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We give necessary conditions for geometric and polynomial convergence rates of random-walk-type

Markov chains to stationarity in terms of existence of exponential and polynomial moments of the

invariant distribution and the Markov transition kernel. These results complement the use of Foster–

Lyapunov drift conditions for establishing geometric and polynomial ergodicity. For polynomially

ergodic Markov chains, the results allow us to derive exact rates of convergence and exact relations

between the moments of the invariant distribution and the Markov transition kernel. In an application

to Markov chain Monte Carlo we derive tight rates of convergence for symmetric random walk

Metropolis algorithms and Langevin algorithms with polynomial target densities.
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1. Introduction

Let X ¼ (X 0, X1, . . .) be a discrete-time Markov chain on the d-dimensional Euclidean

space E ¼ Rd equipped with its Borel �-field B. We assume throughout that the chain is ł-

irreducible, aperiodic and positive recurrent (see Meyn and Tweedie 1993). Let � denote the

(necessarily unique) invariant distribution. Further, let P(x, :) denote the Markov transition

kernel and let Pn(x, :), n 2 N0, denote the n-step kernel,

Pn(x, A) ¼ Px(X n 2 A) (x 2 E, A 2 B),

where Px is the conditional distribution of the chain given X0 � x. The corresponding

expectation operator will be denoted Ex. For any function V we write PV (x) for the functionÐ
V (y)P(x, dy) and for any signed measure � we write �(V ) for

Ð
V (y)�(dy).

Following the terminology of Meyn and Tweedie (1993), a set C 2 B is called small if

there exist n . 0, � . 0 and a probability measure � such that Pn(x, :) > ��(:) for all x in

C. Under our assumptions of ł-irreducibility and aperiodicity this is the same as C being

petite (see Meyn and Tweedie 1993).
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In this paper we consider geometrically and polynomially ergodic Markov chains, i.e.

Markov chains for which there exists a small set C, a function f : E! [1, 1) and a

geometric or polynomial rate function r(n) such that

sup
x2C

Ex

X�C�1

k¼0

r(k) f (X k)

" #
,1, (1)

where �C ¼ inffn > 1 : X n 2 Cg is the first return time of the chain to C. In the polynomial

case (1) implies that for �-almost all x,

r(n)kPn(x, :)� �k f ! 0, n! 0, (2)

where the f-norm is defined for a signed measure � as k�k f ¼ supj gj< f j�(g)j. In the

geometric case the rate of convergence in (2) is exponential but generally of a lower order

than r(n).

The most common way of establishing geometric and subgeometric ergodicity of Markov

chains on general state spaces is by verifying an associated Foster–Lyapunov type drift

condition (see Nummelin and Tuominen 1982; Tweedie 1983; Nummelin 1984; Meyn and

Tweedie 1993; Tuominen and Tweedie 1994; Jarner and Roberts 2002). In the Markov chain

Monte Carlo (MCMC) context this approach has been successfully applied a number of

times to derive sufficient conditions on � for geometric and subgeometric ergodicity of the

Gibbs sampler and other Metropolis–Hastings algorithms (see Chan 1993; Mengersen and

Tweedie 1996; Roberts and Tweedie 1996a, 1996b; Fort and Moulines 2000; Jarner and

Hansen 2000; Jarner and Roberts 2001). However, it is generally difficult to show that the

assumed conditions on � are also necessary or, alternatively, that the rate of convergence is

best possible, and there has been only few results in this direction.

In this paper we show that for random-walk-type Markov chains geometric and

polynomial ergodicity imply that � and P have certain exponential and polynomial

moments. In the polymonially ergodic case, these results can be used in combination with

Foster–Lyapunov type drift conditions to derive exact convergence rates and moments of �.

We illustrate this by deriving an exact relation between the moments of the invariant

distribution and the increment distribution of a random walk on a half line, and to derive

tight rates of convergence for two MCMC algorithms, the random walk Metropolis

algorithm and the Langevin algorithm with polynomial target densities.

We say that X is of random walk type if, for every E . 0, there exists K . 0 such that

P(x, B(x, K)) . 1� E for all x, where B(x, K) ¼ fy : jy� xj , Kg denotes the open ball

with centre x and radius K with respect to Euclidean distance j:j. This is equivalent to the

family of increment distributions fP(x, :)� x : x 2 Eg being tight.

Random-walk-type Markov chains occur frequently in, for example, MCMC methods and

queuing theory. Examples of random-walk-type Markov chains include chains of the form

X nþ1 ¼ X n þ f (X n)þ g(X n)Wnþ1, n 2 N0, (3)

where (Wn) is an independent and identically distributed (i.i.d.) sequence of random variables

and supxj f (x)j ,1 and supxjg(x)j ,1. Also, the random walk on [0, 1) given by
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X nþ1 ¼ (X n þ Wnþ1)þ, n 2 N0, (4)

is of random walk type. Examples of Markov chains which are not of random walk type

include AR(1) processes,

X nþ1 ¼ �X n þ Wnþ1, n 2 N0, (5)

and other chains with unbounded drift terms. However, AR(1) processes and, more generally,

chains with multiplicative drift structure behave like random-walk-type Markov chains on the

log scale, and necessary conditions for geometric and polynomial ergodicity of these chains

can be derived using ideas similar to those presented here. This is done in Jarner and Tweedie

(2002) for a Markov chain associated with the mean of a Dirichlet process. This chain is

essentially an AR(1) process with a stochastic coefficient.

In Section 2 we show that a random-walk-type Markov chain can be geometrically

ergodic only if � has exponential moments. In the special case of a symmetric random walk

Metropolis algorithm with increment proposal distribution with finite first absolute moment

this has previously been proved in Mengersen and Tweedie (1996) and Jarner and Hansen

(2000) by using Wald’s equation to bound the mean return time to the centre of the space.

The approach taken here, however, is more general and involves controlling only a fraction

of the probability mass for which more detailed behaviour of the sample paths can be

obtained in order to provide sample path bounds on the return times.

In Section 3 this idea is taken further to show the existence of polynomial moments of �
when X is polynomially ergodic. We say that X is polynomially ergodic of order (Æ, �),

where Æ, � > 0, if (1) holds with r(k) ¼ (k þ 1)� and f (x) ¼ (jxj þ 1)Æ, and we show that

this implies ð
Rd

jxjÆþ	��(dx) ,1, (6)

where 0 , 	 < 2 depends on the tail behaviour and drift of the family of increment

distributions fP(x, :)� xg. The case 	 ¼ 1 corresponds to uniform integrability of the

increment distributions, and 	 ¼ 2 corresponds to the family of increment distributions

having uniformly bounded variance and drift towards the centre of the space of order at most

jxj�1. As corollaries it is shown that for any ª > 0 with �(jxjª) ,1,ð
Rd

jxjªþ	P(z, dx) ,1 for �-almost all z: (7)

This is used to derive an exact relation between the moments of the invariant distribution and

the increment distribution of the random walk in (4).

Section 4 uses the results above to show that the polynomial rates of convergence of

symmetric random walk Metropolis algorithms and Langevin algorithms with polynomial

target densities found in Jarner and Roberts (2001) are tight. Knowing the exact rates

instead of only lower bounds is quite rare but has obvious advantages when comparing

different algorithms.

The technique used in this paper of controlling only part of the probability mass in order

to derive lower bounds on expectations of functionals of the Markov chain seems quite

general and suitable for providing necessary conditions also for more general ( f , r)-ergodic
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chains than those considered here. Indeed, all chains for which small sets are bounded seem

to be subject to the techniques presented here. This includes all chains that make local

jumps, while chains that make global jumps, such as uniformly ergodic chains, fall outside

of this category.

2. Geometric ergodicity

The Markov chain X is called geometrically ergodic if (1) holds for some f > 1 and

r(n) ¼ rn for some r . 1. By Theorem 15.0.1 of Meyn and Tweedie (1993) an equivalent

condition is that there exists a small set C, constants º , 1 and b ,1 and a function

V > 1 finite for at least one x0 2 E satisfying

PV < ºV þ b1C: (8)

Showing the Foster–Lyapunov drift condition (8) is often the easiest way to prove geometric

ergodicity. Note, that by Theorem 14.3.7 of Meyn and Tweedie (1993) any function V

satisfying (8) has finite expectation with respect to �. In particular, V is finite �-almost

everywhere. We will use these properties below.

The next theorem shows that for random-walk-type Markov chains as defined in the

Introduction geometric ergodicity implies the existence of exponential moments of �. For

symmetric random walk Metropolis algorithms this has previously been proved in

Mengersen and Tweedie (1996) and Jarner and Hansen (2000) under the additional

assumption that the family of increment distributions has finite first absolute moment, but

this assumption is not needed for our approach.

We need the following simple lemma from Jarner and Hansen (2000).

Lemma 2.1. If X is a random-walk-type Markov chain then every small set is bounded.

Following the terminology of Meyn and Tweedie (1993) a set A 2 B is called an f-

Kendall set for a function f > 1 if there exists k . 1 such that

sup
x2A

Ex

X�A�1

k¼0

kk f (X k)

" #
,1:

Theorem 2.2. Let X be a random-walk-type Markov chain. If X is geometrically ergodic then

there exists s . 0 such that ð
Rd

esjxj�(dx) ,1: (9)

Proof. Since X is geometrically ergodic there exist small set C, constants º , 1 and b ,1
and function V > 1 finite �-almost everywhere such that (8) holds. Choose M so large that

A ¼ fV < Mg has positive �-measure. By Theorems 15.2.6 and 15.2.1 of Meyn and Tweedie
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(1993) A is then a small V-Kendall set, and by Theorem 15.2.4 of Meyn and Tweedie (1993)

there then exist k . 1, ~ºº , 1 and ~bb ,1 such that

P ~VV < ~ºº ~VV þ ~bb1A, (10)

where

~VV (x) ¼ V (x) for x 2 A,

Ex[
P�A

k¼0k
kV (X k)] for x 2 Ac:

�
Since ~VV satisfies the drift condition (10) we have �( ~VV ) ,1, and (9) thus follows if we can

find an exponential lower bound on ~VV (x) for jxj sufficiently large.

Choose R so large that A � B(0, R); this can be done because A is a small set and hence

bounded by Lemma 2.1. Since V > 1 we have the lower bound ~VV (x) > Ex[k�A ] for x 2 Ac

and thus in particular for jxj > R.

Choose E . 0 so small that k(1� E) . 1 and then, using the random walk structure,

choose K such that P(x, B(x, K)) . 1� E for all x. For any real number z let dze denote

the smallest integer equal to or larger than z. For jxj > R we then have

Ex[k�A ] > (k(1� E))w, (11)

where w ¼ d(jxj � R)=Ke, because (1� E)w is a lower bound for the probability that the next

w jumps are of length at most K and on this event �A > w. It follows that we can find s . 0

and c . 0 such that ~VV (x) > Ex[k�A] > cesjxj for jxj > R, and we are done. h

Note that by stationarity we have for any function f > 0,ð
Rd

f (x)�(dx) ¼
ð
Rd

ð
Rd

f (x)P(z, dx)�(dz):

In particular, (9) implies thatð
Rd

esjxjP(z, dx) ,1 for �-almost all z:

3. Polynomial ergodicity

Recall that the Markov chain X is polynomially ergodic of order (Æ, �), where Æ, � > 0, if

there exists a small set C such that

sup
x2C

Ex

X�C�1

k¼0

(k þ 1)�(jX k j þ 1)Æ

" #
,1: (12)

By Theorem 14.0.1 of Meyn and Tweedie (1993) this implies, in particular, that X is positive

recurrent with invariant distribution � and �(jxjÆ) ,1.
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3.1. Polynomial ergodicity and polynomial moments

For random-walk-type Markov chains we show below under varying additional conditions

that polynomial ergodicity implies polynomial moments of �. The results take the general

form that polynomial ergodicity of order (Æ, �) implies thatð
Rd

jxjÆþ	��(dx) ,1, (13)

where 0 , 	 < 2 depends on the heaviness of the tails and the drift of the family of

increment distributions fP(x, :)� xg.
Let h be a non-increasing function h : [0, 1)! [0, 1] such that, for all x 2 Rd and all

y > 0,

P(x, B(x, y)c) < h(y): (14)

Since we can always use h � 1, such a function exists for any Markov chain. The Markov

chain is of random walk type if and only if there exists h with h(y)! 0 as y!1 such that

(14) holds.

We first consider conditions in terms of how quickly h tends to zero. Theorems 3.2 and

3.3 show that if h is integrable then (13) holds with 	 ¼ 1, while if h tends to zero at a

non-integrable polynomial rate we obtain (13) with 0 , 	 , 1. In Section 3.2 we assume

more structure and show in Theorems 3.6 and 3.7 that (13) holds with 1 , 	 < 2 for

random-walk-type Markov chains where the family of increment distributions has uniformly

bounded moments of order 	 and drift to the centre of the space of order at most jxj1�	.

For any sequence r we define the sequence ˜r by

˜r(0) ¼ r(0),

˜r(k) ¼ r(k)� r(k � 1), for k ¼ 1, 2, . . . :

From Theorems 2.1 and 2.3 of Tuominen and Tweedie (1994) and the trivial bound

jxjÆ < (jxj þ 1)Æ we obtain the following lemma on which all subsequent results rely.

Lemma 3.1. If X is polynomially ergodic of order (Æ, �), then there exists a small set C such

that ð
Rd

Ex

X�C�1

k¼0

˜r(k)jX k jÆ
" #

�(dx) ,1, (15)

where r(k) ¼ (k þ 1)�.

Note that for � ¼ 0, (15) reduces to �(jxjÆ) ,1 since in this case ˜r(k) ¼ 0 for k . 0.

Theorem 3.2. Assume X is of random walk type and that (14) holds with
Ð1

0
h(y)dy ,1. If

X is polynomially ergodic of order (Æ, �), then
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ð
Rd

jxjÆþ��(dx) ,1: (16)

Proof. Assumption (14) with
Ð1

0
h(y)dy ,1 implies that there exists a sequence of i.i.d.

random variables Yn . 0 with finite mean � ¼ E(Yn) such that, for all x 2 Rd and all y > 0,

P(x, B(x, y)c) < P(Yn > y): (17)

By the weak law of large numbers we have, for any E . 0,

P(Sn , (�þ E)n)! 1, n!1,

where Sn ¼ Y1 þ . . . þ Yn. Hence we can choose N so large that, for n > N,

P(Sn , 2�n) > 1
2
:

Using (17), this shows by a stochastic comparison argument that, for all x 2 Rd and all

n > N ,

Px(X k 2 B(x, 2�n) for k ¼ 0, . . . , n) > 1
2
: (18)

For jxj so large that jxj=4� > N it follows from (18) with n ¼ bjxj=4�c > N that

Px(X k 2 B(x, jxj=2) for k ¼ 0, . . . , bjxj=4�c) > 1
2
: (19)

By Lemmas 3.1 and 2.1, (15) holds for a small and hence bounded set C. For jxj so large

that B(x, jxj=2) � Cc we have on the above event

�C � 1 > bjxj=4�c,

jX k jÆ > (jxj=2)Æ, for k ¼ 0, . . . , bjxj=4�c,

and thus also

X�C�1

k¼0

˜r(k)jX k jÆ >
Xbjxj=4�c

k¼0

˜r(k)jX k jÆ >
jxjÆ
2Æ

r(bjxj=4�c) > jxjÆþ�
2Æ(4�)�

,

where r(k) ¼ (k þ 1)�. For jxj sufficiently large this event has probability at least 1
2

by (19)

and hence, for jxj sufficiently large,

Ex

X�C�1

k¼0

˜r(k)jX k jÆ
" #

>
jxjÆþ�

2Æþ1(4�)�
,

and (16) now follows from (15). h

When the dominating function h decays to zero at a polynomial rate but is not integrable

we can use a stable law limit result instead of the weak law of large numbers to get the

following result.

Theorem 3.3. Assume X is of random walk type and that there exists 0 , 	 , 1 and constant
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c . 0 such that (14) holds with h(y) ¼ cy�	 for y sufficiently large. If X is polynomially

ergodic of order (Æ, �), then ð
Rd

jxjÆþ	��(dx) ,1: (20)

Proof. By (14) and the assumption on h there exists a sequence of i.i.d. random variables

Yn . 0 with distribution function F satisfying 1� F(y) ¼ cy�	 for y sufficiently large such

that, for all x 2 Rd and all y > 0,

P(x, B(x, y)c) < P(Yn > y): (21)

From Sections XVII.5 and XIII.6 of Feller (1971) it follows that there exists � . 0 such that,

for all z . 0,

P(Sn < z�n1=	)! G	(z), n!1,

where Sn ¼ Y1 þ . . . þ Yn and G	 is the cdf of a stable law with index 	. In particular, we

can find � . 0 and N such that, for n > N,

P(Sn < �n1=	) > 1
2
:

Thus by (21) and a stochastic comparison argument we have, for all x 2 Rd and all n > N ,

Px(X k 2 B(x, �n1=	) for k ¼ 0, . . . , n) > 1
2
: (22)

For jxj so large that (jxj=2�)	 > N it follows from (22) with n ¼ b(jxj=2�)	c > N that

Px(X k 2 B(x, jxj=2) for k ¼ 0, . . . , b(jxj=2�)	c) > 1
2
, (23)

from which (20) follows by the same arguments as in the proof of Theorem 3.2. h

By arguments similar to those used in the proofs of the two preceding theorems we

obtain the following corollary which relates the moments of P to those of �.

Corollary 3.4. Assume X is of random walk-type with invariant distribution �.

(i) Assume (14) holds with
Ð1

0
h(y)dy ,1. Then, for any ª > 0 with �(jxjª) ,1,ð

Rd

jxjªþ1P(z, dx) ,1 for �-almost all z: (24)

(ii) Assume there exist 0 , 	 , 1 and a constant c . 0 such that (14) holds with

h(y) ¼ cy�	, for y sufficiently large. Then, for any ª > 0 with �(jxjª) ,1,ð
Rd

jxjªþ	P(z, dx) ,1 for �-almost all z: (25)

Proof. (i) Assume (14) holds with
Ð1

0
h(y)dy ,1. As shown in the proof of Theorem 3.2,

there exist � . 0 and R . 0 such that, for jxj > R,
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Px(Xk 2 B(x, jxj=2) for k ¼ 0, . . . , bjxj=4�c) > 1
2
: (26)

Choose K . 0 so large that C ¼ B(0, K) has strictly positive �-measure. For any ª > 0 and

any jxj > 2K, we have on the above event.

�C � 1 > bjxj=4�c,

jX k jª > (jxj=2)ª, for k ¼ 0, . . . , bjxj=4�c,

and thus also

X�C�1

k¼0

jXk jª >
Xbjxj=4�c

k¼0

jXk jª >
jxjª
2ª

(bjxj=4�c þ 1) >
jxjªþ1

2ª(4�)
:

For jxj sufficiently large this event has probability at least 1
2

by (26). Hence, for any ª > 0, we

have

Ex

X�C�1

k¼0

jX k jª
" #

>
jxjªþ1

2ªþ1(4�)
, (27)

for jxj > H, where H ¼ maxf2K, Rg.
Assume now that �(jxjª) ,1. Since �(C) . 0 we have, by Theorem 10.4.9 of Meyn

and Tweedie (1993),

1 . �(jxjª) ¼
ð
C

Ez

X�C�1

k¼0

jXk jª
" #

�(dz):

Thus, for �-almost all z in C, the integrand is finite and for such z we have

1 . Ez

X�C�1

k¼0

jXk jª
" #

¼ jzjª þ
ð
Cc

Ex

X�C�1

k¼0

jX k jª
" #

P(z, dx)

>

ð
B(0,H)c

Ex

X�C�1

k¼0

jXk jª
" #

P(z, dx)

>

ð
B(0,H)c

jxjªþ1

2ªþ1(4�)
P(z, dx),

where the last inequality uses (27). This shows that (24) holds for �-almost all z in

C ¼ B(0, K). Since K can be chosen arbitrarily large, we conclude that (24) holds for �-

almost all z, and we are done.

(ii) Replace (26) by (23) from the proof of Theorem 3.3 and proceed as in (i). h

Example. Let P be the Markov transition kernel for the random walk on [0, 1) given by

Xnþ1 ¼ (Xn þ Wnþ1)þ, n 2 N0, (28)

where (Wn) is an i.i.d. sequence of real-valued random variables with common law .̂ Clearly,
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X is of random walk type. It is easy to show that if E[W ] , 0, then X is �0-irreducible,

aperiodic and positive recurrent with invariant distribution �.

Proposition 3.5. Assume E[W ] , 0. Then, for any ª > 2,

E[(Wþ)ª] ,1 if and only if �(xª�1) ,1: (29)

Proof. From Proposition 5.1 of Jarner and Roberts (2002) it follows that if E[(Wþ)ª] ,1
then �(xª�1) ,1. Strictly speaking, Proposition 5.1 of Jarner and Roberts (2002) assumes

that ª is an integer, but the proof of the proposition is valid for any real ª > 2.

Assume instead that �(xª�1) ,1. By assumption, E[W ] , 0. In particular, E[jW j] ,1
and we can therefore find h with

Ð1
0

h(y)dy ,1 satisfying (14). It then follows from

Corollary 3.4(i) that, for �-almost all z in [0, 1),

1 .

ð1
0

xªP(z, dx) ¼
ð1
�z

(zþ w)ªˆ(dw),

and we conclude that E[(Wþ)ª] ,1. h

In fact, Proposition 3.5 holds for any ª > 1. The ‘if’ part of (29) follows as in the proof

above by use of Corollary 3.4, while the ‘only if’ part can be proved by a suitable

modification of the proof of Proposition 5.1 in Jarner and Roberts (2002), but we omit the

details.

This means that there exist Markov chains of random walk type with invariant

distributions without any (polynomial) moments. For example, let the density of W in (28)

be given by f (w) / [(wþ c) log(wþ c)]�2 for w > e� c, where c . 0 is chosen such that

E[W ] , 0. Then the invariant distribution � exists, but �(xs) ¼ 1 for all s . 0 since

E[(Wþ)ª] ¼ 1 for all ª . 1.

3.2. Random-walk-type Markov chains with moments and drift

In this section we obtain higher polynomial moments of � for random-walk-type Markov

chains with increment distributions having uniformly bounded moments and polynomial

drift. For the Markov kernel P(x, :) let D(x, :) be the distribution of jX 1j � jxj, that is,

D(x, (�1, z)) ¼ P(x, B(0, jxj þ z)) (x 2 Rd , z 2 R):

For z < �jxj the ball B(0, jxj þ z) is the empty set and the probability on the right-hand side

is zero. We assume that there exists a family of distributions (H(r))r>0 on R such that, for all

r > 0 and all jxj > r,

H(r) <
st

D(x, :), (30)

where for two distributions Q1 and Q2 on R we write Q1 <
st

Q2 when the corresponding

distribution functions F1 and F2 satisfy F1(y) > F2(y) for all y.

Let Y (r) be a random variable with distribution H(r). The assumption is then that
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whenever the Markov chain is at distance at least r from the origin the amount by which

the distance increases after one iteration is stochastically larger than Y (r). If X is of

random walk type this assumption is always satisfied, and in fact we can choose H(r) ¼ H

independent of r such that (30) holds. In general, however, we want to choose H(r)

depending on r and ‘as large as possible’ for the given r.

In Theorems 3.6 and 3.7 below we assume that, for some 1 , 	 < 2 and r sufficiently

large, Y (r) has uniformly bounded moments of order 	 and the drift E[Y (r)] is bounded

from below by �cr1�	, c . 0. We show that under these assumptions polynomial ergodicity

of order (Æ, �) implies (13). These assumptions imply that the drift of the Markov chain

towards the centre of the space becomes smaller and smaller such that it looks more and

more like an unbiased random walk the further away it gets from the origin. As shown in

Section 4, Langevin and symmetric random walk Metropolis algorithms with polynomial

target densities behave like this. Since we only make assumptions about the limit behaviour

of Y (r) it is enough that (30) holds for r sufficiently large.

Theorem 3.6. Assume that X is of random walk type and that there exists a constant c . 0

such that

E[Y (r)] > � c

r
for r sufficiently large, (31)

and that

lim sup
r!1

var(Y (r)) ,1: (32)

If X is polynomially ergodic of order (Æ, �), thenð
Rd

jxjÆþ2��(dx) ,1: (33)

Proof. For any x, we have by (30) the stochastic ordering H(jxj=2) <
st

D(y, :) for all

jyj > jxj=2, and by a stochastic comparison argument we then also have

�̂�(�1,jxj=2) <
st
�B(0,jxj=2), (34)

where �B(0,jxj=2) is the first return time to B(0, jxj=2) of the Markov chain X started at x and

�̂�(�1,jxj=2) is the first return time to the interval (�1, jxj=2) of the random walk (Wi) on R

given by

W0 ¼ jxj,

Wi ¼ Wi�1 þ Zi (i > 1),

where (Zi) is an i.i.d. sequence of random variables with distribution H(jxj=2). To simplify

the notation we are suppressing the dependence of Wi and Zi on x.

Let R . 0 be so large that (31) holds for r > R and so large that K ¼
supr>R var(Y (r)) ,1. For jxj > 2R we then have by Kolmogorov’s inequality, for any

a . 0 and any n . 0,
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P max
1<k<n

jSk � mk j . a

� �
<

var(Sn)

a2
<

nK

a2
, (35)

where Sk ¼ Z1 þ . . . þ Zk and mk ¼ E[Sk] ¼ kE[Y (jxj=2)].

Let � ¼ minf1=32K, 1=8cg. From (35) with n ¼ b�jxj2c and a ¼ jxj=4, it follows that

P max
1<k<b�jxj2c

jSk � mk j . jxj=4

� �
<
b�jxj2c16K

jxj2 <
1

2
: (36)

Since mk > �2ck=jxj > �2cb�jxj2c=jxj > �jxj=4 for k ¼ 1, . . . , b�jxj2c, it follows that

P(�̂�(�1,jxj=2) . b�jxj2c) > 1
2
, (37)

and then by (34) also that

Px(�B(0,jxj=2) . b�jxj2c) > 1
2
: (38)

By Lemmas 3.1 and 2.1, (15) holds for a small and hence bounded set C. For jxj so large

that C � B(0, jxj=2) we have on the above event

�C � 1 > b�jxj2c

jXk jÆ > (jxj=2)Æ, for k ¼ 0, . . . , b�jxj2c,

and thus also

X�C�1

k¼0

˜r(k)jXk jÆ >
Xb�jxj2c
k¼0

˜r(k)jXk jÆ >
jxjÆ
2Æ

r(b�jxj2c) > jxj
Æþ2���

2Æ
,

where r(k) ¼ (k þ 1)�. For jxj sufficiently large this event has probability at least 1
2

by (38)

and hence, for jxj sufficiently large,

Ex

X�C�1

k¼0

˜r(k)jXk jÆ
" #

>
jxjÆþ2���

2Æþ1
,

and (33) now follows from (15). h

It is well known that for a one-dimensional symmetric random walk with finite variance

the return time to the centre increases as jxj2 (see Chapter III of Feller 1968). The theorem

above says that this is still the case if the random walk is biased of order jxj�1.

Theorem 3.7. Assume that X is of random walk type and that there exist 1 , 	 , 2 and a

constant c . 0 such that

E[Y (r)] > � c

r	�1
for r sufficiently large, (39)

and that

lim sup
r!1

EjY (r)j	 ,1: (40)
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If X is polynomially ergodic of order (Æ, �), thenð
Rd

jxjÆþ	��(dx) ,1: (41)

Proof. As in the proof of Theorem 3.6, we seek to bound the return time �̂�(�1,jxj=2) of the

random walk

W0 ¼ jxj,

Wi ¼ Wi�1 þ Zi (i > 1),

where (Zi) is an i.i.d. sequence of random variables with distribution H(jxj=2). Let
~ZZi ¼ Zi1(jZij<jxj) be the random variable Zi truncated at jxj, and let ~��(�1,jxj=2) be the return

time to (�1, jxj=2) of the random walk ( ~WWi) given by

~WW0 ¼ jxj,

~WWi ¼ ~WWi�1 þ ~ZZi (i > 1):

Let R . 0 be so large that (39) holds for r > R and so large that K ¼ supr>R EjY (r)j	 ,1.

For jxj > 2R we then have the bounds

P( ~ZZi 6¼ Zi) ¼ P(jZij . jxj) <
EjZij	
jxj	 <

K

jxj	 ,

jE[ ~ZZi]� E[Zi]j < Ej ~ZZi � Zij ¼ E[jZij1(jZij.jxj)] <
EjZij	
jxj	�1

<
K

jxj	�1
,

E[ ~ZZi] > E[Zi]� jE[ ~ZZi]� E[Zi]j > �
2	�1cþ K

jxj	�1
¼ � d

jxj	�1
,

where d ¼ 2	�1cþ K, and

var( ~ZZi) < E ~ZZ2
i ¼ E[jZij21(jZij<jxj)] < jxj2�	EjZij	 < Kjxj2�	:

For jxj > 2R we have by Kolmogorov’s inequality, for any a . 0 and any n . 0,

P max
1<k<n

j ~SSk � ~mmk j . a

� �
<

var( ~SSn)

a2
<

nKjxj2�	
a2

, (42)

where ~SSk ¼ ~ZZ1 þ . . . þ ~ZZk and ~mmk ¼ E[ ~SSk] ¼ kE[ ~ZZ1].

Let � ¼ minf1=32K, 1=4dg. From (42) with n ¼ b�jxj	c and a ¼ jxj=4, we obtain

P max
1<k<b�jxj	c

j ~SSk � ~mmk j . jxj=4

� �
<
b�jxj	cjxj2�	16K

jxj2 <
1

2
: (43)

Since ~mmk > �kd=jxj	�1 > �b�jxj	cd=jxj	�1 > �jxj=4 for k ¼ 1, . . . , b�jxj	c, it follows that

P(~��(�1,jxj=2) . b�jxj	c) > 1
2
: (44)

Further,
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P( ~ZZk ¼ Zk for k ¼ 1, . . . , b�jxj	c) ¼ 1� P
[b�jxj	c
k¼1

( ~ZZk 6¼ Zk)

0@ 1A > 1� b�jxj
	cK
jxj	 >

31

32
,

and then

P�̂�(�1,jxj=2) . b�jxj	c) > P(~��(�1,jxj=2) . b�jxj	c and ~ZZk ¼ Zk for k ¼ 1, . . . , b�jxj	c)

>
15

32
:

As in the proof of Theorem 3.6 we then also have

Px(�B(0,jxj=2) . b�jxj	c) >
15

32
,

from which the conclusion (41) follows as in the proof of Theorem 3.6. h

In Theorems 3.6 and 3.7 the drift is assumed to be bounded from below by �cr1�	. This

assumption is only made to match the random fluctuations such that after n iterations the

distance travelled due to drift and that due to random fluctuations are of the same order.

However, the arguments used in the proofs of Theorems 3.6 and 3.7 can also be used if the

drift is allowed to be larger, but in this case the drift will dominate the random fluctuations

and the inferred polynomial moments of � will be smaller.

As in the previous section we have the following corollary which we state without proof.

Corollary 3.8. Assume that X is of random walk type with invariant distribution �.

(i) Assume that conditions (31) and (32) of Theorem 3.6 are satisfied. Then, for any

ª > 0 with �(jxjª) ,1,ð
Rd

jxjªþ2P(z, dx) ,1 for �-almost all z: (45)

(ii) Assume that there exists 1 , 	 , 2 such that conditions (39) and (40) of Theorem

3.7 are satisfied. Then, for any ª > 0 with �(jxjª) ,1,ð
Rd

jxjªþ	P(z, dx) ,1 for �-almost all z: (46)

4. Applications to Markov chain Monte Carlo

We will give two MCMC applications of the results in the previous sections: one

concerning the symmetric random walk Metropolis algorithm, and one concerning the

Langevin algorithm, both of which are special cases of the Metropolis–Hastings algorithm

(Hastings 1970). In both cases we will show that the polynomial ergodicity results obtained

in Jarner and Roberts (2001) are tight.
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4.1. The symmetric random walk Metropolis algorithm

The Metropolis–Hastings algorithm is an algorithm for constructing a Markov chain with a

prescribed invariant distribution � referred to as the target distribution. We assume that the

state space is Rd equipped with its Borel �-field, and that the target distribution � has

density, also denoted by �, with respect to Lebesgue measure �Leb. The algorithm is based

on a candidate transition kernel Q(x, :) which generates proposed moves for the Markov

chain X. We assume that Q(x, :) has density q(x, y) with respect to �Leb. If the current state

is x, a proposed move to y, generated according to the density q(x, y), is then accepted with

probability

Æ(x, y) ¼
min

�(y)q(y, x)

�(x)q(x, y)
, 1

� �
, when �(x)q(x, y) . 0,

1, when �(x)q(x, y) ¼ 0:

8<: (47)

Thus the Markov transition kernel P for the Markov chain X is given by

P(x, dy) ¼ p(x, y)�Leb(dy)þ r(x)�x(dy), (48)

where p(x, y) ¼ Æ(x, y)q(x, y) for x 6¼ y and 0 otherwise, �x is the point mass at x and

r(x) ¼
ð

(1� Æ(x, y))q(x, y)�Leb(dy) (49)

is the probability of staying at x. The kernel P is reversible with respect to � and hence has �
as its invariant distribution.

We first consider the special case of this algorithm known as the symmetric random walk

Metropolis algorithm (Metropolis et al. 1953), in which q has the form

q(x, y) ¼ q(jx� yj), (50)

that is, the proposed increments are generated according to the same symmetric distribution

Q(dx) ¼ q(x)�Leb(dx). In this case the acceptance probability simplifies to

Æ(x, y) ¼ min
�(y)

�(x)
, 1

� �
: (51)

The symmetric random walk Metropolis algorithm is clearly of random walk type as defined

in the Introduction.

We assume that � is bounded away from zero and infinity on bounded sets and that q is

bounded away from zero in some region around zero, that is, there exist �q . 0 and Eq . 0

such that q(x) > Eq for jxj < �q. Under these assumptions P is �Leb-irreducible and

aperiodic by Theorem 2.2 of Roberts and Tweedie (1996b).

By Theorem 2.2 in the present paper it follows that exponential or lighter tails of � are a

necessary condition for geometric ergodicity of the symmetric random walk Metropolis

algorithm irrespective of the proposal distribution Q. In one dimension this is essentially

also a sufficient condition, while in higher dimensions additional assumptions on the

contour manifolds are needed (see Mengersen and Tweedie 1996; Roberts and Tweedie

1996b; Jarner and Hansen 2000).
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If � has polynomial tails the algorithm will be only polynomially ergodic. It is somewhat

surprising, however, that the order of polynomial ergodicity depends on the tails of both �
and Q. For ease of exposition we consider only a stylized one-dimensional case.

Assume that � is a continuous, strictly positive density on the half-line [0, 1) and that

there exists r . 0 such that

�(x) / 1

x1þr
for x sufficiently large: (52)

Proposition 4.1. Assume that � takes the form of (52) and that Q has finite variance. For

Æ, � > 0 the symmetric random walk Metropolis algorithm is polynomially ergodic of order

(Æ, �) if and only if Æþ 2� , r.

Proof. The ‘if’ part follows from Proposition 3.1 of Jarner and Roberts (2001). The ‘only if’

part will follow from Theorem 3.6 above if we can show that (31) and (32) are satisfied.

By the assumptions on � we have that, for x sufficiently large, all proposed moves to the

left are accepted. Also, by (52) we have that, for x sufficiently large, the acceptance

probability of any positive increment y is an increasing function in x, that is, Æ(x, xþ y) is

increasing in x for any y > 0. Thus for z sufficiently large we have, for all x > z,

H(z) <
st

P(x, :)� x, (53)

where H(z, dy) ¼ h(z, y)�Leb(dy) for y 6¼ 0, with h(z, y) given by

h(z, y) ¼
q(y), for y , 0,

q(y)
z

zþ y

� �1þr

, for y . 0,

8><>: (54)

and H(z, f0g) ¼ 1�
Ð
h(z, y)dy. Let Y (z) be a random variable with distribution H(z). Since

Q is assumed to have variance, (32) is satisfied and it only remains to show (31). Now using

the fact that, for any u > 0,

1

1þ u

� �1þr

�1 > �(1þ r)u,

we find

E[Y (z)] ¼
ð1

0

q(y)y
z

zþ y

� �1þr

�1

" #
dy > � (1þ r)

z

ð1
0

q(y)y2dy,

and since
Ð1

0
q(y)y2 dy ,1 this shows that (31) holds and we are done. h

For symmetric random walk Metropolis algorithms with proposal distribution without

variance we have the following result. Recall that a function l is normalized slowly varying

if, for all a . 0, xa l(x) is eventually increasing and x�a l(x) is eventually decreasing.
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Proposition 4.2. Assume that � takes the form of (52) and that there exists 0 , 	 < 2 such

that, for jxj sufficiently large, q(x) can be written

q(x) ¼ l(jxj)
jxj1þ	 , (55)

where l is a normalized slowly varying function.

The symmetric random walk Metropolis algorithm is polynomially ergodic of order (Æ, �)

for all Æ, � > 0 with Æþ 	� , r, and not polynomially ergodic of order (Æ, �) for any

Æ, � > 0 with Æþ 	� . r.

Proof. That the symmetric random walk Metropolis algorithm is polynomially ergodic of

order (Æ, �) when Æþ 	� , r follows from Proposition 3.2 of Jarner and Roberts (2001) and

the remarks following it. For the second part of the statement, assume by way of

contradiction that the algorithm is polynomially ergodic of order (Æ, �) with Æþ 	� . r.

Consider first the case where 0 , 	 < 1. Choose 0 , 	9 , 	 such that Æþ 	9� . r. By

(55) we have, for jxj sufficiently large,

q(x) <
1

jxj1þ	9 , (56)

and it then follows from Theorem 3.3 in the present paper that �(jxjÆþ	9�) ,1, which

contradicts Æþ 	9� . r.

Consider next the case where 1 , 	 < 2. As in the proof of Proposition 4.1, we have that

(53) holds with H(z, dy) ¼ h(z, y)�Leb(dy) for y 6¼ 0, where h(x, y) is given by (54). Let

Y (z) be a random variable with distribution H(z). By the same argument as above, it is

clear that, for any 1 , 	9 , 	,

lim sup
z!1

EjY (z)j	9 ,1:

Now choose 1 , 	9 , 	 such that Æþ 	9� . r, and let K be so large that (56) holds for

jxj > K. We then have

E[Y (z)] ¼ I1(z)þ I2(z), (57)

where

I1(z) ¼
ðK

0

q(y)y
z

zþ y

� �1þr

�1

" #
dy, I2(z) ¼

ð1
K

q(y)y
z

zþ y

� �1þr

�1

" #
dy:

As in the proof of Proposition 4.1, I1(z) > �c1=z for some constant c1 . 0. For I2(z) we

obtain, using (56) and the transformation u ¼ y=z,

I2(z) >

ð1
K

1

y	9
z

zþ y

� �1þr

�1

" #
dy ¼ 1

z	9�1

ð1
K=z

1

u	9
1

1þ u

� �1þr

�1

" #
dy > � c2

z	9�1
,

where
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c2 ¼
ð1

0

1

u	9
1� 1

1þ u

� �1þr
" #

dy ,1:

The integral is finite since the integrand looks like u�	9 at infinity and 	9 . 1, and like u1�	9

at the origin and 1� 	9 . �1. Hence by (57) there exists constant c . 0 such that

E[Y (z)] > �c=z	9�1 for z sufficiently large. By Theorem 3.7 it then follows that

�(jxjÆþ	9�) ,1, which again contradicts Æþ 	9� . r. h

Whereas the sufficiency part of, in particular, the last proposition is not straightforward to

extend to higher dimensions, the necessity part can easily be extended to Rd and to more

general polynomially decaying target densities.

4.2. The Langevin algorithm

When � is a positive, twice differentiable density, Besag (1994), for example, has proposed

using the candidate transition kernel

Q(x, :) ¼ N xþ h

2
= log�(x), h

� �
, (58)

where h . 0, N denotes the normal distribution and = is the differential operator. As shown

by Roberts and Tweedie (1996a), this choice performs well when � has exponentially

decaying or Gaussian tails, giving geometrically ergodic algorithms in both these cases. They

also show that the algorithm fails to be geometrically ergodic when = log�(x)! 0 as

jxj ! 1, for example when � has polynomial tails. In fact, when � has polynomial tails the

results of this paper are particularly easy to apply and we obtain the following result which

shows that in this case the convergence properties of the Langevin algorithm are exactly the

same as for a symmetric random walk Metropolis algorithm with finite variance.

Let P denote the Markov transition kernel for the Langevin algorithm, i.e. the

Metropolis–Hastings algorithm with Q given by (58).

Proposition 4.3. Assume that � is a strictly positive, twice differentiable density on [0, 1)

which takes the form of (52). For any h . 0, the Langevin algorithm is polynomially ergodic

of order (Æ, �) if and only if Æþ 2� , r.

Proof. The ‘if’ part follows from Proposition 4.1 of Jarner and Roberts (2001). For the ‘only

if’ part, first note that P is �Leb-irreducible and aperiodic and of random walk type since

j= log�(x)j is bounded away from infinity. Further, it is shown in the proof of Proposition 4.1

of Jarner and Roberts (2001) that, for x sufficiently large, all positive increments are accepted

while negative increments are possibly rejected. Thus for x sufficiently large we have, for all

y > x,

N � h(1þ r)

2x
, h

� �
<
st

P(y, :)� y:
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It then follows from Theorem 3.6 above that P cannot be polynomially ergodic of order

(Æ, �) for any Æ, � > 0 with Æþ 2� > r. h
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