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We consider a family of infinite dimensional product measures with tails between Gaussian and exponential, which
we call p-exponential measures. We study their measure-theoretic properties and in particular their concentration.
Our findings are used to develop a general contraction theory of posterior distributions on nonparametric models
with p-exponential priors in separable Banach parameter spaces. Our approach builds on the general contraction
theory for Gaussian process priors in (Ann. Statist. 36 (2008) 1435–1463), namely we use prior concentration to
verify prior mass and entropy conditions sufficient for posterior contraction. However, the specific concentration
properties of p-exponential priors lead to a more complex entropy bound which can influence negatively the
obtained rate of contraction, depending on the topology of the parameter space. Subject to the more complex
entropy bound, we show that the rate of contraction depends on the position of the true parameter relative to a
certain Banach space associated to p-exponential measures and on the small ball probabilities of these measures.
For example, we apply our theory in the white noise model under Besov regularity of the truth and obtain minimax
rates of contraction using (rescaled) α-regular p-exponential priors. In particular, our results suggest that when
interested in spatially inhomogeneous unknown functions, in terms of posterior contraction, it is preferable to use
Laplace rather than Gaussian priors.
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1. Introduction

Gaussian processes are routinely used as priors in many nonparametric inference problems, for exam-
ple, in spline smoothing [29], density estimation [34], nonparametric regression [43], inverse problems
[45] and drift estimation of diffusions [36]. At the same time, there is a growing number of problems
for which it is preferable to utilize heavier-tailed priors, while maintaining the favourable convexity
properties offered by the Gaussian distribution. For example, priors constructed using infinite products
of Laplace distributions are extensively used in the literature of Bayesian inverse problems in the form
of Besov-space priors with integrability parameter p = 1 [1,16,27,32,33]. Such priors on the one hand
have attractive sparsity-promoting properties at the level of maximum a posteriori estimates [1,32], and
on the other hand are logarithmically concave, thus computationally and analytically tractable. Besov-
space priors are defined through expansions in a wavelet basis and for p = 1 use �1-type penalization
on the corresponding coefficients, an idea widely-used in the statistical literature [10,11,17–19,28].

The study of the asymptotic performance of posterior distributions in the infinitely-informative data-
limit, under the frequentist assumption that the available data is generated from an underlying fixed
value of the unknown, has received great attention in the last two decades. In particular, there has been
enormous progress in the study of rates of posterior contraction, that is the concentration rates of poste-
rior distributions around the underlying value of the unknown. The works of Ghosal and van der Vaart
[21] and Shen and Wasserman [42] for independent and identically distributed (i.i.d.) observations,
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together with the work of Ghosal and van der Vaart [22] for non-i.i.d. observations, paved the way for
a comprehensive theory for rates of posterior contraction under general assumptions on the prior and
model.

For Gaussian priors, posterior contraction has been vigorously studied aided by the available very
deep understanding of Gaussian processes; see, for example, [52] for a presentation of the relevant
elements of Gaussian process theory. Of great importance in this context, has been the work of van
der Vaart and van Zanten [51], who studied general posterior contraction based on the concentration
properties of the Gaussian prior. In particular, they showed that the rate of contraction depends on the
position of the true parameter underlying the data relative to the reproducing kernel Hilbert space and
the centered small ball probabilities of the Gaussian prior. An incomplete list of other contributions
which advanced the theory of posterior contraction under Gaussian priors in several models, often
using mixtures of Gaussian processes to achieve adaptation, includes [6,12,24,31,37,46,50,53,54]. See
also the recent books [23,25].

On the contrary, the frequentist asymptotic performance of posterior distributions arising from
infinite-dimensional Laplace-type priors is much less understood. In particular, there is no general
theory for posterior contraction and the only applicable contraction result we are aware of, refers to un-
dersmoothing product priors in the white noise model [13], Corollary 3. Of some relevance are existing
posterior contraction results under sieve priors, which include randomly truncated products of expo-
nential distributions [4,38]. For such priors a mechanism for choosing the truncation point is necessary
either using a hyperprior or with an empirical Bayes procedure. Also relevant, is the result of [14],
Section 3, for the independent and identically distributed product Laplace prior in the sparse Gaussian
sequence model setting.

In this work, we consider a class of infinite-dimensional priors spanning between Gaussian and
Laplace product priors. We call such priors p-exponential, with p ∈ [1,2] reflecting the tail behaviour,
where p = 2 corresponds to Gaussian and p = 1 to exponential tails. Our aim is twofold: first, to
develop the relevant measure theory for these priors and to study their concentration properties and
second, to study posterior contraction for general models based on prior concentration, analogously to
the Gaussian contraction theory in [51].

1.1. General posterior contraction theory

Consider the problem of inferring an unknown parameter θ ∈ � from observations X(n) drawn from
distributions P

(n)
θ , where n → ∞ corresponds to the infinitely-informative data-limit. We put a prior

� on θ and aim to study the frequentist asymptotic properties of the resulting posterior distribution on
θ after observing X(n), �n(·|X(n)). In particular, we make the frequentist assumption that the available
observations have been generated from a fixed underlying true parameter θ0 ∈ �, and we are interested
in investigating the concentration rate of the posterior distribution around the truth in the limit n → ∞.
We say that the posterior distribution contracts with a rate εn at θ0 with respect to a metric d on �, if
�n(θ : d(θ, θ0) ≥ Mnεn|X(n)) → 0 in P

(n)
θ0

-probability, for every Mn → ∞.
Posterior contraction in this general-prior and general-model setup, has been studied by Ghosal and

van der Vaart in [22]. Given a model and distance d , assuming that there exist exponentially powerful
tests for separating θ0 from d-balls at a certain distance from it, they derived conditions on the prior
securing that an εn is a rate of contraction around θ0 with respect to d : the prior needs to put sufficient
mass around the true θ0 and almost all its mass on sets of bounded complexity. These conditions are
expressed via norms and discrepancies which are relevant to the statistical setting of interest. In par-
ticular, they involve both neighbourhoods of θ0 expressed via the metric d , as well as neighbourhoods
of P

(n)
θ0

expressed via Kullback–Leibler divergence and variations. For a comprehensive and up to date
treatment see [23], Chapter 8.
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1.2. Gaussian concentration and posterior contraction

We briefly describe the posterior contraction theory for Gaussian priors of van der Vaart and van Zanten
[51], which relies on a good understanding of the concentration properties of Gaussian measures; see
also [23], Chapter 11.

Let (X,‖ · ‖) be a separable Banach space and let μ be a centered Gaussian prior in X. Denote by H

the reproducing kernel Hilbert space (RKHS) of μ, with corresponding norm ‖ · ‖H . Moreover, denote
by BX the closed unit ball of X centered at the origin. The concentration properties of μ at a point

w in the topological support of μ, supp(μ) = H
‖·‖X , were shown to be captured by the concentration

function

ϕw(ε) = inf
h∈H :‖h−w‖≤ε

1

2
‖h‖2

H − logμ(εBX), ε > 0. (1)

For w = 0, the first term vanishes and the concentration function measures the probability of centered
balls of size ε in X. The idea is that for nonzero w ∈ supp(μ), the concentration function measures the
probability of balls of radius ε centered at w, with the first term measuring the loss of probability due
to shifting from centered to noncentered balls; this is made precise by the bounds in [52], Lemma 5.3.

Using the above interpretation of the concentration function, together with a concentration inequality
due to Borell, [9], Theorem 3.1, van der Vaart and van Zanten showed in [51], Theorem 2.1, that for a
w0 ∈ supp(μ), if εn satisfies

ϕw0(εn) ≤ nε2
n, (2)

then the prior puts a certain minimum mass in εn balls in X around the w0 and it is possible to find
�n ⊂ X which contains the bulk of the prior mass and has exponentially bounded complexity. These
assertions point to the conditions of general-model general-prior results discussed in the previous sub-
section, see, for example, [23], Theorem 8.9 and Theorem 8.19. However unlike the conditions of these
general results which involve statistically relevant norms and discrepancies, the assertions of [51], The-
orem 2.1, are expressed purely in the Banach space norm. To bridge this gap and indeed prove that εn

is a posterior contraction rate in specific statistical settings, one needs to relate the statistically relevant
quantities appearing in general-model general-prior results to the Banach space norm.

In a range of models, this reconciliatory work has been done in [22] in the general-prior context, and
there exist general-prior contraction theorems with assumptions purely expressed in the Banach space
norm [22]; for example see [23], Theorem 8.31, in the white noise model, or [23], Theorem 8.26, in the
normal fixed-design regression setting. In other models such as density estimation or nonparametric
binary classification, the reconciliatory work has been done in the context of Gaussian priors in [51],
see [51], Lemmas 3.1 and 3.2, respectively, and no general-prior theorems were explicitly formulated.
We stress that the reconciliatory work for these models is not explicit to Gaussian priors, thus the proofs
of all the Gaussian contraction results found in [51], Section 3, can be easily used to get contraction
results for priors for which analogous results to [51], Theorem 2.1, hold.

1.3. Our contribution

In the present paper we consider parameter spaces X which are separable Banach and which possess
a Schauder basis. We use the Schauder basis to construct p-exponential measures in X, by identifying
them to infinite products of independent univariate p-exponential distributions. Our main contribution
is that we generalize the aforementioned Gaussian general contraction theorem [51], Theorem 2.1,
to p-exponential measures, and to achieve this we develop the necessary concentration theory for p-
exponential measures. The obtained general contraction result enables the study of contraction rates of
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posterior distributions based on p-exponential priors, in a range of standard nonparametric statistical
models. A brief summary of the paper is as follows.

In Section 2, we introduce p-exponential measures in X and study their properties relating to con-
vexity, equivalence and singularity under translations, topological support and ultimately concentra-
tion. We find that the concentration of a p-exponential measure at a point w in its support, depends
on the position of w relative to a Banach space, rather than relative to a Hilbert space as was the case
for Gaussian measures. We define the corresponding concentration function ϕw(·) and show in Theo-
rem 2.13 that it has a similar interpretation to the Gaussian concentration function. In Proposition 2.15,
we derive a concentration inequality for p-exponential measures, which follows from Talagrand’s work
in [47] and, although substantially more intricate, is analogous to the aforementioned Gaussian con-
centration inequality [9], Theorem 3.1, used for studying contraction in [51].

In Section 3, we use the interpretation of the concentration function, together with the available con-
centration inequality to generalize the Gaussian contraction result [51], Theorem 2.1, to p-exponential
measures in Theorem 3.1, which is the main result of this paper. Since the concentration properties of
p-exponential measures are more intricate, we get a more complicated complexity bound compared to
the Gaussian case.

In Section 4, we present posterior contraction results for general p-exponential measures in two stan-
dard statistical models: the white noise model and density estimation. These results follow immediately
from Theorem 3.1, as discussed at the end of the last subsection.

In Section 5, we consider α-regular p-exponential priors in separable Hilbert spaces, study bounds
on the corresponding concentration function for Besov-type regularity of the truth and compute pos-
terior contraction rates in the white noise model, with L2 loss. In this case, the complexity bound in
Theorem 3.1, which is more complicated for p-exponential priors compared to Gaussian priors, does
not affect the rates. Our bounds are particularly interesting for Besov spaces of spatially inhomoge-
neous functions, that is for Besov integrability parameter q < 2. In this case, Gaussian priors appear
to be suboptimal, more specifically to be limited by the minimax rate over linear estimators, which is
slower than the minimax rate [20], Theorem 1. On the other hand, p-exponential priors with p < 2
can do better than the linear-minimax rate, see Theorem 5.5 and Remark 5.7. Furthermore, we can
achieve the minimax rate using rescaled undersmoothing p-exponential priors for p = q , or the mini-
max rate up to lower order logarithmic terms using rescaled undersmoothing p-exponential priors with
p < q; see Theorem 5.9 and Remark 5.10. To our knowledge, this is the first occurrence of a prior
achieving the minimax rate over such Besov spaces in the literature. Although we only show upper
bounds on the rate of contraction, our results indicate that when interested in spatially inhomogeneous
unknowns, in terms of posterior contraction rates, it is beneficial to use Laplace rather than Gaussian
priors.

In Section 6, we consider α-regular p-exponential priors constructed via wavelet expansions in the
space of continuous functions on the unit interval, C[0,1], and study bounds on the corresponding
concentration function in the supremum norm, under Hölder-type regularity of the truth. To this end,
we prove new centered small ball probability bounds in the supremum norm for p-exponential mea-
sures, see Proposition 6.3. We then compute posterior contraction rates in density estimation, with
Hellinger-distance loss. In this case, the rates are affected by the more complicated complexity bound
in Theorem 3.1 and appear to be suboptimal, see Theorem 6.7.

The proofs of our results are contained in the supplement [2], together with some complementary
technical results and discussions.
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1.4. Notation

We denote by R∞ the space of all real sequences and by B(R∞) the Borel σ -algebra with respect
to the product topology. We denote by �p the space of p-summable real sequences. The space of
square integrable real functions on the unit interval is denoted by L2[0,1], while C[0,1] is the space of
continuous real functions on the unit interval with the supremum norm. For s > 0, we use Cs = Cs[0,1]
to denote the space of s-Hölder real functions on the unit interval. For a normed space (Y,‖ · ‖Y ), we
denote by BY the closed unit ball in Y . The notation N(ε,A,d) is used for the ε-covering number of a
subset A of a metric space with metric d , that is the minimum number of balls of radius ε with respect
to d which are needed to cover the set A. For two positive sequences (an), (bn), an 	 bn means an/bn

is bounded away from zero and infinity, while an � bn means that an/bn is bounded.

2. p-Exponential measures and their properties

In this section, we introduce p-exponential measures and study some of their properties. In partic-
ular, we discuss their convexity, behaviour under translations, topological support and concentration
properties.

2.1. p-Exponential measures

Definition 2.1. Let γ = (γ�)�∈N be a deterministic decaying sequence of positive real numbers and
let ξ�, � ∈ N, be independent and identically distributed real random variables with probability den-
sity function fp(x) ∝ exp(−|x|p

p
), x ∈ R for p ∈ [1,2]. We define the probability measure μ on the

measurable space (R∞,B(R∞)) to be the law of the sequence (γ�ξ�)�∈N and call it a p-exponential
measure with scaling sequence γ .

In the following, we will often suppress the dependence on γ and call μ a p-exponential measure.
For p = 1 and p = 2 we get centered Laplace and centered Gaussian measures respectively, both in
sequence space. While we restrict p between 1 and 2, many of the results in this section as for example
the ones in the following subsection on convexity, clearly hold in greater generality and in particular
for p ≥ 1. However, our treatment on the concentration of p-exponential measures in Section 2.4, is
explicit to p ∈ [1,2].

Depending on the decay properties of γ , draws from μ almost surely belong to certain subspaces of
R∞. For example, γ ∈ �2 if and only if μ(�2) = 1, see [3], Lemma S.M.1.2. Lemma 5.2 in Section 5
below studies Besov-type regularity of μ, for certain choices of the scaling sequence γ ; this result
includes Sobolev-type regularity as a special case.

Any Gaussian random element in a separable Banach space can be identified with a Gaussian product
measure as above with p = 2, for example using the Karhunen–Loeve expansion [25], Theorem 2.6.10.
Likewise, a p-exponential measure can be identified naturally with a measure on a separable Banach
space X, provided X possesses a Schauder basis, which can be normalized or not.

Definition 2.2. Let (X,‖ · ‖X) be a separable Banach space. A Schauder basis is a sequence {ψ�} ⊂ X,
such that for every u ∈ X, there exists a unique real sequence (u�)�∈N, so that

u =
∞∑

�=1

u�ψ�,

where the convergence is with respect to ‖ · ‖X .
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For example, if γ ∈ �2, a p-exponential measure can be identified with a measure on a subspace
of the space of square integrable functions on the unit interval, X = L2[0,1], via the random series
expansion

u(x) =
∞∑

�=1

γ�ξ�ψ�(x), (3)

where {ψ�} is an orthonormal basis in L2[0,1]. It can also be identified with a measure on the space of
continuous functions on the unit interval, X = C[0,1], using a similar random series expansion, where
{ψ�} is a Schauder basis in C[0,1]; see Section 6 below.

In the general separable Banach space setting, we also have that depending on the speed of decay
of the scaling sequence γ , draws from a p-exponential measure almost surely belong to subspaces of
X. If X is a function-space, these subspaces correspond to a form of higher regularity. We stress here,
that such function-space regularity is not solely linked to the speed of decay of γ , but also depends on
the scaling and regularity of the Schauder basis {ψ�}. For example, one can study the Hölder regularity
of draws using the Kolmogorov Continuity Test. See [16], Corollary 5, for a result under general
conditions on the Schauder basis and scaling sequence, or Proposition 6.1 in Section 6 below for a
result under more specific conditions.

While developing our posterior contraction theory for p-exponential priors below, we will use the
sequence space or the general separable Banach space representation of the measure μ interchangeably.
The particular random series expansion representation, and specifically the choice of the Schauder ba-
sis, will become relevant through the concentration function when actually computing the contraction
rate in specific settings with specific priors in Sections 5 and 6.

2.2. Convexity

We next study the convexity properties of p-exponential measures. The convexity of measures in infi-
nite dimensional spaces has been extensively studied in [8].

Proposition 2.3. A p-exponential measure μ is logarithmically-concave. That is, for any measurable
sets A,B ∈ B(R∞) and any s ∈ [0,1] it holds

μ
(
sA + (1 − s)B

) ≥ μ(A)s · μ(B)1−s .

This is a straightforward result based on [8]. A proof, done for a specific type of choice of γ without
loss of generality, can be found in [1], Lemma 3.4. Logarithmic concavity is a very strong property
which for example implies unimodality, see [1], Section 2. An immediate consequence is the following
inequality called Anderson’s inequality, implied by [8], Theorem 6.1, which holds since we consider
centered measures.

Proposition 2.4. Let μ be a p-exponential measure. For any closed, symmetric and convex set A ⊂
R∞, we have

μ(A + x) ≤ μ(A), ∀x ∈R∞.

Logarithmic-concavity also implies the following zero–one law, see [8], Theorem 4.1.

Proposition 2.5. Let μ be a p-exponential measure. Then for any linear subspace V ⊂ R∞ we have
that μ(V ) = 0 or 1.
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2.3. Absolute continuity

We next consider the equivalence or singularity of a p-exponential measure to its translations.

Definition 2.6. For a measure ν on a measurable space (X ,F), we define the space of admissible
shifts Q = Q(ν) to be the subspace of all translations h ∈ X such that νh(·) := ν(· − h) is equivalent
to ν as measures.

The next proposition identifies the space of admissible shifts of the p-exponential measure and
provides an expression for the Radon–Nikodym derivative of μh with respect to μ, for h ∈ Q(μ). It
also shows that the two measures are singular for h /∈ Q(μ).

Proposition 2.7. Let μ be a p-exponential measure and let h ∈ R∞. Then μh and μ are either equiv-
alent or singular. The space of admissible shifts of μ is

Q=Q(μ) =
{

h ∈R∞ :
∞∑

�=1

h2
�γ

−2
� < ∞

}
.

In particular, it is a separable Hilbert space with norm

‖h‖Q =
( ∞∑

�=1

h2
�γ

−2
�

) 1
2

, ∀h ∈Q.

Furthermore, for h ∈ Q(μ),

dμh

dμ
(u) = lim

N→∞ exp

(
1

p

N∑
�=1

(∣∣∣∣u�

γ�

∣∣∣∣
p

−
∣∣∣∣h� − u�

γ�

∣∣∣∣
p))

in L1(R∞,μ
)
.

The last result is an immediate application of a more general result valid for scaled independent
products of univariate distributions with finite Fisher information and everywhere positive density, see
Proposition E.1 in the supplement [2].

Even though the Radon–Nikodym derivative between a centered and a translated p-exponential
measure involves weighted �p-type terms, the space of admissible shifts, even for p �= 2, is a weighted
�2 space, that is a Hilbert space. Furthermore, it is straightforward to check that μ(Q(μ)) = 0. Indeed,
for u drawn from a p-exponential measure we have ‖u‖2

Q = ∑∞
�=1 ξ2

� which is almost surely infinite
by the law of large numbers.

Motivated by the exponent of the Radon–Nikodym derivative above, we define the following sub-
space.

Definition 2.8. For a p-exponential measure μ, we define the separable Banach space

Z =Z(μ) =
{

h ∈ R∞ :
∞∑

�=1

|h�|pγ
−p
� < ∞

}
,

with norm

‖h‖Z =
( ∞∑

�=1

|h�|pγ
−p

�

) 1
p

, ∀h ∈Z.
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The space Z(μ) is a weighted �p space which, since p ∈ [1,2] and γ� is a decaying sequence, is
continuously embedded in Q(μ). Clearly, we also have that μ(Z(μ)) = 0.

When working in a separable Banach space X possessing a Schauder basis, the subspaces Q(μ) ⊂
R∞ and Z(μ) ⊂R∞ are naturally identified with subspaces of X. If X is a function-space, then Z and
Q correspond to subspaces of functions of higher regularity. In the Gaussian case p = 2, we have that
Q and Z are identified with the RKHS [23], Section I.6, but in general the two spaces differ and have
different roles.

For Gaussian measures, the RKHS is compactly embedded in any separable Banach space X of full
measure, [25], Proposition 2.6.9. The next proposition generalizes this statement for p-exponential
measures. It follows from [7], Theorem 5.1.6., which holds for general Radon measures on locally
convex spaces.

Proposition 2.9. Let μ be a p-exponential measure on a separable Banach space X with a Schauder
basis. The space of admissible shifts Q(μ) is compactly embedded into X. As a consequence, Z(μ) is
also compactly embedded into X.

2.4. Support and concentration

In this subsection, (X,‖ · ‖X) is a separable Banach space possessing a Schauder basis and μ is a
p-exponential measure on X, μ(X) = 1, defined by randomizing the coefficients of random series
expansions in the Schauder basis as explained in Section 2.1. For a Gaussian measure on X, it is known
that its topological support is the closure of the RKHS in X, [25], Corollary 2.6.17. We next show an
analogous result for p-exponential measures. Since γ is a sequence of positive scalings, p-exponential
measures are non-degenerate, that is their support is the whole space X.

Proposition 2.10. Let μ be a p-exponential measure on X. Then

X = supp(μ) = Q‖·‖X = Z‖·‖X
,

where Q‖·‖X , Z‖·‖X denote the closures in the norm ‖ · ‖X of the spaces Q, Z , respectively.

The role of the subspace Z is revealed in the next two results, which study the probability of non-
centered balls in X relative to the probability of centered ones, under a p-exponential measure. Propo-
sition 2.4, showed that for fixed radius ε > 0, there is a loss of probability when shifting from centered
to non-centered balls. In the next proposition, we prove a lower bound on the loss of probability when
the shift is in the space Z .

Proposition 2.11. Let μ be a p-exponential measure on X. Then for h ∈ Z and any ε > 0, we have

μ(εBX + h) ≥ e
− 1

p
‖h‖p

Zμ(εBX).

Our proof relies on certain properties of the function | · |p,p ∈ [1,2] appearing in the exponent
of the Radon–Nikodym derivative dμh/dμ in Proposition 2.7, namely its symmetry together with its
convexity and the concavity of its derivative on the positive semi-axis.

For p = 2 we recover the Gaussian result [52], Lemma 5.2. For p �= 2, the loss of probability is
exponential in the Z-norm and not in the Hilbert space norm of the space of admissible shifts Q. As
we will see in the next section, this adds a degree of difficulty to the study of posterior contraction for
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p-exponential priors. Due to the form of the Radon–Nikodym derivative in Proposition 2.7, the last
result is not surprising. In particular, it is consistent with the form of the Onsager-Machlup functional,
that is the functional giving the most probable paths, for Besov-space measures with p = 1 in [1],
Theorem 3.9.

We next extend the last lower bound to centers that are not necessarily in Z , using approximation.
We restrict to centers in the topological support of μ, X, since otherwise a small enough ball around
w has zero probability. As in the Gaussian case, see (1) in Section 1.2, we define the concentration
function of a p-exponential measure.

Definition 2.12. Let w ∈ X. We define the concentration function of the p-exponential measure μ on
X to be

ϕw(ε) = inf
h∈Z :‖h−w‖X≤ε

1

p
‖h‖p

Z − logμ(εBX).

The first term relates to approximation of the center w ∈ X = Z‖·‖X = Q‖·‖X by elements of the
space Z . Unlike the Gaussian case and consistently with Proposition 2.10, for p �= 2 this approximation
does not take place in a Hilbert space. For any w ∈ X, since the Z-norm is convex and p-exponential
measures are logarithmically-concave and non-degenerate, the concentration function is a strictly de-
creasing and convex function on the positive semi-axis. This follows very similarly to the Gaussian
case see [12], Lemma 3, or the more readily adaptable [23], Lemma I.26. In particular, the concentra-
tion function is continuous and blows-up as ε → 0. Depending on the position of w ∈ X relative to the
space Z , the blow-up rate is determined by the first or second term. For example, if w ∈ Z the first
term remains bounded and only the second term blows-up.

The interpretation of the concentration function is similar to the Gaussian case. For w = 0, the first
term is zero and ϕ0(ε) measures the probability with respect to μ of a centered ball of radius ε in X.
For w ∈ X \ {0}, the next theorem shows that the concentration function gives a lower bound on the
probability of a ball of radius ε in X around w, with the first term measuring the loss of probability
due to moving the ball away from the origin.

Theorem 2.13. For any w ∈ X we have that

− logμ(w + εBX) ≤ ϕw(ε/2), ∀ε > 0.

The proof of the last theorem is very similar to the first part of the proof of [52], Lemma 5.3. It
follows from Proposition 2.11 using the triangle inequality and approximation of w ∈ X in Z .

Remark 2.14. In the Gaussian case, the concentration function yields both an upper and a lower bound
on the probability of small balls around a w ∈ X [52], Lemma 5.3. While the last theorem achieves a
lower bound, it would be interesting to also prove an upper bound in the p-exponential case. However,
the lack of inner product structure in the Radon–Nikodym derivative between a centered p-exponential
measure and its translation makes this task considerably harder.

The following inequality generalizes Borell’s inequality which studies the concentration of Gaussian
measures, [9], Theorem 3.1. It is based on a sharp two level concentration inequality due to Michel
Talagrand [47], Theorem 2.4.

Proposition 2.15. Let μ be a p-exponential measure in X. Recall that BZ and BQ denote the closed
unit balls in the spaces Z and Q, respectively. Then there exists a constant K > 0 depending only on
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p, such that for any set A ∈ B(X) and any r > 0 it holds

μ
(
A + r

p
2 BQ + rBZ

) ≥ 1 − 1

μ(A)
exp

(
− rp

K

)
. (4)

Letting A = εBX for a fixed small ε > 0, the last inequality implies that while both Z , Q are null
sets of μ, the bulk of the mass of μ is contained in a small ε-cushion in X around the sum of a ball
of radius r in Z and a ball of radius r

p
2 in Q, for r large. This interpretation is similar to the one for

Borell’s inequality presented in the discussion after [23], Proposition 11.17, which is simpler since in
the Gaussian case Z =Q.

Remark 2.16. Borell’s inequality [9], Theorem 3.1, for Gaussian measures has the form of a stronger
isoperimetric inequality, which in turn implies the concentration inequality (4) in the case p = 2
and Q = Z . Using results in isoperimetry for finite independent products of standard univariate p-
exponential distributions [39], together with the techniques in [9] to pass from finite to infinite dimen-
sions, one can show that there exists K = K(p) > 0 such that for any A ∈ B(X) it holds

μ(A + rBQ) ≥ Fp

(
F−1

p

(
μ(A)

) + Kr
)
,

where Fp is the cumulative distribution function of the univariate standard p-exponential distribution.
The concentration inequality implied by the above inequality has the form

μ(A + rBQ) ≥ 1 − 1

μ(A)
exp

(
− rp

K

)
,

and for p ∈ [1,2) is strictly weaker than the one in Proposition 2.15, since it involves balls of radius r

in the space Q which strictly contains Z .

3. General contraction theorem for p-exponential priors

We next state our general contraction result for p-exponential priors in a separable Banach space X

possessing a Schauder basis, which generalizes the Gaussian contraction result [51], Theorem 2.1. It
shows that for a p-exponential prior and a w0 ∈ X, if εn is such that the blow-up rate of the concentra-
tion function satisfies

ϕw0(εn) ≤ nε2
n, (5)

then there exist sets Xn ⊂ X of bounded complexity containing the bulk of the prior mass, and the prior
puts sufficient mass around w0. These assertions are in accordance with the requirements of results
giving upper bounds on the contraction rate at w0 for general priors, see the discussion in Section 1.2
and the results in Section 4 below.

To prove our contraction result, we follow the techniques of the proof of the Gaussian result [51],
Theorem 2.1, which is based on Borell’s inequality [9], Theorem 3.1, together with the concentration
function and its relation to lower bounds on the probability of shifted small balls [52], Lemma 5.3.
However, the situation for p-exponential priors is more complicated, due to the intricate form of the
available concentration inequality in Proposition 2.15. In particular, due to the fact that for p ∈ [1,2),
the concentration inequality (4) involves both balls in Q and balls in Z , while the decentering result
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in Proposition 2.11 refers to elements in Z , in order to prove the complexity bound we need to ap-
proximate elements in Q by elements in Z . To this end, we let f,g : R>0 → R>0 be two respectively,
non-decreasing and non-increasing functions, such that for ε, a > 0 and for any h ∈ aBQ it holds

inf
x∈Z :‖x−h‖X≤ε

‖x‖p

Z ≤ f (a)g(ε)1− p
2 (6)

and as a → ∞, f (a) grows at most polynomially to infinity. For p = 2, since Q = Z , we can choose
f (a) = a2 while g is redundant. For p ∈ [1,2), since Z �Q, g needs to satisfy g(ε) → ∞ as ε → 0.
For optimal results we need to choose f and g so that the bound (6) is as tight as possible. As a result of
this extra approximation step, we get a more complicated form on the right hand side of the complexity
bound, see (7) below, compared to the Gaussian case [51], Theorem 2.1. Note that the factorization
of the right hand side of (6) into the two functions f and g, is not important for the theory, but arises
naturally in practice, see Lemmas 5.14 and 6.6 below.

Theorem 3.1. Let μ be a p-exponential measure with scaling sequence γ in a separable Banach space
X with Schauder basis, where p ∈ [1,2]. Let W ∼ μ. Fix f,g : R>0 → R>0, as in (6) above and let
w0 ∈ X.

Assume εn > 0 such that ϕw0(εn) ≤ nε2
n , where nε2

n � 1. Then for any C > 1, there exists a measur-
able set Xn ⊂ X and a constant R > 0 depending on C, p and f , such that

logN
(
4εn,Xn,‖ · ‖X

) ≤ R
(
nε2

n ∨ f
(
n

1
2 εn

)
g(εn)

1− p
2
)
, (7)

P(W /∈ Xn) ≤ exp
(−Cnε2

n

)
, (8)

P
(‖W − w0‖X < 2εn

) ≥ exp
(−nε2

n

)
. (9)

The difference between the assertions of the above theorem compared to the Gaussian result [51],
Theorem 2.1, is the right-hand side in the complexity bound (7), which is potentially larger than nε2

n ,
depending on which of the two terms dominates in the maximum asymptotically as εn → 0. In the
Gaussian case p = 2, the right-hand side in (7) becomes nε2

n and we recover [51], Theorem 2.1. For
p ∈ [1,2), depending on the norm in the parameter space X, we have a different form of the tightest
functions f and g that we can verify to satisfy (6). If the quality of approximation in ‖ · ‖X of elements
in Q by elements in Z is not sufficiently good, the right-hand side in (7) can be dominated by the second
term and in this case the complexity bound is not in accordance with the corresponding complexity
bound in general prior contraction results like [23], Theorem 8.9 and 8.19. The next corollary handles
such situations.

Corollary 3.2. Under the assumptions of Theorem 3.1, let ε̃n > 0 be such that

f
(
n

1
2 εn

)
g(εn)

1− p
2 � nε̃2

n. (10)

Then for any C > 1, there exists a measurable set Xn ⊂ X and a constant R > 0, such that

logN
(
4(εn ∨ ε̃n),Xn,‖ · ‖X

) ≤ Rn(εn ∨ ε̃n)
2, (11)

P(W /∈ Xn) ≤ exp
(−Cnε2

n

)
, (12)

P
(‖W − w0‖X < 2εn

) ≥ exp
(−nε2

n

)
. (13)
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The corollary follows immediately from Theorem 3.1, since taking a larger εn makes the left hand
side of the complexity bound (7) smaller and the right-hand side larger.

In settings for which (10) is satisfied with ε̃n = εn, for εn the fastest rate solving (5), we can apply
the corollary and the resulting three assertions are in accordance with the general contraction results
which show that this εn is an upper bound on the contraction rate. We will see in Section 5, that this
is the case in separable Hilbert space settings for α-regular p-exponential priors and under Besov-type
regularity of w0. In this situation the intuition about the contraction rate is similar to the Gaussian case,
the only difference being that the RKHS is replaced by the Banach space Z . We refer to the discussion
in [23], Section 11.3, which we adapt here to p-exponential priors: the rate of contraction is up to
constants the maximum of the minimal solution to the small ball inequality

− logμ(εnBX) ≤ nε2
n

and the minimal solution to the approximation inequality

inf
h∈Z :‖h−w‖X≤εn

‖h‖p

Z ≤ nε2
n.

The first inequality depends only on the prior, showing that priors that put little mass around the origin
give slow rates independently of w0. The second inequality depends on both the prior and the true w0
and relates to the loss of probability mass in small balls around w0 compared to centered small balls.
It shows that even if the prior puts a lot of mass around the origin, it is still possible to give a slow rate
at a w0, depending on the positioning of w0 relative to the Banach space Z .

On the other hand in settings for which (10) is only satisfied for ε̃n a sequence decaying more
slowly than the fastest rate εn solving (5), the resulting three assertions of the corollary are only in
accordance with the general contraction result in the independent and identically distributed data case
[23], Theorem 8.9, which shows that the slower rate ε̃n is an upper bound on the contraction rate. We
will see in Section 6 that such issues arise for α-regular p-exponential priors in C[0,1], defined via
wavelet bases. In this case, the intuition regarding the rates of contraction is obfuscated.

Remark 3.3. For Gaussian priors, the availability of an upper bound on the probability of small balls
around an element w ∈ X in terms of the concentration function, enabled the study of lower bounds on
posterior contraction rates in [12]. Such an upper bound remains open for p-exponential priors with
p �= 2, see remark 2.14, hence the use of the techniques of [12] to similarly obtain lower bounds on
posterior contraction rates in this case is precluded.

4. Posterior contraction for specific models

We next use the results of the preceding section to study posterior contraction for general p-exponential
priors in specific nonparametric statistical settings. Indeed, the assertions of Theorem 3.1 and Corol-
lary 3.2, point to the assumptions of the well known general model and general prior posterior con-
traction rate results [23], Theorems 8.9 and 8.19. However, the former results are expressed purely
in terms of the Banach space norm of the parameter space, while the latter have conditions relating to
statistically relevant norms and discrepancies. As discussed in Section 1.2, the necessary reconciliatory
work has already been carried out in various standard statistical settings and can be readily used for
p-exponential priors in the same way that it was used for Gaussian priors in [51], Section 3.

Note, that compared to the Gaussian contraction results found in [51], Section 3, or [23], Sec-
tion 11.3, in the formulation of our results we need to take into account the more complicated complex-
ity bound in (7). For reasons of brevity, we only present here contraction results for density estimation
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and for the white noise model. Results in other models such as binary classification and nonparametric
regression follow similarly.

4.1. Density estimation

We consider the estimation of a probability density π relative to a finite measure ν on a measurable

space (T ,T ), based on a sample of observations X1, . . . ,Xn|π iid∼ π . Following [23], Section 11.3.1,
we construct a prior � on π by letting

π(x) = eW(x)∫
T

eW(y) dν(y)
, x ∈ T ,

where W is a draw from a p-exponential measure μ on L∞(T ) ∩ C(T ). We require that W is almost
surely continuous so that it can be evaluated at x ∈ T and π(x) is well defined. We can define p-
exponential priors with continuous and bounded paths, see Section 6 below.

Let �n(·|X1, . . . ,Xn) be the posterior distributions after observing X1, . . . ,Xn. The following con-
traction result is a generalization of the Gaussian result [51], Theorem 3.1. It gives contraction rates in
the Hellinger distance dH (·, ·) between two probability densities. The proof is identical to the Gaussian
case, once we take into account Corollary 3.2 (see also [23], Theorem 11.21).

Theorem 4.1. Let W be a p-exponential random element in a separable Banach subspace of L∞(T )

possessing a Schauder basis, which is almost surely continuous. Assume w0 = logπ0 belongs to the
support of W and denote by P n

0 the corresponding distribution of the vector (X1, . . . ,Xn). Let εn

satisfying (5) with respect to ‖ · ‖L∞ and ε̃n satisfying (10) where the functions f , g are defined in (6).
Then �n(π : dH (π,π0) > M(εn ∨ ε̃n)|X1, . . . ,Xn) → 0, in P n

0 -probability, for some sufficiently large
constant M .

4.2. White noise model

We study the estimation of a signal w ∈ � ⊂ L2[0,1], from the observation of a sample path of the
stochastic process

X
(n)
t =

∫ t

0
w(s)ds + 1√

n
Bt , t ∈ [0,1]

where B is standard Brownian motion. Let P
(n)
w be the distribution of the sample path X(n) in C[0,1].

As a prior on w we take a p-exponential random element W in L2[0,1]. We can define such priors
using random series expansions for example in an orthonormal basis of L2[0,1], see Section 5 below.
Observe that by Proposition 2.10, the topological support of such a prior is L2[0,1].

We denote by �n(·|X(n)) the posterior on w after observing the sample path X(n). The following
posterior contraction result is a generalization of [51], Theorem 3.4. The proof is identical to the Gaus-
sian case, and follows immediately by combining [23] and Theorem 3.1, Theorem 8.31.

Theorem 4.2. Let W be a p-exponential random element in L2[0,1]. Assume that the true value of w

is contained in the support of W , w0 ∈ L2[0,1]. Furthermore, assume that εn satisfies the rate equation
ϕw0(εn) ≤ nε2

n with respect to the L2[0,1]-norm and is such that (7) holds with nε2
n on the right hand

side. Then �n(w : ‖w − w0‖L2 > Mεn|X(n)) → 0 in P
(n)
w0 -probability, for some M > 0.
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5. The separable Hilbert space setting

In this section, we consider p-exponential measures in a separable Hilbert space X. Since any sep-
arable Hilbert space is isometrically isomorphic to the space of square summable sequences �2, we
can equivalently, as far as concentration is concerned, work in �2. This equivalence holds, provided
the p-exponential measure in X is defined using expansions in an orthonormal basis, see Section 2.1.
In particular, we consider α-regular p-exponential measures in sequence space and study their con-
centration at centers of varying Besov-type regularity. Note that these measures are merely a different
parametrization of Besov-space priors used in applied inverse problems literature, [33]. We combine
our findings with Theorem 4.2, to obtain posterior contraction rates in the white noise model under
Besov-type regularity of the truth.

We first define the following Besov-type sequence spaces.

Definition 5.1. For any s > 0, q ≥ 1 and d ∈ N, we denote by Bs
q the weighted �q spaces

Bs
q = Bs

q(d) =
{

u ∈ R∞ :
∞∑

�=1

�q( s
d
+ 1

2 )−1|u�|q < ∞
}

, ‖u‖Bs
q
=

( ∞∑
�=1

�q( s
d
+ 1

2 )−1|u�|q
) 1

q

.

The case q = 2 corresponds to Sobolev-type spaces. These spaces can be identified for example to
Sobolev spaces Hs of periodic functions on Td = (0,1]d with s square integrable derivatives, using
expansions in the Fourier basis. Similarly, for q �= 2 Bs

q can be identified with the Besov space Bs
q1q2

of periodic functions on Td , with integrability parameters q1 = q2 = q and smoothness parameter s,
using expansions in certain sufficiently regular orthonormal wavelet bases [41]. Of particular interest
is the case q < 2, which includes classes of non-smooth and spatially inhomogeneous functions, see
for example [20]. Such functions are useful in many scientific disciplines, for example, in geophysics
and medical imaging, as they can be smooth in one area and rough in another one. The rates we obtain
below suggest that, when interested in reconstructing an unknown function of this type, it is beneficial
to use a non-Gaussian p-exponential prior.

5.1. α-Regular p-exponential priors in �2

Consider μ a p-exponential measure in sequence space with γ� = �− 1
2 − α

d , α > 0, p ∈ [1,2], d ∈ N.
The parameter d expresses the dimension inherent in the Hilbert space X and is fixed for a given model,
for example, X = L2(T

d). As discussed in Section 2.1, since γ ∈ �2 it holds μ(�2) = 1. Furthermore,
by Proposition 2.10 the support of μ is �2. We call such a measure a d-dimensional α-regular p-
exponential measure in �2.

The next result studies the Besov-type regularity of draws from μ and justifies the name α-regular.

Lemma 5.2. Assume μ is a d-dimensional α-regular p-exponential measure in �2. Then for any q ≥ 1,
we have that μ(Bs

q) = 1 for all s < α, and μ(Bs
q) = 0 for all s ≥ α.

We next study the concentration function ϕw(·) of μ, defined for centers w ∈ �2; see Definition 2.12
where X = �2. The following lemma identifies the space Z in which we approximate the center w ∈ �2

in the first term of ϕw , as well as the shift space Q. It follows immediately from Proposition 2.7 and
Definitions 2.8 and 5.1.
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Lemma 5.3. Assume μ is a d-dimensional α-regular p-exponential measure in �2. Then Z = Zα :=
B

α+ d
p

p and Q =Qα := B
α+ d

2
2 .

We next study the blow-up rate of the concentration function ϕw(ε) as ε → 0 in the present setting. In
particular, we find upper bounds on the minimal solution εn of the inequality ϕw0(εn) ≤ nε2

n depending
on the Besov-type regularity of w0.

Proposition 5.4. Assume that μ is a d-dimensional α-regular p-exponential measure in �2 and that
w0 ∈ B

β
q for β > 0 ∨ ( d

q
− d

2 ), q ≥ 1, p ∈ [1,2]. Then as n → ∞ the rate εn 	 r
α,β,p,q
n satisfies the

inequality ϕw0(εn) ≤ nε2
n , for constants which depend on w0 only through its B

β
q norm and for r

α,β,p,q
n

given below:

(i) For q ≥ 2

r
α,β,p,q
n :=

{
n

− β
d+2β+p(α−β) , if α ≥ β,

n− α
d+2α , if α < β.

(ii) For q < 2 and p ≤ q , letting a = √
2βdp + β2p2 + d2(1 + 2p − 4p/q)

r
α,β,p,q
n :=

⎧⎪⎪⎨
⎪⎪⎩

n
− 2βq+d(q−2)

4d(q−1)+4βq+2pq(α−β) , if α ≥ βp − d + a

2p
,

n− α
d+2α , if α <

βp − d + a

2p
.

(iii) For q < 2 and p > q , letting a =
√

2βdq(2q−p)+β2pq2+d2(p+2q2−4q)
p

r
α,β,p,q
n :=

⎧⎪⎪⎨
⎪⎪⎩

n
− 2βq+d(q−2)

2d(p+q−2)+4βq+2pq(α−β) , if α ≥ βq − d + a

2q
,

n− α
d+2α , if α <

βq − d + a

2q
.

The proof of the last proposition, builds on Lemmas 5.12 and 5.13 in Section 5.3 below, in which
we estimate the two terms of the concentration function. Notice that the assumption β > 0 ∨ ( d

q
− d

2 )

secures that w0 ∈ �2, see Lemma G.1 in the supplement [2].
Consider a nonparametric inference problem in a separable Hilbert parameter space X, where the

X-norm relates suitably to the statistically relevant norms for the model and there exist exponentially
powerful tests for separating the truth from balls in X at a certain distance from it. In the assumed
separable Hilbert setting, we can verify that for εn the rate in Proposition 5.4, the maximum appearing
in the right hand side of the complexity bound (7) in our general contraction Theorem 3.1, is dominated
by nε2

n; see Lemma 5.14 in Section 5.3. Together with Proposition 5.4 and Theorem 3.1, this suggests
that if we use as prior a d-dimensional α-regular p-exponential measure in �2 identified with a measure
on X via a series expansion in an orthonormal basis of X, then r

α,β,p,q
n is an upper bound on the

posterior contraction rate when the truth belongs to B
β
q . Here we identify Besov regularity in X with

Besov regularity of the sequence of coefficients in the orthonormal basis. For example, in the white
noise model combining the last two results with Theorem 4.2, we get immediately the next result for
α-regular p-exponential priors in L2[0,1] (here d = 1).
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Theorem 5.5. Consider the white noise model of Section 4.2, and let � = μ be an α-regular p-
exponential prior in L2[0,1], α > 0, p ∈ [1,2]. Assume w0 ∈ B

β
q , β > 0 ∨ ( 1

q
− 1

2 ), q ≥ 1 and let

r
α,β,p,q
n be defined as in Proposition 5.4. Then for M large enough, as n → ∞

�n

(
w ∈ L2[0,1] : ‖w − w0‖L2 ≤ Mr

α,β,p,q
n |X(n)

) → 1,

in P
(n)
w0 -probability.

Notice that since in Proposition 5.4 all the constants depend on w0 only through its B
β
q -norm, the

rates of contraction in the above theorem hold uniformly for w0 in B
β
q -balls.

The last result generalizes existing contraction results in the conjugate setting of the white noise
model with Gaussian priors and under Sobolev-type regularity of the truth, p = q = 2; see [54], Theo-
rem 5.1, and [6], Theorem 2.1, as well as [12], Theorem 2, which discusses the sharpness of the Gaus-
sian contraction rates. Note that in our setting, unless p = 2, the p-exponential prior is non-conjugate
to the Gaussian likelihood of the white noise model. However, explicit calculations are possible to get
upper bounds on the rate of posterior contraction, see [13], Corollary 3, for Sobolev-type regularity of
the truth q = 2, when α ≤ β . Our result agrees with the existing rates in both aforementioned special
cases, but goes further and in particular studies rates of contraction under Besov-type smoothness, that
is the more intricate case q �= 2.

Minimax rates in L2-loss, for function estimation in the white noise model under Besov-regularity,
have been studied in [20]; see also [26], Chapter 10, for density estimation again in L2-loss. The results
there, show that for all q ≥ 1 and for β > 1/q or β ≥ 1 when q = 1, the minimax rate is

mn := n
− β

1+2β . (14)

An interesting feature, is that for q < 2 linear estimators do not achieve the minimax rate, and instead
only achieve the rate

ln := n
− β−γ /2

1+2β−γ , (15)

where γ := 2−q
q

> 0. For q ≥ 2, linear estimators do achieve the minimax rate mn. This change of

behaviour is attributed to the fact that, for q < 2, functions in B
β
q are not in general spatially homo-

geneous, but instead can be irregular in some parts and smooth in other parts. As explained in [20],
linear estimators cannot cope well with this inhomogeneity and either oversmooth the irregular part, or
undersmooth the smooth part, or both.

Remark 5.6 (Results for q ≥ 2). An inspection of the bounds in Theorem 5.5, reveals that for q ≥ 2,
the particular value of q does not influence the contraction rate. When β = α, we get the minimax
rate mn, see (14), independently of p ∈ [1,2]. In the case of an undersmoothing prior, β > α, the
rates for all p ∈ [1,2] coincide and are slower than the minimax rate. Finally, for an oversmoothing
prior, β < α, the rate is faster the smaller p is. This is reasonable, since for smaller p there is a higher
probability of ξ� in the definition of the p-exponential prior having large values, which counteracts the

oversmoothing effect of the prior-scaling sequence γ� = �− 1
2 −α .

Remark 5.7 (Results for q < 2). An inspection of the bounds in Theorem 5.5, reveals that for q < 2,
the particular value of q does influence the contraction rate and we do not get the minimax rate mn

defined in (14), for any admissible combination of α, β , p, q . The best rates are achieved for p = q
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and are better than the linear-minimax ln, see (15), while Gaussian priors appear to have the worst
performance and to be limited by the linear-minimax rate:

(i) Let q < 2, p ≤ q and fix β > 1
q

or β ≥ 1 if q = 1 (so that the minimax and linear-minimax

rates in [20] hold). For small α > 0, the rate is n− α
1+2α which is suboptimal but improves as α

increases. Since the other leg of the bound deteriorates as α increases, to achieve the minimax
rate mn, the bound n− α

1+2α needs to hold for α all the way up to α = β . An easy calculation
shows that the switching point between the two legs, α = βp−1+a

2p
, is smaller than β but larger

than β − γ
2 . This implies that we cannot achieve the minimax rate, but there are values of α for

which we achieve rates faster than the linear-minimax rate ln. In fact, one can check that for
larger p (that is p ≤ q closer to q < 2), the switching point gets closer to β , hence we can get
closer to the minimax rate for suitable values of α. However, even for p = q we cannot reach
the minimax rate.

(ii) Let q < 2, p > q and fix β > 1
q

or β ≥ 1 if q = 1. The reasoning is the same as in item (i): the

switching point in the rate, βq−1+a
2q

, is for all p ∈ (q,2] smaller than β , for p ∈ (q,2) larger

than β − γ
2 and for p = 2 equal to β − γ

2 . Hence, we cannot achieve the minimax rate mn for
any p ∈ (q,2], for p ∈ (q,2) there are values of α achieving rates faster than the linear-minimax
rate ln and for the Gaussian case, p = 2, the best we can achieve is the linear-minimax rate ln.
One can check that for p smaller (that is p closer to q), the switching point gets closer to β ,
hence, we can get closer to the minimax rate for suitable values of α. Note, that at this stage it
is not clear whether Gaussian priors are fundamentally limited by the linear-minimax rate, see
the discussion in Section H of the supplement [2].

As detailed in the last remark, for w0 ∈ B
β
q with q < 2, for all p ∈ [1,2], the best rate is achieved

by an undersmoothing prior and this rate is not minimax. This is due to the infimum term in the
concentration function dominating the centered small ball probability term, already for large enough
α < β . This motivates using rescaled p-exponential priors in the next subsection, with a vanishing
scaling as n → ∞: the idea is to use an undersmoothing prior such that without rescaling the centered
small ball probability term dominates in the concentration function, and choose the scaling to – in some
sense – infuse additional regularity to the prior, in particular in order to balance the two terms of the
concentration function. We will see that this can lead to minimax rates.

5.2. Rescaled α-regular p-exponential priors in �2

Consider μ̄ to be a rescaling of a d-dimensional α-regular p-exponential prior μ in �2, that is we take

γ̄� = λγ� where γ� = �− 1
2 − α

d , for some λ > 0. Then Z = Z̄α , Q = Q̄α , where Z̄α , Q̄α coincide with
the spaces Zα , Qα in Lemma 5.3, but with norms ‖ · ‖Z̄α

= λ−1‖ · ‖Zα
and ‖ · ‖Q̄α

= λ−1‖ · ‖Qα
,

respectively. For any w ∈ X, the concentration function of μ̄ is then given by

ϕ̄w(ε) = λ−p inf
h∈Zα :‖h−w‖�2 ≤ε

‖h‖p

Zα
− logμ

(
ε

λ
B�2

)
. (16)

In the formulation of our results below, we let as in the discussion in the previous subsection

mn := n
− β

d+2β , (17)



Posterior contraction for p-exponential priors 1633

which is the minimax rate of estimation of a B
β
q (d) sequence under Gaussian white noise in �2-loss,

for all q ≥ 1 and for β > d
q

or β ≥ d when q = 1, see [20].
We focus on the case q < 2, since for q ≥ 2 we can achieve the minimax rate with α-regular p-

exponential priors, for α = β without rescaling, see Remark 5.6. For q ≥ 2, rescaling can still be
beneficial, in particular in order to achieve (some degree of) adaptation to unknown smoothness β; for
results for Gaussian priors see [30,40,46]. We will investigate adaptation with p-exponential priors in
a separate study.

Proposition 5.8. Assume that μ̄ = μ̄n is a rescaled d-dimensional α-regular p-exponential measure
in �2, p ∈ [1,2], corresponding to λ = λn. Let w0 ∈ B

β
q for β > d

p
∨ d

q
, q ∈ [1,2), and consider the

corresponding minimax rate of estimation in Gaussian white noise in �2-loss, mn, as defined in (17).
Then as n → ∞, the rate εn 	 r̄n satisfies the inequality ϕ̄w0(εn) ≤ nε2

n , for constants which depend

on w0 only through its B
β
q norm, where r̄n = r̄

α,β,p,q
n and λn = λ

α,β,p,q
n are given below:

(i) If q = p, α = β − d
p

, then r̄n = mn for λn = n
− d

p(d+2β) .

(ii) If q > p, α = β − d
p

, then r̄n = mn log
d(q−p)

pq(d+2β) n for λn = n
− d

p(d+2β) logω n, where ω = (p −
2d

d+2β
)
q−p

p2q
> 0.

In all other combinations of α, β , p, q , for any choice of λn, r̄n is polynomially slower than mn.

In particular, if q < p, then the best achievable rate is r̄n = n
d(p−q)−βpq

2d(q−p)+2βpq+pqd , for α = β − d
q

and

λn = n
− qd

2qd+2βpq−2pd+pqd .

Notice, that the assumption β > d
p

∨ d
q

, is in place in order to secure that, for a fixed β , the values
of α corresponding to the best achievable rates, are positive hence admissible, simultaneously for all
combinations of p, q . This facilitates the comparison between the different choices of p, q . However,
it is possible to compute (slower than minimax) rates with rescaled p-exponential priors for smaller
values of β > 0 ∨ ( d

q
− d

2 ), for α > 0, with the same techniques used in the proof of Proposition 5.8.
As in the previous subsection, we can verify that for εn the rate in Proposition 5.8, the maximum

appearing in the right-hand side of the complexity bound (7) in our general contraction Theorem 3.1,
is dominated by nε2

n; see Lemma 5.15 in Section 5.3. This can be combined with Proposition 5.8 and
Theorem 3.1, in order to get contraction rates in suitable nonparametric problems in separable Hilbert
spaces, under rescaled d-dimensional p-exponential priors. In particular, in the white noise model,
combining the last two results with Theorem 4.2, we get immediately the next result for rescaled α-
regular p-exponential priors in L2[0,1] (here d = 1).

Theorem 5.9. Consider the white noise model of Section 4.2, and let �n = μ̄n be a rescaled α-regular
p-exponential prior in L2[0,1], α > 0, p ∈ [1,2]. Assume w0 ∈ B

β
q , β > d

p
∨ d

q
, q ∈ [1,2) and let r̄n

and λn be defined as in Proposition 5.8. Then for M large enough, as n → ∞
�n

(
w ∈ L2[0,1] : ‖w − w0‖L2 ≤ Mr̄n|X(n)

) → 1,

in P
(n)
w0 -probability.

Remark 5.10. The results of Theorem 5.9 show again that for w0 ∈ B
β
q with q ∈ [1,2), β > 1

p
∨ 1

q
,

the best rates are achieved for p = q , while Gaussian priors appear to have the worst performance and
to be limited by the linear-minimax rate:
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(i) We can achieve the minimax rate mn, see (14), only with a p-exponential prior for p = q , for
regularity α = β − 1

p
and for appropriate vanishing rescaling λn. For p < q we can achieve the

minimax rate mn up to logarithmic factors, again for regularity α = β − 1
p

and an appropriate
vanishing rescaling.

(ii) For q < p < 2, the best rate with rescaling is obtained for α = β − 1
q

and is improved com-
pared to the best obtained rate without rescaling, but it remains polynomially slower than the
minimax rate mn, defined in (14). The fact that the rate improves, is implicit in the proof of
Proposition 5.8: it is shown that for any α �= β − 1

q
the obtained rate with optimized rescaling

is strictly slower than for α = β − 1
q

, while as discussed in Remark 5.7(ii), without rescaling

the best rate is achieved for α > β − γ
2 = β − 1

q
+ 1

2 , in particular for α �= β − 1
q

.
(iii) For the Gaussian case, p = 2, rescaling does not improve the best obtainable rate, which is the

linear-minimax rate ln defined in (15). As can be seen at the end of the proof of Proposition 5.8,
this rate is achieved for any α ≥ β − 1

q
for appropriate rescaling (or for no rescaling, when α =

β − γ
2 , in agreement with Remark 5.7(ii)). We reiterate, that at this stage it is not clear whether

Gaussian priors are fundamentally limited by the linear-minimax rate, see the discussion in
Section H of the supplement [2].

(iv) The case w0 ∈ B1
1 , which is particularly interesting in applications like signal processing, is not

immediately covered by Theorem 5.9. However, an inspection of the proof of Proposition 5.8
shows that using a rescaled α-regular p-exponential prior, with p = 1 and for α > 0 arbitrarily
small, we can achieve a rate of contraction arbitrarily close to the minimax rate mn in (14).

Remark 5.11. The product Laplace prior (p = 1 and γ� = 1, ∀� ∈ N), has been studied in the sparse
Gaussian sequence model in [14], Section 3. Even though the posterior mode corresponds to the
LASSO, which is known to provide minimax optimal estimation in this setting, [14], Theorem 7,
shows that the whole posterior contracts at a suboptimal rate for truly sparse signals. This is because
the posterior variance is overly large. On the other hand, Theorem 5.9 shows that in the white noise
model, under sparsity assumptions expressed in terms of Besov regularity with integrability parameter
q < 2, the appropriately tuned rescaled α-regular Laplace prior results in a posterior which contracts
optimally for q = 1 or optimally up to logarithmic terms for q �= 1.

5.3. Estimates relating to the concentration function

5.3.1. α-Regular p-exponential priors in �2

We first study the centered small ball probability term in the concentration function. The result is a
direct consequence of [5], Theorem 4.2.

Lemma 5.12. Assume μ is a d-dimensional α-regular p-exponential measure in �2. Then as ε → 0

− logμ(εB�2) 	 ε− d
α .

In the next lemma, we compute upper bounds on the first term in the concentration function ϕw ,
depending on the Besov regularity of a w ∈ �2.

Lemma 5.13. Assume that μ is a d-dimensional α-regular p-exponential measure in �2 and that
w0 ∈ B

β
q for β > 0 ∨ ( d

q
− d

2 ), q ≥ 1. Then as ε → 0, we have the following bounds where all the

constants depend on w0 only through its B
β
q -norm:
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(i) For q ≤ p (hence q ≤ 2)

inf
h∈Zα :‖h−w0‖�2 ≤ε

‖h‖p

Zα
�

⎧⎪⎪⎨
⎪⎪⎩

1, if β ≥ α + d

q
,

ε
2p

(β−α)q−d
(2β+d)q−2d , if β < α + d

q
.

(ii) For q > p

inf
h∈Zα :‖h−w0‖�2 ≤ε

‖h‖p

Zα
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if β > α + d

p
,

(− log ε)
q−p

q , if β = α + d

p
,

ε
βp−αp−d

β , if β < α + d

p
and q ≥ 2,

ε
2q

(β−α)p−d
(2β+d)q−2d , if β < α + d

p
and q < 2.

We finally verify that for εn the rate in Proposition 5.4, the quality of approximation of Q = Qα by
Z =Zα in �2, is sufficiently good for the maximum appearing in the right hand side of the complexity
bound (7) in our general contraction Theorem 3.1, to be dominated by nε2

n .

Lemma 5.14. Let μ be a d-dimensional α-regular p-exponential measure in �2. For ε, a > 0, define

f (a) = ap
(
1 ∨ a

2d−pd
d+2α

)
and g(ε) = 2

(
1 ∨ ε− 2d

d+2α
)
. (18)

Then f and g satisfy the approximation bound (6) in Section 3 and, moreover,

f
(
n

1
2 εn

)
g(εn)

1− p
2 � nε2

n (19)

for all p ∈ [1,2], where εn = r
α,β,p,q
n for r

α,β,p,q
n as in Proposition 5.4.

5.3.2. Rescaled α-regular p-exponential priors in �2

The expression (16) for the concentration function ϕ̄w(·) of rescaled α-regular p-exponential priors,
suggests that we can re-use Lemmas 5.12 and 5.13 in order to prove Proposition 5.8. In the next lemma,
we also verify that for εn the rate in Proposition 5.8, the quality of approximation of Q = Q̄α by
Z = Z̄α in �2, is sufficiently good for the maximum appearing in the right-hand side of the complexity
bound (7) in our general contraction Theorem 3.1, to be dominated by nε2

n .

Lemma 5.15. Let μ̄ be a rescaled d-dimensional α-regular p-exponential measure in �2. For t > 0,
define f̄ (t) := λ−pf (λt) and ḡ(t) := g(t), where f , g are as in Lemma 5.14. Then f̄ and ḡ satisfy the
approximation bound (6) in Section 3, and, moreover,

f̄
(
n

1
2 εn

)
ḡ(εn)

1− p
2 � nε2

n (20)

for all p ∈ [1,2], where εn = r̄n and λ = λn as in Proposition 5.8.
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6. The C[0,1] setting

In this section, we consider p-exponential measures in the separable Banach space X = C[0,1]. We
define p-exponential measures using an appropriately regular Schauder basis, see below for details.
In particular, we define α-regular p-exponential measures in C[0,1] and study their concentration
at centers of varying Hölder-type regularity. We combine our findings with Theorem 4.1, to obtain
posterior contraction rates for density estimation under Hölder-type regularity of the truth.

We consider orthonormal wavelet bases of L2[0,1], constructed as discussed in [15]; see [25] or [35]
for fundamentals of wavelet analysis. We denote such a wavelet basis by {ψkl : k ∈ N0, l = 1, . . . ,2k},
where k corresponds to the resolution level and l to the location. A function u ∈ L2[0,1] can be

expanded as
∑∞

k=0
∑2k

l=1 uklψkl , where the coefficients ukl are given by the L2-inner products between
u and ψkl . We assume that ψkl are S-Hölder continuous for some S > 0. We record some properties
that will be useful for our analysis, see [15,25]:

• {ψkl} is a Schauder basis of C[0,1].
• There exists a constant C1 > 0 such that

∣∣ψkl(x) − ψkl(y)
∣∣ ≤ C12

k
2 +kϑ |x − y|ϑ , ϑ ≤ S ∧ 1. (21)

• There exists a constant C2 > 0 such that

∥∥∥∥∥
2k∑
l=1

uklψkl

∥∥∥∥∥
L∞

≤ C22
k
2 sup

1≤l≤2k

|ukl |. (22)

• Let 0 < s < S. Then u belongs to the Besov space Bs∞∞[0,1] if and only if

‖u‖Bs∞∞ := sup
k≥0;1≤l≤2k

2k( 1
2 +s)|ukl | < ∞.

Furthermore, if s is non-integer we have that g ∈ Cs if and only if

‖u‖Bs∞∞ < ∞.

Note, that our analysis holds for other possibly nonorthonormal multiresolution Schauder bases, pro-
vided the above bounds on ψkl and the characterizations in terms of the coefficients ukl hold. For
example, one can use the Faber (integrated Haar) basis, see [49], Section 3.1.3. We use basis functions
ψkl which have sufficient Hölder regularity, so that ψkl can characterize the maximal (s,∞,∞)-Besov
(or s-Hölder) regularity we consider, that is we assume S > max{α,β}, where α, β will express the
regularity of the prior and truth, respectively.

We can define a p-exponential measure μ in C[0,1] by randomizing the coefficients in the expansion

u(t) =
∞∑

k=0

2k∑
l=1

uklψkl(t), t ∈ [0,1].

We let

ukl = γklξkl, ξkl
iid∼ fp, p ∈ [1,2], γkl = 2−( 1

2 +α)k, α > 0. (23)

The next result studies Hölder continuity of draws from this p-exponential measure.
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Proposition 6.1. Let μ be the p-exponential measure defined in (23), for any p ∈ [1,2] and α > 0.
Then μ(Cs) = 1 for all s < α ∧ 1.1

In particular, the last proposition implies that indeed μ is a measure on X = C[0,1]. We call μ

defined in (23) an α-regular p-exponential measure in C[0,1].
By Proposition 2.10, the topological support of μ is the space C[0,1]. We next study the concen-

tration function ϕw(·) of μ, defined for centers w ∈ C[0,1]; see Definition 2.12 where X = C[0,1],
with ‖ · ‖X = ‖ · ‖L∞ . The next lemma identifies the space Z in which we approximate the center
w ∈ C[0,1] in the first term of ϕw , as well as the shift space Q. Note that these spaces can be defined
in sequence space, independently of the parameter space X and the Schauder basis in which we work.
The lemma follows immediately by Proposition 2.7 and Definition 2.8.

Lemma 6.2. Assume μ is an α-regular p-exponential measure in C[0,1]. Then

Z =Zα :=
{

h ∈ R∞ :
∞∑

k=1

2k∑
l=1

|hkl |p2( 1
2 +α)pk < ∞

}
, ‖h‖Zα

=
( ∞∑

k=1

2k∑
l=1

|hkl |p2( 1
2 +α)pk

) 1
p

,

Q=Qα :=
{

h ∈ R∞ :
∞∑

k=1

2k∑
l=1

h2
kl2

(1+2α)k < ∞
}

, ‖h‖Qα
=

( ∞∑
k=1

2k∑
l=1

h2
kl2

(1+2α)k

) 1
2

.

In fact, due to the asymptotic equivalence of the sequences γkl = 2−( 1
2 +α)k , k ∈ N, 1 ≤ l ≤ 2k and

γ� = �− 1
2 −α , � ∈ N, we have that Zα = B

α+ 1
p

p and Qα = B
α+ 1

2
2 , where Bs

q are the Besov-type spaces
of sequences defined in Definition 5.1 for d = 1.

We next study the centered small ball probability term in the concentration function. For the proof
we use the techniques of [44] which studies the Gaussian case.

Proposition 6.3. Let μ be an α-regular p-exponential measure in C[0,1]. Then as ε → 0

− logμ
({

u ∈ C[0,1] : ‖u‖L∞ ≤ ε
})

� ε− 1
α .

Finally, in the next lemma we compute upper bounds on the first term in the concentration func-
tion ϕw , depending on the (β,∞,∞)-Besov regularity of w, which recall is identified with β-Hölder
regularity when β is non-integer.

Lemma 6.4. Assume that μ is an α-regular p-exponential measure in C[0,1] and that w0 ∈ B
β∞∞,

β > 0. Then, as ε → 0

inf
h∈Zα :‖h−w0‖L∞≤ε

‖h‖p

Zα
�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε
βp−αp−1

β , if β < α + 1

p
,

log(1/ε), if β = α + 1

p
,

1, if β > α + 1

p
.

1By assuming additional regularity on the basis functions and using techniques relying on the embeddings of Besov spaces, it is
possible to remove the requirement s < 1 in Proposition 6.1. See [16], Theorem 7, for a similar derivation and [48], Section 4.6.1,
for the relevant embeddings.
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Combining the previous lemmas, we can find upper bounds on the minimal solution εn of the in-
equality ϕw0(εn) ≤ nε2

n depending on the Hölder regularity of w0. Since the rates on the right-hand
sides of the bounds in Proposition 6.3 and Lemma 6.4 are identical to the ones in Lemmas 5.12 and
5.13 (for d = 1 and q ≥ 2), respectively, the proof is identical to the proof of part (i) of Proposition 5.4
and is hence omitted.

Proposition 6.5. Assume that μ is an α-regular p-exponential measure in C[0,1] and that w0 ∈ B
β∞∞,

β > 0. Then as n → ∞ the rate εn 	 ρ
α,β,p
n satisfies the inequality ϕw0(εn) ≤ nε2

n , where

ρ
α,β,p
n :=

{
n

− β
1+2β+p(α−β) , if β ≤ α,

n− α
1+2α , if β > α.

We next study the quality of the approximation of elements of Qα by elements of Zα in the supre-
mum norm, that is, determine functions g, f such that (6) in Section 3 holds.

Lemma 6.6. Let μ be an α-regular p-exponential measure in C[0,1]. Then there exists c > 0 depend-

ing only on the Schauder basis, p and α, such that the functions f (a) = ca
2−p+2αp

2α and g(ε) = ε− 1
α

satisfy (6).

A straightforward computation shows that for the above g and f , the rate εn = ρ
α,β,p
n is such that

the right-hand side of the complexity bound (7) in Theorem 3.1 is dominated by nε2
n only if β ≤

α − 1
2−p+2αp

. This means that the complexity bound we obtain from Theorem 3.1 does not match the
conditions of general results like [23], Theorems 8.9 and 8.19, and we need to use Corollary 3.2 to get
contraction rates. To this end, we solve (10) and find that for these functions f , g and for εn = ρ

α,β,p
n ,

the fastest decaying solution is ε̃n 	 ρ̃
α,β,p
n , where

ρ̃
α,β,p
n :=

⎧⎨
⎩n

(2−p)(1−2α)
8α

− pβ
2(1+2β+p(α−β)) , if β ≤ α,

n
2−p−8α2

8α(1+2α) , if β > α.

(24)

For a fixed value of the regularity of the truth β > 0, note that ρ̃
α,β,p
n decays only for sufficiently large

prior regularity α. For example, if α < β , we have decay only for α >

√
2−p

8 . As p → 2, since the

difficulty in the complexity bound (7) disappears, the rates ρ̃
α,β,p
n approach the rates ρ

α,β,p
n .

For example, combining these considerations with Theorem 4.1, we get immediately the following
result giving contraction rates for density estimation.

Theorem 6.7. Consider the density estimation model of Section 4.1, and let W be an α-regular p-
exponential random element in C[0,1], α > 0, p ∈ [1,2]. Assume w0 = logπ0 ∈ B

β∞∞, β > 0 and
denote by P n

0 the distribution of the vector (X1, . . . ,Xn). Let ρ
α,β,p
n , ρ̃

α,β,p
n be defined as in Proposi-

tion 6.5 and (24), respectively. Then for M large enough, as n → ∞
�n

(
π : dH (π,π0) > M

(
ρ

α,β,p
n ∨ ρ̃

α,β,p
n

)|X1, . . . ,Xn

) → 0,

in P n
0 -probability.

For p = 2, we have that ρ
α,β,2
n = ρ̃

α,β,2
n and we recover existing contraction rates for Gaussian

priors, see [23], Section 11.4, or [25], Theorem 7.3.9. In this case, if the regularity of the prior matches
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the regularity of the truth α = β , we get the minimax estimation rate in the Hellinger distance for

functions which are β-Hölder continuous, n
− β

1+2β . For p ∈ [1,2), a straightforward calculation shows
that the rate ρ̃

α,β,p
n is slower than ρ

α,β,p
n unless 0 < β ≤ α − 1

2−p+2αp
. In particular, for α = β we only

have contraction if the prior is sufficiently regular, α >

√
2−p

8 , with contraction rate ρ̃
α,α,p
n which is

slower than the minimax rate. As p increases towards p = 2 the gap disappears; likewise for large α.
It appears that contrary to the Gaussian case p = 2, studying prior concentration and using general

contraction results relying on prior mass and entropy conditions, is not optimal for proving contraction
rates for p-exponential priors in C[0,1] when p ∈ [1,2). This is due to the more complicated complex-
ity bound (7) compared to the Gaussian case, which in this setting affects the rates because of the poor
approximation quality of Qα by Zα in the supremum norm. Note that rescaling the prior as considered
in Section 5.2, does not help with this issue. In general contraction results like [23], Theorem 8.9, the
entropy condition is used to construct certain necessary tests. Directly constructing the necessary tests
and using other general contraction results which do not rely on entropy conditions, for example [23],
Theorem 8.12, may resolve this issue. This is out of the scope of the present paper, but it is a possible
future direction.
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