I(y� Ł(x) 2 �Sk), 1 < k < k0, where I(�) is the indicator of a set. Let

H ¼ (H1, . . . , Hk0
)T: Then we have the conditional equations

EfHk Y , Ł(X )ð ÞjXg ¼ 0, 1 < k < k0, (1:1)

for Ł: Note that as max1<k<k0
(sk � sk�1)! 0, k0 !1, these equations are asymptotically

equivalent to the assumption that 
 is symmetric. These kinds of constraints were introduced

in Zhang and Gijbels (1999; 2003).

Let (xi, yi), i ¼ 1, . . . , n be independent and identically distributed (i.i.d.) observations

from the above model. Given x0 2 (0, 1), if we have n i.i.d. observations yi, i ¼ 1, . . . , n,

with the same covariate x0, then the conditional nonparametric likelihood at Ł(x0) is of the

form
Qn

i¼1 pi, where pi is the mass we place at point (x0, yi): In practice, observations with

the same covariate x0 are rare. This problem can be solved by the local modelling technique

(see Fan and Gijbels 1996): take all (xi, yi), weight the logarithm of the nonparametric

likelihood in such a way that it places more emphasis on those observations with covariates

close to x0, and at the same time approximate Ł(x) in (1.1) by its pth-order Taylor

expansion at x0. More specifically, let K(�) be a bounded symmetric density function with

support [�1, 1]: Set Kh(�) ¼ K(�=h)=h and X (t) ¼ (1, t, . . . , t p)T: Then the profile local

polynomial empirical likelihood function at x0 is defined as follows:

l(�) ¼ sup
Xn
i¼1

Kh(xi � x0)log pijpi > 0, 1 < i < n,
Xn
i¼1

pi ¼ 1,
Xn
i¼1

piH(yi, xi, x0, �) ¼ 0

( )
,

(1:2)

where � is the Kronecker product, � ¼ (�0, . . . , � p)
T, and

H(yi, xi, x0, �) ¼ H yi, X
xi � x0

h

� �T

�

 !
� X

xi � x0

h

� �
:

It is easily shown by the Lagrange multiplier method that

l(�) ¼
Xn
i¼1

Kh(xi � x0)log Kh(xi � x0)

�Xn
j¼1

Kh(xj � x0)

" #

�
Xn
i¼1

Kh(xi � x0)log(1þ Æn(x0, �)TH(yi, xi, x0, �)),

where Æn(x0, �) satisfies
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Xn
i¼1

Kh(xi � x0)
H(yi, xi, x0, �)

1þ Æn(x0, �)TH(yi, xi, x0, �)
¼ 0: (1:3)

Choose an appropriate space, say ¨0, for �: Let b�� ¼ ( b��0, . . . , b�� p)
T be the maximum

estimator over ¨0 based on l(�): Then the local polynomial empirical likelihood estimator

of Ł(x0) is given by bŁŁ(x0) ¼ b��0: Through the coefficients of the higher-order terms in

the polynomial fit, b�� provides an estimator for the higher-order derivative Ł(r)(x0),

namely, bŁŁr(x0) ¼ r!b��r=h
r: b�� also provides an estimator for the conditional distribution of

Y given X ¼ x0, say bFFY jX¼x0
, with

bFFY jX¼x0
(fyig) ¼

Kh(xi � x0)

1þ Æn(x0, b��)TH(yi, xi, x0, b��)
, i ¼ 1, . . . , n: (1:4)

In this paper, we study these kinds of estimators under a more general set of conditional

equations, which includes the conditional symmetric model as a special case. Under some

regularity conditions, the above estimators are proved to be consistent and asymptotically

normal. The asymptotic bias and variance are also derived, which have the same

performance as the parametric likelihood based local polynomial estimator near the

boundaries. It is shown that the new estimators can be more flexible and efficient than the

parametric likelihood based local polynomial estimator. In particular, in the setting of

the symmetric location model, the new estimators are nearly adaptive with respect to the

unknown density function of 
: That is, when the number of equations in (1.1) tends to

infinity, we can estimate the regression function asymptotically equally well whether or not

we know the density of 
: This implies that the least squares based local polynomial

estimator may be inefficient when the stochastic error is not normal. Note that the least

squares based local polynomial estimator can be used under the assumption that the second

moment of the stochastic error exists.

The idea of using the local polynomial fit to the parametric likelihood based regression

models appeared, for example, in Stone (1977), Cleveland (1979), Tibshirani and Hastie

(1987) and Fan and Gijbels (1996). Carroll et al. (1998) developed an alternative method

called the local moment method. It is known that the empirical likelihood has the advantage

over the moment method that a weaker restriction is imposed on the model (see Hanfelt and

Liang 1995; Kitamura 1997; and Qin and Lawless 1994). In a similar setting, Zhang and

Gijbels (1999; 2003) introduced an approximate empirical likelihood for a nonparametric

function and gave the global convergence rate of the corresponding maximum estimator.

Unlike the above estimators, our new one are based on local weighting of logarithms of

empirical likelihoods.

The rest of this paper is organised as follows. In Section 2 we investigate the asymptotic

properties of the proposed estimators. Applications to both simulated and real data sets are

presented in Section 3. The technical conditions are given in Section 4. The proofs of the

main results can be found in the Appendix.
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2. Asymptotic theory

In what follows, we consider a general nonparametric regression model with response Y ,

covariate X , and a general constraint function G ¼ (G1, . . . , Gk0
)T: Assume that the

regression function Ł(�) has pþ 1 continuous derivatives. Adopt the same notation �, Ł(x0),

Ł(r)(x0), Æn(x0, �), l(�), and ¨0 as in Section 1, and the associated estimators b��, bŁŁ(x0),

Ł̂Łr(x0) and Æn(x0, b��), but replace H (and H) by the general function G (and G), which

satisfies

E[Gk(Y , Ł(X ))jX ] ¼ 0, k ¼ 1, 2, . . . , k0: (2:1)

Note that the general nonparametric regression model reduces to the ordinary nonparametric

mean regression model and the median regression model if we set G ¼ Y � Ł(X ) and

G ¼ I Y < Ł(X )ð Þ � 1
2
, respectively. To keep our proofs simple, we assume that G has a

continuous derivative with respect to Ł.

2.1. Bias, covariance and normality

Let º0 ¼ (Ł(x0), hŁ(1)(x0), . . . , h pŁ( p)(x0)=p!) be an inner point of ¨0. We begin by show-

ing in the following theorem that bŁŁ(x0) is weakly consistent.

Theorem 1. Under Conditions A1–A8 in Section 4, for 2 , Æ1 < Æ0 (with Æ0 defined in

Condition A2), as h ¼ hn ! 0, hn1�2=Æ1=log n!1 and h pþ1n1=Æ1 ! 0, we haveb��� º0 ¼ o p(n�1=Æ1 ), Æn(x0, b��) ¼ o p(n�1=Æ1 ):

For the next theorem, we set

� jþ l ¼
ð
t jþ l K(t)dt, � jþ l ¼

ð
t jþ l K2(t)dt,

S ¼ (� jþ l)0< j, l< p, S� ¼ (� jþ l)0< j, l< p,

VG(x0) ¼ E[G(Y , Ł(x0))GT(Y , Ł(x0))jX ¼ x0],

DG(x0) ¼ E[@G Y , Ł(x0)ð Þ=@ŁjX ¼ x0]:

Let f be the density of X , and define

VÆG(x0) ¼ 1

f (x0)

�
VG(x0)�1 � VG(x0)�1DG(x0) DG(x0)TVG(x0)�1DG(x0)

� ��1

3 DG(x0)TVG(x0)�1

	
� S�1S�S�1,

V�G(x0) ¼ 1

f (x0)
[DG(x0)TVG(x0)�1DG(x0)]�1S�1S�S�1:
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If f and Ł( pþ1) have continuous derivatives, then we define

bias ¼ h pþ1S�1(� pþ1, . . . , �2 pþ1)T Ł
( pþ1)(x0)

(pþ 1)!
þ h pþ2S�1(� pþ2, . . . , �2 pþ2)T

3
Ł( pþ2)(x0)

( pþ 2)!
þ Ł( pþ1)(x0)

(pþ 1)!

f 9(x0)

f (x0)

( )
:

(2:2)

Let �!L stand for convergence in distribution. The next theorem establishes the asymptotic

normality of b�� and Æn(x0, b��):

Theorem 2. Suppose that Conditions A1–A8, B1 and B2 in Section 4 hold. Suppose that f

and Ł( pþ1) have continuous derivatives. Then as h ¼ hn ! 0, hn1�2=Æ0=log n!1 with Æ0

defined in Condition A2 and h pþ1n1=Æ0 ! 0,ffiffiffiffiffiffi
nh
p

V�G(x0)�1=2fb��� º0 � bias(1þ o(1))g�!L N(0, I pþ1):

Furthermore, if nh2 pþ3 ! 0, thenffiffiffiffiffiffi
nh
p

VÆG(x0)�1=2Æn(x0, �̂�)�!L N (0, I k0( pþ1)),

where I pþ1 and I k0( pþ1) are the p3 p and k0( pþ 1) 3 k0( pþ 1) unit matrices, and

N (0, I pþ1) and N (0, I k0( pþ1)) are normal distributions.

Remark 1. Æn(x0, b��) is useful in developing some asymptotic theories for the estimated

conditional distribution F̂FY jX¼x0
as shown in (1.4) and for the nonparametric likelihood ratio

statistics investigated in Fan and Zhang (2000).

Remark 2. The requirement that G is differentiable in Ł can be relaxed by imposing some

entropy condition on G (see Condition A49 in Section 4). Then Theorems 1 and 2 can cover

the special example in (1.1). For example, suppose G is bounded. Then, under Conditions

A1, A49, and A5–A8, as h ¼ hn ! 0, nh=log n!1,b��� º0 ¼ o p(1), Æn(x0, b��) ¼ o p(1):

Furthermore, asymptotic normality still holds if we impose second-order differentiability on

EfG(Y , t)jXg with respect to t: Here DG(x0) should be defined as @E[G(Y ,

Ł(x0))jX ¼ x0]=@ t: A rigorous justification of the statement is tedious but very similar to

that given in Zhang and Gijbels (1999) and so not pursued here.

Remark 3. Let erþ1 denote the unit vector with 1 in the (r þ 1)th position. Then, from

Theorem 2, we obtain the asymptotic value of biasfŁ̂Łr(x0)g (defined as the leading term of

the bias of Ł̂Łr(x0)): for odd p� r,

biasfbŁŁr(x0)g ¼ eT
rþ1S

�1(� pþ1, . . . , �2 pþ1)T r!

( pþ 1)!
Ł( pþ1)(x0)h pþ1�r(1þ o(1)); (2:3)
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for even p� r,

biasfbŁŁr(x0)g ¼ eT
rþ1S

�1(� pþ2, . . . , �2 pþ2)T r!

( pþ 2)!

�
Ł( pþ2)(x0)

þ ( pþ 2)Ł( pþ1)(x0)
f 9(x0)

f (x0)

	
h pþ2�r(1þ o(1)):

(2:4)

This is exactly the same as in the case of the standard local polynomial fit (Fan and Gijbels,

1996, p. 62), where there is a theoretical difference between the cases p� r odd and p� r

even. For p� r even, the leading term O(h pþ1) in the bias expression (2.2) is zero due to the

symmetry of the kernel K and thus the second-order term is presented in (2.4). For p� r

odd, the asymptotic bias has a simpler structure and does not involve f 9(x0), a factor

appearing in the asymptotic bias when p� r is even.

We also have the asymptotic variance of Ł̂Ł:

varfbŁŁr(x0)g ¼ eT
rþ1S

�1S�S�1erþ1

(r!)2[DG(x0)TVG(x0)�1DG(x0)]�1

f (x0)nh2rþ1
(1þ o(1)): (2:5)

As a result of Theorem 2, we obtain

varfŁ̂Łr(x0)g�1=2 Ł̂Łr(x0)� Łr(x0)� biasfŁ̂Łr(x0)g(1þ o(1))

n o
�!L N(0, 1):

Remark 4. Note that the kernel function K has support [�1, 1]. Then for each x0, the local

neighbourhood of x0 in our procedure is [x0 � h, x0 þ h]: Since we assume for simplicity that

the covariate X has support [0, 1], this neighbourhood can lie outside [0, 1] as x0 is close to

the boundary. When this happens, x0 is called a boundary point. More specifically, x0 is

referred to a left (or right) boundary point if x0 � h , 0 (or x0 þ h . 1). We consider only

the left boundary points of the form x0 ¼ ch and the right boundary points of the form

x0 ¼ 1� ch, with c . 0. For c , 1, the ch and 1� ch are the boundary points, whereas for

c . 1 they are interior points. Like Fan and Gijbels (1996, p. 69), we wish to address the

question of whether our procedure suffers boundary effects, that is, whether the orders of

the asymptotic biases and variances of our estimators are different at the boundary and in the

interior. For this purpose we derived the following asymptotic bias and variance formulae for

our estimators. These formulae are derived in a way analogous to those for a fixed interior

point. Let

� j,c ¼
ð1

�c
u jK(u)du, S ¼ (� jþ l,c)0< j, l< p, K�r,c(t) ¼ eT

rþ1S
�1
c (1, t, . . . , t p)TK(t):

Then for x0 ¼ ch,

biasfbŁŁr(x0)g ¼
ð1

�c
t pþ1K�r,c(t)dt

( )
r!

( pþ 1)!
Ł( pþ1)(0þ)h pþ1�r(1þ o(1)): (2:6)

and
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varfbŁŁr(x0)g ¼
ð1

�c
K�2

r,c(t)dt
(r!)2[D(0þ)TV (0þ)�1D(0þ)]�1

f (0þ)nh2rþ1
(1þ o(1)): (2:7)

For right boundary points x0 ¼ 1� ch, the asymptotic bias and variance expressions are

similar to those provided in (2.6) and (2.7), but with the integral interval [�c, 1] replaced by

[�1, c] and 0þ by 1�. For even p� r, a comparison of (2.4) and (2.5) with (2.6) and (2.7)

shows that the order of the asymptotic bias is different at the boundary and in the interior. In

contrast, for odd p� r, the asymptotic bias and variance are of the same order at the

boundary and in the interior, and are continuous in c. This means that our procedure adapts

automatically to estimation at the boundaries if we choose odd p� r:

Remark 5. The odd-degree fit is better than the even-degree fit. The reason is that for even

p� r not only the unknown derivative Ł( pþ1)(x0) but also unknown f 9(x0) and Ł( pþ1)(x0) are

involved in the asymptotic bias. Moreover, the proposed procedure will suffer boundary

effects. In contrast, for odd p� r only Ł( pþ1)(x0) is unknown in the asymptotic bias.

Furthermore, the proposed procedure does not suffer boundary effects, as shown in Remark 4.

2.2. Efficiency and adaptiveness

Note that it follows from Theorem 2 that the bias of �̂� is asymptotically free of the

constraint function G: This leads to a simple criterion, the asymptotic covariance V�G(x0),

for the comparison of the efficiencies of the above local estimators derived from a class of

constraint functions which satisfy the regularity conditions A1–A8, B1 and B2 in Section 4.

Let l(z, x0) ¼ @ log f 
jX¼x0
=@z, where f 
jX¼x0

is the conditional density of 
 given X ¼ x0:
It follows directly from Bhapkar (1991) that

DG(x0)TVG(x0)�1DG(x0) < El(z, x0)2

for any estimating function G such that

E[G Y , Ł(X )ð ÞjX ¼ x0] ¼ 0, VG(x0) ,1,

and DG(x0) exists. Thus

V�G(x0) > V� l(z,x0):

When equality holds, b�� is efficient.

As pointed out by a referee, the usual notion of adaptiveness appears to be limited to

semi-parametric models. For instance, if Ł is a parametric function parametrized by a finite-

dimensional vector, say ª, and if the model is Y ¼ Ł(X , ª)þ 
, where 
 is symmetric

conditional on X , then we know that adaptive estimation of ª is possible, as shown in

Bickel et al. (1993). It is also possible to generalize this notion to local polynomial models

by defining a local efficiency bound. We conjecture that in the parametric case this bound

can be achieved by appropriately choosing a sequence of functions for G: For example, in

the setting of the symmetric location model mentioned in Section 1, we let G ¼ H defined

in (1.1) and k0 converge to 1 with increasing sample size. A more detailed description of

this notion and the proofs of the related results are beyond the scope of this paper.
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3. Numerical examples

3.1. Bandwidth selection

When we apply the local polynomial empirical likelihood estimator to a finite sample, we

must first select the bandwidth. This smoothing parameter plays a very important role in the

trade-off between reducing bias and variance, so we need to choose it carefully instead of

randomly. There are different kinds of bandwidth selection method (Fan and Gijbels 1996,

Chapter 4). We follow Carroll et al. (1998), viewing the mean square error (MSE) as a

function of h. Ideally, we should choose the optimal bandwidth by minimizing the MSE

function with respect to h, where

MSE(x0, h) ¼ var(x0, h)þ bias2(x0, h)

with var(x0, h) and bias(x0, h) being the variance and bias of bŁŁ(x0), respectively. In practice,

the MSE is unknown and estimated by the empirical bias bandwidth selection (EBBS)

method and the sandwich method.

The basic idea behind EBBS is as follows. For fixed x0 and h0, according to the

asymptotic results in our asymptotic theories, bias(x0, h0) should be of the form

bias(x0, h0) ¼ f (h0, ª) ¼ ª1h
pþ1
0 þ . . . þ ª t h

pþ t
0 , where t > 1 and ª ¼ (ª1, . . . , ª t) is

unknown. The local polynomial estimator bŁŁ(x0, h0) should be well described by

ª0 þ f (h0, ª)þ o p(h
pþ t
0 ), where ª0 ¼ Ł(x0) in the limit. Then let (bªª0, bªª) minimizePK

k¼1fbŁŁ(x0, hk)� (bªª0 þ f (hk , bªª))g2, in which fh1, . . . , hKg is a grid of bandwidths in a

neighbourhood, H0, of h0 with K > t þ 1. It is obvious that if H0 is small enough, the bias

should be well estimated at h0 by f (h0, bªª). In practice, we need to choose K and t. See

Carroll et al. (1998) for specific selection techniques. In our simulation and real data fitting,

we take t ¼ 1 and K ¼ 3. We are most attracted by the EBBS property of avoiding the

direct estimation of the higher-order derivatives arising in the asymptotic bias formulae,

which might limit the range of applications because of its complications.

The sandwich formula for the asymptotic covariance matrix of � is analogous to that in

Carroll et al. (1998), that is,

ffD̂D(x0)gfV̂V (x0)g�1fD̂D(x0)gg�1,

where

D̂D(x0) ¼
Xn
i¼1

Kh(xi � x0)
@G(yi, X ((xi � x0)=h)T b��)

@Ł
� X ((xi � x0)=h)X T((xi � x0)=h)

" #

and

V̂V (x0) ¼
Xn
i¼1

K2
h(xi � x0)[G(yi, X ((xi � x0)=h)T b��)GT(yi, X ((xi � x0)=h)T b��)

� X ((xi � x0)=h)X T((xi � x0)=h)]:

586 J. Zhang and A. Liu



It is easily seen from our asymptotic results that the sandwich formula provides consistent

variance estimators.

3.2. Curve construction

In practice, to construct the estimator of the curve Ł, we often begin by estimating the

values of Ł at x0 ¼ t j, j ¼ 1, . . . , m, as shown in Section 1, where 0 ¼ t1 , . . . , tm ¼ 1

are equispaced grid points. Denote these estimators by Ł̂Ł(t j), j ¼ 1, . . . , m: Then, a naive

approach for constructing a curve estimator is to simply connect these point estimators by

lines. Unfortunately the resulting curve might not be smooth, especially when m > n,

where n is the sample size. We can use the moving average technique to improve the

smoothness of the resulting curve. The basic idea behind this technique is that for any i0
with a prespecified constant mw, we have Ł(t j) � Ł(ti0 ), provided j j� i0j < mw: For those

j, we can write bŁŁ(t j) ¼ Ł(ti0 )þ e j, where e j is a random error. This leads to usingP
j j�i0j<mw

bŁŁ(t j)=(2mw þ 1) rather than bŁŁ(ti0 ) to estimate Ł(ti0 ). We choose mw ¼ 1 and

m ¼ n in our examples below.

3.3. Simulation

In the following examples the xi were generated from the uniform distribution on [0, 1].

Local linear empirical likelihood fitting (i.e., p ¼ 1) is used to estimate the regression

functions.

Example 1. The regression model is

Y ¼ 1� 48X þ 218X 2 � 315X 3 þ 145X 4 þ 
:

Given X , 
 follows the t distribution with 3 degrees of freedom and the constraint function is

G(y, Ł(x)) ¼ y� Ł(x):

Generate a sample of size 200: Figure 1 shows the performance of the local linear empirical

likelihood fit when 
 has heavy tails.

Example 2. Use the same notation as in Example 1, except that we now assume that, given

X , 
 follows the normal distribution N (0, � (X )2), � (X )2 ¼ 1þ X 2. Generate a sample of

size 200: Figure 2 shows the performance of the local linear empirical likelihood fit when 
 is

heteroscedastic.

3.4. Application

Example 3. Great Barrier Reef data. In a survey of the fauna on the sea bed in an area lying

between the coast of northern Queensland and the Great Barrier Reef, a sample of size 155

was collected from a number of locations. In view of the large numbers of types of species
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Figure 1. The smoother curve denotes the underlying regression function, while the other is the

estimated curve derived from the local linear empirical likelihood fit under the first moment constraint.

The data plotted, are sampled from the conditional model that given X , 
 � t3, the t distribution with

3 degrees of freedom, where X is uniformly distributed on [0, 1]:

Figure 2. The smoother curve denotes the underlying regression function, while the other is the

estimated curve derived from the local linear empirical likelihood fit under the first moment constraint.

The data plotted, are sampled from 
 � N (0, � (X )2) with � (X )2 ¼ 1þ X 2, where X is uniformly

distributed on [0, 1]:
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captured in the survey the response variable is expressed as a score, on a log-weight scale,

which combines information across species. The relationship between the catch score and the

spatial coordinates (i.e., latitude, longitude and depth) was analysed in Bowman and Azzalini

(1997, pp. 53–55 and p. 81) via ordinary nonparametric regression. Here we use our

proposed method to analyse these data. We let p ¼ 1, 
(x) ¼ y� Ł(x), and either

G(y, Ł(x)) ¼ 
(x) (3:1)

or

G y, Ł(x)ð Þ ¼ (
(x), 
(x)3)T: (3:2)

In Figures 3, 4 and 5, we present the fitted results for the relationship between the catch

score and the spatial coordinates (i.e., latitude, longitude and depth). In these figures, the

solid, dashed and dotted curves stand for the results based on the least squares local linear

fit, the local linear empirical likelihood fits with the restriction function in (3.1) and with

the restriction function in (3.2), respectively. They show that there is little evidence of

change with latitude, whereas there are marked changes in the catch score with longitude

and depth. Note that in all figures, the corresponding curves differ from one another. It is

natural to ask which one is better for interpreting the data. With this aim in mind, some

goodness-of-fit tests for these restrictions are needed. The details can be found in Fan and

Zhang (2000).

Figure 3. Relationship between catch score and latitude. The solid, dashed and dotted curves are,

respectively, the local linear least squares fit, the local linear empirical likelihood fit under the first

moment constraint, and the local linear empirical likelihood fit under the first and third moment

constraints.
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Figure 4. Relationship between catch score and longitude. The solid, dashed and dotted curves are,

respectively, the local linear least squares fit, the local linear empirical likelihood fit under the first

moment constraint, and the local linear empirical likelihood fit under the first and third moment

constraints.

Figure 5. Relationship between catch score and depth. The solid, dashed and dotted curves are,

respectively, the local linear least squares fit, the local linear empirical likelihood fit under the first

moment constraint, and the local linear empirical likelihood fit under the first and third moment

constraints.
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4. Technical conditions

We begin with some notation. Suppose there exists Z(y, x) (independent of h) such that

Z(y, x) > sup
�2¨0

G y, X
x� x0

h

� �T

�

 !�����
�����

�����
�����I(jx� x0j < h):

Let

Wn(x0, �) ¼ 1

n

Xn
i¼1

Kh(xi � x0)G(yi, xi, x0, �)GT(yi, xi, x0, �):

To establish the consistency of b��, we impose the following eight regularity conditions

when x0 2 (0, 1):

Condition A1. There exists a constant c0 such that, for x 2 [0, 1] and xþ ˜ 2 [0, 1],

j f (xþ ˜)� f (x)j < c0j˜j:

Condition A2. For some 2 , Æ0 <1,

sup
x2[0,1]

EfZ(Y , X )Æ0 jX ¼ xg ,1:

Here Æ0 ¼ 1 means Z(Y , X ) is bounded by some constant.

Condition A3. For 1 < j < k0, as h ¼ hn ! 0, uniformly for � 2 ¨0 and jtj < 1,

E G2
j Y , X

X � x0

h

� �T

�

 !
jX ¼ x0 þ th

( )
¼ O(1):

Condition A4. There exists łh1(y, x) such that, for � j 2 ¨0, j ¼ 1, 2,

Ełh1(Y , X )K
X � x0

h

� �
¼ O(1), EZ(Y , X )łh1(Y , X )K

X � x0

h

� �
¼ O(1),

and for jx� x0j < h,

G y, X
x� x0

h

� �T

�1

 !
� G y, X

x� x0

h

� �T

�2

 !�����
�����

�����
����� < łh1(y, x)k�1 � �2k:

Condition A5. The function Ł has a ( pþ 1)th continuous derivative and there exists łh2(x)

such that
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E Kh(X � x0)łh2(X ) X
X � x0

h

� ����� �������� ����� �
¼O(1),

E G Y , X
X � x0

h

� �T

�

 !
�G(Y , Ł(X ))

" #
jX ¼ x

( )�����
�����

�����
�����<łh2(x)(k��º0kþk�(x, x0)�Ł(x)k),

for � 2 ¨0, jx� x0j < h, where

�(x, x0) ¼ X
x� x0

h

� �T

º0:

Condition A6. As n!1, h ¼ hn ! 0,

PfWn(x0, �) . 0, � 2 ¨0g ! 1,

where Wn(x0, �) . 0 means that Wn(x0, �) is positive definite.

Condition A7. For 1 < k1, j1 < k0 , as h ¼ hn ! 0,

EfG2
k1

(Y , �(X , x0))G2
j1

(Y , �(X , x0))jX ¼ x0 þ thg ¼ O(1),

uniformly for � 2 ¨0 and jtj < 1: As �! 0 and h ¼ hn ! 0, uniformly for k�� º0k < �,

E G Y , X
X � x0

h

� �T

�

 !
GT Y , X

X � x0

h

� �T

�

 !
jX ¼ x0 þ th

( )
� VG(x0)

�����
�����

�����
�����

is of order o(1) Moreover, we suppose VG(x0) and S are positive definite.

Condition A8. For any fixed constant r . 0 there exists a positive constant c(r) such that, as

h ¼ hn ! 0,

inf
k��º0k>r

kEKh(X � x0)G(Y , X , x0, �)k > c(r):

In addition, there exists a fixed positive constant c such that as k�� º0k þ h! 0, � 2 ¨0,

kEKh(X � x0)G(Y , X , x0, �)k is bounded below by ck�� º0k þ O(h pþ1), where c and

O(h pþ1) are independent of �:

When G is not smooth, we need to replace Condition A4 by the following condition:
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Condition A49. Set

g(y, x, �) ¼ K
x� x0

h

� �
Gi1 y, X

x� x0

h

� �T

�

 !
x� x0

h

� � j1

, F (i1, j1) ¼ fg(�, �, �): � 2 ¨0g,

g1(y, x, �) ¼ K
x� x0

h

� �
Gi1 y, X

x� x0

h

� �T

�

 !
x� x0

h

� � j1

3 Gk1
y, X

x� x0

h

� �T

�

 !
x� x0

h

� �s1

, F (i1, j1, k1, s1) ¼ fg1(�, �, �): � 2 ¨0g:

There exist positive constants c1, c2, w1 and w2 such that

N (�, L2(Pn), F (i1, j1)) < c1�
�w1 ,

N (�, L2(Pn), F (i1, j1, k1, s1)) < c2�
�w2

where Pn is the empirical distribution of (xi, yi), i ¼ 1, . . . , n, and N (d, L2(Pn), �) is

called the covering number of �, which is defined in Pollard (1984).

To obtain asymptotic normality, we need two additional conditions.

Condition B1. For small �0 . 0, there exists a function U1(y, x) satisfying

EKh(X � x0)U1(Y , X ) ¼ O(1),

EKh(X � x0)Z(Y , X )U1(Y , X ) ¼ O(1),

sup
k��º0k<�

@G(y, x, x0, �)

@�

���� �������� ����I(jx� x0j < h) < U1(y, x):

There exists a function U2(y, x) satisfying

EKh(X � x0)U2(Y , X ) ¼ O(1),

@G(y, x, x0, �)

@�
� @G(y, x, x0, º0)

@�

���� �������� ���� < U2(y, x)k�� º0k:

Furthermore,

EKh(X � x0)
@G(Y , X , x0, º0)

@�T

���� �������� ����2 ¼ O(1),

EKh(X � x0)
@G(Y , X , x0, º0)

@�T
¼ f (x0)DG(x0) � S þ o(1):

Condition B2. For some small �0 . 0, there exists a function U3(y, x) such that
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EKh(X � x0)U3(Y , X ) ¼ O(1),

sup
k��º0k<�0

@2G(y, x, x0, �)

@�@�T

����� ���������� ����� < U3(y, x):

For U1(y, x) defined in Condition B1,

EKh(X � x0)U1(Y , X )2 ¼ O(1):

When G is not smooth, we need to impose some conditions similar to those in Zhang

and Gijbels (1999). The details are not pursued here.

For x0 ¼ 0 or 1, conditions similar to A1–A8, B1 and B2 can be imposed by restricting

the value of t (or (x� x0)=h)) to [0, 1] or [�1, 0] in the above.

Appendix: Proofs of theorems

We first introduce three lemmas which will be used in the proof of Theorem 1. Let

Zi ¼ Z(yi, xi), 1 < i < n: Denote

An1(x0, �) ¼ 1

n

Xn
i¼1

Kh(xi � x0)G(yi, xi, x0, �)I(Zi < n1=Æ1 ), (A:1)

An(x0, �) ¼ 1

n

Xn
i¼1

Kh(xi � x0)G(yi, xi, x0, �):

Lemma A.1. Under Conditions A1–A4, for 2 , Æ1 < Æ0 , as h ¼ hn ! 0 and

hn1�2=Æ1=log n!1, there exists a sequence of constants (dn1)1n¼1, 0 , dn1 ! 0, such

that, uniformly for � 2 ¨0 ,

An(x0, �) ¼ EKh(X � x0)G(Y , X , x0, �)þ o p(n
�1=Æ1 )dn1, (A:2)

An1(x0, �) ¼ EKh(X � x0)G(Y , X , x0, �)þ o p(n
�1=Æ1 )dn1: (A:3)

Furthermore, under Condition A5,

EKh(X � x0)G(Y , X , x0, �) ¼ O(h pþ1 þ k�� º0k): (A:4)

Proof. Without loss of generality, we assume x0 2 (0, 1): Write An(x0, �) as

An(x0, �) ¼ An1(x0, �)þ An2(x0, �),

with

An2(x0, �) ¼ 1

n

Xn
i¼1

Kh(xi � x0)G(yi, xi, x0, �)I(Zi . n1=Æ1 ):
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It follows from Conditions A1 and A2 that, for 2 , Æ1 < Æ0,

E sup
�2¨0

kAn2(x0, �)k < EKh(X � x0)Z(Y , X )I(Z(Y , X ) . n1=Æ1 )
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
f (x0 þ th)dt

¼ o(n�1=Æ1 ),

which implies

An(x0, �) ¼ EKh(X � x0)G(Y , X , x0, �)

þ 1

nh

Xn
i¼1

f f ni(�)� E f ni(�)g þ o p(n
�1=Æ1 ), (A:5)

where

f ni(�) ¼ K
xi � x0

h

� �
G(yi, xi, x0, �)I(Zi < n1=Æ1 ):

Set

g(y, x, �) ¼ n�1=Æ1 K
x� x0

h

� �
Gi1 Y , X

x� x0

h

� �T

�

 !

3
x� x0

h

� � j1

I(Z(y, x) < n1=Æ1 ),

F (i1, j1) ¼ fg(�, �, �): � 2 ¨0g:

Then, by Conditions A1 and A3, we have

sup
�2¨0

Eg2(Y , X , �) ¼ O(hn�2=Æ1 ):

For g(� j) ¼ g(y, x, � j) 2 F (i1, j1), j ¼ 1, 2, by Condition A4, we have

jg(�1)� g(�2)j < n�1=Æ1 K
x� x0

h

� �
x� x0

h

� � j1

łh1(y, x)k�1 � �2k:

Let un ¼ hn1�2=Æ1 and d2
n1 ¼ (log n=un)1=2: By Lemma 7.2 in Zhang and Gijbels (2003),

there exist positive constants c j, 1 < j < 4, and w0, such that, for any positive constant M0,

P sup
�2¨0

���� 1

nh

Xn
i¼1

[g(yi, xi, �)� Eg(Y , X , �)]

���� > M0n
�1=Æ1dn1

( )

< c1(n1=Æ1 h�1dn1)w0 exp �M2
0nh

2n�4=Æ1d2
n1

c3hn�2=Æ1

( )

þ c2(hn�2=Æ1 )�w0 exp f�c4nhn
�2=Æ1g: (A:6)
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As h ¼ hn ! 0, un=log n!1, we have

log un þ log n ¼ of(un log n)1=2g ¼ o(und
2
n1),

thus (A.6) tends to zero. This, together with (A.5), completes the proofs for (A.2) and (A.3).

Finally, (A.4) follows from Condition A5 and the equality

kEKh(X � x0)G(Y , X , x0, �)k ¼ E Kh(X � x0)�(�) � X
X � x0

h

� �� ����� �������� ����,
where

�(�) ¼ E G Y , X
X � x0

h

� �T

�

 !
� G(Y , Ł(X ))jX

" #
:

h

Write

Wn1(x0, �) ¼ 1

n

Xn
i¼1

Kh(xi � x0)G(yi, xi, x0, �)GT(yi, xi, x0, �)I(Zi < n1=Æ1 ):

Lemma A.2. Under Conditions A1 and A2, as h ¼ hn ! 0,

sup
�2¨0

kWn1(x0, �)k ¼ Op(1): (A:7)

Under Conditions A1, A2, A4 and A7, as h ¼ hn ! 0 and nh!1,

Wn(x0, �) ¼ f (x0)VG(x0) � S þ o p(1) (A:8)

uniformly for k�� º0k < �! 0:

Proof. Equation (A.7) follows from the fact that, under Conditions A1 and A2,

E sup
�2¨0

kWn1(x0, �)k < ( pþ 1)EKh(X � x0)Z(Y , X )2 ¼ O(1):

Note that, by Condition A4,

kWn(x0, �)� Wn(x0, º0)k < 1

n

Xn
i¼1

Kh(xi � x0)Ziłh1(yi, xi)k�� º0k

¼ Op(1)k�� º0k:

In order to prove (A.8), it suffices to show that

Wn(x0, º0) ¼ f (x0)VG(x0) � S þ o p(1): (A:9)

To this end, we calculate the mean and covariance of Wn(x0, º0): It is easily seen that, under

Conditions A1 and A7,
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EWn(x0, �) ¼ f (x0)VG(x0) � S þ o p(1): (A:10)

For k ¼ ( pþ 1)(k1 � 1)þ k2 and j ¼ ( pþ 1)( j1 � 1)þ j2 with 1 < k1, j1 < k0,

1 < k2, j2 < pþ 1, we obtain that the variance of the (k, j)th element of Wn(x0, º0) is

smaller than or equal to

1

n
EKh(X � x0)2G2

k1
(Y , �(X , x0))G2

k2
(Y , �(X , x0))

X � x0

h

� �2(k2þ j2�2)

¼ O
f (x0)

nh

� �
¼ o(1),

by Condition A7. This, together with (A.10), leads to (A.9). h

Lemma A.3. Under Conditions A1–A7, if both VG(x0) and S are positive definite, then, for

any 2 , Æ1 < Æ0, as h ¼ hn ! 0, hn1�2=Æ1=log n!1, h pþ1n1=Æ0 ¼ o(1), there exists a

sequence of constants (dn1)1n¼1, 0 , dn1 ! 0, such that

Æn(x0, �) ¼ o p(n�1=Æ1 )dn1 þ O(h pþ1 þ k�� º0k)

uniformly for k�� º0k < O(n�1=Æ0 ):

Proof. Without loss of generality, we assume x0 2 (0, 1): By Condition A2, we have

max
1<i<n

Zi ¼ o p(n1=Æ0 ):

It follows from Lemma A.1 that, as h ¼ hn ! 0, hn1�2=Æ1=log n!1,

kAn(x0, �)k ¼ o p(n
�1=Æ1 )dn1 þ O(h pþ1 þ k�� º0k) (A:11)

for some 0 , dn1 ! 0 and uniformly for k�� º0k < O(n�1=Æ0 ): Thus, we have

kAn(x0, �) max
1<i<n

Zi

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ 1

p
k ¼ o p(1) (A:12)

uniformly for k�� º0k < O(n�1=Æ0 ): It follows from Lemma A.2 that there exists a positive

constant c such that, as h ¼ hn ! 0, hn!1 and �! 0,

sup frn(x0, �): k�� º0k < �g > c, (A:13)

where rn(x0, �) is the minimum eigenvalue of Wn(x0, �): Finally, by (A.11)–(A.13) and by

using the technique of Owen (1988), we have

kÆn(x0, �)k < kAn(x0, �)k
rn(x0, �)� kAn(x0, �)kmax

1<i<n
Zi

ffiffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

¼ Op(kAn(x0, �)k)

¼ o p(n�1=Æ1 )dn1 þ O(h pþ1 þ k�� º0k)

uniformly for k�� º0k < O(n�1=Æ0 ): h
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Proof of Theorem 1. Without loss of generality, we assume x0 2 (0, 1): We first establish

some facts. Let 2 , Æ1 < Æ0, dn2 > 0, d2
n2 ¼ h pþ1n1=Æ1 , and dn ¼ maxfdn1, dn2g, where

dn1 is defined in Lemma A.3. Then, by Lemmas A.1 and A.3, we have

Æn(x0, º0) ¼ o p(n
�1=Æ1 )dn, An(x0, º0) ¼ o p(n�1=Æ1 )dn:

Our first fact is that

0 > � 1

n

Xn
i¼1

Kh(xi � x0)log(1þ Æn(x0, º0)TG(yi, xi, x0, º0))

> �Æn(x0, º0)TAn(x0, º0)

¼ �jo p(n
�2=Æ1 )jd2

n: (A:14)

Let u0 ¼ u0(�) 2 Rk0( pþ1), ku0k ¼ 1, satisfying

u0kEKh(X � x0)G(Y , X , x0, �)k ¼ EKh(X � x0)G(Y , X , x0, �):

Denote

Tn1 ¼
1

n

Xn
i¼1

Kh(xi � x0)log (1þ n�1=Æ1dnu
T
0G(yi, xi, x0, �))I(Zi < n1=Æ1 ):

Then we have

Tn1 ¼ n�1=Æ1dnu
T
0 An1(x0, �)� n�2=Æ1d2

nW
�
n1(x0, �): (A:15)

Here An1(x0, �) is as given in (A.1), and

W�n1(x0, �) ¼ 1

n

Xn
i¼1

Kh(xi � x0)
1

2(1þ ti)2
(uT

0G(yi, xi, x0, �))2 I(Zi < n1=Æ1 ),

where, for 1 < i < n, ti lies between 0 and n�1=Æ1dnu
T
0G(yi, xi, x0, �): When

maxi Zi < n1=Æ1 , maxijtij <
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

dn uniformly in �: This leads to

W�n1(x0, �) <
1

2(1�
ffiffiffiffiffiffiffiffiffiffiffiffi
pþ 1
p

dn)2
uT

0Wn1u0:

By Lemma A.2, we obtain that W�n1(x0, �) is uniformly bounded in � 2 ¨0: This, in

conjunction with (A.15) and Lemma A.1, leads to our second fact, namely that, uniformly for

� 2 ¨0,

Tn1 ¼ n�1=Æ1dnu
T
0 EfKh(X � x0)G(Y , X , x0, �)g þ Op(n�1=Æ1 )d2

n: (A:16)

Furthermore,

P max
i

Z hi . n1=Æ1

� 
¼ o(1), (A:17)

our third fact.
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Denote

Tn(x0, �) ¼ 1

n

Xn
i¼1

Kh(xi � x0)log(1þ Æn(x0, �)TG(yi, xi, x0, �)),

˛ ¼ fÆ: 1þ ÆTG(yi, xi, x0, �) . 0, 1 < i < ng:

Then, when

1

n

Xn
i¼1

Kh(xi � x0)G(yi, xi, x0, �)GT(yi, xi, x0, �) . 0,

we have our final fact,

�Tn(x0, �) ¼ min
Æ2˛
� 1

n

Xn
i¼1

Kh(xi � x0)log(1þ ÆTG(yi, xi, x0, �)): (A:18)

Now combining the facts (A.14), (A.16), (A.17), (A.18) and Condition A8, we obtain

that, for any fixed positive constant r, as n!1,

P sup
k��º0k>r

(�Tn(x0, �)) . �Tn(x0, º0)

( )

<P sup
k��º0k>r

(�Tn(x0, �)) . �jo p(n
�2=Æ1 )jd2

n

( )

<P sup
k��º0k>r

(�Tn1) . �jo p(n
�2=Æ1 )jd2

n

( )
þ Pfmax

i
Zi . n1=Æ1g þ o(1)

<P c inf
k��º0k>r

kEKh(X � x0)G(Y , X , x0, �)k < jOp(n�1=Æ1 )dnj
� �

þ o(1),

which implies

kb��� º0k ¼ o p(1): (A:19)

Similarly, for any constants 0 , rn ! 0 and � small enough, we have

Pf� > kb��� º0k > rng < Pfc inf
�>k��º0k>rn

k�� º0k þ O(h pþ1) < jOp(n
�1=Æ1dnjg þ o(1):

(A:20)

It follows from (A.19) and (A.20) that

�̂�� º0 ¼ Op(n
�1=Æ1 )dn þ O(h pþ1)

¼ o p(n
�1=Æ1 ):

Using Lemma 3.1 again, we obtain Æn(x0, b��) ¼ o p(n�1=Æ1 ): h
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We now turn to some technical lemmas for the proof of Theorem 2. For this purpose, we

first introduce some additional notation. Let

Bn1(�, Æ) ¼ 1

n

Xn
i¼1

Kh(xi � x0)
G(yi, xi, x0, �)

1þ ÆTG(yi, xi, x0, �)
,

Bn2(�, Æ) ¼ 1

n

Xn
i¼1

Kh(xi � x0)
ÆT@G(yi, xi, x0, �)=@�T

1þ ÆTG(yi, xi, x0, �)
;

Cn11(�, Æ) ¼ @Bn1(�, Æ)

@ÆT
, Cn12(�, Æ) ¼ @Bn1(�, Æ)

@�T
,

Cn21(�, Æ) ¼ @Bn2(�, Æ)

@ÆT
, Cn22(�, Æ) ¼ @Bn2(�, Æ)

@�T
:

Lemma A.4. Under Conditions A1, A2, A4 and A7, as h ¼ hn ! 0, and nh!1, for any

random vectors �1 ¼ º0 þ o p(1) and Æ1 ¼ o p(1), we have

Cn11(�1, Æ1) ¼ � f (x0)VG(x0) � S þ o p(1):

Proof. Note that

Cn11(�1, Æ1) ¼ �Wn(x0, �1)þ Rn11,

where

Rn1 ¼
1

n

Xn
i¼1

Kh(xi � x0)
ÆT

1G(yi, xi, x0, �1)(2þ ÆT
1G(yi, xi, x0, �1))

(1þ ÆT
1G(yi, xi, x0, �1))2

3 G(yi, xi, x0, �1)GT(yi, xi, x0, �1):

Note that, under Condition A2,

max
i

Zi ¼ Op(n�1=Æ0 ),

which implies

max
i
kÆT

1G(yi, xi, x0, �1)k ¼ o p(1)

by the assumption that Æ1 ¼ o p(n
�1=Æ0 ): Therefore,

kRn11k <
( pþ 1)jo p(1)j(2þ jo p(1)j)

(1� jo p(1)j)2

1

n

Xn
i¼1

Kh(xi � x0)Z2
i

¼ o p(1):

Now Lemma A.2 and the assumption that �1 ¼ º0 þ o p(1) complete the proof. h
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Lemma A.5. Under Conditions A1, A2 and B1, as h ¼ hn ! 0 and nh!1, for any

random vectors �1 ¼ º0 þ o p(1) and Æ1 ¼ o p(n�1=Æ0 ), we have

Cn12(�1, Æ1) ¼ f (x0)DG(x0) � S þ o p(1),

Cn21(�1, Æ1)T ¼ f (x0)DG(x0) � S þ o p(1):

Proof. We only need to consider Cn12(�1, Æ1) because Cn12(�1, Æ1) ¼ Cn21(�1, Æ1)T: For

simplicity, we write G(yi, xi, x0, �1) as Gi: Note that

Cn12(�1, Æ1) ¼ Dn(�1)þ Rn12,

where

Dn(�) ¼ 1

n

Xn
i¼1

Kh(xi � x0)
@G(yi, xi, x0, �)

@�
,

Rn12 ¼ �
1

n

Xn
i¼1

Kh(xi � x0)
ÆT

1Gi

1þ ÆT
1Gi

@Gi

@�T
� 1

n

Xn
i¼1

GiÆT
1@Gi=@�T

(1þ ÆT
1Gi)2

:

By Condition B1, we have, as h ¼ hn ! 0 and nh!1,

kDn(�1)� Dn(º0)k < 1

n

Xn
i¼1

Kh(xi � x0)U2(yi, xi)k�1 � º0k

¼ Op(k�1 � º0k) ¼ o p(1) (A:21)

and

Dn(º0) ¼ f (x0)DG(x0) � S þ o p(1): (A:22)

Observe that under Condition A2 and the assumption that Æ1 ¼ o p(n
�1=Æ0 ), we have

max
i
jÆT

1Gij ¼ o p(1)

which, with Condition B1, implies

kRn12k <
jo p(1)j

1� jo p(1)j
1

n

Xn
i¼1

Kh(xi � x0)U1(yi, xi)þ
jo p(1)j

(1� jo p(1)j)2

1

n

Xn
i¼1

ZiU1(yi, xi)

¼ o p(1): (A:23)

Now combining (A.21), (A.22) and (A.23), we obtain the desired result. h

Lemma A.6. Under Conditions A1, A2 and B2, as h ¼ hn ! 0, for any random vectors

�1 ¼ º0 þ o p(1) and Æ1 ¼ o p(n
�1=Æ0 ), we have

Cn22(�1, Æ1) ¼ o p(1):

The proof of this lemma is similar to the proof of Lemma 4.5 and thus omitted.
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Denote

C ¼ C11 C12

C21 C22

� �
, C22:1 ¼ C22 � C21C

�1
11 C12,

where

C11 ¼ � f (x0)VG(x0) � S, C22 ¼ 0, C12 ¼ CT
21 ¼ f (x0)DG(x0) � S:

Lemma A.7. Suppose Conditions A1, A4, A7, B1 and B2 hold. Then, as h ¼ hn ! 0, we

have

nh var(Bn1(º0, 0)) ¼ f (x0)VG(x0) � S� þ o(1):

If Ł(x) has a ( pþ 1)th continuous derivative Ł( pþ1)(x), then

C�1
22:1C21C

�1
11 EBn1(º0, 0) ¼ bias�(1þ o(1))

with

bias� ¼ h pþ1S�1(� pþ1, . . . , �2 pþ1)TŁ( pþ1)(x0)=( pþ 1)!:

In addition, if f and Ł( pþ1)(x) have continuous derivatives, then

C�1
22:1C21C

�1
11 EBn1(º0, 0) ¼ bias(1þ o(1)),

where bias is defined in Section 2.

Proof. Note that

EBn1(º0, 0)

¼ EKh(X � x0)E G Y , Ł(X )� (X � x0) pþ1 Ł
( pþ1)(x0)

( pþ 1)!
� o p(h

pþ1)

 !
jX

" #
� X

X � x0

h

� �

¼� EKh(X � x0)E
@G(Y , Ł(X ))

@Ł
jX

� �
(X � x0) pþ1 Ł

( pþ1)(x0)

( pþ 1)!
� X

X � x0

h

� �
þ o p(h pþ1)

¼� f (x0)DG(x0)h pþ1 � (� pþ1, . . . , �2 pþ1)T Ł
( pþ1)(x0)

( pþ 1)!
(1þ o p(1)):

Note that K is symmetric and the (r þ 1)th element of S�1(� pþ1, . . . , �2 pþ1)T is zero. To

obtain the non-zero bias when p� r is even, we expand EBn1(º0, 0) up to order h pþ2:

602 J. Zhang and A. Liu



EBn1(º0, 0) ¼ EKh(X � x0)E G Y , Ł(X )� (X � x0) pþ1 Ł
( pþ1)(x0)

( pþ 1)!

 "

� (X � x0) pþ2 Ł
( pþ2)(x0)

( pþ 2)!
� o p(h

pþ2)

�
jX
	
� X

X � x0

h

� �

¼� f (x0)DG(x0) �
"

(� pþ1, . . . , �2 pþ1)T Ł
( pþ1)(x0)

( pþ 1)!
h pþ1

þ
"

(� pþ1, . . . , �2 pþ1)T Ł
( pþ1)(x0)

( pþ 1)!

f 9(x0)

f (x0)

þ (� pþ2, . . . , �2 pþ2)T Ł
( pþ2)(x0)

( pþ 2)!

#
h pþ2

#
(1þ o p(1)):

Similarly, we have

cov(Bn1(º0, 0)) ¼ 1

n
[EK2

h(X � x0)G(Y , X , x0, º0)GT(Y , X , x0, º0))

� EKh(X � x0)G(Y , X , x0, º0)

3 EKh(X � x0)GT(Y , X , x0, º0)]

¼ f (x0)

nh
fVG(x0) � S� þ O(h2 pþ3)g:

h

Proof of Theorem 2. Write Æ̂Æ ¼ Æn(x0, b��): Then, applying Theorem 1, we haveb��� º0 ¼ o p(1), Æ̂Æ ¼ o p(1),

which, by the assumption, implies that as n is large, b�� is an inner point of ¨0: Since b�� is the

maximum estimator, we have

Bn1( b��, Æ̂Æ) ¼ 0, Bn2( b��, Æ̂Æ) ¼ 0:

By virtue of a Taylor expansion, these become

0 ¼ Bn1(º0, 0)þ Cn11(�1, Æ1)Æ̂Æþ Cn12(�1, Æ1)( b��� º0), (A:24)

0 ¼ Bn2(º0, 0)þ Cn21(�1, Æ1)Æ̂Æþ Cn22(�1, Æ1)( b��� º0), (A:25)

where the (� j, Æ j), j ¼ 1, 2, are between ( b��, Æ̂Æ) and (º0, 0): Write

Cn ¼
Cn11(�1, Æ1) Cn12(�1, Æ1)

Cn21(�1, Æ1) Cn22(�1, Æ1)

� �
:
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Applying Lemmas A.4–A.6, we have

Cn(�1, Æ1) ¼ C þ o p(1),

which, in conjunction with (A.24) and (A.25), implies that

Æ̂Æb��� º0

� �
¼ �C�1

n

Bn1(º0, 0)
0

� �

¼ �C�1 Bn1(º0, 0)
0

� �
(1þ o p(1)):

Combining this with (A.24) and (A.25), we haveffiffiffiffiffiffi
nh
p

( b��� º0) ¼ C�1
22:1C21C

�1
11

ffiffiffiffiffiffi
nh
p

Bn1(º0, 0)(1þ o p(1)),ffiffiffiffiffiffi
nh
p

Æ̂Æ ¼ �(C�1
11 þ C�1

11 C12C
�1
22:1C21C

�1
11 )

ffiffiffiffiffiffi
nh
p

Bn1(º0, 0)(1þ o p(1)):

Finally, according to the Cramér–Wold device and Lemma A.7, to establish the asymptotic

normality of b��, it suffices to check Lyapunov’s condition for any one-dimensional projection

of C�1
22:1C21C

�1
11

ffiffiffiffiffiffi
nh
p

3 Bn1(º0, 0), which is straight forward.

We can prove the result for Æ̂Æ analogously. h
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