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In Euclidean spaces, the empirical mean vector as an estimator of the population mean is known to have poly-
nomial concentration unless a strong tail assumption is imposed on the underlying probability measure. The idea
of median-of-means tournament has been considered as a way of overcoming the sub-optimality of the empiri-
cal mean vector. In this paper, to address the sub-optimal performance of the empirical mean in a more general
setting, we consider general Polish spaces with a general metric, which are allowed to be non-compact and of
infinite-dimension. We discuss the estimation of the associated population Fréchet mean, and for this we extend
the existing notion of median-of-means to this general setting. We devise several new notions and inequalities
associated with the geometry of the underlying metric, and using them we study the concentration properties of
the extended notions of median-of-means as the estimators of the population Fréchet mean. We show that the
new estimators achieve exponential concentration under only a second moment condition on the underlying dis-
tribution, while the empirical Fréchet mean has polynomial concentration. We focus our study on spaces with
non-positive Alexandrov curvature since they afford slower rates of convergence than spaces with positive curva-
ture. We note that this is the first work that derives non-asymptotic concentration inequalities for extended notions
of the median-of-means in non-vector spaces with a general metric.

Keywords: Concentration inequalities; Fréchet mean; median-of-means estimators; non-Euclidean geometry;
NPC spaces; power transform metric

1. Introduction

The notion of a Fréchet mean extends the definition of mean, as a center of probability distribution, to
metric space settings. Given a Borel probability measure P on a metric space (M,d) and a functional
η : M ×M → R, the Fréchet mean (or the barycenter) [21] of P is any x∗ such that

x∗ ∈ arg min
x∈M

∫
M
η(x, y)dP(y). (1)

This accords with the usual definition of the Euclidean mean for M = RD when η(x, y) = d(x, y)2 =
|x− y |2. In this paper, we consider the estimation of the Fréchet mean of a heavy-tailed distribution. Our
goal is to find estimators that have better non-asymptotic accuracy than the empirical Fréchet mean,

xn ∈ arg min
x∈M

1
n

n∑
i=1

η(x,Xi) (2)

when P is heavy-tailed on M. The xn is an M-estimator in a broad sense. The present work is
an achievement of this goal for global non-positive curvature (NPC) spaces, also called CAT(0) or
Hadamard spaces, that are of finite- or infinite-dimension.
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Our coverage with NPC spaces is genuinely broad enough. It includes Hilbert spaces with Euclidean
spaces as a special case, and various other types of metric spaces, some of which are listed below.

• A hyperbolic space HD has constant non-positive sectional curvature, which results in rich ge-
ometrical features due to explicit expressions for the log and exp maps. The deviation of two
geodesics in a hyperbolic space accelerates while drifting away from the origin, which allows a
natural hierarchical structure in neural networks [23,49].

• The space S+D of symmetric positive definite matrices has non-constant and non-positive sectional
curvature, which appears frequently in diffusion tensor imaging [19,20]. The space S+D is not
only a Riemannian manifold, but also an Abelian Lie group with additional algebraic structure
[3,37,45]. Thus, additive regression modeling is allowed for random elements taking values in S+D
[38].

• The Wasserstein space P2(R) over R has vanishing Alexandrov curvature [29] and plays a fun-
damental role in optimal transport [52]. The Wasserstein space has rich applications in modern
theories, such as change point detection [27], and Wasserstein regression [14,24,54].

Apart from the above-mentioned examples, there are other NPC spaces, such as phylogenetic trees
[9,45], that are of great importance in applications.

A great deal of statistical inference is fundamentally based on the estimation of the Fréchet mean x∗.
While classical statistics leaned toward the asymptotic behavior of estimators, the derivation of non-
asymptotic probability bounds, called concentration or tail inequalities, has drawn increasing attention
recently. For an estimator x̂ = x̂(X1, . . . ,Xn) of x∗, concentration inequalities for x̂ are given in the form
of

P (d(x̂, x∗) ≤ r(n,Δ)) ≥ 1 − Δ, (3)

where r(n,Δ) is the radius of concentration corresponding to a tail probability level Δ whose depen-
dence on n is typically determined by the metric-entropy of M. There have been only a few attempts to
establish such concentration inequalities when (M,d) is not a linear space, and all of them have been
restricted to the empirical Fréchet mean x̂ = xn, to the best of our knowledge. For M = RD , it is widely
known that the empirical mean xn is sub-optimal achieving only polynomial concentration for heavy-
tailed P in the sense that Δ−1 = f (n,r(n,Δ)) for some f with f (n,r) for fixed n being a polynomial
function of r .

A solution to alleviating the sub-optimality of the empirical mean xn is to partition {X1, . . . ,Xn}
into a certain number of blocks and then take a ‘median’ of the within-block sample means. This
robustifies the empirical mean against heavy-tailed distribution while it inherits its efficiency for light-
tailed distribution. The idea was first introduced by [43]. When M = R, the resulting estimator, termed
as median-of-means, achieves the concentration inequality (3) with r(n,Δ) = C × n−1/2

√
log(1/Δ) for

some constant C > 0 [18]. The one-dimensional result was extended to M = RD by [39] developing
the idea of ‘median-of-means tournament’. The resulting estimator x̂, also termed as median-of-means,
was found to achieve a sub-Gaussian performance:

P

(
‖ x̂ − x∗‖ ≤ C1

√
tr(ΣX )

n
+C2

√
‖ΣX ‖ log(1/Δ)

n

)
≥ 1 − Δ (4)

for some constants C1,C2 > 0, where ΣX is the covariance matrix and ‖ · ‖ is the operator norm. The con-
centration property at (4) is what the empirical mean achieves when X has a multivariate sub-Gaussian
distribution, so the name sub-Gaussian performance. Both results establish exponential concentration
in the sense that Δ−1 = f (n,r(n,Δ)) with f (n,r) for fixed n being an exponential function of r . There
have been also proposed several other mean estimators satisfying (4) that can be computed in linear
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time (nD log(1/Δ))O(1) by using the median-of-means principle, see [15,17,26,35], and other related
works on robust mean estimation, e.g. [12,41].

All the aforementioned works, however, treated Euclidean spaces for η = d2 with extensive use of the
associated inner product. Apart from the Euclidean cases, there are few works for infinite-dimensional
M, e.g. [36] for a kernel-enriched domain and [42] for a Banach space, both of which considered
η = d2. We are also aware of [28] that studied the case of arbitrary metric spaces. However, the latter
work does not use the geometric features of the underlying metric space but assumes certain high-level
conditions. The conditions include the existence of an estimator x̂ and a random distance DIST on
(M,d) such that P(d(x̂, x∗) ≤ ε) ≥ 2/3 for some ε > 0 and P(d(x, y)/2 ≤ DIST(x, y) ≤ 2d(x, y)) ≥ 8/9
for all x, y ∈ M. We highlight that the present work is the first to use the median-of-means principle
without imposing strong assumptions such as in [28] when M is a non-vector space. Our technical
development is significantly different from the existing works in the literature. We note that there is
no distribution on non-vector spaces corresponding to Gaussian or sub-Gaussian distribution on RD ,
neither are available the notions of trace and operator norm, so that an analogue of the sub-Gaussian
performance as at (4) for non-vector spaces does not seem to be possible. Nevertheless, we establish
for our estimators exponential concentration in the sense that the inverse of ‘probability regret’ Δ at (3)
is an exponential function of the radius of concentration.

In this paper, we first extend the notion of median-of-means to general metric spaces M. Then,
we address the problem of robust estimation by taking into account the metric geometry of the un-
derlying space. To this end, we use the CN (‘Courbure Négative’ in French), quadruple and vari-
ance inequalities, which are not well known in statistics, instead of the inner product. We show that,
when M is an NPC space and η(x, y) = d(x, y)α, the corresponding geometric-median-of-means esti-
mator achieves exponential concentration for all α ∈ (1,2], under only the second moment condition
E d(x∗,X)2 < +∞. In particular, for the treatment of the ‘bridging’ case where α ∈ (1,2), we introduce
a further extended notion of the geometric-median-of-means, for which we devise generalized ver-
sions of the CN and variance inequalities. Our work is the first that provides concentration inequalities
for median-of-means type estimators with explicit constants, when η is not necessarily d2 or M is a
possibly infinite-dimensional non-vector space.

We work with (possibly non-compact) NPC spaces for the geometric-median-of-means estimators
since the Fréchet mean xn has poor performance in such spaces. In fact, the concentration properties
of xn depend heavily on the compactness and curvature of M. For general Polish spaces, an exponen-
tial concentration inequality may be established with xn if the space is compact [2]. For non-compact
geodesic spaces, however, only polynomial concentration is possible with xn unless a strong assump-
tion on the tail of P is imposed. The latter was proved for Euclidean spaces, a special case of non-
compact spaces [12]. As for the curvature of the underlying space, xn has a poorer rate of convergence
for M with non-positive curvature than with positive curvature (Sections 3 and 4.3). Curvature and
compactness are related in the case where M is a Riemannian manifold. The Bonnet-Myers theorem
states that, if the sectional curvature of a Riemannian manifold is bounded from below by κ > 0, then
diam(M) ≤ π/

√
κ so that it is compact. To complement the existing works for xn, we demonstrate the

polynomial concentration of xn, as well, for general Polish spaces in Section 3, and for NPC spaces as
a specialization of the latter in Section 4. We note that there have been few works on non-asymptotic
theory of xn for non-Euclidean M, although its asymptotic theory has been widely studied [7,8,32,48].
The work in Section 3 for the empirical Fréchet mean xn paves our way for developing the main results
in Section 5 for the geometric-median-of-means estimators.

Our treatment of NPC spaces relies on the metric geometry of the underlying space M, rather than
on the differential geometry of M. Consequently, the radius of concentration r(n,Δ) in the exponential
inequalities in Section 5 does not involve any term related to the structure of the tangential vector space
of M, which corresponds to ΣX in Lugosi [39] when M = RD . We find that assuming E d(x∗,X)2 < +∞
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is enough to deduce the exponential concentration. The flexibility inherent in our framework thus allows
our work to serve as the basic constituent for a wide range of principal methods for non-Euclidean data.
In particular, the theoretical development achieved in this paper may be adapted to the robustification
of various recent Fréchet regression techniques [14,24,38,46,54].

2. Assumptions
In this section, we present the main structures of the underlying metric on which we base our theory,
and key assumptions on the entropy of the underlying space. The validity of the assumptions will be
discussed in Section 4.

Let (M,d) be a separable and complete metric space (Polish space). Consider the set of all proba-
bility measures on M denoted by P(M). Let P be a probability measure with finite second moment,
i.e.

P ∈ P2(M) :=
{
P ∈ P(M) :

∫
M

d(x, y)2 dP(y) < +∞ for some x ∈M
}
.

We note that, if
∫
M d(x, y)2 dP(y) < +∞ for some x ∈M, then it holds for all x ∈M. Let η : M×M →

R be a measurable function. Throughout this paper, we assume that there exists x∗ ∈ M for which (1)
holds and let X1,X2, . . . ,Xn be the i.i.d. observations of a random element X governed by a probability
measure P, and Pn be its empirical probability measure. Then, the empirical Fréchet mean xn at (2)
can be written as

xn ∈ arg min
x∈M

∫
M
η(x, y)dPn(y).

To analyze the deviation of xn from x∗ by making use of the difference of their η-functional values,
we introduce two assumptions, the first on η : M ×M → R and the second on P ∈ P2(M):

(A1) Quadruple inequality: There is a nonnegative function l : M ×M → [0,+∞), called growth
function, such that, for any y, z,p,q ∈M,

l(y, z) = 0 ⇔ y = z,

η(y,p) − η(y,q) − η(z,p) + η(z,q) ≤ 2l(y, z) · d(p,q).

(A2) Variance inequality: There exist constants K > 0 and β ∈ (0,2) such that, for all x ∈M,

l (x, x∗)2 ≤ K
(∫

M
(η(x, y) − η (x∗, y))dP(y)

) β

.

We note that (A1) and (A2) together imply the uniqueness of the Fréchet mean x∗.

Example 1. Consider the case where M is a Hilbert space H with an inner product 〈·, ·〉 and d(x, y) =
‖x − y‖ for the induced norm ‖ · ‖ of 〈·, ·〉. Let η = d2. If X has finite second moment, i.e. E d(x∗,X)2 <
+∞, then x∗ = EX is the unique barycenter of X in the sense of Bochner integration. Also, it holds that

η(y,p) − η(y,q) − η(z,p) + η(z,q)

= (2〈y − q,q − p〉 + ‖q − p‖2) − (2〈z − q,q − p〉 + ‖q − p‖2)

= 2〈y − z,q − p〉

≤ 2‖y − z‖ · ‖p − q‖.
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Thus, (A1) holds with l = d, and (A2) does with equality holding always for all x ∈M with K = β = 1:

E (η(x,X) − η (x∗,X)) = E
(
2〈x∗ − X, x − x∗〉 + ‖x − x∗‖2

)
= ‖x − x∗‖2.

For curved spaces, the inequality in (A2) may be satisfied, but with equality not holding always for all
x ∈M in general, contrary to the Hilbertian case. Moreover, both xn and x∗ do not have a closed form
expression for curved metric spaces although xn has for Hilbert spaces. Therefore, in order to derive
a concentration inequality for xn, we need an inequality that gives an upper bound to the discrepancy
l(xn, x∗) between xn and x∗. The variance inequality (A2) implies that l(xn, x∗) can be controlled by
the positive function η(xn, ·) − η(x∗, ·), called the empirical excess risk of η:

l (xn, x∗)2 ≤ K
(∫

M
(η(xn, y) − η (x∗, y))dP(y)

) β

. (5)

For the usual choice η = d2, it turns out that (A1) and (A2) hold with l = d,K = β = 1 for general NPC
spaces M, see Section 4.1 for details.

Bounding the right hand side of (5) with a high probability depends on the geometric properties of
the class of functions η(x, ·)−η(x∗, ·) for x ∈M. It turns out that the dependence is through the centered
functional ηc defined by ηc(x, ·) = η(x, ·) −

∫
M η(x, y)dP(y). Put fη(x, ·) = ηc(x, ·) − ηc(x∗, ·), x ∈M.

Definition 1. For δ ≥ 0,

Mη(δ) =
{

x ∈M :
∫
M

(η(x, y) − η (x∗, y))dP(y) ≤ δ
}
,

Fη(δ) = { fη(x, ·) : x ∈Mη(δ)},

σ2
η(δ) = sup

{∫
M

fη(x, y)2 dP(y) : x ∈Mη(δ)
}
.

Example 2. Consider the η and X in Example 1. Let ΣX : H ×H → R be the covariance operator of X
defined by ΣX (x, y) = E (〈x,X − x∗〉〈y,X − x∗〉) and λmax be its largest eigenvalue. From Example 1,
it is straightforward to see that Mη(δ) = B(x∗,

√
δ) and Eη(x,X) = tr(ΣX ) + ‖x − x∗‖2, where B(x,r)

denotes the ball centered at x with radius r , tr(ΣX ) =
∑

k ΣX (ek,ek) and {ek : k ≥ 1} is an arbitrary
orthonormal basis of H . Let ‖ · ‖2,P be defined by ‖ f ‖2

2,P = E f (X)2. Then,

ηc(x, y) = ‖x − y‖2 − ‖x − x∗‖2 − tr(ΣX ),

fη(x, y) = 2〈x − x∗, x∗ − y〉,

‖ fη(x, ·) − fη(y, ·)‖2
2,P = 4E

(
〈x − y,X − x∗〉2

)
= 4ΣX (x − y, x − y).

Note that fη(x, ·) : H → R is an affine function and fη(x∗, ·) ≡ 0 ≡ fη(·, x∗). Also, from the Cauchy-
Schwarz inequality, we have

σ2
η(δ) = sup

{
4E(〈x − x∗,X − x∗〉2) : x ∈ B(x∗,

√
δ)

}
= sup

{
4ΣX (x − x∗, x − x∗) : x ∈ B(x∗,

√
δ)

}
= 4δ · λmax .
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Under the assumptions (A1) and (A2), it holds that

sup
x∈Mη (δ)

fη(x, y) = sup
x∈Mη (δ)

∫
M

(η(x, y) − η(x∗, y) − η(x, z) + η(x∗, z)) dP(z)

≤ 2 sup
x∈Mη (δ)

∫
M

l(x, x∗)d(y, z)dP(z)

≤ 2
√

Kδβ
∫
M

d(y, z)dP(z) =: Hδ,η(y).

(6)

By definition Hδ,η envelops the class Fη(δ) of functions under the assumptions (A1) and (A2). Let
‖ · ‖2,Pn be defined by

‖ f ‖2
2,Pn
= n−1

n∑
i=1

f (Xi)2, f : M → R.

Note that ‖ · ‖2,Pn is a pseudo metric. To analyze high probability concentration, toward zero, of the
right hand side of (5), we consider the following assumption on the ‖ · ‖2,Pn -metric entropy of M. For
a totally bounded subset S of a metric space (F ,d), we let N(τ,S,d) denote the minimal number of
balls with radius τ that cover S, and call it τ-covering number.

(B1) Finite-dimensional M: There are some constants A,D > 0 such that, for any δ > 0 and n ∈ N,

N
(
τ‖Hδ,η ‖2,Pn ,Fη(δ), ‖ · ‖2,Pn )

)
≤

(
A
τ

) D

, 0 < τ ≤ 1,

The constant D in the assumption (B1) is related to the index of VC(Vapnik-C̆ervonenkis)-type class
of functions, which appears frequently in M-estimation. According to the common definition [25],
Fη(δ) is of VC-type with respect to Hδ,η if

sup
Q∈P(M)

N
(
τ‖Hδ,η ‖2,Q,Fη(δ), ‖ · ‖2,Q)

)
≤

(
A
τ

) Dvc

(7)

for some constants A,Dvc > 0. The constant Dvc, termed as VC index, may not equal the dimension
of M in general, but is usually larger, and (7) implies (B1) with D = Dvc, the latter being what we
actually need in our framework. Because of the implication, Fη(δ) with (B1) may be regarded as a
weak VC-type class of functions, and D as a weak VC index. In Proposition 3 given later in Section 4
we show that (B1) holds with D = dim(M) in the case where M is an NPC space with dim(M) < +∞
and η = d2.

For infinite-dimensional scenarios, we make the following assumption on the geometric complexity
of M.

(B2) Infinite-dimensional M: There are some constants A, ζ > 0 such that, for any δ > 0 and n ∈ N,

log N
(
τ‖Hδ,η ‖2,Pn ,Fη(δ), ‖ · ‖2,Pn )

)
≤ A
τ2ζ , 0 < τ ≤ 1.

The constant ζ describes how quickly the covering number grows as τ decreases. For probability
measures P with non-compact support, the complexity constant depends largely on the curvature of
M. Here and throughout the paper, ‘curvature’ means sectional curvature for Riemannian manifolds,
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and Alexandrov curvature for general metric spaces. When η = d2, we get that ζ = 1 for Hilbert spaces
M, ζ ≤ 1 for geodesic spaces with positive curvature, and ζ ≥ 1 for geodesic spaces with non-positive
curvature, see Section 4.3. Based on this, we call ζ the curvature complexity of M.

3. Empirical Fréchet means

In this section, we present two theorems that establish polynomial concentration for empirical Fréchet
means under the assumptions (A1), (A2), (B1) and (B2) in the case where M is a general Polish
space. The theorems are used in developing exponential concentration for geometric-median-of-means
estimators to be introduced in Section 5. Throughout this section, we assume that P has finite second
moment, i.e., σ2

X := E d(x∗,X)2 < +∞.

Theorem 1. Assume (A1), (A2) and (B1), and let (K, β) and (A,D) be the constant pairs that appear
in (A2) and (B1), respectively. Then, for all n ∈ N and Δ ∈ (0,1),

l(xn, x∗) ≤ CΔ ·
(
σX√

n

) β
2−β

with probability at least 1 − Δ, where CΔ is given by

CΔ = K
1

2−β

{
32

(
24

√
AD +

√
2
Δ

) } β
2−β

.

In the case where M is an NPC space to be introduced in the next section, choosing η = d2 gives
l = d and K = β = 1, see Section 4.1. In this case, Theorem 1 provides an upper bound of order σX/

√
nΔ

for d(xn, x∗). Note that, in the trivial case where M = RD with d(x, y) = |x − y |, an application of the
Chebyshev inequality gives

P

(
|xn − x∗ | ≤ σX√

nΔ

)
≥ 1 − Δ.

Here and throughout this paper, | · | denotes the Euclidean norm. The extra factor CΔ in Theorem 1 is a
price we pay for the complexity of M to deal with general metric spaces. The following theorem is for
infinite-dimensional scenarios with the assumption (B2).

Theorem 2. Assume (A1), (A2) and (B2), and let (K, β) and (A, ζ) be the constant pairs that appear
in (A2) and (B2), respectively. Then, there is a universal constant CA,ζ depending only on A > 0 and
ζ > 0 such that, for all n ∈ N and Δ ∈ (0,1),

l(xn, x∗) ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K
1

2−β

(
CA,ζ ·

1
n1/2

· σX√
Δ

) β
2−β
, if 0 < ζ < 1

K
1

2−β

(
CA,1 ·

log n
n1/2

· σX√
Δ

) β
2−β
, if ζ = 1

K
1

2−β

(
CA,ζ ·

1
n1/2ζ

· σX√
Δ

) β
2−β
, if ζ > 1

with probability at least 1 − Δ.
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An explicit form of the constant CA,ζ in Theorem 2 may be found in the proof of the theorem in Ap-
pendix A.2. The theorem demonstrates that the consistency of the empirical Fréchet mean xn continues
to hold for infinite-dimensional (M,d), but with slower rates of convergence to x∗ for increasing n when
ζ ≥ 1, compared to the finite-dimensional case in Theorem 1. It shows that, for infinite-dimensional
geodesic spaces M, decreasing the curvature of M results in slowing down the rate of convergence
of xn to x∗ since the curvature complexity ζ gets larger as the curvature decreases. This implies that
the rate is slower for M with non-positive curvature than with positive curvature. We note that, for the
finite-dimensional case, the rate of convergence of xn does not depend on the curvature, as is shown
in Theorem 1. The constant A in CΔ, however, gets larger as the curvature of M decreases in the case
where M is a Riemannian manifold and η = d2, see Section 4.3.

Theorems 1 and 2 reveal that the empirical Fréchet mean achieves only polynomial concentration
speeds. In Section 5 we discuss in depth alternative estimators that have exponential speeds, basically
replacing 1/Δ by log(1/Δ) in the concentration inequalities.

4. Consideration of assumptions

In this section, we discuss the validity of the assumptions (A1), (A2), (B1) and (B2) for non-positive
curvature (NPC) spaces. We also derive generalized versions of the CN and variance inequalities.

Definition 2. A Polish space (M,d) is called an (global) NPC space if for any x0, x1 ∈M, there exists
y ∈M such that

d(z, y)2 ≤ 1
2

d(z, x0)2 +
1
2

d(z, x1)2 −
1
4

d(x0, x1)2, z ∈M .

Example 3. Any Hilbert space (H, 〈·, ·〉) is an NPC space: for any x0, x1, z ∈M

1
2

d(z, x0)2 +
1
2

d(z, x1)2 −
1
4

d(x0, x1)2 =
1
4

(
2‖z − x0‖2 + 2‖z − x1‖2 − ‖(z − x0) − (z − x1)‖2

)
=

1
4
‖(z − x0) + (z − x1)‖2

= d
(
z,

x0 + x1

2

) 2
.

Throughout this section, M is an NPC space. Also, when there is no confusion, with an abuse
of terminology, ‘Riemannian manifold’ means a smooth, complete and connected finite-dimensional
Riemannian manifold. By the Hopf-Rinow Theorem, such a Riemannian manifold is geodesically com-
plete.

4.1. Common choice η = d2

Let us first discuss some properties of NPC spaces when η(x, y) = d(x, y)2. The geometry of metric
measure spaces with non-positive curvature is mainly developed by [48]. Note that the existence and
uniqueness of the Fréchet mean for any probability measure are guaranteed for such spaces.

We have seen in Example 1 that, for Hilbert spaces, the inner product structure allows us to easily
verify (A1) and the equality in (A2) with l = d, K = β = 1. For curved spaces, however, d(x, y)2 −
d(x∗, y)2 cannot be expressed nicely, thus our assumptions (A1) and (A2) may not be easy to check.
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For example, for Riemannian manifolds M, the relationship between the embedded distance ‖ logp x −
logp y‖ for p, x, y ∈ M and the original distance d(x, y) depends considerably on the curvature, see
Remark 1 below. Nevertheless, using the fact that the geodesic deviation accelerates as two geodesics
move further away from the origin, one may prove the following inequalities for global NPC spaces
M, see [48] for details.

CN inequality: For any y ∈M and for any geodesic γ : [0,1] →M,

d(γt, y)2 ≤ (1 − t)d(γ0, y)2 + t d(γ1, y)2 − t(1 − t)d(γ0,γ1)2, t ∈ [0,1].

Quadruple inequality: For any y, z,p,q ∈M,

d(y,p)2 − d(z,p)2 − d(y,q)2 + d(z,q)2 ≤ 2d(y, z)d(p,q).

Variance inequality: For any x ∈M and for any P ∈ P2(M),

d (x, x∗)2 ≤
∫
M

(
d(x, y)2 − d (x∗, y)2

)
dP(y).

Here, ‘CN’ stands for Courbure Négative in French. Therefore, not only for Hilbert spaces but also for
NPC spaces, our assumptions (A1) and (A2) are satisfied with K = β = 1, l = d for the usual choice
η(x, y) = d(x, y)2.

Remark 1. We note that η = d2 satisfies the Hamilton-Jacobi equation, see (14.29) in [52], and the
homogeneous Taylor polynomial of order 4 for η gives the following formula: for any p ∈ M and
v,w ∈ TpM,

d
(
expp(tv),expp(tw)

) 2
= ‖v − w‖2 · t2 − 1

3
Riem(v,w,w,v) · t4 +O(t5),

where ‘Riem’ stands for the Riemannian curvature tensor.

4.2. Cases with η = dα

Here, we consider the choice η = dα, or equivalently η = d2
α with dα = dα/2, for α ∈ (1,2]. We note that

the Fréchet mean x∗ corresponding to α = 1 is analogous to the conventional median for M = R, thus
is often called Fréchet median. We exclude the case α = 1 in our discussion, however, for the reason
to be given shortly. We also note that dα is a metric for α ∈ (1,2], and is often called power transform
metric. The associated Fréchet mean is called α-power Fréchet mean. With a slight abuse of notation
we continue to denote it by x∗ throughout this paper.

Fig. 1 illustrates the α-power Fréchet means for several α ∈ [1,2] when M = R2, d(x, y) = |x− y | and
P has the equal probability mass 1/3 at three points a1 = (0,h), a2 = (−

√
3,0), a3 = (

√
3,0). The right

panel depicts t in x∗ = (0, t) as a function of h. For α = 2, x∗ = (a1 + a2 + a3)/3 = (0,h/3) becomes
most sensitive to the change of a1 = (0,h) from a certain point on the scale of h. For α = 1, x∗ =
arg minx∈R2 xa1 + xa2 + xa3, known as the Fermat point, is invariant for h ≥ 1. As the cases α = 1.1
and α = 1.5 demonstrate, x∗ for α ∈ (1,2) is resistent to outlying a1 = (0,h) to a certain extent depending
on α: the smaller α is, the more it resists.

Fig. 1 also indicates that all α-power Fréchet means for different values of α meet at (0,1) when
a1 = (0,3). This is not a coincidence. Proposition S.1 in the Supplementary Material shows that, if the
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Figure 1. The left panel depicts the positions of the α-power Fréchet mean x∗ and the three points a1, a2, a3 having
equal mass. The right panel shows the change of x∗ as a1 moves with a2 and a3 staying fixed, for α = 1/1.1/1.5/2
(solid/dashed/dotted/dot-dashed).

underlying probability measure P is invariant under rotation around a point z, then z is the unique
α-power Fréchet mean for all α ≥ 1.

The rates of convergence for α-power Fréchet means are studied for NPC spaces with α ∈ [1,2] in
[47]. In the latter work it is proved that the assumption (A1) holds with l(·, ·) = α2−α+1d(·, ·)α−1: for
any y, z,p,q ∈M,

d(y,p)α − d(z,p)α − d(y,q)α + d(z,q)α ≤ α2−α+2d(y, z)α−1d(p,q), α ∈ [1,2]. (8)

Moreover, according to Appendix E in [47], no growth function satisfying (A1) exists for α > 2 and
0 < α < 1. For α = 1, (8) implies (A1) with the growth function l(y, z) = I(y � z), but with this the
assumption (A2) makes no sense, so that Theorems 1 and 2 are not meaningful for η = d. For the case
where α = 1, some results analogous to Theorems 1 and 2 were provided in [4]. Stochastic proximal
point algorithms (PPA) to compute Fréchet medians in NPC spaces were also introduced in [5,6].

In the next two propositions we derive generalized CN and variance inequalities for α ∈ (1,2]. Thus,
the theorems in Section 3 remain valid for α-power Fréchet means as well.

Proposition 1 (Power transform CN inequality). Let γ : [0,1] → M be a geodesic and α ∈ [1,2].
Then, it holds that, for any δ ≥ 0, t ∈ [0,1] and z ∈M,

d(γt, z)α ≤ (1 + δ)1−α/2
[
(1 − t)α/2d(γ0, z)α + tα/2d(γ1, z)α

]
− δ1−α/2

[
t(1 − t)d(γ0,γ1)2

] α/2
.

Our result in Proposition 1 reduces to the CN inequality in Section 4.1 when α = 2. It is believed
to be a sharp generalization since it is derived from the CN inequality in Section 4.1 and a version of
Hölder’s inequality, both of which are sharp. When given three points x, y, z ∈M, Proposition 1 enables
us to get an upper bound for the power transform metric η(·, z) = d(·, z)α along the geodesic from x to
y, which does not seem to be feasible for general η. We will illustrate how to use this inequality in
a concrete way in the proof of the following proposition, and also in the proofs of the concentration
inequalities given in Theorems 6 and 7 later in Section 5.2.
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To state the second proposition, for α > 0 we let

Pα(M) :=
{
P ∈ P :

∫
M

d(x, y)αdP(y) < +∞ for some x ∈M
}
.

For P ∈ Pα(M), define Fα(·) =
∫
M d(·, y)αdP(y) and

bα(x) = sup
t∈(0,1]

Fα(γxt ) −
{
tα/2 + (1 − t)α/2}

Fα(x∗)
tα/2d(x, x∗)α

, x ∈M \ {x∗},

where γx : [0,1] →M is the geodesic from x∗ to x.

Proposition 2 (Power transform variance inequality). Let α ∈ [1,2] and P ∈ Pα(M). If bα(x) > 0,
then

d (x, x∗)α ≤ 1
bα(x)

∫
M

(
d(x, y)α − d (x∗, y)α

)
dP(y), x ∈M \ {x∗}.

Therefore, if Bα := infx∈M\{x∗ } bα(x) > 0, then for any x ∈M,

d (x, x∗)α ≤ 1
Bα

∫
M

(
d(x, y)α − d (x∗, y)α

)
dP(y).

Proposition 2 tells that, in order to establish the power transform variance inequality, it suffices to
check that, for all x ∈ M \ {x∗}, Fα(γxt ) gets apart from (tα/2 + (1 − t)α/2)Fα(x∗) by more than a
positive constant multiple of tα/2d(x, x∗)α, at some point γxt along the geodesic from x∗ to x. Note that
Fα(x∗) = infx∈M Fα(x) and tα/2 + (1 − t)α/2 ≥ 1 for all t ∈ [0,1]. For the common choice η = d2, i.e.
α = 2, it follows from the (power transform) CN inequality that, for any x ∈M \ {x∗},

b2(x) = sup
t∈(0,1]

F2(γxt ) − F2(x∗)
t · d(x, x∗)2

≥ sup
t∈(0,1]

t2 · d(x, x∗)2

t · d(x, x∗)2
= 1.

Thus, we may take B2 = 1 in this case and the proposition gives the usual variance inequality in Sec-
tion 4.1. For η = dα with α ∈ (1,2] in general, if P ∈ Pα(M) satisfies Bα > 0, then (A1) and (A2) hold
with l(y, z) = α2−α+1d(y, z)α−1,K = α22−2α+2B−2+2/α

α and β = 2 − 2/α ∈ (0,1]. Thus, in this general
case as well, Theorems 1 and 2 hold under the entropy conditions (B1) and (B2), respectively. The
theorems give that

P

(
d(xn, x∗) ≤ 64

( Kα/2
α

α

) 1/(α−1)
·

(
24

√
AD +

√
2
Δ

)
· σX√

n

)
≥ 1 − Δ (9)

for finite-dimensional NPC spaces M and

P

(
d(xn, x∗) ≤ 2

( Kα/2
α

α

) 1/(α−1)
· CA,ζ · ρn ·

σX√
Δ

)
≥ 1 − Δ (10)

for infinite-dimensional cases, where Kα = α
22−2α+2B−2+2/α

α and ρn = n−1/2 if 0 < ζ < 1; n−1/2 · log n
if ζ = 1; n−1/2ζ if ζ > 1. Note that the concentration rates in terms of Δ and n in (9) and (10) do not
depend on α ∈ (1,2].
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Remark 2. There are other choices of η, not of the form dα, that may be of interest in statistics. For
example, one may be interested in η(x, y) = Lδ(d(x, y)), where Lδ with δ > 0 is the Huber loss defined
by

Lδ : [0,+∞)→ [0,+∞), x �→
{

x2/2, 0 ≤ x ≤ δ
δ · (x − δ/2), x > δ.

This choice shares with η = dα for α ∈ [1,2] the idea of combining the squared and absolute losses.
Another example that may be of practical interest is the Kullback-Leibler divergence [31], η(μ,ν) =
DKL(ν | |μ), when (M,d) = (P2(R),W2). The latter is an example of asymmetric functional. However,
it seems difficult to prove the basic inequalities in (A1) and (A2) for general η. In particular, we are
not aware of any type of bound for η(γt, z) along a geodesic γ : [0,1] →M for general η, which we
need for the proof of (A2). To the best of our knowledge, even the results for η = dα we present in
Propositions 1 and 2 are the first.

4.3. Metric entropy

VC-type classes appear frequently in the study of empirical processes. Our assumption (B1) on the
complexity of M in terms of the random entropy is crucial for the derivation of non-asymptotic
concentration properties of xn. It gives universal non-stochastic bounds to the random entropies
N(τ,Fη(δ), ‖ · ‖2,Pn ). The calculation of the (weak) VC index D in (B1), i.e. the uniform control of
the random covering numbers, is difficult in many cases (see Section 7.2 in [51]). A common technique
to obtain D is to exploit the combinatorial structure of the class of functions, provided that it is a VC
subgraph class of functions, see [11,25,51] and references therein. However, with a more explicit as-
sumption (B1′) given below, which essentially characterizes the dimension of the underlying spaces,
we may calculate directly the (weak) VC index without combinatorial notions of complexity such as
shattering.

(B1′) There are some constants A1,D1 > 0 such that, for any τ ∈ (0,r],

N(τ,B(x∗,r),d) ≤
(

A1r
τ

) D1

.

For a finite-dimensional normed space M, one may take D1 = dim(M) irrespective of the underlying
norm, since all norms in such a space are equivalent. On the contrary, A1 depends on the choice of a
metric d and A1 = 3 for the Euclidean norm when M = RD . In any case, (B1′) is for finite-dimensional
M and thus the dependence of A1 and D1 on the metric d does not need to be made explicit because the
values of A1 and D1 do not affect the convergence rates in Theorem 1 of Section 3 and in Theorems 3
and 6 of Section 5 that are for finite-dimensional cases.

Proposition 3. Let η = dα with 1 < α ≤ 2. Assume (A2) and (B1′). Then (B1) holds with A= Aα−1
1 and

D = D1/(α − 1):

N
(
τ‖Hδ,η ‖2,Pn ,Fη(δ), ‖ · ‖2,Pn

)
≤

(
A1

τ1/(α−1)

) D1

, 0 < τ ≤ 1.

In particular, when η = d2 where (A2) is satisfied, (B1′) alone implies (B1) with A= A1 and D = D1.
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Considering that the VC index Dvc introduced in Section 2 is usually larger than the dimension D1
of the underlying space M, the second result in Proposition 3 is striking as it states that the (weak)
VC index D equals D1 in our framework when η = d2. It is noteworthy that the right hand side of the
inequality in Proposition 3 does not involve any term related to δ. This can be interpreted as that the
growth of ‖Hδ,η ‖2,Pn counterbalances the increasing complexity of the class Fη(δ) as δ gets larger.

When M is a Riemannian manifold and η = dα with α ∈ (1,2], the constant A in (B1) is indispens-
ably related to the volume control problem, which is one of the fundamental problems in geometry.
Indeed, the constant A1 in (B1′) for a Riemannian manifold depends on how fast the volume of a ball
grows as its radius increases, which relies on the sectional (or Ricci) curvature of M. The Bishop-
Günther inequality gives an upper bound to the volume change in terms of the sectional curvature, see
Theorem 3.101 (ii) in [22]. For the reversed inequality, named as the Bishop-Gromov inequality, see
[52]. Because of these inequalities, A1 thus A in (B1) becomes smaller as the curvature of M increases
when η = dα with α ∈ (1,2].

Contrary to the case of finite-dimensional M, a version of (B1′) is not true in many cases of infinite-
dimensional M. If M is an infinite-dimensional normed space, then any closed ball is non-compact,
so that there is some τ0 > 0 such that log N(τ,B(x∗,r),d) =∞ for any τ < τ0. Therefore, the approach
that mimics the finite-dimensional case does not work for infinite-dimensional M in general. However,
for separable Hilbert spaces we may calculate directly the explicit constants in the assumption (B2),
A = 1/32 and ζ = 1 as demonstrated in the following proposition.

Proposition 4. Let M be a Hilbert space and η = d2 with d(x, y) = ‖x − y‖. Then, for any probability
measure P ∈ P2(M),

log N
(
τ‖Hδ,η ‖2,P,Fη(δ), ‖ · ‖2,P

)
≤ 1

32τ2 , 0 < τ ≤ 1.

Furthermore, for the empirical measure Pn, it holds that

log N
(
τ‖Hδ,η ‖2,Pn ,Fη(δ), ‖ · ‖2,Pn

)
≤ 1

32τ2 , 0 < τ ≤ 1.

Proposition 4 may be used to verify (B2) with η = d2 for Riemannian manifolds (M,d). Note that
d(x, y) ≤ ‖ logp x − logp y‖ for M with non-negative curvature, while d(x, y) ≥ ‖ logp x − logp y‖ for
M with non-positive curvature, i.e. for Hadamard manifolds. By embedding M into the tangent space
Tx∗M and applying Proposition 4 to Tx∗M, one may argue that (B2) is satisfied with some ζ ≤ 1 for
Riemannian manifolds with non-negative curvature, and with some ζ ≥ 1 for Hadamard manifolds. In
fact, ζ in (B2), termed as curvature complexity, can be made smaller as the curvature of M gets larger.
The latter follows from the Toponogov comparison theorem: the larger the sectional curvature of an
underlying space M is, the slower the acceleration of the deviation between two geodesics emanating
from a single point.

4.4. Wasserstein space

For a separable Banach space (X, ‖ · ‖), P2(X) is called Wasserstein space and can be written as

P2(X) = {μ ∈ P(X) :
∫
X
‖x‖2dμ(x) <∞},



2940 H. Yun and B.U. Park

where P(X) denotes the set of all probability measures on X. The Wasserstein space P2(X) is equipped
with the Wasserstein distance

W2(μ,ν) =
(

inf
π∈Π(μ,ν)

∫
X×X

‖x − y‖2dπ(x, y)
) 1/2

, μ, ν ∈ P2(X)

where Π(μ,ν) denotes the family of all probability measures on M ×M with marginals μ and ν.
The Wasserstein space P2(X) for a general Banach space X has non-negative Alexandrov curvature

at any probability measure μ ∈ P2(X) that is absolutely continuous with respect to all non-degenerate
Gaussian measures [2,44]. For X = R, however, P2(R) has vanishing Alexandrov curvature [29]. Thus,
the latter is an NPC space, and (A1) and (A2) are satisfied with K = β = 1 and l =W2 for the usual
choice η(μ,ν) =W2(μ,ν)2, see Section 4.1. Even though P2(R) is not compact, if we restrict ourselves
to M = P2([−B,B]) ⊂ P2(R) for 0 < B <∞, then M is compact in P2(R) (see Corollary 2.2.5 in [44])
with a finite diameter: W2(μ,ν) ≤ 2B for all μ,ν ∈ P2([−B,B]). This implies that the Wasserstein ball
B(μ∗,r) ⊂ P2(R) is way larger than P2([−r/2,r/2]), since the former set includes probability measures
with non-compact support and there is no hope that one can prove (B2) via a version of (B1′) when
M = P2(R). Nonetheless, for M = P2([−B,B]) for some B > 0, we may obtain a version of (B1′) for
any D1 > 1 due to Theorem A.1 in [10]:

N (τ,P2([−B,B]),W2) ≤
(√

16eB
τ

) 8B/τ

.

This would give (B2) for some A, ζ > 1/2 that do not depend on n as in the finite-dimensional case, see
Subsection 2.2.4 of [44] or Appendix A of [10] for the explicit constants.

5. Geometric-median-of-means
For empirical Fréchet means in non-compact metric spaces, polynomial concentration, as we derived
in Section 3, is the best one can achieve. In this section we introduce new estimators and show that they
have exponential concentration in general NPC spaces. The definitions of the estimators are for general
metric spaces (M,d) and functionals η.

Let the random sample {X1, . . . ,Xn} be partitioned into k disjoint and independent blocks B1, . . .,Bk

of size m ≥ n/k. For each 1 ≤ j ≤ k, define

Fn, j(x) =
1
m

∑
Xi ∈B j

η(x,Xi). (11)

When M is a Hilbert space, one may interpret Fn, j(a) < Fn, j(b) for two points a,b ∈ M as that a is
‘closer’ than b to the ‘center’ of the jth block Bj . Indeed, in the case where M = RD and η(x, y) =
|x − y |2,

Fn, j(a) < Fn, j(b) if and only if |a − Z j | < |b− Z j |, (12)

where Z j in general is the sample Fréchet mean of the block Bj defined by

Z j ∈ arg min
x∈M

Fn, j(x).

More generally, when M is a Hilbert space and η(x, y) = ‖x − y‖2, then Fn, j(a) < Fn, j(b) is equivalent
to ‖a − Z j ‖ < ‖b− Z j ‖. This follows from Fn, j(x) = Fn, j(Z j ) + ‖x − Z j ‖2.
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Definition 3. For a,b ∈M, we say that ‘a defeats b’ if Fn, j(a) ≤ Fn, j(b) for more than k/2 blocks Bj .
For x ∈M, let

Sx = {a ∈M : a defeats x}, rx = arg min{r > 0 : Sx ⊂ B(x,r)}.

We call Sx the ‘x-defeating region’ and rx the ‘x-defeating radius’. The new estimator xMM of x∗ is
then defined by

xMM ∈ arg min
x∈M

rx . (13)

We call it ‘geometric-median-of-means’, or simply ‘median-of-means’ when there is no confusion.

Remark 3. We note that ‘a defeats b’ if and only if median{Fn, j(a) − Fn, j(b) : 1 ≤ j ≤ k} ≤ 0, see
[33]. The minimum in (13) is always achieved, provided that η : M ×M → [0,+∞) is continuous and
for any x ∈ M, η(x, y) → ∞ as d(x, y) → ∞. For any x ∈ M, the x-defeating region Sx is a closed
and bounded subset of M containing x, thus rx < +∞. This would entail that x �→ rx is a continuous
function, and with the fact that rx →∞ as min{d(x,X1), . . . ,d(x,Xn)} → ∞, one may argue that the
minimum of rx over x ∈M is attained at some point in M. By definition, x defeats itself so that x ∈ Sx
for all x ∈M. Also, ‘a defeats b’ does not always imply ‘b does not defeat a’. Both a and b can defeat
each other, and if it happens then there exists at least one j such that Fn, j(a) = Fn, j(b). Furthermore,
rx ≤ r if and only if any point a with d(x,a) > r cannot defeat x since

rx =max {d(x,a) : a ∈M defeats x} .

In the case where M is a Euclidean space, the median-of-means may be interpreted in terms of Tukey
depth, see [26].

In view of (12), our definition of ‘defeat’ is a natural extension of the notion introduced in [39]
for M = RD : ‘a defeats b’ if |a − Z j | ≤ |b − Z j | for more than k/2 blocks Bj . We note that, for
curved metric spaces, the equivalence between Fn, j(a) ≤ Fn, j(b) and d(a,Z j ) ≤ d(b,Z j ) is no longer
valid in general. Our definition in terms of Fn, j(x) is preferable to the one based on d(x,Z j ) since the
latter needs the much more onerous computation of sample Fréchet means Z j for curved spaces. Our
definition dispenses with the calculation of Z j in all competitions between two points in M.

Although d(a,Z j ) ≤ d(b,Z j ) is not equivalent to Fn, j(a) ≤ Fn, j(b) for curved spaces, one may
roughly interpret ‘a defeats b’ as that a is closer than b to the centers of more than half of the k
blocks, for η = dα with α ∈ (1,2]. The idea of minimizing the radius of defeating region is that, if x is
far away from x∗, and thus from the block centers Z j , then it is more likely that x would be defeated by
some point located far from x, i.e. rx would be large. Since xMM is determined by the ordering rela-
tion based on Fn, j rather than by the magnitudes of Fn, j themselves, it reflects the geometric structure
of η and inherits the characteristics of the Euclidean median of Z1, . . . ,Zk . Indeed, when M = R and
η(x, y) = |x − y |2, xMM in Definition 3 coincides with the usual sample median of Z1, . . . ,Zk .

To illustrate how xMM works, we simulated n = 10,000 data points from a bivariate distribution and
chose k = 5 for the number of blocks. In Figure 2 we depicted them on [−1,1]2 and also Z j (•) for
1 ≤ j ≤ 5. The figure demonstrates that rx , which is the radius of the smallest ball centered at x =
covering the ‘violet/sky-blue/blue’ regions, tends to decrease as x ∈M gets closer to the Fréchet mean
x∗ = . To see how sensitive xMM is to the change of data points, imagine that the data points in a
single block changes completely to arbitrary values. This would change only one Fn, j(·) among the
five, regardless how extreme the change of the data points is. Since the points a in the violet and sky-
blue regions, respectively, have Fn, j(a) ≤ Fn, j( ) for 5 and 4 blocks with the original dataset, they
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Figure 2. Illustration of the x-defeating region Sx for three choices of x = : = (0.45,0.6) in the top-left,
= (0.3,−0.2) in the top-right and = (0,0) in the bottom-left panel. For this a dataset {Xi : 1 ≤ i ≤ n} of size

n = 10,000 was generated from a bivariate distribution on R2 with mean = (0,0), and it was partitioned into
k = 5 blocks randomly. The block sample means Z1, . . . ,Z5 are depicted as • points. The bottom-right panel is the
zoomed-in picture of the bottom-left. In each panel with a given , the color of each region indicates the ‘defeating
score’, against , of the points in the region, where the ‘defeating score’ of a point a against equals the number
of blocks Bj such that Fn, j (a) ≤ Fn, j ( ). The violet region is for the score 5, the sky blue for 4, the blue for 3 and
the gray for the scores ≤ 2. Thus, the union of violet/sky-blue/blue colored regions is the x-defeating region S in
each panel.

still defeat x = with the modified dataset. From this one may infer that there would be no significant
change in the ordering of rx across x ∈M. This consideration suggests that xMM is more robust than
xn to large deviation of a few blocks, which results in xMM having stronger concentration than xn,
provided that the number of blocks (k) is sufficiently large. The latter has been evidenced for M = R
by [12,18] and for M = RD by [39].

In the next two subsections, we make precise the above heuristic discussion for NPC spaces with
η = dα for α ∈ (1,2].

5.1. Common choice η = d2

Let X1, . . . ,Xn be i.i.d. random elements taking values in an NPC space (M,d) with finite second mo-
ment. Here, we focus on the case η = d2. The following theorem is essential for deriving an exponential
concentration for xMM when M is of finite dimension.
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Theorem 3. Assume (B1) with some constants A,D > 0. Let Δ ∈ (0,1) and q ∈ (0,1/2). Let k denote
the number of blocks Bj . If k = �1/(2q2) log(1/Δ)�, then it holds that, with probability at least 1 − Δ,
x∗ defeats all x ∈M with d(x, x∗) > Rq but any such x does not defeat x∗, where

Rq =CqσX

√
log(1/Δ)

n
, Cq =

32
√

2
q

(
24

√
AD +

2√
1 − 2q

)
. (14)

Let E denote an event where, for all x with d(x, x∗) > Rq , x∗ defeats x but x does not defeat x∗. On
E ∩ {d(xMM , x∗) > Rq}, one has x∗ ∈ SxMM , which implies SxMM � B(xMM ,Rq) so that rxMM > Rq .
On E, one also gets that x � Sx∗ for all x with d(x, x∗) > Rq , which implies Sx∗ ⊂ B(x∗,Rq) so that
rx∗ ≤ Rq on E. By the definition of xMM , it holds that rxMM ≤ rx∗ , however. This means that

P
(
E ∩ {d(xMM , x∗) > Rq}

)
= 0.

The foregoing arguments give the following corollary of Theorem 3.

Corollary 1. Assume (B1) with some constants A,D > 0. Let Δ ∈ (0,1) and q ∈ (0,1/2). Let k denote
the number of blocks Bj . If k = �1/(2q2) log(1/Δ)�, then it holds that d(xMM , x∗) ≤ Rq with probability
at least 1 − Δ, where Rq is the constant defined at (14).

Remark 4. Note that the condition Δ ∈ [e−2q2n,1) is latent in Theorem 3 and also in Theorems 4, 6
and 7 and Corollaries 1 to 4, since the number of blocks k = �1/(2q2) log(1/Δ)� ≤ n. When M = R, it is
known that one should impose Δ ∈ [Δmin,1) for some Δmin > 0 to achieve a sub-Gaussian performance,
see [18].

The constant factor Cq in the radius of concentration Rq depends on q ∈ (0,1/2). Taking too small
(large) q close to 0 (1/2) leads to too large (small) number of blocks k, which results in inflating the
constant Cq and impairing the concentration property of xMM . There is an optimal q in the interval
(0,1/2) that minimizes Cq since Cq is a smooth function of q ∈ (0,1/2) and diverges to +∞ as q
approaches either to 0 or to 1/2. We note that xMM with too small k is not much differentiated from
the empirical Fréchet mean xn, while with too large k the block Fréchet means Z j would be scattered
and thus there would be no guarantee that points x close to x∗ have small x-defeating radius rx .

The following theorem is for infinite-dimensional M and also gives an exponential concentration for
xMM .

Theorem 4. Assume (B2) with some constants A > 0 and ζ ≥ 1. Let Δ ∈ (0,1) and q ∈ (0,1/2). Let k
denote the number of blocks Bj . If k = �1/(2q2) log(1/Δ)�, then it holds that, with probability at least
1 − Δ, x∗ defeats all x ∈M with d(x, x∗) > Rq but any such x does not defeat x∗, where

Rq,ζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
cq,1 · σX · log n ·

√
log(1/Δ)

n
if ζ = 1

cq,ζ · σX ·
(

log(1/Δ)
n

) 1/2ζ

if ζ > 1

(15)

where cq,ζ =
2CA, ζ

q
√

1−2q
with CA,ζ appearing in Theorem 2.



2944 H. Yun and B.U. Park

Corollary 2. Assume (B2) with some constants A > 0 and ζ ≥ 1. Let Δ ∈ (0,1) and q ∈ (0,1/2). Let k
denote the number of blocks Bj . If k = �1/(2q2) log(1/Δ)�, then it holds that d(xMM , x∗) ≤ Rq,ζ with
probability at least 1 − Δ, where Rq,ζ is the constant defined at (15).

As in the case of the empirical Fréchet mean xn for infinite-dimensional M, see (10), decreasing
the curvature of M (increasing ζ) results in slowing down the rate of convergence of xMM to x∗. We
can also make a similar remark for the dependence of the constant factor cq,ζ on q ∈ (0,1/2) as in the
discussion of Corollary 1. In the infinite-dimensional case, however, cq,ζ is minimized at some point
q ∈ (0,1/2).

We note that the constants Cq and cq,ζ in Theorems 3 and 4, respectively, may not be optimal.
One might improve them by carefully sharpening of various inequalities in the proofs of the theorems.
Rather than optimizing the constants, we focus on deriving exponential concentration. It is also note-
worthy that our results do not involve terms such as tr(ΣX ), as opposed to the radius of concentration
derived by Lugosi [39] for the case M = RD , since we do not assume any differential structure for
the underlying NPC space. The rates of concentration in Corollaries 1 and 2 are not optimal when M
is a Hilbert space unless M = R. In the latter case, the optimal rate of concentration is known to be
O(

√
tr(ΣX )/n +

√
‖ΣX ‖ log(1/Δ)/n) as in (4). It is noteworthy that σ2

X = tr(ΣX ) when M is a Hilbert
space. However, metric spaces without a differential structure do not have an equivalent of the covari-
ance matrix ΣX in general. Moreover, tr(ΣX ) in [39] arises from the dual Sudakov inequality, which
accounts for the covering number of a sphere r · SD−1 with respect to the norm ‖ · ‖2,P in terms of r
and tr(ΣX ). The inequality is based on the linear structure of RD and the fact that ‖ · ‖2,P is translation
invariant, therefore it is no longer valid for non-vector spaces. Hence, even for Hadamard manifolds
where a differential structure is available, it seems intractable to obtain an inequality that corresponds
to the dual Sudakov inequality.

Now, we present a theorem that gives the breakdown point of xMM . The breakdown point of an
estimator is the smallest proportion of data corruption that can upset the estimator completely. It tells
the level of resistance by an estimator against data corruption and is a popular measure of robustness in
statistics. Let Xn = {X1, . . . ,Xn}. For a configuration {i(1), . . . ,i(�)} ⊂ {1,2, . . . ,n}, let X̃n(i(1), . . . ,i(�))
denote the modification of Xn for which Xi(j) for 1 ≤ j ≤ � in Xn are replaced by X̃i(j), respectively. For
an estimator x̂, the breakdown point of x̂ is defined as

ε∗n :=
1
n

min
{
� : there exists a dataset Xn and a configuration {i(1), . . . ,i(�)} such that

sup
X̃i(1) ,...,X̃i(�)

d
(
x̂(Xn), x̂

(
X̃n(i(1), . . . ,i(�))

) )
=∞

}
.

For the above definition to make sense, we consider the case where diam(M) = ∞. The following
theorem demonstrates that the breakdown point ε∗n of xMM for an NPC space (M,d) equals that of the
median-of-means tournament for M = RD .

Theorem 5. Let (M,d) be an NPC space where X1, . . . ,Xn take values. Let k denote the number
of blocks Bj . Then, the breakdown point of xMM associated with η = d2 is independent of partition
{Bj : 1 ≤ j ≤ k} and equals ε∗n = n−1 · �(k + 1)/2�.

One may be interested in studying the concentration properties of geometric-median-of-means when
some portion of the dataset are corrupted. This has been done by [16] for M = RD . Its extension to
NPC spaces is a challenging topic for future study.
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5.2. Cases with η = dα

Here, we consider a more general setting where η = dα for 1 < α ≤ 2. We note that the CN inequality in
Section 4.1 plays an important role in establishing Theorems 3 and 4. For the general case with η = dα,
we use the power transform CN inequality established in Proposition 1.

The general estimators are built on the following notion of ‘defeat by fraction’. The definition applies
not only to η = dα but also to a general measurable function η : M ×M → R.

Definition 4. Let ρ be a positive real number. For a,b ∈ M, we say that ‘a defeats b by fraction ρ’ if
Fn, j(a) ≤ ρ · Fn, j(b) for more than k/2 blocks Bj . For x ∈M, let

Sρ,x = {a ∈M : a defeats x by fraction ρ},

rρ,x =min{r > 0 : Sρ,x ⊂ B(x,r)}

=max{d(x,a) : a ∈M defeats x by fraction ρ}.

We call Sρ,x the ‘x-defeating-by-ρ region’ and rx the ‘x-defeating-by-ρ radius’. The estimator xρ,MM

of x∗ is then defined by

xρ,MM ∈ arg min
x∈M

rρ,x .

We call it ‘ρ-geometric-median-of-means’, or simply ‘ρ-median-of-means’ if there is no confusion.

Clearly, the case ρ = 1 in the above definition coincides with Definition 3. By defintion, for any
0 < ρ1 < ρ2, if a defeats b by fraction ρ1, then a defeats b by fraction ρ2. Therefore, for any fixed x ∈
M, the x-defeating-by-ρ region Sρ,x increases as ρ increases, and ρ �→ rρ,x is a monotone increasing
function.

For 0 < ρ < 1, the x-defeating-by-ρ region does not contain x since Sρ,x collects those points in M
that are ‘strictly better’ than x. If ρ is too small, Sρ,x can be an empty set for some x ∈ M, in which
case rρ,x = 0. We note that the two events ‘a defeats b by fraction ρ’ and ‘b defeats a by fraction 1/ρ’
do not complement each other, but either of the two always occurs. Both can occur simultaneously, and
if so then there exists at least one j such that Fn, j(a) = ρ · Fn, j(b). As in the case of ρ = 1, the minimum
of rρ,x over x ∈M is attained at some point in M when η : M ×M → R is continuous.

To state a generalization of Theorem 3 to the case η = dα, put

Mα,ρ = sup
{
δ1−α/2tα/2(1 − t)α/2 : 0 < t < 1, δ > 0,

1 − (1 + δ)1−α/2(1 − t)α/2

(1 + δ)1−α/2 tα/2
≥ ρ

}
.

Note that Mα,ρ = 1/4 for α = 2 and ρ ≤ 1 since for any 0 < t < 1 and δ > 0,

1 − (1 + δ)1−2/2(1 − t)2/2

(1 + δ)1−2/2 t2/2
=

t
t
= 1.

However, for 0 < α < 2, we note that tα/2 + (1 − t)α/2 > 1 for all 0 < t < 1 and thus

1 − (1 + δ)1−α/2(1 − t)α/2

(1 + δ)1−α/2 tα/2
< 1 (16)

for all 0 < t < 1 and δ > 0. Hence, taking ρ ≥ 1 when η = dα for 0 < α < 2, as (16) shows, would give
Mα,ρ = sup∅ = −∞. In fact, we find that the derivation of exponential concentration is intractable for
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Figure 3. The shapes of Mα,ρ (left) and log M−1/α
α,ρ (right) as functions of ρ for α = 1/1.1/1.5/2 (solid/dashed/dot-

ted/dot-dashed).

xρ,MM with ρ ≥ 1 when 1 < α < 2, which is why we introduce the new notions of ‘defeat by fraction’
and ‘ρ-geometric-median-of-means estimator’. Fig. 3 demonstrates the shapes of Mα,ρ as a function of
ρ for several choices of α. It also depicts M−1/α

α,ρ on the log scale that appears in the constant factors in
the concentration inequalities in the following theorems and corollaries.

Theorem 6. Assume (B1) with some constants A,D > 0 and that there exists a constant Bα > 0 such
that

d (x, x∗)α ≤ 1
Bα

∫
M

(
d(x, y)α − d (x∗, y)α

)
dP(y). (17)

Let ρ ∈ (0,1) for α ∈ (1,2) or ρ = 1 when α = 2. Also, let Δ ∈ (0,1) and q ∈ (0,1/2). Put Kα =

α22−2α+2B−2+2/α
α . Let k denote the number of blocks Bj . If k = �1/(2q2) log(1/Δ)�, then it holds that,

with probability at least 1−Δ, x∗ defeats by fraction 1/ρ all x ∈M with d(x, x∗) > Rq,α,ρ but any such
x does not defeat x∗ by fraction ρ, where

Rq,α,ρ =Cq,α,ρ σX

√
log(1/Δ)

n
,

Cq,α,ρ = M−1/α
α,ρ · 16

√
2Kα

q

(
24

√
AD +

2√
1 − 2q

)
.

(18)

Recall that Proposition 2 gives a sufficient condition for the existence of Bα > 0 such that (17)
holds. Also, we note that (17) holds with Bα = 1 when α = 2, see Section 4.1. Thus, when α = 2 and
Mα,ρ = 1/4, we have Kα = 1 so that Theorem 6 with ρ = 1 reduces to Theorem 3. The following
corollary may be derived from Theorem 6 as Corollary 1 is from Theorem 3.

Corollary 3. Assume the conditions and consider the ranges of (ρ,α), Δ and q in Theorem 6. Let k
denote the number of blocks Bj . If k = �1/(2q2) log(1/Δ)�, then it holds that d(xρ,MM , x∗) ≤ Rq,α,ρ

with probability at least 1 − Δ, where Rq,α,ρ is the constant defined at (18).

The constant factor Cq,α,ρ depends on q and ρ. As in Corollary 1 for xMM , it is minimized at
some point q ∈ (0,1/2). The minimizing q depends on A and D, but is independent of α and ρ. As
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for the dependence on ρ, we note that ρ ∈ (0,1) �→ Cq,α,ρ ∈ (0,+∞) is an increasing function when
1 < α < 2, as is well illustrated by the right panel of Fig. 3. The increasing speed gets extremely fast
as ρ approaches to 1. Since taking a smaller ρ shrinks the defeating regions Sρ,x , it results in having
xρ,MM stay closer to x∗, which explains the result that the radius of concentration Rq,α,ρ gets smaller
for smaller ρ.

Below, we present versions of Theorem 6 and Corollary 3 when M is of infinite-dimension satisfying
the entropy condition (B2). Again, when α = 2, we have Kα = 1 and Mα,ρ = 1/4 so that Theorem 7
with ρ = 1 reduces to Theorem 4.

Theorem 7. Assume (B2) with some constants A > 0 and ζ ≥ 1 and that there exists a constant Bα > 0
such that (17) holds. Consider the ranges of (ρ,α), Δ and q in Theorem 6. Put Kα = α

22−2α+2B−2+2/α
α .

Let k denote the number of blocks Bj . If k = �1/(2q2) log(1/Δ)�, then it holds that, with probability at
least 1 − Δ, x∗ defeats by fraction 1/ρ all x ∈M with d(x, x∗) > Rq,α,ρ but any such x does not defeat
x∗ by fraction ρ, where

Rq,α,ρ,ζ =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
cq,α,ρ,1 ·

log n
n1/2

· σX ·
√

log
1
Δ

if ζ = 1

cq,α,ρ,ζ ·
1

n1/2ζ
· σX ·

(
log

1
Δ

) 1/2ζ

if ζ > 1,

cq,α,ρ,ζ = K1/2
α M−1/α

α,ρ ·
CA,ζ

q
√

1 − 2q

(19)

and CA,ζ is the constant that appears in Theorem 2.

Corollary 4. Assume the conditions and consider the ranges of (ρ,α), Δ and q in Theorem 7. Let k
denote the number of blocks Bj . If k = �1/(2q2) log(1/Δ)�, then it holds that d(xρ,MM , x∗) ≤ Rq,α,ρ,ζ

with probability at least 1 − Δ, where Rq,α,ρ,ζ is the constant defined at (19).

From (9) and (10) in Section 4.2 we have observed that the concentration rates for the empirical
Fréchet mean xn in terms of Δ and n do not depend on α ∈ (1,2]. This is also the case with the
geometric-median-of-means estimators xMM and xρ,MM , which can be seen by comparing Corol-
laries 1 and 2 with Corollaries 3 and 4, respectively. The dependence pattern of the rate of convergence
of xρ,MM on the curvature complexity ζ is the same as xn and xMM . Also, the dependence of cq,α,ρ,ζ
on ρ is the same as in the finite-dimensional case. For the dependence on q, as in the case of xMM , the
constant factor is minimized at some point q ∈ (0,1/2).

Remark 5. For NPC spaces M with η = d2, the curvature complexity ζ is greater than or equal to 1
(Proposition 4). However, ζ may be strictly less than 1 when η = dα with 1 < α < 2. In the latter case,
one may prove that the radius of concentration Rq,α,ρ,ζ in Theorem 7 is given by

Rq,α,ρ,ζ = cq,α,ρ,ζ ·
1

n1/2
· σX ·

√
log

1
Δ
, 0 < ζ < 1

for the same constant cq,α,ρ,ζ given at (19).
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6. Concluding remarks

Our results can be applied to any NPC spaces of finite or infinite dimension, such as Hilbert spaces,
hyperbolic spaces, manifolds of SPD matrices, and the Wasserstein space P2(R), etc. Our work is an
extensive generalization of previous works on the median-of-means method. It is the first attempt that
extends the notion of median-of-means to a general class of metric spaces with a rich class of metrics,
and derives exponential concentration for the extended notions of median-of-means in such a general
setting. As we discussed in this paper, we stress that the sample Fréchet mean has poor concentration for
non-compact or negatively curved spaces. For such spaces, our geometric-median-of-means estimators
are efficient antidotes to the sample Fréchet mean.

For Euclidean or Hilbertian spaces M, there is a large body of works that study sub-Gaussian mean
estimators under only a second moment condition, see [26,39,40] and references therein. For general
metric spaces, however, the definition of sub-Gaussianity itself is not available. It is a challenging future
topic to generalize the notion of sub-Gaussian performance to more general metric spaces and inves-
tigate the concentration properties of the corresponding empirical Fréchet means with the extended
notion of sub-Gaussianity.

We admit that there is an issue of algorithmic feasibility with the geometric-median-of-means esti-
mator studied in our paper. The computational issue is also present in the Euclidean case for the median-
of-means tournament estimator, see [39]. There are some alternative proposals that are equipped with
an efficient algorithm. These include the geometric median of [42], Catoni-Giulini estimator of [13],
the Hopkins’ estimator [26] and those in the follow-up studies by [15,17,35]. However, all these estima-
tors are for the case where M is a Euclidean or a Banach space. In particular, the estimators studied in
[15,17,26,35] combine the idea of semi-definite programming (SDP) and r-centrality (see [26] for def-
inition), which requires an inner product structure for the underlying space. For some spaces that admit
a tangential structure equipped with a bi-invariant metric, one may borrow the idea of Hopkins [26] to
find a robust Fréchet mean estimator equipped with an efficient algorithm. For instance, if M = S+D ,
the space of symmetric positive-definite matrices, and it is endowed with the log-Euclidean metric,
one might project the dataset onto the tangent at the identity ID via the logarithmic map, compute the
Hopkins’ estimator from the projected data, and then transform the result back to S+D via the exponen-
tial map. It is straightforward to show that the resulting estimator of the Fréchet mean is consistent.
However, this is not an estimator of our interest in this paper, and the special treatment would restrict
the study to Riemannian manifolds. It is a challenging topic of study to develop an efficient algorithm
for the geometric-median-of-means estimator in the general setting of NPC spaces.

Appendix A: Proofs of theorems

In the Appendix, we give the proofs of Theorems 1–7. The proofs of the propositions in Section 4 can be
found in the Supplementary Material [53]. Throughout the Appendix and the Supplementary Material,
we often denote

∫
S f (y)dQ(y) simply by Q f for a measurable space (S,B), a probability measure Q

on B and a measurable function f : S → R. For instance, P f = E ( f (X)) and Pn f = n−1 ∑n
i=1 f (Xi).

We also suppress the dependence on η of Mη(δ) and other associated terms.

A.1. Some lemmas

Here we present three lemmas that are used in the proofs of the main theorems. Our first lemma is a
tail inequality for empirical processes. In our setup, ‖η(x, ·) − η(x∗, ·)‖∞ may be unbounded as x varies.
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Under some strong condition on the tail of P, one may be able to obtain an exponential tail inequality,
see [1,50]. Since we assume only a finite second moment of P, we use the following polynomial tail
inequality.

Lemma 1 ([34]). Let X1, . . . ,Xn be i.i.d. copies of X taking values in a measurable space (S,B) with
probability measure P, and let G be a countable class of measurable functions f : S → R with P f = 0.
Put Z = sup f ∈G(P − Pn) f and σ2 = sup f ∈G P f 2. Assume that the envelope H of the class G satisfies
E(Hp) ≤ Mp for some p ≥ 1 and M > 0. Then, for any ε > 0, it holds that

P (Z ≥ 4E(Z) + ε) ≤ min
1≤l≤p

l · Γ(l/2)
(√

32/nM
) l

εl
.

If E(H2) ≤ M2, in particular, we get that, for any Δ ∈ (0,1),

P

(
Z ≤ 4E(Z) + 8M

√
nΔ

)
≥ 1 − Δ.

For the statement of the second lemma, recall the definition of Hδ ≡ Hδ,η given at (6), which en-
velops F (δ) ≡ Fη(δ).

Lemma 2. Let η : M ×M → R be a measurable function and X an M-valued random element with
Fréchet mean x∗ and covariance σ2

X . Let δ > 0. Then, under the assumptions (A1) and (A2),

σ(δ) ≤ σ̄(δ), E
(
Hδ(X1)2

)
≤ σ̄(δ)2, E

(
‖Hδ ‖2

2,Pn

)
≤ σ̄(δ)2,

where σ̄(δ) = 4
√

Kσ2
X
δβ .

The following lemma provides an improved chaining bound for Gaussian processes. For a proof, see
Theorem 5.31 in [51] or Lemma 5.1 in [2].

Lemma 3. Let (Xt )t∈F be a real-valued process indexed by a pseudo metric space (F ,d) with the
following properties: (i) there exists a countable subset F ′ ⊂ F such that Xt = lims→t ,s∈F′ Xs a.s. for
any t ∈ F ; (ii) Xt is sub-Gaussian, i.e.

logE
(
eθ(Xs−Xt )) ≤ θ2d(s, t)2/2

for any s, t ∈ F and θ ∈ R; (iii) there exists a random variable L such that |Xs − Xt | ≤ L d(s, t) a.s. for
all s, t ∈ F . Then, for any S ⊂ F and any ε ≥ 0, it holds that

E
(
sup
t∈S

Xt
)
≤ 2 εE(L) + 12

∫ +∞

ε

√
log N(u,F ,d)du.

A.2. Proofs of theorems in Section 3

Proof of Theorem 1. Define δn = P(η(xn, ·) − η (x∗, ·)) and

φn(δ) = sup {(P − Pn) (η(x, ·) − η (x∗, ·)) : x ∈M(δ)}

= sup {(P − Pn) (ηc(x, ·) − ηc (x∗, ·)) : x ∈M(δ)}
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for δ ≥ 0. Since xn is a minimizer of Pnη(x, ·), it follows from the definition of φn that

δn ≤ (P − Pn) (η (xn, ·) − η (x∗, ·)) ≤ φn (δn) .

Applying Lemmas 1 and 2 we get that, with probability at least 1 − (Δ/2),

φn(δ) ≤ 4Eφn(δ) +
8
√

2 · σ̄(δ)
√

nΔ
. (20)

We first get an upper bound on Eφn(δ). Let {εi} be a Rademacher sequence, i.e. random signs
independent of Xi’s. Then, by the symmetrization of the associated empirical process (see [25]) we
obtain

Eφn(δ) ≤ 2E
(

sup
x∈M(δ)

n−1
n∑
i=1

εi (ηc(x,Xi) − ηc(x∗,Xi))
)

= 2E
(

sup
x∈M(δ)

n−1
n∑
i=1

εi ηc(x,Xi)
)
.

One can easily check that the Rademacher empirical process {Yf : f ∈ (F (δ), ‖ · ‖2,Pn )} for the pseudo
metric space (F (δ), ‖ · ‖2,Pn ) given by

Yf :=
1
√

n

n∑
i=1

εi f (Xi)

is
√

n-Lipschitz with respect to ‖ · ‖2,Pn , conditionally on the Xi’s. It is also sub-Gaussian. To see this,
we note that, for any a1, . . . ,an ∈ R,

E

(
exp

( n∑
i=1

aiεi
) )
=

n∏
i=1

Eeaiεi =
n∏
i=1

eai + e−ai

2
≤

n∏
i=1

ea
2
i /2 = exp

( n∑
i=1

a2
i

2

)
,

where the inequality follows from Taylor’s expansion. From this we get that, for any f ,g ∈ F (δ) and
θ ∈ R,

E
(
eθ

(
Yf −Yg

)
|X1, . . . ,Xn

)
= E

(
exp

( θ
√

n

n∑
i=1

εi( f − g)(Xi)
)    X1, . . . ,Xn

)
≤ exp

(
θ2

2n

n∑
i=1

( f (Xi) − g(Xi))2
)

= exp
( θ2

2
‖ f − g‖2

2,Pn

)
.
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Thus, Yf satisfies the conditions of Lemma 3 (see [2]). Applying Lemma 3 with (B1) and using the
inequalities for Hδ given in Lemma 2, we get

Eφn(δ) ≤ 2E inf
ε≥0

(
2ε +

12
√

n

∫ ∞

ε

√
log N(u,F (δ), ‖ · ‖2,Pn )du

)
≤ 2E inf

ε≥0

!"#2ε +
12
√

n

∫ ‖Hδ ‖2,Pn

ε

√
D log

(
A‖Hδ ‖2,Pn

u

)
du%&'

= 2E
(
‖Hδ ‖2,Pn

)
· inf
ε′≥0

!"#2ε′ +
12
√

n

∫ 1

ε′

√
D log

(
A
u

)
du%&'

≤ 48E
(
‖Hδ ‖2,Pn

)
·
√

AD
n

≤ 48 σ̄(δ)
√

AD
n
,

(21)

where in the third inequality we have used log x ≤ x − 1 ≤ x for x > 0.
The inequalities (20) and (21) imply that, with probability at least 1 − (Δ/2),

φn(δ) ≤ σ̄(δ)
(
192

√
AD
n
+

8
√

2
√

nΔ

)

≤ 32

√
Kσ2

Xδ
β

n

(
24

√
AD +

√
2
Δ

)
=: bn(δ,Δ).

Since φn(δ) is an increasing function and bn(δ,Δ) is decreasing inΔ for fixed δ, it follows from Theorem
4.3 in [30] that

δn ≤ φn(δn) ≤ bn(Δ) := inf
{
τ > 0 : sup

δ≥τ
δ−1bn

(
δ,Δ · δ

τ

)
≤ 1

}
(22)

with probability at least 1 − Δ. Since bn(δ,Δ · δ/τ) is decreasing in δ for β ∈ (0,2),

sup
δ≥τ
δ−1bn

(
δ,Δ · δ

τ

)
=

bn(τ,Δ)
τ

= 32

√
Kσ2

Xτ
−(2−β)

n

(
24

√
AD +

√
2
Δ

)
.

This gives

bn(Δ) = inf
⎧⎪⎪⎨⎪⎪⎩τ > 0 : 32

√
Kσ2

X
τ−(2−β)

n

(
24

√
AD +

√
2
Δ

)
≤ 1

⎫⎪⎪⎬⎪⎪⎭ (23)

=

⎧⎪⎪⎨⎪⎪⎩32

√
Kσ2

X

n

(
24

√
AD +

√
2
Δ

) ⎫⎪⎪⎬⎪⎪⎭
2

2−β

.
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Applying (23) to (22), we obtain that, with probability at least 1 − Δ,

l(xn, x∗) ≤
√

K · δβ/2
n

≤ K
1

2−β

{
32

(
24

√
AD +

√
2
Δ

)
σX√

n

} β
2−β

.

This completes the proof of Theorem 1.

Proof of Theorem 2. The proof is similar to that of Theorem 1 for the case of finite-dimensional M.
The difference is in the covering number N(u,F (δ), ‖ · ‖2,Pn ). We get

Eφn(δ) ≤ 2E inf
ε≥0

!""#2ε +
12
√

n

∫ ‖Hδ ‖2,Pn

ε

√
A‖Hδ ‖2ζ

2,Pn

u2ζ du
%&&'

= 4E
(
‖Hδ ‖2,Pn

)
· inf
ε≥0

(
ε + 6

√
A
n

∫ 1

ε
u−ζ du

)

≤ 4E
(
‖Hδ ‖2,Pn

)
×

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6
1 − ζ

√
A
n

if 0 < ζ < 1

6

√
A
n

(
1 − log

(
6

√
A
n

) )
if ζ = 1

ζ

ζ − 1

(
6

√
A
n

) 1/ζ

if ζ > 1.

.

Therefore, φn(δn) ≤ bn(Δ) with probability at least 1 − Δ, now with

bn(Δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
32

√
Kσ2

X

(
12

1 − ζ

√
A
n
+

√
2

nΔ

) ) 2
2−β

if 0 < ζ < 1(
32

√
Kσ2

X

(
12

√
A
n

(
1 − log

(
6

√
A
n

) )
+

√
2

nΔ

) ) 2
2−β

if ζ = 1

!"#32
√

Kσ2
X

!"# 2ζ
ζ − 1

(
6

√
A
n

) 1/ζ

+

√
2

nΔ
%&'%&'

2
2−β

if ζ > 1.

This gives the theorem.

A.3. Proofs of theorems in Section 5

Without loss of generality, we assume that n = m · k, where k is the number of blocks in splitting the
sample and m is the size of each block.
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Proof of Theorem 3. Let F(x) =
∫
M η(x, y)dP(y). By the definition of x∗ it holds that, for each block

Bj ,

Fn, j(x∗) − Fn, j(Z j ) ≤ Fn, j(x∗) − Fn, j(Z j ) − F(x∗) + F(Z j ).

The right hand side has an upper bound that is analogous to φn(δn) in the proof of Theorem 1, which
is obtained by substituting the empirical measure corresponding to Bj for Pn and Z j for xn. Thus,
replacing Δ by (1− 2q)/2 (so that 1−Δ by q+ 1/2) and n by m = n/k with K = β = 1, we get from (22)
and (23) that

P

(
Fn, j(x∗) − Fn, j(Z j) ≤ ε2

q

)
≥ q +

1
2
, (24)

where

εq = 32

√
kσ2

X

n

(
24

√
AD +

2√
1 − 2q

)
. (25)

By the CN inequality in Section 4.1, we have

Fn, j(Z j ) ≤ Fn, j(γx1/2) ≤
Fn, j(x)

2
+

Fn, j(x∗)
2

− d(x∗, x)2
4

⇔ Fn, j(x) − Fn, j(Z j ) ≥ −
(
Fn, j(x∗) − Fn, j(Z j )

)
+

d(x∗, x)2
2

,

where γx : [0,1] →M is the geodesic with γx0 = x∗ and γx1 = x. Thus, denoting by En, j the event

Fn, j(x) > Fn, j(x∗) for all x ∈M with d(x, x∗) > 2εq,

we get from (24) that P (En, j) ≥ q + 1/2 since Fn, j(x∗) − Fn, j(Z j) ≤ ε2
q implies

Fn, j(x) − Fn, j(Z j) > −
(
Fn, j(x∗) − Fn, j(Z j )

)
+ 2ε2

q ≥ Fn, j(x∗) − Fn, j(Z j)

for all x with d(x, x∗) > 2εq . By applying Høffding’s inequality to
∑k

j=1 I(En, j), we obtain

1 − Δ ≤ 1 − e−2q2k

≤ P !"#
k∑
j=1

I(En, j) > k/2%&'
≤ P !"#

k∑
j=1

I
(
Fn, j(x) > Fn, j(x∗)

)
> k/2 for all x ∈M with d(x, x∗) > 2εq

%&' .
This completes the proof of the theorem.
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Proof of Theorem 4. The proof is essentially the same as that of Theorem 3 except that we use Theo-
rem 2 instead of Theorem 1. We obtain (24) now with εq at (25) being replaced by

εq,ζ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
CA,1 ·

log(n/k)√
n/k

· σX√
(1 − 2q)/2

, if ζ = 1

CA,ζ · (k/n)1/2ζ · σX√
(1 − 2q)/2

, if ζ > 1.

(26)

Since

1
√

2q

log n
√

log(1/Δ)
√

n
=

√
k log n
√

n
≥ log(n/k)√

n/k
,

1
√

2q
n−1/2ζ

(
log

1
Δ

) 1/2ζ

≥
(

2q2n
log(1/Δ)

) −1/2ζ

= (k/n)1/2ζ ,

(27)

we get εq,ζ ≤ Rq,ζ/2. The rest of the proof is the same as in the proof of Theorem 3.

Proof of Theorem 5. Fix a partition {Bj : 1 ≤ j ≤ k} of the original dataset Xn = {X1, . . . ,Xn}. Let
Bj = {X1, j, . . . ,Xm, j } for 1 ≤ j ≤ k. Choose a point O ∈ M and let DO = max1≤i≤n d(O,Xi). We let
X̃i denote a corrupted value corresponding to Xi , and we write Ã instead of A if a term A involves
corrupted values. For example, we write F̃n, j(x) instead of Fn, j(x) when the jth block contains a
corrupted value. In particular, we write in this proof S̃x and r̃x for each point x ∈ M rather than Sx
and rx , respectively, since the defeating region and radius always depend on corrupted values. Put
L := �(k + 1)/2�.

We first show that ε∗n ≤ L/n by contradiction. Suppose that it is false, i.e., ε∗n > L/n. Then, for an
arbitrary configuration { j(1), . . . , j(L)} ⊂ {1,2, . . . , k} with the corruption X̃1,1 = X̃1,2 = · · · = X̃1,L = x̃,
there exists R > 0 such that supx̃∈M d(O, x̃MM ) < R. We may assume R >

√
m − 1 · DO. Now, let

γ̃ : [0,1] →M be the geodesic connecting γ̃0 =O and γ̃1 = x̃ with the length D̃ := d(x̃,O) larger than
R. For j = 1, . . . ,L, by the triangular inequality,

m · (F̃n, j(x̃MM ) − F̃n, j(γ̃t )) ≥ d(x̃, x̃MM )2 − (1 − t)2D̃2 −
m∑
i=2

d(γ̃t,Xi j )2

≥ (D̃ − R)2 − (1 − t)2D̃2 − (m − 1)(t D̃ + DO)2

= (2t − mt2)D̃2 − 2(R + DO(m − 1)t)D̃ + (R2 − (m − 1) · D2
O)

≥ (2t − mt2)D̃2 − 2(R + DO(m − 1)t)D̃.

This implies that for all t < 2/m, the point γ̃t defeats x̃MM whenever

D̃ ≥ 2(R + DO(m − 1)t)
2t − mt2 ,

so the defeating radius of x̃MM satisfies r̃x̃MM ≥ d(γ̃t, x̃MM ). Therefore,

lim inf
D̃→∞

r̃x̃MM

D̃
≥ lim inf

D̃→∞
sup

0<t<2/m

d(γ̃t, x̃MM )
D̃

= lim inf
D̃→∞

sup
0<t<2/m

d(γ̃t,O)
D̃

=
2
m
. (28)
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Now, choose any x ∈ S̃γ̃1/m (�∅), i.e. x defeating γ̃1/m. Then, ∃ at least one j0 ∈ { j(1), . . . , j(L)} such
that F̃n, j0(x) ≤ F̃n, j0(γ̃1/m). Due to the CN inequality,

0 ≤ m · (F̃n, j0(γ̃1/m) − F̃n, j0(x)) (29)

= d(γ̃1/m, x̃)2 − d(x, x̃)2 +
m∑
i=2

(
d(γ̃1/m,Xi, j0)

2 − d(x,Xi, j0)
2
)

≤
(

m − 1
m

) 2

D̃2 − d(x, x̃)2

+

m∑
i=2

{
m − 1

m
d(O,Xi, j0)

2 +
1
m

d(x̃,Xi, j0)
2 − m − 1

m2 D̃2 − d(x,Xi, j0)
2
}
.

Note that again by the CN inequality,

d(x, γ̃1/m)2 ≤
m − 1

m
d(O, x)2 + 1

m
d(x, x̃)2 − m − 1

m2
D̃2.

Plugging this inequality into (29) and using the triangular inequality, we get

0 ≤ m − 1
m2

D̃2 − m · d(x, γ̃1/m)2

+

m∑
i=2

{
m − 1

m
d(O,Xi, j0)

2 +
1
m

d(x̃,Xi, j0)
2 − m − 1

m2 D̃2 + d(O, x)2 − d(x,Xi, j0)
2
}

≤ m − 1
m2 D̃2 − m · d(x, γ̃1/m)2

+ (m − 1)
{

m − 1
m

D2
O +

1
m
(D̃ + DO)2 −

m − 1
m2 D̃2 + 2DO · d(O, x) − D2

O

}
≤ m − 1

m2 D̃2 − m · d(x, γ̃1/m)2

+ (m − 1)
{

m − 1
m

D2
O +

1
m
(D̃ + DO)2 −

m − 1
m2 D̃2 + 2DO

(
D̃
m
+ d(x, γ̃1/m)

)
− D2

O

}
= −m · d(x, γ̃1/m)2 + 2(m − 1)DO · d(x, γ̃1/m) +

2(m − 1)D̃(D̃ + 2mDO)
m2 .

Therefore,

d(x, γ̃1/m) ≤
m(m − 1)DO +

√
m2(m − 1)2D2

O
+ 2m(m − 1)D̃(D̃ + 2mDO)

m2 .

Since x ∈ S̃γ̃1/m was chosen arbitrarily, we have

lim sup
D̃→∞

r̃γ̃1/m

D̃
≤ lim sup

D̃→∞

m(m − 1)DO +

√
m2(m − 1)2D2

O
+ 2m(m − 1)D̃(D̃ + 2mDO)

m2D̃
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=

√
2

m
<

2
m
.

In view of (28), the above strict inequality is contradictory to the fact that r̃x̃MM ≤ r̃γ̃1/m for all D̃ from
the definition of geometric-median-of-means.

Next, we show that

sup
∗

d(O, x̃MM ) <∞, (30)

where sup∗ denotes the supremum over all configurations of s ≤ (L − 1) arbitrary corruptions among
{X1, . . . ,Xn}. We note that (30) implies ε∗n ≥ L/n. To prove (30), let s ≤ L − 1 be the number of
corrupted X̃i and think of a configuration of the indices of X̃i , say {i(1), . . . ,i(s)} ⊂ {1,2, . . . ,n}. The
corrupted X̃i(1), . . . , X̃i(s) are scattered across the k blocks Bj, 1 ≤ j ≤ k. Without loss of generality, let
B1, . . . ,BJ denote those blocks that do not contain any of the corrupted values. We note that J > k/2
since s ≤ L − 1. We claim

sup
X̃i(1) ,...,X̃i(s)

max
1≤ j≤J

r̃Z j <∞. (31)

Then, by the definition of the geometric-median-of-means we get

sup
X̃i(1),...,X̃i(s)

r̃x̃MM <∞. (32)

Also, by the definition of x-defeating radius and since J > k/2, it holds that

r̃x ≥ radx
!"#

J⋂
j=1

{y ∈M : Fn, j(y) ≤ Fn, j(x)}
%&'

≥ radx
!"#

k⋂
j=1

{y ∈M : Fn, j(y) ≤ Fn, j(x)}
%&'

(33)

for all x ∈ M, where radx(A) stands for the radius of the smallest ball centered at x that cov-
ers A. The right hand side of the second inequality in (33) depends solely on the original dataset
{X1, . . . ,Xn}, independent of data corruption. Now, suppose that there exists s ≤ L − 1 and a configu-
ration {i(1), . . . ,i(s)} such that

sup
X̃i(1),...,X̃i(s)

d(O, x̃MM ) =∞.

Then, since the right hand side of the second inequality in (33) diverges to infinity as d(O, x) →∞, we
would obtain

sup
X̃i(1) ,...,X̃i(s)

r̃x̃MM =∞,

which contradicts (32). This proves (30).
It remains to prove (31). Let 1 ≤ j ≤ J be fixed. Then, for any x that defeats Z j , there exists at least

one un-corrupted block Bl (1 ≤ l ≤ J) such that Fn,l(x) ≤ Fn,l(Z j ), since J > k/2 and the number of
indices l : 1 ≤ l ≤ k such that Fn,l(x) ≤ Fn,l(Z j ) or F̃n,l(x) ≤ F̃n,l(Z j ) is greater than k/2. This implies
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that

r̃Z j ≤ max
x∈M

{d(x,Z j ) : Fn,l(x) ≤ Fn,l(Z j) for some 1 ≤ l ≤ J}

≤ max
x∈M

{√
Fn,l(x) + max

Xi ∈Bl

d(Xi,Z j ) : Fn,l(x) ≤ Fn,l(Z j ) for some 1 ≤ l ≤ J
}

≤ max
1≤l≤J

(√
Fn,l(Z j) + max

Xi ∈Bl

d(Xi,Z j )
)

≤ max
1≤l≤k

(√
Fn,l(Z j ) + max

Xi ∈Bl

d(Xi,Z j )
)
.

(34)

In (34), the second inequality follows from

d(x,Z j ) ≤
1
m

∑
Xi ∈Bl

(
d(x,Xi) + d(Xi,Z j )

)
≤

√
Fn,l(x) + max

Xi ∈Bl

d(Xi,Z j ).

The right hand side of the last inequality in (34) depends solely on the original dataset {X1, . . . ,Xn},
independent of the configuration of {i(1), . . . ,i(s)} and the corrupted values X̃i(1), . . . , X̃i(s). This gives
(31).

Proof of Theorem 6. First, we follow the lines leading to (24), now using (23) with K = Kα and β =
2 − 2/α instead of K = β = 1. We may prove

P

(
Fn, j(x∗) − Fn, j(Z j ) ≤ Kα/2

α εαq

)
≥ q +

1
2
. (35)

By integrating both sides of the inequality in Proposition 1 with respect to z for γ = γx : [0,1] →M,
we obtain that, for all 0 ≤ t ≤ 1 and δ > 0,

(1 + δ)1−α/2
(
(1 − t)α/2Fn, j(x∗) + tα/2Fn, j(x)

)
− Fn, j(γxt )

≥ δ1−α/2
(
t(1 − t)d(x, x∗)2

) α/2
.

From the definition of Z j and the above inequality, we get

Fn, j(Z j) ≤ Fn, j(γt ) ≤ (1 + δ)1−α/2
(
(1 − t)α/2Fn, j(x∗) + tα/2Fn, j(x)

)
− δ1−α/2

(
t(1 − t)d(x, x∗)2

) α/2
.

This gives that, on the event where Fn, j(x∗) − Fn, j(Z j ) ≤ Kα/2
α εαq ,

(1 + δ)1−α/2tα/2Fn, j(x)

>
(
1 − (1 + δ)1−α/2(1 − t)α/2

)
Fn, j(x∗) +

(
δ1−α/2tα/2(1 − t)α/2 − Mα,ρ

)
·

Kα/2
α εαq

Mα,ρ
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or equivalently

Fn, j(x) >
1 − (1 + δ)1− α

2 (1 − t) α2
(1 + δ)1− α

2 t
α
2

· Fn, j(x∗) +
δ1− α

2 t
α
2 (1 − t) α2 − Mα,ρ

(1 + δ)1− α
2 t

α
2

·
Kα/2
α εαq

Mα,ρ

for all x ∈M with d(x, x∗) > K1/2
α M−1/α

α,ρ εq . Thus, from (35) and the definition of Mα,ρ it follows that

P

(
Fn, j(x) > ρ · Fn, j(x∗) for all x ∈M with d(x, x∗) >

K1/2
α εq

M1/α
α,ρ

)
≥ q +

1
2
. (36)

Applying Høffding’s inequality as in the proof of Theorem 3 with (36), we may complete the proof of
the theorem.

Proof of Theorem 7. The proof is essentially the same as that of Theorem 6 except that we use the
definition of εq,ζ at (26) instead of εq at (25). Using (27) we get K1/2

α M−1/α
α,ρ εq,ζ ≤ Rq,α,ρ,ζ .
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