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Given an i.i.d. sequence of pairs of stochastic processes on the unit interval we construct a measure of
independence for the components of the pairs. We define distance covariance and distance correlation based
on approximations of the component processes at finitely many discretization points. Assuming that the
mesh of the discretization converges to zero as a suitable function of the sample size, we show that the
sample distance covariance and correlation converge to limits which are zero if and only if the component
processes are independent. To construct a test for independence of the discretized component processes, we
show consistency of the bootstrap for the corresponding sample distance covariance/correlation.
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1. Introduction

1.1. Distance covariance and distance correlation for vectors

In a series of papers, Székely et al. [22] and Székely and Rizzo [19–21] introduced distance
covariance and distance correlation. They are measures of the dependence between two vectors
X and Y, possibly with different dimensions. These measures have the desirable property that
they are zero if and only if X and Y are independent. This is in contrast to many other dependence
measures where one can only make statements about certain aspects of the dependence between
X and Y. For example, the correlation and covariance between two real-valued random variables
X and Y allow one to make statements about their linear dependence.

The distance covariance between a p-dimensional vector X and a q-dimensional vector Y is a
weighted version of the squared distance between the joint characteristic function ϕX,Y of X, Y
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and the product of the marginal characteristic functions ϕX, ϕY of these vectors. We know that
X and Y are independent if and only if

ϕX,Y(s, t) = ϕX(s)ϕY(t), s ∈ R
p, t ∈R

q . (1.1)

However, this identity is difficult to check if one has data at the disposal; a replacement of the
corresponding characteristic functions by empirical versions does not lead to powerful statistical
tools for detecting independence between X and Y. First, Feuerverger [9] in the univariate case
and, later, Székely et al. [22] and Székely and Rizzo [19–21] in the general multivariate case
recommended to use a weighted L2-distance between ϕX,Y and ϕXϕY: for β ∈ (0,2), the distance
covariance between X and Y is given by

Tβ(X,Y) = cpcq

∫
Rp+q

∣∣ϕX,Y(s, t) − ϕX(s)ϕY(t)
∣∣2|s|−(p+β)|t|−(q+β) dsdt,

where the constants cd for d ≥ 1 are chosen such that

cd

∫
Rd

(
1 − cos

(
s′x

))|x|−(d+β) dx = |s|β.

Here and in what follows we suppress the dependence of the Euclidean norm | · | on the di-
mension; it will always be clear from the context what the dimension is. The quantity Tβ(X,Y)

is finite under suitable moment conditions on X,Y. The corresponding distance correlation is
given by

Rβ(X,Y) = Tβ(X,Y)√
Tβ(X,X)

√
Tβ(Y,Y)

.

An advantage of choosing the particular weight function |s|−(p+β)|t|−(q+β) is that the distance
covariance has an explicit form: for i.i.d. copies (Xi ,Yi ), i = 1,2, . . . , of (X,Y) we have

Tβ(X,Y) = E
[|X1 − X2|β |Y1 − Y2|β

] +E
[|X1 − X2|β

]
E

[|Y1 − Y2|β
]

− 2E
[|X1 − X2|β |Y1 − Y3|β

]
. (1.2)

The weight function ensures that Tβ(cX, cY) = c2βTβ(X,Y) for any constant c, hence
Rβ(cX, cY) does not depend on c, that is, the distance correlation is scale invariant. A cor-
responding theory can be built on non-homogeneous kernels as well; see the discussion and
references in Davis et al. [4] who consider auto- and cross-distance correlation functions for
time series.

It is clear from the construction that Tβ(X,Y) = Rβ(X,Y) = 0 if and only if (1.1) holds. This
observation motivates the construction of sample versions of Tβ(X,Y) and Rβ(X,Y) and one
hopes that these have properties similar to their deterministic counterparts. In particular, one
would like to test independence between X and Y.
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Replacing the characteristic functions in Tβ(X,Y) and Rβ(X,Y) by their sample analogs and
taking into account (1.2), we obtain the sample versions of Tβ(X,Y) and Rβ(X,Y):

Tn,β(X,Y) = 1

n2

n∑
k,l=1

|Xk − Xl |β |Yk − Yl |β

+ 1

n2

n∑
k,l=1

|Xk − Xl |β 1

n2

n∑
k,l=1

|Yk − Yl |β

− 2
1

n3

n∑
k,l,m=1

|Xk − Xl |β |Yk − Ym|β,

Rn,β(X,Y) = Tn,β(X,Y)√
Tn,β(X,X)

√
Tn,β(Y,Y)

.

The quantity Tn,β(X,Y) is a V -statistic; cf. Székely et al. [22] and Lyons [12]. Therefore
standard theory yields a.s. consistency,

Tn,β(X,Y)
a.s.→ Tβ(X,Y), n → ∞,

under suitable moment conditions; see Hoffmann-Jørgensen [10] and Serfling [18]. If X and
Y are independent the V -statistic Tn,β(X,Y) is degenerate of order 1. Under suitable moment
conditions, one also has the weak convergence of nTn,β(X,Y) to a weighted sum of i.i.d. χ2-
variables; see Serfling [18], Lyons [12] and Arcones and Giné [1]. Moreover, V -statistics theory
also ensures that Tn,β(X,X)

a.s.→ Tβ(X,X) and Tn,β(Y,Y)
a.s.→ Tβ(Y,Y). Hence, Rn,β(X,Y) is an

a.s. consistent estimator of Rβ(X,Y) and, modulo a change of scale, nRn,β(X,Y) has the same
weak limit as Tn,β(X,Y).

1.2. Distance covariance and distance correlation for stochastic processes

Székely and Rizzo [20] considered the situation when X and Y are independent and have i.i.d.
components, n is fixed, p = q → ∞. Under these conditions, Rn,β(X,Y) converges to 1. In this
way, they justified the empirical observation that Rn,β(X,Y) is close to 1 if p,q are large relative
to n.

Matsui et al. [15] considered a version of the distance covariance for stochastic processes
X,Y on [0,1], where it was assumed that the two processes are observed at a Poisson number
of points in [0,1] and the Poisson intensity is fixed. Via simulations the resulting estimator was
compared with the distance correlation Rn,β(X,Y) where the components of the i.i.d. vectors
(Xi ,Yi ) consist of a Poisson number of the discretizations of (Xi, Yi), respectively. Both types of
estimators exhibited a similar behavior for independent X and Y , approaching zero for moderate
sizes n,p,q . A possible explanation for this phenomenon is that Matsui et al. [15] and Székely
and Rizzo [20] worked under quite distinct conditions. Székely and Rizzo [20] considered vectors
X and Y with i.i.d. components whose dimensions increase to infinity for a fixed sample size n. In
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Matsui et al. [15], X and Y can be understood as vectors of discretizations of genuine stochastic
processes X,Y on [0,1], such as Brownian motion, fractional Brownian motion, Lévy processes,
etc. In these cases, the components of Xi and Yi are dependent.

In this paper, we again take up the theme of Székely and Rizzo [20] and Matsui et al. [15].
We consider two processes X and Y on [0,1], which we assume to be stochastically continuous,
measurable and bounded. In contrast to Matsui et al. [15],

• we consider discretizations of these processes at a partition 0 = t0 < t1 < · · · < tp = 1 of
[0,1], assuming that p = pn → ∞ as n → ∞ and the mesh satisfies

δn = max
i=1,...,p

(ti − ti−1) → 0, n → ∞,

• we normalize the points X(ti) and Y(ti) by
√

ti − ti−1.

In the sequel, we suppress the dependence of p on n. It will be convenient to write for any
partition (ti) and a process Z on [0,1],
�i = (ti−1, ti], |�i | = ti − ti−1, i = 1, . . . , p, �Z(s, t] = Z(t) − Z(s), s < t.

We consider a vector of weighted discretizations

Zp = (|�1|1/2Z(t1), . . . , |�p|1/2Z(tp)
)
, (1.3)

and define

Z(p)(t) =
p∑

i=1

Z(ti)1(t ∈ �i), t ∈ [0,1].

For stochastically continuous, measurable and bounded processes Z and Z′ we have

∣∣Zp − Z′
p

∣∣2 =
p∑

i=1

(
Z(ti) − Z′(ti)

)2|�i | =
∥∥Z(p) − (

Z′)(p)∥∥2
2

→
∫ 1

0

(
Z(t) − Z′(t)

)2
dt = ∥∥Z − Z′∥∥2

2, p → ∞,

in probability, where ‖ξ‖2 denotes the L2-norm of a process ξ on [0,1].
For β ∈ (0,2], we introduce a stochastic process analog Tβ(X,Y ) of Tβ(X,Y) from (1.2).

Consider an i.i.d. sequence (Xi, Yi), i = 1,2, . . ., of processes Xi,Yi on [0,1] with generic ele-
ment (X,Y ) which is also stochastically continuous, measurable and bounded. Define

Tβ(X,Y ) = E
[‖X1 − X2‖β

2 ‖Y1 − Y2‖β

2

] +E
[‖X1 − X2‖β

2

]
E

[‖Y1 − Y2‖β

2

]
− 2E

[‖X1 − X2‖β

2 ‖Y1 − Y3‖β

2

]
, (1.4)

where we assume that all moments involved are finite. Of course, Tβ(X,Y ) = 0 for independent
X,Y . The converse is not obvious; we prove it in Section 4.
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The sample analog of Tβ(X,Y ) is given by

Tn,β(X,Y ) = 1

n2

n∑
k,l=1

‖Xk − Xl‖β

2 ‖Yk − Yl‖β

2

+ 1

n2

n∑
k,l=1

‖Xk − Xl‖β

2
1

n2

n∑
k,l=1

‖Yk − Yl‖β

2

− 2
1

n3

n∑
k,l,m=1

‖Xk − Xl‖β

2 ‖Yk − Ym‖β

2

=: I1 + I3 − 2I2. (1.5)

Assuming that the moments in Tβ(X,Y ) are finite, the strong law of large numbers for V -
statistics yields

Tn,β(X,Y )
a.s.→ Tβ(X,Y ), n → ∞.

This fact and the observation that Tβ(X,Y ) vanishes for independent X,Y encourage one to
call Tβ(X,Y ) the distance covariance between X,Y , and Tn,β(X,Y ) its sample version. The
corresponding distance and sample distance correlations Rβ(X,Y ) and Rn,β(X,Y ) are defined
in the natural way.

1.3. Objectives

We assume that for any i ≥ 1, we are given a pair of stochastic processes Xi = (Xi(t))0≤t≤1
and Yi = (Yi(t))0≤t≤1, and that (Xi, Yi)i≥1 are mutually independent pairs. We want to test
the hypothesis that the marginals X and Y are independent against the alternative that the two
processes are dependent. As an example consider daily measurement curves of the concentration
of nitrogen oxide (NOx ) pollutants taken at two different stations in neighboring cities. NOx data
have been widely studied in the literature on functional data analysis, see Horváth and Kokoszka
[11] for detailed references. Rescale time in such a way that [0,1] corresponds to a full day.
There is day-to-day variation in the NOx curves. Dependence of the processes would indicate
that there is some common factor behind the nitrogen oxide concentration at the two sites, e.g.
air pressure and temperature. As a second example, imagine that the coastline of a country (like
the Netherlands) can be mapped to the interval [0,1] and, at each location s ∈ [0,1] and on each
day i, we have an observation of the height of sea waves, Xi , and the corresponding wind-speed,
Yi . An interesting question is whether the processes Xi and Yi are independent. The coastline
example was the starting point of functional extreme value analysis initiated by de Haan and
co-workers; see de Haan and Lin [6] and Part III in the monograph by de Haan and Ferreira [5].
The latter example also indicates that the i.i.d. assumption on (Xi, Yi)i≥1 may not be satisfied in
a perfect way, as for many other examples of functional time series data. This may be the starting
point for further investigations on distance correlation for serially dependent data.
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Typically, we will not have complete sample paths of (Xi, Yi) at our disposal. In this paper, we
assume that we observe a sample ((X

(p)
i , Y

(p)
i ))i=1,...,n consisting of discretizations taken from

an i.i.d. sequence ((Xi, Yi))i=1,2,... on the same partition (ti)i=0,...,p of [0,1]. We can define
the corresponding sample distance covariance Tn,β(X(p), Y (p)) and sample distance correlation
Rn,β(X(p), Y (p)). In view of the discussion above, we see that the latter quantities coincide with
the corresponding quantities Tn,β(Xp,Yp) and Rn,β(Xp,Yp) where Xp , and Yp are defined
through (1.3). In the case of an equidistant partition with mesh δn = 1/p we also observe that
Rn,β(Xp,Yp) is exactly the classical sample distance correlation Rn,β(X,Y) of the vectors X =
(X(j/p))j=1,...,p and Y = (Y (j/p))j=1,...,p .

The main goal of this paper is to show that for independent X,Y ,

n
(
Tn,β

(
X(p), Y (p)

) − Tn,β(X,Y )
) P→ 0, n → ∞, (1.6)

provided δn → 0 and p = pn → ∞ sufficiently fast. In turn, we will be able to exploit the
existing limit theory for the normalized degenerate V -statistic nTn,β(X,Y ) to derive the distri-
butional limit of nTn,β(X(p), Y (p)). This limit has a weighted χ2-distribution which is not easily
evaluated. We will show that bootstrap versions of the degenerate V -statistics nTn,β(X,Y ) and
nTn,β(X(p), Y (p)) are close in the sense of Mallows metrics and have the same distributional
limit as nTn,β(X,Y ).

The paper is organized as follows. In Section 2, we introduce various technical conditions
and discuss their applicability to some classes of stochastic processes. The main results of The-
orem 3.1 yield sufficient conditions for (1.6) and the corresponding versions for the distance
correlations, assuming independence between X,Y . The proof is given in Section 7 while some
technical details are omitted and given in the Supplementary Material [7]. The bootstrap for
Tn,β(X(p), Y (p)) is discussed in Section 5. There we show that a suitable bootstrap version of
Tn,β(X(p), Y (p)) is consistent. The results of Section 4 may be of independent interest. There we
show that Tβ(X,Y ) = 0 implies independence of the integrals

∫
X dB1 and

∫
Y dB2 conditional

on B = (B1,B2) which has independent Brownian motion components on [0,1] and is indepen-
dent of (X,Y ). In turn, the conditional independence of these integrals implies independence of
X,Y . We give a small simulation study in Section 6 which shows that the theoretical results work
for small and moderate values of n and p.

2. Technical conditions

To derive the results in Section 3, we assume various conditions on the smoothness and moments
of the processes X,Y and their relation with the parameters of the partition, in particular p and
δn. Throughout β ∈ (0,2) is fixed. If any of the processes X,Y have finite expectation we assume
that they are centered.

We will work under two distinct settings: (1) finite variance of X,Y and (2) X,Y have finite
βth moment.

2.1. The finite variance case

If X,Y have finite second moments we will work under the set of conditions (A):



2764 H. Dehling et al.

(A1) Smoothness of increments. There exist γX,γY > 0 and c > 0 such that

var
(
�X(s, t]) ≤ c|t − s|γX and var

(
�Y(s, t]) ≤ c|t − s|γY , s < t.

(A2) Growth condition on p = pn → ∞. We have

δn = o
(
n−2/((γX∧γY )(β∧1))

)
, n → ∞.

(A3) Additional moment conditions. If β ∈ (1,2), we have

max
0≤t≤1

E
[∣∣X(t)

∣∣2(2β−1)] + max
0≤t≤1

E
[∣∣Y(t)

∣∣2(2β−1)]
< ∞.

2.2. The finite βth moment case

If X,Y possibly have infinite second moments we will work under the set of conditions (B):

(B1) Finite βth moment.

E

[
max

t∈(0,1]
∣∣X(t)

∣∣β]
< ∞ and E

[
max

t∈(0,1]
∣∣Y(t)

∣∣β]
< ∞.

(B2) Smoothness of increments. There exist γX,γY > 0 and c > 0 such that

max
i=1,...,p

E

[
max
t∈�i

∣∣�X(t, ti]
∣∣β]

≤ cδ
γX
n and max

i=1,...,p
E

[
max
t∈�i

∣∣�Y(t, ti]
∣∣β]

≤ cδ
γY
n .

(B3) Additional moment and smoothness conditions. If β ∈ (0,1), we also have

E

[
max

0≤t≤1

∣∣X(t)
∣∣2β

]
< ∞ and E

[
max

0≤t≤1

∣∣Y(t)
∣∣2β

]
< ∞,

and there exist γ ′
X,γ ′

Y > 0 and c > 0 such that

max
i=1,...,p

E

[
max
t∈�i

∣∣�X(t, ti]
∣∣2β

]
≤ cδ

γ ′
X

n and max
i=1,...,p

E

[
max
t∈�i

∣∣�Y(t, ti]
∣∣2β

]
≤ cδ

γ ′
Y

n .

(B4) Growth condition on p = pn → ∞. We have

δn = o
((

pnβ/(β∧1)
)− 1

β/2+γX∧γY

)
.

2.3. Discussion of the conditions and examples

Remark 2.1. In the proofs, we will need the conditions

E
[‖X‖β

2

]
< ∞ and E

[‖Y‖β

2

]
< ∞ for some β ∈ (0,2). (2.1)



Distance covariance for discretized stochastic processes 2765

If (A1) holds (in particular, supt∈[0,1][var(X(t)) + var(Y (t))] < ∞) (2.1) is automatic because
by Jensen’s inequality

E
[‖X‖β

2

] = E

[(∫ 1

0

(
X(t)

)2
dt

)β/2]
≤

(∫ 1

0
var

(
X(t)

)
dt

)β/2

< ∞.

The same argument also shows that E[‖X‖2
2] < ∞ under (A1). If (B1) holds then (2.1) follows.

Remark 2.2. The procedures developed in this paper depend on the mesh δn, respectively the
dimension p = 1/δn in the equidistant case, and the exponent β . We will now discuss briefly
some aspects of the choice of these parameters. In practice, the mesh will most often be given
by the data, which are observations of a stochastic process at given discrete times, and thus there
is no choice for the statistician. In those cases when we could, at least in principle, observe the
processes at all times t ∈ [0,1], the choice of the mesh becomes a task for the statistician. Several
aspects have to be taken into account. A fine mesh, and thus a large value of p, will increase the
numerical burden involved in calculating the test statistic and performing the bootstrap. On the
other hand, one could expect the power to increase as the mesh becomes finer, though we do
not have a rigorous proof. Our simulations indicate that a moderate size of p, say p = 100, is
a reasonable choice, and that, e.g. p = 10,000 does not yield a more powerful test. The choice
of β is related to the moment assumptions. Our theoretical results require the existence of the
(2β)th moments, and this requirement will put a restriction on the choice of β in the case of
very heavy tailed processes. Beyond such restrictions, it is an open question which choice of β

yields the most powerful test. We suspect that the answer will depend on the specific choice of
the alternative.

Example 2.3. Assume that X,Y are sample continuous self-similar processes with stationary
increments and a finite variance. If the corresponding Hurst exponents are HX,HY ∈ (0,1), then
for some cX > 0,

var
(
�X(s, t]) = var

(
X(0, t − s]) = cX(t − s)2HX, s < t,

and similarly for Y . That is, we can choose γX = 2HX and γY = 2HY in (A1). Furthermore,
(A3) holds for X if β ∈ (1,2) and E[|X(1)|2(2β−1)] < ∞, and similarly for Y . A special case is
that of Gaussian X and Y which then are fractional Brownian motions, and (A3) trivially holds.
A process with the same covariance structure is the fractional Lévy process

X(t) =
∫
R

(
(t − s)

HX−0.5
+ − (−s)

HX−0.5
+

)
dL(s), t ∈R,HX ∈ (0.5,1),

where L is a two-sided Lévy process on R with mean zero and finite variance, introduced in
Marquardt [14]. This process is not self-similar (unless L is a Brownian motion) but has sta-
tionary increments. Here (A1) holds with γX = 2HX and γY = 2HY . Furthermore, (A3) holds if
E[|L(1)|2(2β−1)] < ∞.

Notice also that any centered Gaussian processes X and Y satisfying (A1) have automatically
continuous sample paths and (A3) is satisfied.
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Example 2.4. Assume that X and Y are Itô integrals, that is, there are two Brownian motions
BX,BY and predictable processes ZX,ZY with respect to the corresponding Brownian filtrations
such that

X(t) =
∫ t

0
ZX(s) dBX(s), Y (t) =

∫ t

0
ZY (s) dBY (s), 0 ≤ t ≤ 1.

Then we have

var
(
�X(s, t]) =

∫ t

s

E
[
Z2

X(x)
]
dx, s < t.

Hence, if cX = supx∈[0,1] E[Z2
X(x)] < ∞, then var(�X(s, t]) ≤ cX(t − s), and one can choose

γX = 1 in (A1). Moreover, (A3) holds for X if β ∈ (1,2) and E[|X(1)|2(2β−1)] < ∞. This fol-
lows from an application of Doob’s maximal inequality for martingales. Similar arguments apply
to the process Y . A special case is that of zero drift geometric Brownian motions; a simple com-
putation shows that nothing changes even when the drift is not zero.

In the equidistant case, and when γX = γY = 1, (A2) holds if

p

n
2

β∧1

→ ∞, n → ∞. (2.2)

Example 2.5. For α ∈ (0,2) sample continuous self-similar SαS processes with stationary in-
crements provide a family of examples with an infinite second moment. For such processes (B1)
is satisfied for β < α and (B2) is satisfied with γX = γY = βH , where H is the Hurst exponent.
This follows from continuity, self-similarity and stationarity of the increments. Similarly, (B3)
holds if β < α/2 and γ ′

X = γ ′
Y = 2βH . Such processes include the fractional harmonizable α-

stable motions and, if 1 < α < 2 and 1/α < H < 1, also the linear fractional stable motions;
see Chapter 7 in Samorodnitsky and Taqqu [17]. Another example is that of the γ -Mittag Lef-
fler fractional SαS motion, which is an integral of a γ -Mittag Leffler process with respect to a
suitable SαS random measure; see Samorodnitsky [16], Section 8.4. Here H = γ + (1 − γ )/α.

Example 2.6. Lévy processes are stochastically continuous and bounded by definition. If X is a
Lévy process with finite second moment (A1) holds because var(�X(s, t)) = c(t − s), for s < t

and a constant c. Moreover, (A3) holds for X if E[|X(1)|2(2β−1)] < ∞. Indeed, an application of
Lévy’s maximal inequality yields for t ∈ [0,1],

E
[∣∣X(t)

∣∣2(2β−1)] ≤ E

[
max

0≤t≤1

∣∣X(t)
∣∣2(2β−1)

]
≤ cE

[∣∣X(1)
∣∣2(2β−1)]

.

Similarly, for X, (B1) holds if E[|X(1)|β ] < ∞, (B2) is satisfied if E[|�X(s, t]|β ] ≤ c(t − s)γX ,
and (B3) holds if E[|�X(s, t]|2β ] ≤ c(t − s)γ

′
X .

3. Main results

We would like to use the distance covariance to test for independence of two stochastically con-
tinuous bounded stochastic processes X,Y on [0,1]. By the strong law of large numbers for
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V -statistics we have

Tn,β(X,Y )
a.s.→ Tβ(X,Y ), (3.1)

where the limit is defined in (1.4). If X,Y are independent then Tβ(X,Y ) = 0, and in Section 4
we prove that, conversely, Tβ(X,Y ) = 0 implies independence of X,Y . The following theorem
establishes, in particular, that under appropriate conditions, if X,Y are independent, then also

Tn,β

(
X(p), Y (p)

) − Tn,β(X,Y )
P→ 0 (3.2)

and, hence,

Tn,β

(
X(p), Y (p)

) P→ 0. (3.3)

This relation can be used in testing for independence of X,Y . Note that, if X,Y are dependent
the results of Section 4 will imply that Tβ(X,Y ) > 0 and so, by (3.1) and (3.2), we see that

nTn,β(X(p), Y (p))
P→ ∞.

In fact, the limiting equivalence (3.2) holds for dependent X,Y as well, see the proof of
Lemma S.1 in the Supplementary Material [7], as long as one imposes more restrictive mo-
ment conditions (due to the use of Hölder-type inequalities for products of dependent random
variables).

In the theorem below we assume, without loss of generality, that E[X(t)] = E[Y(t)] = 0 for
any t ∈ [0,1], provided the expectations are finite. Indeed, Tn,β contains expressions of the type
Xk − Xl , Yk − Yl or their discrete approximations. Therefore, we can always mean-correct Xk

and Yk , without changing the value of Tn,β .

Theorem 3.1. Assume the following conditions:

1. X,Y are independent stochastically continuous bounded processes on [0,1] defined on the
same probability space.

2. If X,Y have finite expectations, then these are assumed to be equal to 0.
3. δn → 0 as n → ∞.
4. β ∈ (0,2).

Then the following statements hold.

(1) If either (A1) or [(B1), (B2) and pδ
β/2+γX∧γY
n → 0] are satisfied then (3.2) (and, hence,

(3.3)) hold.
(2) If either (A1), (A2) or (B1), (B2), (B4) hold, then

nTn,β

(
X(p), Y (p)

) d→
∞∑
i=1

λi

(
N2

i − 1
) + c

for an i.i.d. sequence of standard normal random variables (Ni), a constant c, and a
square summable sequence (λi).
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(3) If either (A1), (A3) or [β ∈ (0,1) and (B1)–(B3) and pδ
β+γ ′

X∧γ ′
Y

n → 0] hold then

Rn,β

(
X(p), Y (p)

) P→ 0.

(4) If either (A1)–(A3) or [β ∈ (0,1) and (B1)–(B4) and pδ
β+γ ′

X∧γ ′
Y

n → 0] hold then

nRn,β

(
X(p), Y (p)

) d→
∞∑
i=1

λi

(
N2

i − 1
) + c

for an i.i.d. sequence of standard normal random variables (Ni), a constant c, and a
square summable sequence (λi).

The proof is given in Section 7 while some technical details are omitted and given in the
Supplementary Material [7].

Remark 3.2. In Section S.3 of the Supplementary Material [7], we discuss the asymptotic behav-
ior of Tn,β(X(p), Y (p)) and Rn,β(X(p), Y (p)) for dependent processes X,Y . In this case Tβ(X,Y )

is positive. We prove central limit theory with Gaussian limits for

√
n
(
Tn,β

(
X(p), Y (p)

) − Tβ(X,Y ),Rn,β

(
X(p), Y (p)

) − Rβ(X,Y )
)
.

In particular, if one used the normalization n for the independent case, one would get

nTn,β(X(p), Y (p))
P→ ∞ and nRn,β(X(p), Y (p))

P→ ∞. This observation allows one to clearly
distinguish between the independent case and the alternative of dependent X,Y .

The distinct asymptotic behavior of Tn,β(X(p), Y (p)) and Rn,β(X(p), Y (p)) in the independent
and dependent cases is explained by the V -statistic structure underlying the sample distance
covariance Tn,β(X(p), Y (p)). Indeed, this quantity is approximated by the non-degenerate V -
statistic Tn,β(X,Y ). In view of classical limit theory (see Arcones and Giné [1]) non-degenerate
V -statistics satisfy the central limit theorem with normalization

√
n.

Remark 3.3. The numbers λi in parts (2) and (4) of the theorem are the eigenvalues of certain
integral operators. This follows from limit theory for degenerate V -statistics; see Serfling [18],
Lyons [12] and Arcones and Giné [1]. Unfortunately, neither the λi nor the distribution of the
limit are available. Arcones and Giné [1] proved the consistency of a bootstrap version of degen-
erate U - and V -statistics. These latter results apply to Tn,β(X,Y ) but not to Tn,β(X(p), Y (p)). In
Section 5, we argue that the bootstrap also works for a modification of the latter quantity.

4. The condition Tβ(X,Y ) = 0 and independence of X and Y

The results in the previous section tell us that Tn,β(X(p), Y (p))
P→ Tβ(X,Y ) = 0 for independent

X,Y under various conditions on X,Y and the size of the mesh δn of the partition (ti). An
important question is whether, conversely, Tβ(X,Y ) = 0 also implies independence of X,Y . In
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the case β ∈ (0,1] an affirmative answer to this question follows from Lyons [12], based on
the fact that the metric obtained by raising the separable Hilbert space distance to the power
β ∈ (0,1] is of the strong negative type. In the sequel, we extend the converse statement to all
β ∈ (0,2). Our approach is based on studying the conditional independence of certain stochastic
integrals.

Let B1 and B2 be independent Brownian motions on [0,1], independent of a pair (X,Y ) of
stochastically continuous bounded stochastic processes [0,1]. The stochastic integrals

Z1 =
∫ 1

0
X dB1 and Z2 =

∫ 1

0
Y dB2

are well defined (and are, given (X,Y ), independent normal random variables).
The next lemma demonstrates a connection between such stochastic integrals and distance

covariances. Let FB denote the σ -field generated by B = (B1,B2).

Lemma 4.1. Let β ∈ (0,2) and assume that E[‖X‖β

2 ] +E[‖Y‖β

2 ] +E[‖X‖β

2 ‖Y‖β

2 ] < ∞. Let Y ′
be a copy of Y independent of everything else. Then

c2
0Tβ(X,Y ) =

∫
R2

|st |−(1+β)
E

∣∣E[
e is

∫
X(u)dB1(u)e it

∫
Y(u)dB2(u)

− e is
∫

X(u)dB1(u)e it
∫

Y ′(u)dB2(u) |FB

]∣∣2
ds dt, (4.1)

where

c0 =
∫
R

1 − e − s2
2

|s|1+β
ds.

Proof. Consider an independent copy (X′, Y ′) of (X,Y ) and let Y ′′, Y ′′′ be independent copies
of Y which are independent of everything else. The expectation on the right-hand side in (4.1)
can be written as

E
[
e is

∫
(X−X′) dB1+it

∫
(Y−Y ′) dB2 + e is

∫
(X−X′) dB1+it

∫
(Y ′′−Y ′′′) dB2

− e is
∫
(X−X′) dB1−it

∫
(Y−Y ′′) dB2 − e −is

∫
(X−X′) dB1+it

∫
(Y−Y ′′) dB2

]
= E

[
e − s2

2

∫
(X(u)−X′(u))2 du− t2

2

∫
(Y (u)−Y ′(u))2 du

+ e − s2
2

∫
(X(u)−X′(u))2 du− t2

2

∫
(Y ′′(u)−Y ′′′(u))2 du

− 2e − s2
2

∫
(X(u)−X′(u))2 du− t2

2

∫
(Y (u)−Y ′′(u))2 du

]
= E

[(
1 − e − s2

2

∫
(X(u)−X′(u))2 du

)(
1 − e − t2

2

∫
(Y (u)−Y ′(u))2 du

)
+ (

1 − e − s2
2

∫
(X(u)−X′(u))2 du

)(
1 − e − t2

2

∫
(Y ′′(u)−Y ′′′(u))2 du

)
− 2

(
1 − e − s2

2

∫
(X(u)−X′(u))2 du

)(
1 − e − t2

2

∫
(Y (u)−Y ′′(u))2 du

)]
.
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By change of variables,

∫
R

1 − e − s2
2

∫
(X(u)−X′(u))2 du

|s|1+β
ds = c0

∥∥X − X′∥∥β

2 .

Thus Tβ(X,Y ) coincides with

E
[∥∥X − X′∥∥β

2

∥∥Y − Y ′∥∥β

2 + ∥∥X − X′∥∥β

2

∥∥Y ′′ − Y ′′′∥∥β

2 − 2
∥∥X − X′∥∥β

2

∥∥Y − Y ′′∥∥β

2

]
. �

An immediate corollary of Lemma 4.1 is that Tβ(X,Y ) = 0 implies that, for a.e. s, t ,

E
[
e is

∫
X(u)dB1(u)e it

∫
Y(u)dB2(u) − e is

∫
X(u)dB1(u)e it

∫
Y ′(u)dB2(u) |FB

] = 0

with probability 1. By Fubini’s theorem, on an event of probability 1, this equality holds for all
rational s, t , hence for all real s, t . We conclude that the stochastic integrals Z1,Z2 are condi-
tionally independent given FB .

The next theorem, which is the main result of this section, shows that this implies indepen-
dence of X and Y .

Theorem 4.2. If the stochastic integrals Z1 and Z2 are a.s. conditionally independent given FB

then X,Y are independent. In particular, if β ∈ (0,2) and E[‖X‖β

2 + ‖Y‖β

2 + ‖X‖β

2 ‖Y‖β

2 ] < ∞,
then Tβ(X,Y ) = 0 if and only if X,Y are independent.

Proof. Only the fact that the conditional independence of the integrals implies independence
of X and Y remains to be proved. Let (a(t),0 ≤ t ≤ 1) and (b(t),0 ≤ t ≤ 1) be functions in
L2[0,1], and

A1(t) =
∫ t

0
a(s) ds and A2(t) =

∫ t

0
b(s) ds, 0 ≤ t ≤ 1.

Since the law of the bivariate process(
B̃1(t), B̃2(t),0 ≤ t ≤ 1

) = (
B1(t) + A1(t),B2(t) + A2(t),0 ≤ t ≤ 1

)
,

is equivalent to the law of the standard bivariate Brownian motion, it follows that the integrals∫ 1

0
X(t) dB̃1(t) =

∫ 1

0
X(t) dB1(t) +

∫ 1

0
X(t)a(t) dt

and ∫ 1

0
Y(t) dB̃2(t) =

∫ 1

0
Y(t) dB2(t) +

∫ 1

0
Y(t)b(t) dt

are a.s. conditionally independent given FB .
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It is not difficult to construct a sequence (Cn) of events in FB , of positive probability, such
that the conditional laws of the integrals∫ 1

0
X(t) dB1(t) and

∫ 1

0
Y(t) dB2(t)

given Cn converge to the degenerate law at zero as n → ∞. One way for producing such a
sequence of events is to let the two independent Brownian motions take values close to zero at
the points i/n, i = 0,1, . . . , n. Letting n → ∞, we conclude that the integrals∫ 1

0
X(t)a(t) dt and

∫ 1

0
Y(t)b(t) dt

are independent.
For every fixed realization of the processes X and Y ,

lim
ε→0

1

ε

∫ t+ε

t

X(s) ds = X(t) and lim
ε→0

1

ε

∫ t+ε

t

Y (t) ds = Y(s) (4.2)

for all t in a set of full Lebesgue measure. By Fubini’s theorem there is a set M of full Lebesgue
measure such that, for every t ∈ M , (4.2) holds a.s. By necessity, the set M is dense in [0,1].

To prove our claim it suffices to prove that for any points 0 = t0 < t1 < · · · < tk < tk+1 = 1,
k ≥ 1, the random vectors (X(t1), . . . ,X(tk)) and (Y (t1), . . . , Y (tk)) are independent. By
stochastic continuity of the processes X and Y it is enough to restrict ourselves to the case
when every ti ∈ M . Let 0 < ε < mini=1,...,k(ti+1 − ti ). Choosing piece-wise constant functions
(a(t),0 ≤ t ≤ 1) and (b(t),0 ≤ t ≤ 1), we conclude that the sums

k∑
i=1

θi

∫ ti+ε

ti

X(t) dt and
k∑

i=1

γi

∫ ti+ε

ti

Y (t) dt

are independent for any choice of θ1, . . . , θk and γ1, . . . , γk . Since all points (ti) are in the set M ,
dividing by ε and letting ε → 0 we conclude that

k∑
i=1

θiX(ti) and
k∑

i=1

γiY (ti)

are independent for any choice of θ1, . . . , θk and γ1, . . . , γk . By the Cramér–Wold device this
implies that the vectors (X(t1), . . . ,X(tk)) and (Y (t1), . . . , Y (tk)) are independent. �

5. The bootstrap for the sample distance covariance

We mentioned in Remark 3.3 that the limit distribution of nTn,β(X,Y ) is not available. Theo-
rem 3.1 states that the discretization nTn,β(X(p), Y (p)) has the same asymptotic properties as
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nTn,β(X,Y ) under suitable conditions on the smoothness of the sample paths, moment condi-
tions and the growth rate of p = pn → ∞.

In this section, we advocate the use of the bootstrap for approximating the distribution of
nTn,β(X(p), Y (p)). The bootstrap can be made to work for the degenerate V -statistic Tn,β(X,Y )

as shown in Arcones and Giné [1]. In this case, the naive bootstrap does not work and one has
to modify the degenerate kernel. Since the V -statistic Tn,β(X(p), Y (p)) is degenerate for every
fixed p we face the problem of approximating the distribution of the latter statistic by its bootstrap
version. We will show that this approximation works.

We will make use of a modification of Lemma 2.2 in Dehling and Mikosch [8], which deals
with U -statistics with a kernel defined on the Euclidean space. We work with a separable metric
space S. For m ≥ 1, let h : Sm �→ R be a symmetric function. Let (X

(1)
i ,X

(2)
i ), i = 1,2, . . . , be

an S × S-valued i.i.d. sequence with marginal laws L(X(1)) = F and L(X(2)) = G, respectively.
On the subset of probability measures on S,

�2,h = {
H : E[

h2(Z1, . . . ,Zm)
]
< ∞ for i.i.d. (Zi) with common law H

}
,

we define the semi-metric

d2,h(F,G) = inf
{(
E

[(
h
(
X

(1)
1 , . . . ,X(1)

m

) − h
(
X

(2)
1 , . . . ,X(2)

m

))2])1/2}
,

where the infimum is taken over all random elements (X
(1)
1 , . . . ,X

(1)
m ,X

(2)
1 , . . . ,X

(2)
m ) in S2m

such that (X
(1)
i ,X

(2)
i ), i = 1, . . . ,m, are i.i.d. S2-valued random elements, X

(1)
i has law F and

X
(2)
i has law G. The fact that d2,h is a semi-metric can be shown using similar arguments as

in the proof of Lemma 8.1 in Bickel and Freedman [2] that discusses the properties of the re-
lated Wasserstein metric d2 on a subset of probability measures on R, �2 = {H : EH [Z2] < ∞},
defined by

d2(F,G) = inf
{(
E

[|A − B|2])1/2 : L(A) = F,L(B) = G
}
.

Let m ≥ 2 and choose H ∈ �2,h. Define a function on S × S by

h2(x, y;H) = E
[
h(x, y,Z3, . . . ,Zm)

] −E
[
h(x,Z2, . . . ,Zm)

]
−E

[
h(Z1, y,Z3, . . . ,Zm)

] +E
[
h(Z1, . . . ,Zm)

]
, (5.1)

where (Zi) are i.i.d. with common law H . The proof of the following result is completely anal-
ogous to that of Lemma 2.2 in Dehling and Mikosch [8].

Lemma 5.1. Let F,G be in �2,h, (X(1)
j ) i.i.d. with common law F , and (X

(2)
j ) i.i.d. with common

law G. Then for any n ≥ 1,

d2

(
L

(
1

n

∑
1≤i �=j≤n

h2
(
X

(1)
i ,X

(1)
j ;F ))

,L
(

1

n

∑
1≤i �=j≤n

h2
(
X

(2)
i ,X

(2)
j ;G)))

≤ 25/2 d2,h(F,G). (5.2)
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For an S-valued i.i.d. sequence (Zi) with common law F ∈ �2,h and n ≥ 1 we denote by Fn

the empirical law of Z1, . . . ,Zn. Consider an i.i.d. sequence (Z∗
ni) with the law Fn, that is, given

that law, independent of (Zi). The following result is analogous to Theorem 2.1 in Dehling and
Mikosch [8].

Corollary 5.2. Under the aforementioned conditions, and if also E[|h(Zi1 , . . . ,Zim)|2] < ∞ for
all indices 1 ≤ i1 ≤ · · · ≤ im ≤ m, we have

d2

(
L

(
1

n

∑
1≤i �=j≤n

h2
(
Z∗

ni,Z
∗
nj ;Fn

))
,L

(
1

n

∑
1≤i �=j≤n

h2(Zi,Zj ;F)

))
→ 0

for almost all realizations of (Zi).

Proof. By (5.2), it suffices to show that d2,h(Fn,F ) → 0, almost surely. By Varadarajan’s theo-
rem (see Billingsley [3], p. 29) the empirical distribution Fn converges weakly to the distribution
F , for almost all realizations (zi)i≥1 of (Zi)i≥1. Thus, by Skorokhod’s theorem, there exist a
sequence of random variables (Z∗

n)n≥1 such that Z∗
n has distribution Fn, and an F -distributed

random variable Z̃ such that Z∗
n → Z̃ almost surely. We now take m i.i.d. copies of the pair

(Z∗
n, Z̃), which we denote by (Z∗

n1, Z̃1), . . . , (Znm, Z̃m). Then(
Z∗

n1, . . . ,Z
∗
nm

) → (Z̃1, . . . , Z̃m), almost surely.

Moreover, by definition of d2,h, we have

d2,h(Fn,F ) ≤ (
E

[(
h
(
Z∗

n1, . . . ,Z
∗
nm

) − h(Z̃1, . . . , Z̃m)
)2])1/2

.

It suffices to show that the right-hand side converges to 0 as n → ∞. For any ε > 0, we can find
a bounded continuous function g : Sm →R such that

E
[(

h(Z̃1, . . . , Z̃m) − g(Z̃1, . . . , Z̃m)
)2] ≤ ε.

By Lebesgue’s dominated convergence theorem, we obtain

E
[(

g
(
Z∗

n,1, . . . ,Z
∗
n,m

) − g(Z̃1, . . . , Z̃m)
)2] → 0.

The strong law of large numbers for U -statistics implies that

E
[(

h
(
Z∗

n,1, . . . ,Z
∗
n,m

) − g
(
Z∗

n,1, . . . ,Z
∗
n,m

))2]
= 1

nm

∑
1≤i1,...,im≤n

(
h(zi1 , . . . , zim) − g(zi1, . . . , zim)

)2

→ E
(
h(Z1, . . . ,Zm) − g(Z1, . . . ,Zm)

)2 ≤ ε.

This finishes the proof. �
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In what follows, (Zi) will stand for the i.i.d. sequence of the pairs (Xi, Yi), i = 1,2, . . ., used
in the previous sections for defining the quantities Tn,β(X,Y ). Correspondingly, we write (Z

(p)
i )

for the sequence of the discretizations (X
(p)
i , Y

(p)
i ), i = 1,2, . . . , with generic element Z(p).

For the ease of presentation, we focus on the case β = 1 and suppress β in the notation. We
consider only the case when X,Y have finite second moments. A generic element Z = (X,Y )

has trajectory (x, y) assuming values in a function space S where x, y are defined on [0,1] and
are Riemann square-integrable.

Under the hypothesis that X,Y are independent, Tn(X,Y ) has representation as a V -statistic
of order 4 with a 1-degenerate symmetric kernel h4 = h(x1, x2, x3, x4); see the Appendix, where
we also show that, when scaled by n, the limits of Tn(X,Y ) and the corresponding normalized U -
statistic (which is obtained by ignoring all summands h(Zi1 ,Zi2,Zi3 ,Zi4) with the property ij =
ik for j �= k) differ by an additive constant. Applying the Hoeffding decomposition to this U -
statistic, the limiting distribution of nTn(X,Y ) coincides, up to a scale change, with the limiting
distribution of the following normalized U -statistic:

Un(Z) = 1

n

∑
1≤i �=j≤n

h2(Zi,Zj ;FZ),

where FZ = FX × FY and h2 is defined in (5.1). Arcones and Giné [1] proved that the correct
bootstrap version of nTn(X,Y ) is

Un

(
Z∗) = 1

n

∑
1≤i �=j≤n

h2
(
Z∗

ni,Z
∗
nj ;Fn,Z

)
,

where Fn,Z is the empirical distribution of the i.i.d. sample Z1, . . . ,Zn. The fact that the limiting
distributions of Un(Z) and Un(Z

∗) coincide follows from Corollary 5.2.
Our program for the remainder of this section is to show that we are allowed to replace

Z = (X,Y ) by the corresponding discretizations Z(p) = (X(p), Y (p)) in the aforementioned
U - and V -statistics, that is, we will show that suitable bootstrap versions of nTn,β(X,Y ) and
nTn,β(X(p), Y (p)) have the same limiting distribution. We start by showing that Un(Z) and
Un(Z

(p)) are close in the sense of the d2-metric.

Lemma 5.3. Assume the following conditions:

1. X,Y are independent and have finite second moments.
2. Condition (A1) holds.
3. δn → 0 as n → ∞.

Then d2(L(Un(Z));L(Un(Z
(p)))) ≤ cδ

(γX∧γY )/2
n → 0.

Proof. By (5.2), with h given by (A.1), we have

d2
(
L

(
Un(Z)

);L(
Un

(
Z(p)

)))
≤ c

{
E

[(
h(Z1, . . . ,Z4) − h

(
Z

(p)

1 , . . . ,Z
(p)

4

))2]}1/2
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≤ c
{
E

[(
f (Z1, . . . ,Z4) − f

(
Z

(p)

1 , . . . ,Z
(p)

4

))2]}1/2

≤ c
(
EI 2

1 +EI 2
2 +EI 2

3

)1/2
,

where

I1 = ∥∥X1 − X2
∥∥

2

∥∥Y1 − Y2
∥∥

2 − ∥∥X
(p)

1 − X
(p)

2

∥∥
2

∥∥Y
(p)

1 − Y
(p)

2

∥∥
2,

I2 = ∥∥X1 − X2
∥∥

2

∥∥Y3 − Y4
∥∥

2 − ∥∥X
(p)

1 − X
(p)

2

∥∥
2

∥∥Y
(p)

3 − Y
(p)

4

∥∥
2,

I3 = ∥∥X1 − X2
∥∥

2

∥∥Y1 − Y3
∥∥

2 − ∥∥X
(p)

1 − X
(p)

2

∥∥
2

∥∥Y
(p)

1 − Y
(p)

3

∥∥
2.

The second moments are estimated as in Proposition 7.1 below. We have by (7.4),

E
[(∥∥X1 − X2

∥∥
2 − ∥∥X

(p)

1 − X
(p)

2

∥∥
2

)2∥∥Y1 − Y2
∥∥2

2

] ≤ cδ
γX
n

and

E
[∥∥X

(p)

1 − X
(p)

2

∥∥2
2

(∥∥Y1 − Y2
∥∥

2 − ∥∥Y
(p)

1 − Y
(p)

2

∥∥
2

)2] ≤ cδ
γY
n .

That is, E[I 2
1 ] ≤ cδ

γX∧γY
n . The second moments of I2, I3 can be bounded by the same quanti-

ties. �

Our next goal is to show that, under appropriate assumptions, the difference between the laws
of Un(Z

∗) and Un(Z
(p)∗) asymptotically vanishes.

Lemma 5.4. Consider the following conditions:

1. X,Y are independent and have finite second moments.
2a. Condition (A1) holds.
2b. E[|X(t) − X(s)|4] ≤ c|t − s|γ̃X and E[|Y(t) − Y(s)|4] ≤ c|t − s|γ̃Y hold.
3a.

∑∞
n=1 δ

γX∧γY
n < ∞.

3b.
∑∞

n=1(δ
2(γX∧γY )
n + n−1δ

γ̃X∧γ̃Y
n ) < ∞.

If either 1, 2a, 3a or 1, 2a, 2b, 3b hold, then d2(L(Un(Z
∗)),L(Un(Z

(p)∗))) → 0, for a.e. realiza-
tion of (Zi).

Proof. With h given by (A.1), by Lemma 5.1 it is enough to prove that d2,h(L(Z∗),L(Z(p)∗)) →
0 for a.e. realization of (Zi). We have

d2,h(n) := d2,h

(
L

(
Z∗),L(

Z(p)∗))
≤ (

EFn

[(
h
(
Z∗

1 ,Z∗
2 ,Z∗

3 ,Z∗
4

) − h
(
Z

(p)∗
1 ,Z

(p)∗
2 ,Z

(p)∗
3 ,Z

(p)∗
4

))2])1/2

= 1

n2

( ∑
1≤i1,i2,i3,i4≤n

(
h(Zi1 ,Zi2,Zi3,Zi4) − h

(
Z

(p)
i1

,Z
(p)
i2

,Z
(p)
i3

,Z
(p)
i4

))2
)1/2
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≤ 1

n2

( ∑
1≤i1,i2,i3,i4≤n

(
f (Zi1,Zi2,Zi3,Zi4) − f

(
Z

(p)
i1

,Z
(p)
i2

,Z
(p)
i3

,Z
(p)
i4

))2
)1/2

.

We first show that the right-hand side converges to zero under the assumption that 1, 2a, and 3a
hold. Using (A1), we obtain

E
[
d2,h

(
L

(
Z∗),L(

Z(p)∗))]2

≤
∑

1≤j1,j2,j3,j4≤4

E
[(

f (Zj1 , . . . ,Zj4) − f
(
Z

(p)
j1

, . . . ,Z
(p)
j4

))2] ≤ cδ
γX∧γY
n .

Thus, if
∑

n δ
γX∧γY
n < ∞ applications of Markov’s inequality and the Borel–Cantelli lemma

yield that d2,h(L(Z∗),L(Z(p)∗)) → 0 a.s. as n → ∞.
Now assume that 1, 2a, 2b and 3b hold. Using standard calculations for U -statistics, we have

var
(
d2

2,h(n)
) ≤ c

∑
1≤j1,j2,j3,j4≤4

[
n−1 var

((
h(Zj1 , . . . ,Zj4) − h

(
Z

(p)
j1

, . . . ,Z
(p)
j4

))2)
+ (

E
[(

h(Zj1 , . . . ,Zj4) − h
(
Z

(p)
j1

, . . . ,Z
(p)
j4

))2])2]
= J1 + J2.

We have J2 = O(δ
2(γX∧γY )
n ). We can handle J1 similarly to the proof of Lemma 5.3. For example,

E
[∥∥X1 − X

(p)

1

∥∥4
2

] = E

[(∫ 1

0

(
X(u) − X(p)(u)

)2
du

)2]

≤ c

∫ 1

0
E

[(
X(u) − X(p)(u)

)4]
du ≤ cδ

γ̃X
n .

Now d2,h(n)
a.s.→ 0 as n → ∞ follows by an application of Markov’s inequality of order 2, the

Borel–Cantelli lemma and since
∑

n(n
−1δ

γ̃X∧γ̃Y
n + δ

2(γX∧γY )
n ) < ∞. We omit further details. �

Combining the previous arguments, a natural bootstrap version of the degenerate V -statistic
nTn(X

(p), Y (p)) is given by Un(Z
(p)∗).

Proposition 5.5. Assume the conditions of Lemma 5.4. Then

d2
(
L

(
Un(Z)

)
,L

(
Un

(
Z(p)∗))) → 0

for a.e. realization of (Zi).

For an application of the bootstrapped sample distance correlation nRn(X
(p), Y (p)) we still

miss one step in the derivation of the bootstrap consistency: we also need to prove that the
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denominator quantities converge a.s.

Tn

(
X(p),X(p)

) a.s.→ T (X,X) and Tn

(
Y (p), Y (p)

) a.s.→ T (Y,Y ), n → ∞.

In Lemma S.2 of the Supplementary Material [7], we provide sufficient conditions for this to
hold.

6. Simulations

In this section, we illustrate the theoretical results in a small simulation study. Throughout we
choose β = 1 and suppress the dependence on β in the notation.

We start with identically distributed fractional Brownian motions (fBM) X,Y on [0,1] with
Hurst coefficient H and correlation ρ where the dependence between X and Y is given by the
covariance function

cov
(
X(s),Y (t)

) = ρ

2

{|s|2H + |t |2H − |t − s|2H
}
, s, t ∈ [0,1].

If X = Y , we also set ρ = 1. Note that, for H = 1/2, the right-hand side collapses into
ρ(s ∧ t), corresponding to Brownian motions X,Y . The top graph in Figure 1 nicely illustrates
the consistency of the sample correlation Rn(X

(p), Y (p)) for independent X and Y (ρ = 0). In
the top row we fix p = 100 and increase n from 100 to 400, and we choose H = 1/4, H = 1/2
(BM) and H = 3/4. Apparently, we can see the influence of the smoothness of the sample paths:
the larger H the larger γX = γY = 2H (see Example 2.3), the smoother the sample paths and
the closer Rn(X

(p), Y (p)) to zero; see also the upper bounds in Proposition 7.1. In the bottom
row, we show Rn(X

(p), Y (p)) for dependent X and Y with ρ = 0.5. We again choose H = 1/4,
H = 1/2 (BM) and H = 3/4, fix p = 100 and increase n from 100 to 300. In the bottom graphs
the sample distance correlation converges to some positive constants; we see a clear difference
between the independent and dependent cases.

In Figure 2, we illustrate the performance of the sample distance correlation Rn(X
(p), Y (p))

when X and Y are independent (possibly with distinct distributions) non-Gaussian processes.
We treat three cases, including heavy-tailed processes: X,Y are i.i.d. geometric BMs (left), X,Y

are i.i.d. α-stable Lévy motions (middle), X is a geometric BM and Y an α-stable Lévy motion
(right). For geometric BM we choose the parametrization

X(t) = exp
((

1 − 0.72/2
)
t + 0.7B(t)

)
, t ∈ [0,1],

where μ = 1 (drift), σ = 0.7 (volatility) and B is standard BM. The parameters of the α-stable
Lévy motions are (α,β,μ,σ ) = (1.8,0.3,0,1); cf. Samorodnitsky and Taqqu [17], Ex. 3.1.3. We
fix p = 100 and increase n from 100 to 300. Also in these non-Gaussian settings the boxplots
nicely illustrate consistency of Rn(X

(p), Y (p)) even in the heavy-tailed α-stable case.
In Figure 3, we study the influence of the size of p on the sample distance correlation for a

given n. We choose p = 100 (left) and p = 1000 (middle) while X, Y are independent BMs (top)
and dependent BMs with correlation ρ = 0.5 (bottom): there is hardly any difference between
the left and middle graphs for a given n. In the right graphs, we choose i.i.d. (top) and dependent
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Figure 1. Boxplots for Rn(X(p), Y (p)) simulated fBMs X,Y with H = 1/4,1/2,3/4 (from left to right),
p = 100 and increasing sample sizes n. Top: i.i.d. fBMs X,Y . Each boxplot is based on 500 replications.
Bottom: identically distributed fBMs X,Y with correlation ρ = 0.5. Each boxplot is based on 300 replica-
tions.

Figure 2. Boxplots for Rn(X(p), Y (p)) for simulated independent non-Gaussian processes X,Y , p = 100
and increasing sample size n. Each boxplot is based on 500 replications. Left: i.i.d. geometric BMs X,Y .
Middle: i.i.d. α-stable Lévy motions X,Y . Right: independent geometric BM X and α-stable Lévy mo-
tion Y .



Distance covariance for discretized stochastic processes 2779

Figure 3. Boxplots for Rn(X(p), Y (p)) for different p. Top left and middle: X, Y are i.i.d. BMs. For
each p = 100 (left) and p = 1000 (middle) we take three distinct sample sizes n = 100,200,300. The
boxplots are based on 300 replications. Top right: X, Y are i.i.d. α-stable Lévy motions, n = 100 is fixed
while p = 100,500,1000. The boxplots are based on 500 replications. Bottom left and middle: X, Y are
dependent BMs with correlation ρ = 0.5, where p and n are the same as those for i.i.d. BMs. Bottom right:
X, Y are dependent α-stable Lévy motions given by (6.2) with ρ = 0.5. The other parameters are the same
as at the top right.

(bottom) α-stable Lévy motions X,Y . For the i.i.d. case we take the same parameters as before,
and for the dependent case we use (6.2) with ρ = 0.5. We increased p from 100 to 1000 and fix
n = 100. Again, one can hardly see any difference between the boxplots. These observations are
not surprising, and indicate that the discretized distance correlation with p = 100 is already very
close to the limit obtained for p → ∞.

We also examine some dependent heavy-tailed cases. We have chosen two simple stochas-
tic process models for X,Y where we can control the tails and the dependence. First,
we consider i.i.d. standard BMs B1,B2 which are subject to a joint heavy-tailed shock,
(X,Y ) = A1/2(B1,B2), where A is a Pareto(α) variable for some α > 0 with density fα(x) =
α(1 + x)−(α+1), x > 0. We also assume that A and (B1,B2) are independent. Notice that
A1/2 does not have a 2αth moment. Second, we consider (X,Y ) = (A

1/2
1 B1,A

1/2
2 B2) where

A1,A2 are i.i.d. copies of A with density fα , independent of (B1,B2) while B1 and B2 are
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Figure 4. Boxplots of Rn(X(p), Y (p)) for dependent heavy-tail cases. Top: (X,Y ) = A1/2(B1,B2)

for a Pareto(α) variable A independent of i.i.d. Brownian motions (B1,B2). Bottom: (X,Y ) =
(A

1/2
1 B1,A

1/2
2 B2) for i.i.d. copies A1,A2 independent of the Brownian motions B1,B2 with correlation

ρ = 0.5. From left to right: α = 0.5,1.0,1.5. Sample sizes n = 100,200,300, p = 100, and each plot is
based on 500 replications.

dependent BMs with correlation ρ = 0.5. We have chosen 2α = 1,2,3. In the case α = 0.5
the theoretical results of this paper about consistency of Tn(X

(p), Y (p)) do not apply since

E[‖X‖2 + ‖Y‖2] = ∞ while in the cases α = 1,1.5, Tn(X
(p), Y (p))

P→ T (X,Y ) > 0.
The first/second model is examined in the top/bottom graphs of Figure 4, respectively. In

the cases α = 1,1.5 the centers of the boxplots seem to stabilize with increasing sample size,
pointing at the consistency of Rn(X

(p), Y (p)). In the top graphs (first model), we observe that
the distributions of Rn(X

(p), Y (p)) have a rather wide range while the bottom boxplots (second
model) are less spread and their center is much below those of the first model. Moreover, in the
α = 0.5 case the plot is close to zero. It could be taken as a false indication of independence
between X and Y . We do not have a full explanation for the phenomena observed in Figure 4; in
both heavy-tailed dependent models our assumptions for the existence of non-degenerate weak
limits are not satisfied due to the lack of moments.

We have conducted a simulation study to illustrate the performance of the bootstrap pro-
cedure for the distance correlation based test for independence. Specifically, we have tested
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Table 1. Bootstrap sizes of nRn(X(p), Y (p)) with independent BMs and α-stable LMs

Brownian motions 1.8-stable Lévy motions

n ξ = 0.025 ξ = 0.05 ξ = 0.025 ξ = 0.05

100 2.9 5.7 1.8 5.8
200 2.9 5.0 3.2 6.8
300 3.1 5.6 4.4 7.0
400 3.6 6.8 3.4 5.4

Empirical rejection rates of bootstrap test based on nRn(X(p), Y (p)) for independent BMs (M =
1000 iterations) and independent α-stable LMs X,Y (M = 500).

for independence of two BMs and two α-stable Lévy motions X, Y . From a given sam-
ple (X

(p)

1 , Y
(p)

1 ), . . . , (X
(p)
n , Y

(p)
n ) of (X(p), Y (p)) we draw 500 bootstrap samples; we choose

p = 100. From each sample we calculate the distance correlation, from these 500 distance cor-
relations we determine the empirical (1 − ξ)-quantile q∗

1−ξ and verify whether

Rn

(
X(p), Y (p)

) ≥ q∗
1−ξ . (6.1)

Then we repeat this procedure M = 500 and M = 1000 times and count the number of times
when (6.1) is satisfied.

The empirical rejection rates in the case of independent BMs and independent 1.8-stable LMs
X,Y are reported in Table 1: each cell corresponds to a given sample size n and a given test level
ξ ; M = 1000 iterations for BMs and M = 500 for stable LMs.

In Table 2, we conduct the corresponding simulations for dependent standard BMs with cor-
relation ρ ∈ (0,1) and M = 500. We also consider dependent α-stable processes (X,Y ): given

Table 2. Bootstrap power of nRn(X(p), Y (p)) with correlated BMs and α-stable LMs

Dependent BMs Dependent 1.8. stable Lévy motion

n: 100 200 300 100 200 300

ρ \ ξ 0.025 0.05 0.025 0.05 0.025 0.05 0.25 0.05 0.025 0.05 0.025 0.05

0.1 8.0 13.4 21.4 29.0 28.6 36.6 10.4 15.8 19.4 27.8 28.4 38.4
0.2 38.4 49.4 69.0 80.2 89.2 93.4 39.4 49.4 62.0 73.4 79.4 87.2
0.3 78.4 85.8 98.0 98.6 99.8 99.8 63.6 65.0 89.0 93.0 93.8 96.4
0.4 96.2 97.4 100 100 100 100 84.0 90.2 94.4 96.4 96.4 97.8
0.5 99.4 100 100 100 100 100 91.4 93.4 96.2 96.6 97.2 97.8

Empirical rejection rates of bootstrap test based on nRn(X(p), Y (p)) for correlated BMs and 1.8-stable LMs. In each
cell, the rejection rate is given among M = 500 iterations.
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Table 3. Comparison of powers with tests by Matsui et al. [15]

Dependent BMs Dependent 1.8. stable

Matsui et al. DC p = 100 DC p = 104 Matsui et al. DC p = 100 DC p = 104

ρ \ ξ 0.025 0.05 0.025 0.05 0.025 0.05 0.025 0.05 0.025 0.05 0.025 0.05

0.1 7 9 6 13 4 12 6 14 15 21 20 25
0.2 38 41 32 51 36 48 42 53 45 50 56 63
0.3 81 84 71 84 73 81 82 88 72 83 82 86
0.4 99 100 98 100 97 98 99 99 94 98 96 98
0.5 100 100 100 100 100 100 100 100 99 99 99 99

Simulated powers of tests based on nRn(X,Y ) (Matsui et al. [15]) (left rows) and nRn(X(p), Y (p)) (middle and right

rows) with two different p = 100,104 for correlated BMs and 1.8-stable LMs; for M = 100 Monte-Carlo runs. The
sample size is n = 100 in all cases.

two independent α-stable Lévy motions (X,Z), we take

Y = ρX + Z (6.2)

with ρ = 0.1, . . . ,0.5, noticing the scale invariance of R(X,Y ). In agreement with the theory,
the rejection rates increase as n and ρ increase.

Finally, we have compared the powers of our tests with the test proposed in Matsui et al.
[15], taking the same BMs and 1.8-stable LMs alternatives as in Table 2. We have calculated
the critical values for all tests by Monte-Carlo simulation for independent processes, taking sam-
ple size n = 100 and M = 300 runs. We have then simulated the powers for various dependent
processes. For the Matsui et al. [15] test, we take standard Poisson intensity, resulting in the
test statistic nRn(X,Y ); see Matsui et al. [15], p. 366, Section 4. We calculate the integrals in
nRn(X,Y ) numerically by Riemann sums with 100 equidistant grid points. For the test statis-
tics nRn(X

(p), Y (p)), developed in the present paper, we take discretizations p = 100,104. The
rejection rates given in Table 3 are based on M = 100 Monte-Carlo runs. The small number of
runs was chosen because the calculation of the test statistics nRn(X,Y ) is computationally very
complex. In view of Table 3, we see that both statistics are comparable. It seems that for stable
processes, our test is more powerful than the test of Matsui et al. [15]. For all alternatives, the
choice of the discretization p = 100 or p = 104 seems to make little difference. This suggests
that p = 100 is already a sufficiently fine discretization.

7. Proof of Theorem 3.1

We prove the theorem by a series of auxiliary results.

Proposition 7.1. Assume the conditions 1.–4. of Theorem 3.1.
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1. If also (A1) holds, then there is c such that for any n ≥ 1,

E
[∣∣Tn,β

(
X(p), Y (p)

) − Tn,β(X,Y )
∣∣] ≤ cδ

(γX∧γY )(β∧1)/2
n .

2. If also (B1), (B2) hold, then there is c such that

E
[∣∣Tn,β

(
X(p), Y (p)

) − Tn,β(X,Y )
∣∣] ≤ c

(
pδ

(β/2+γX∧γY )
n

)(β∧1)/β
.

Proof. We start with the decomposition

Tn,β

(
X(p), Y (p)

) − Tn,β(X,Y ) = I1 + I2 − 2I3, (7.1)

where

I1 = 1

n2

n∑
k,l=1

(∥∥X
(p)
k − X

(p)
l

∥∥β

2

∥∥Y
(p)
k − Y

(p)
l

∥∥β

2 − ∥∥Xk − Xl

∥∥β

2

∥∥Yl − Yk

∥∥β

2

)
,

I2 = 1

n4

n∑
k,l=1

∥∥X
(p)
k − X

(p)
l

∥∥β

2

n∑
k,l=1

∥∥Y
(p)
k − Y

(p)
l

∥∥β

2

− 1

n4

n∑
k,l=1

∥∥Xk − Xl

∥∥β

2

n∑
k,l=1

∥∥Yk − Yl

∥∥β

2 , (7.2)

I3 = 1

n3

n∑
k,l,m=1

∥∥X
(p)
k − X

(p)
l

∥∥β

2

∥∥Y
(p)
k − Y

(p)
m

∥∥β

2

− 1

n3

n∑
k,l,m=1

∥∥Xk − Xl

∥∥β

2

∥∥Yk − Ym

∥∥β

2 .

We will find bounds for the absolute values of the expectations of these quantities. From now on,
c denotes any positive constants whose values are not of interest.

First assume that (X,Y ) have finite second moment. Observe that

|I1| ≤ 1

n2

n∑
k,l=1

∣∣∥∥X
(p)
k − X

(p)
l

∥∥β

2 − ∥∥Xk − Xl

∥∥β

2

∣∣∥∥Y
(p)
k − Y

(p)
l

∥∥β

2

+ 1

n2

n∑
k,l=1

∣∣∥∥Y
(p)
k − Y

(p)
l

∥∥β

2 − ∥∥Yk − Yl

∥∥β

2

∣∣‖Xk − Xl‖β

2

=: I11 + I12. (7.3)

By a symmetry argument, interchanging the roles of X and Y , it suffices to consider I11. Using
the independence of X and Y , we have

E[I11] ≤ E
[∣∣∥∥X

(p)

1 − X
(p)

2

∥∥β

2 − ∥∥X1 − X2
∥∥β

2

∣∣]E[∥∥Y
(p)

1 − Y
(p)

2

∥∥β

2

]
.
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By Lyapunov’s inequality,

E
[∥∥Y

(p)

1 − Y
(p)

2

∥∥β

2

] ≤ (
E

[∥∥Y
(p)

1 − Y
(p)

2

∥∥2
2

])β/2

≤ c

(∫ 1

0
var

(
Y (p)(t)

)
dt

)β/2

< ∞.

Assume 0 < β ≤ 1. Then, by concavity and Jensen’s inequality,

E
[∣∣∥∥X

(p)

1 − X
(p)

2

∥∥β

2 − ∥∥X1 − X2
∥∥β

2

∣∣]
≤ E

[∥∥(
X

(p)

1 − X
(p)

2

) − (X1 − X2)
∥∥β

2

]
= E

[(
p∑

i=1

∫
�i

(
�X1(t, ti] − �X2(t, ti]

)2
dt

)β/2]

≤
(

p∑
i=1

∫
�i

var
(
�X1(t, ti] − �X2(t, ti]

)
dt

)β/2

=
(

p∑
i=1

∫
�i

(
var

(
�X1(t, ti]

) + var
(
�X2(t, ti]

))
dt

)β/2

≤ cδ
γXβ/2
n . (7.4)

The last step follows from (A1). If 1 < β < 2, we use the inequality |xβ − yβ | ≤ β(x ∨ y)β−1 ×
|y − x| for positive x, y and Hölder’s inequality to obtain

E
[∣∣∥∥X

(p)

1 − X
(p)

2

∥∥β

2 − ∥∥X1 − X2
∥∥β

2

∣∣]
≤ cE

[(∥∥X
(p)

1 − X
(p)

2

∥∥β−1
2 ∨ ∥∥X1 − X2

∥∥β−1
2

)∣∣∥∥X
(p)

1 − X
(p)

2

∥∥
2 − ∥∥X1 − X2

∥∥
2

∣∣]
≤ cE

[(∥∥X
(p)

1 − X
(p)

2

∥∥β−1
2 ∨ ∥∥X1 − X2

∥∥β−1
2

)∥∥(
X

(p)

1 − X
(p)

2

) − (X1 − X2)
∥∥

2

]
≤ c

(
E

[∥∥X
(p)

1 − X
(p)

2

∥∥2
2 ∨ ∥∥X1 − X2

∥∥2
2

])(β−1)/2

× (
E

[∥∥(
X

(p)

1 − X1
) − (

X
(p)

2 − X2
)∥∥2/(3−β)

2

])(3−β)/2

= cP1P2. (7.5)

Since (3 − β)−1 < 1 the same arguments as in the case 0 < β < 1 yield P2 ≤ cδ
γX/2
n . Moreover,

we have

P
2/(β−1)

1 ≤ E
[∥∥X

(p)

1 − X
(p)

2

∥∥2
2

] +E
[∥∥X1 − X2

∥∥2
2

] = P11 + P12.

It follows from Remark 2.1 that P12 < ∞ and a similar argument yields P11 < ∞.
Summarizing the previous bounds for 0 < β < 2 under (A1), we have

E[I11] ≤ cδ
(γX∧γY )(β∧1)/2
n .
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Now we turn to I2. Observe that

|I2| ≤ 1

n2

n∑
k,l=1

∣∣∥∥X
(p)
k − X

(p)
l

∥∥β

2 − ∥∥Xk − Xl

∥∥β

2

∣∣ 1

n2

n∑
k,l=1

∥∥Y
(p)
k − Y

(p)
l

∥∥β

2

+ 1

n2

n∑
k,l=1

∥∥Xk − Xl

∥∥β

2

1

n2

n∑
k,l=1

∣∣∥∥Y
(p)
k − Y

(p)
l

∥∥β

2 − ∥∥Yk − Yl

∥∥β

2

∣∣,
and a similar bound exists for |I3|. The same arguments as above yield

E
[|I2 + I3|

] ≤ cδ
(γX∧γY )(β∧1)/2
n .

We omit further details.
Next, assume that (X,Y ) have finite βth moment for some β ∈ (0,2). We follow the patterns

of the proof in the finite variance case. We start by bounding E[|I1|]. First, assume β ∈ (0,1].
Following (7.4), we have by (B2),

E

[(
p∑

i=1

∫
�i

(
�X1(t, ti] − �X2(t, ti]

)2
dt

)β/2]

≤ c

p∑
i=1

|�i |β/2
E

[
max
t∈�i

∣∣�X(t, ti]
∣∣β]

≤ cpδ
β/2+γX
n .

Now assume 1 < β < 2. Following (7.5), we have by Hölder’s inequality,

E
[∣∣∥∥X

(p)

1 − X
(p)

2

∥∥β

2 − ∥∥X1 − X2
∥∥β

2

∣∣]
≤ cE

[(∥∥X
(p)

1 − X
(p)

2

∥∥β−1
2 ∨ ∥∥X1 − X2

∥∥β−1
2

)∥∥(
X

(p)

1 − X1
) − (

X
(p)

2 − X2
)∥∥

2

]
≤ c

(
E

[∥∥X
(p)

1 − X
(p)

2

∥∥β

2 ∨ ∥∥X1 − X2
∥∥β

2

])(β−1)/β

× (
E

[∥∥(
X

(p)

1 − X1
) − (

X
(p)

2 − X2
)∥∥β

2

])1/β

= cP̃1P̃2.

Proceeding as for 0 < β < 1, we have

P̃2 = (
E

[∥∥(
X

(p)

1 − X1
) − (

X
(p)

2 − X2
)∥∥β

2

])1/β ≤ c
(
pδ

β/2+γX
n

)1/β
.

We also have

P̃
β/(β−1)

1 ≤ E
[∥∥X

(p)

1 − X
(p)

2

∥∥β

2

] +E
[∥∥X1 − X2

∥∥β

2

]
.

The right-hand side is finite by assumption (B1). Collecting bounds for 0 < β < 2, we arrive at

E
[|I1|

] ≤ c
(
pδ

β/2+γX∧γY
n

)1∧β−1
.

The quantities E[|Ii |], i = 2,3, can be bounded in a similar way. �



2786 H. Dehling et al.

Now we can finish the proof of the first two parts of Theorem 3.1. We assume that either
(A1) or [(B1), (B2) and pδ

β/2+γX∧γY
n → 0] are satisfied. Under these assumptions, it follows

from Proposition 7.1 that Tn,β(X,Y ) − Tn,β(X(p), Y (p))
P→ 0. The quantity Tn,β(X,Y ) can be

written as a V -statistic of order 4 of the sample ((Xi, Yi))i=1,...,n; see the Appendix. (Lyons [12]
used a V -statistics of order 6. The higher order leads to a higher numerical complexity for the
calculation of the bootstrap quantities.) Since X,Y are assumed independent and E[‖X‖β

2 ] +
E[‖Y‖β

2 ] < ∞ (see Remark 2.1) we may apply the strong law of large numbers to the V -statistic
Tn,β(X,Y ) implying that

Tn,β(X,Y )
a.s.→ Tβ(X,Y ) = 0. (7.6)

Hence the first parts of the theorem follow.
Under the corresponding growth conditions (A2) and (B4) on δn → 0, Proposition 7.1 also

yields n(Tn,β(X,Y ) − Tn,β(X(p), Y (p)))
P→ 0. Then we can use the fact that the V -statistic

Tn,β(X,Y ) is degenerate of order 1 to conclude that nTn,β(X,Y ) converges in distribution to
a series of independent weighted χ2-distributed random variables, and nTn,β(X(p), Y (p)) has the
same weak limit; we refer to Arcones and Giné [1] and Serfling [18] for general limit theory on
U - and V -statistics.

The proof of the following two parts of the theorem is given in Section S.1 of the Supplemen-
tary Material [7].

Remark 7.2. Following the aforementioned arguments, the strong law of large numbers (7.6)
remains valid if X and Y are dependent and the corresponding moments in the definition of
Tβ(X,Y ) are finite. In this case Tn,β(X,Y ) is a non-degenerate V -statistic and it follows from the
Hoeffding decomposition that (

√
n(Tn,β(X,Y ) − Tβ(X,Y ))) converges to a normal distribution

provided sufficiently high moments of (X,Y ) are satisfied.

Appendix: The sample distance covariance as a degenerate
V-statistic

We assume that Zi = (Xi, Yi), i = 1,2, . . . , is an i.i.d. sequence with generic element
(X,Y ) whose components are Riemann square-integrable on [0,1], and E[‖X‖β

2 + ‖Y‖β

2 +
‖X‖β

2 ‖Y‖β

2 ] < ∞ and for some β ∈ (0,2). Under the assumption of independence on X,Y

Lyons [12,13] proved that Tn,β(X,Y ) has representation as a V -statistic of order 6 with degen-
erate kernel of order 1. In what follows, we will indicate that it can be written as a V -statistic of
order 4 with symmetric degenerate kernel of order 1. This fact is useful for improving upon the
complexity of the numerical approximation of the sample distance correlation and its bootstrap
version.

We start with the kernel

f
(
(x1, y1), (x2, y2), (x3, y3), (x4, y4)

) (=: f (z1, z2, z3, z4)
)

= ‖x1 − x2‖β

2 ‖y1 − y2‖β

2 + ‖x1 − x2‖β

2 ‖y3 − y4‖β

2 − 2‖x1 − x2‖β

2 ‖y1 − y3‖β

2 .
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From this representation, it is obvious that

Tn,β(X,Y ) = 1

n4

∑
1≤i,j,k,l≤n

f (Zi,Zj ,Zk,Zl).

Then one can define the corresponding symmetric kernel via the usual symmetrization as

h(z1, z2, z3, z4) = 1

24

∑
(l1,l2,l3,l4) permutation of (1,2,3,4)

f (zl1 , zl2, zl3 , zl4). (A.1)

It is not difficult to see that the kernel h is at least 1-degenerate, by showing that, under the null
hypothesis of independence of X and Y ,

E
[
f (z1,Z2,Z3,Z4)

] +E
[
f (Z2, z1,Z3,Z4)

] +E
[
f (Z2,Z3, z1,Z4)

]
+E

[
f (Z2,Z3,Z4, z1)

]
= 0.

Still under the null hypothesis of independence of X and Y ,

E
[
h
(
z1, z2, (X3, Y3), (X4, Y4)

)]
= 1

6

(‖x1 − x2‖β

2 +E
[‖X1 − X2‖β

2

] −E
[‖x1 − X‖β

2

] −E
[‖x2 − X‖β

2

])
× (‖y1 − y2‖β

2 +E
[‖Y1 − Y2‖β

2

] −E
[‖y1 − Y‖β

2

] −E
[‖y2 − Y‖β

2

])
,

and the right-hand side is not constant. Hence, the kernel h is precisely 1-degenerate. In sum-
mary:

Lemma A.1. If X,Y are independent and E[‖X‖β

2 + ‖Y‖β

2 ] < ∞ for some β ∈ (0,2) then
Tn,β(X,Y ) has representation as a V -statistic with a symmetric kernel h of order 4 which
is 1-degenerate. Moreover, the corresponding U -statistic T̃n,β(X,Y ), which is obtained from
Tn,β(X,Y ) by restricting the summation to indices (i1, i2, i3, i4) with mutually distinct compo-
nents, satisfies the relation that as n → ∞

n
(
Tn,β(X,Y ) − T̃n,β(X,Y )

) P→ E
[‖X1 − X2‖β

2

]
E

[‖Y1 − Y2‖β

2

]
. (A.2)

Indeed, observe that �n = Tn,β − T̃n,β is based on summation of the kernel h over indices
(i1, i2, i3, i4) for which at least two components coincide. If more than 2 indices coincide the
number of these summands in �n is of the order O(n2). However, the normalization in n�n is
of the order n3. Therefore, the sum of these terms is negligible as n → ∞. Finally, the part of
the sum corresponding to the case when exactly two indices coincide and the other indices are
different, can be written as a U -statistic of order 3. By the law of large numbers, this U -statistic
converges a.s. to E[‖X1 − X2‖β

2 ]E[‖Y1 − Y2‖β

2 ].
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Remark A.2. The additional moment assumption on h(Zi1,Zi2 ,Zi3,Zi4), 1 ≤ i1 ≤ i2 ≤ i3 ≤
i4 ≤ 4, required in Corollary 5.2 is satisfied for our kernel. Note that it suffices to consider
the non-symmetric kernel f , and to show that E[(f (Zi1,Zi2,Zi3,Zi4))

2] < ∞, for all indices
1 ≤ i1, . . . , i4 ≤ 4. For our specific kernel, this condition reads

E
[(‖Xi1 − Xi2‖β

[‖Yi1 − Yi2‖β + ‖Yi3 − Yi4‖β − 2‖Yi1 − Yi3‖β
])2]

< ∞,

and this holds under the moment conditions made in this paper.
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