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Weighted Poincaré inequalities,
concentration inequalities and tail bounds
related to Stein kernels in dimension one
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We investigate links between the so-called Stein’s density approach in dimension one and some functional
and concentration inequalities. We show that measures having a finite first moment and a density with
connected support satisfy a weighted Poincaré inequality with the weight being the Stein kernel, that indeed
exists and is unique in this case. Furthermore, we prove weighted log-Sobolev and asymmetric Brascamp–
Lieb type inequalities related to Stein kernels. We also show that existence of a uniformly bounded Stein
kernel is sufficient to ensure a positive Cheeger isoperimetric constant. Then we derive new concentration
inequalities. In particular, we prove generalized Mills’ type inequalities when a Stein kernel is uniformly
bounded and sub-gamma concentration for Lipschitz functions of a variable with a sub-linear Stein kernel.
More generally, when some exponential moments are finite, the Laplace transform of the random variable
of interest is shown to bounded from above by the Laplace transform of the Stein kernel. Along the way, we
prove a general lemma for bounding the Laplace transform of a random variable, that may be of independent
interest. We also provide density and tail formulas as well as tail bounds, generalizing previous results that
where obtained in the context of Malliavin calculus.

Keywords: concentration inequality; covariance identity; isoperimetric constant; Stein kernel; tail bound;
weighted log-Sobolev inequality; weighted Poincaré inequality

1. Introduction

Since its introduction by Charles Stein (Stein [52,53]), the so-called Stein’s method is a corpus of
techniques that revealed itself very successful in studying probability approximation and conver-
gence in law (see, for instance, Chen, Goldstein and Shao [23], Chatterjee [21], Ley, Reinert and
Swan [40] and references therein). Much less is known regarding the interplay between Stein’s
method and functional inequalities. Recently, a series of papers (Ledoux, Nourdin and Peccati
[38], Ledoux, Nourdin and Peccati [39], Fathi and Nelson [31], Courtade, Fathi and Pananjady
[26]) started to fill this gap.

More precisely, Ledoux, Nourdin and Peccati [38] provide some improvement of the log-
Sobolev inequality and Talagrand’s quadratic transportation cost inequality through the use of a
Stein kernel and in particular, the Stein discrepancy that measures the closeness of the Stein ker-
nels to identity. In a second paper Ledoux, Nourdin and Peccati [39], these authors also provide
a lower bound of the deficit in the Gaussian log-Sobolev inequality in terms Stein’s characteriza-
tion of the Gaussian distribution. Recently, Fathi and Nelson [31] also consider free Stein kernel
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and use it to improve the free log-Sobolev inequality. Finally, Courtade, Fathi and Pananjady
[26] proved that the existence of a reversed weighted Poincaré inequality is sufficient to ensure
existence of a Stein kernel. To do so, they use an elegant argument based on the Lax–Milgram
theorem. They also provide bounds on the Stein discrepancy and application to a quantitative
central limit theorem.

Particularizing to dimension one, the present paper aims at pursuing investigations about the
relations between Stein’s method – especially Stein kernels – and some functional inequalities,
together with some concentration inequalities. The limitation to dimension one comes, for most
of the results, from the one-dimensional nature of the covariance identities given in Section 2,
that are instrumental for the rest of the paper and which crucially rely on the use of the properties
of the cumulative distribution function.

We prove that a measure ν having a finite first moment and a density with connected support
satisfies a weighted Poincaré inequality in the sense of Bobkov and Ledoux [11], with the weight
being the Stein kernel τν (see the definition in Section 2 below), that is unique in this case. More
precisely, for any f ∈ L2(ν), absolutely continuous, we have

Var
(
f (X)

) ≤ E
[
τν(X)

(
f ′(X)

)2]
. (1)

The latter inequality allows us to recover by different techniques some weighted Poincaré
inequalities previously established in Bobkov and Ledoux [12] for the Beta distribution or in
Bonnefont, Joulin and Ma [14] for the generalized Cauchy distribution and to highlight new
ones, considering for instance Pearson’s class of distributions.

It is also well known that Muckenhoupt-type criteria characterize (weighted) Poincaré and
log-Sobolev inequalities on the real line (Ané et al. [1], Bobkov and Götze [6]). We indeed
recover, up to a multiplicative constant, inequality (1) from the classical Muckenhoupt criterion.
Furthermore, using the criterion first established by Bobkov and Götze [6] to characterize log-
Sobolev inequalities on the real line, we prove that, under the conditions ensuring the weighted
Poincaré inequality (1), together with some asymptotic assumptions on the behavior of the Stein
kernel around the edges of the support of the measure ν, the following inequality holds,

Entν
(
g2) ≤ Cν

∫
τ 2
ν

(
g′)2

dν, (2)

for some constant Cν > 0 and with Entν(g2) = ∫
g2 logg2 dν − ∫

g2 dν log
∫

g2 dν. More pre-
cisely, if the support of ν is compact, then inequality (2) is valid if τ−1

ν is integrable at the edges
of the support. If on contrary, an edge of the support is infinite, then a necessary condition for in-
equality (2) to hold is that the Stein kernel does not tend to zero around this edge. In the way, we
provide an improvement in dimension one of a weighted log-Sobolev inequality for the Cauchy
measure due to Bobkov and Ledoux [11], that is of independent interest.

We also show that existence of a uniformly bounded Stein kernel is nearly sufficient to ensure
a positive Cheeger isoperimetric constant. In addition, we derive asymmetric Brascamp–Lieb
type inequalities related to the Stein kernel.

There is also a growing literature, initiated by Chatterjee [19], about the links between Stein’s
method and concentration inequalities. Several approaches are considered, from the method of
exchangeable pairs (Chatterjee [19], Chatterjee and Dey [22], Mackey et al. [43], Paulin, Mackey
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and Tropp [48]), to the density approach coupled with Malliavin calculus (Nourdin and Viens
[47], Viens [55], Eden and Viens [29], Treilhard and Mansouri [54]), size biased coupling (Ghosh
and Goldstein [32,33], Ghosh, Goldstein and Raič [34], Cook, Goldstein and Johnson [24]),
zero bias coupling (Goldstein and Işlak [35]) or more general Stein couplings (Barbour, Ross
and Wen [4]). As emphasized for instance, in the survey by Chatterjee [21], one major strength
of Stein-type methodologies applied to concentration of measure is that it often allows to deal
with dependent and complex system of random variables, finding for instance applications in
statistical mechanics or in random graph theory.

In the present work, we investigate relationships between Stein kernels and concentration of
measure by building upon ideas and exporting techniques about the use of covariance identities
for Gaussian concentration from Bobkov, Götze and Houdré [7].

Considering first the case where a Stein kernel is uniformly bounded, we recover the well-
known fact that the associated random variable admits a sub-Gaussian behavior. But we also
prove in this setting some refined concentration inequalities, that we call generalized Mills’ type
inequalities, in reference to the classical Mills’ inequality for the normal distribution (see for
instance Dümbgen [28]). Assume also that a Stein kernel τv exists for the measure ν, is uniformly
bounded, and denote c = ‖τv‖−1∞ . Then the function Tg(r) = ecr2/2

E(g − Eg)1{g−Eg≥r} is non-
increasing in r ≥ 0. Consequently, for all r > 0,

P(g −Eg ≥ r) ≤ E(g −Eg)+
e−cr2/2

r
. (3)

In particular, Beta distributions have a bounded Stein kernel and our concentration inequalities
improve on previously best known concentration inequalities for Beta distributions, recently due
to Bobkov and Ledoux [12].

Furthermore, we consider the situation where a Stein kernel has a sub-linear behavior, recov-
ering and extending in this case sub-Gamma concentration previously established by Nourdin
and Viens [47]. We also prove some generalized Mills’ type inequalities in this case. More gen-
erally, we prove that the Laplace transform of a Stein kernel controls the Laplace transform of
a Lipschitz function taken on the related distribution. Take f a 1-Lipschitz function with mean
zero with respect to ν and assume that f has an exponential moment with respect to ν, that is
there exists a > 0 such that E[eaf (X)] < +∞. Then for any λ ∈ (0, a),

E
[
eλf (X)

] ≤ E
[
eλ2τν(X)

]
. (4)

It is worth noting that to prove such a result, we state a generic lemma – Lemma 15 Section 4 –
allowing to bound the Laplace transform of a random variable. We believe that this lemma has
an interest by itself, as it may be convenient when dealing with Chernoff’s method in general.

We also obtain lower tail bounds without the need of Malliavin calculus, thus extending pre-
vious results due to Nourdin and Viens [47] and Viens [55].

The paper is organized as follows. In Section 2, we introduce some background material, by
discussing some well-known and new formulas for Stein kernels and Stein factors in connection
with Menz and Otto’s covariance identity. We also provide formulas involving the Stein operator,
for densities and tails. Then we prove in Section 3 some (weighted) functional inequalities linked
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to the behavior of the Stein kernel. In Section 4, we make use of some covariance inequalities
to derive various concentration inequalities for Lipschitz functions of a random variable having
a Stein kernel. Finally, we prove some tail bounds related to the behavior of the Stein kernel –
assumed to be unique – in Section 5. Some further results, proofs and comments are gathered in
a supplemental article Saumard [49].

2. On covariance identities and the Stein kernel

Take a real random variable X of distribution ν with density p with respect to the Lebesgue
measure on R and cumulative distribution function F . Assume that the mean of the distribu-
tion ν exists and denote it by μ = E[X]. Denote also Supp(ν) = {x ∈ R : p(x) > 0} ⊂ R̄( :=
R∪{−∞,+∞}) the support of the measure ν, defined as the closure of the set where the density
is positive and assume that this support is connected. We denote by a ∈ R∪{−∞}, b ∈R∪{+∞},
a < b, the edges of Supp(ν). For convenience, we also denote by I (ν) = Int(Supp(ν)) the in-
terior of the support of ν. The distribution ν is said to have a Stein kernel τν , if the following
identity holds true,

E
[
(X − μ)ϕ(X)

] = E
[
τν(X)ϕ′(X)

]
, (5)

with ϕ being any differentiable test function such that the functions x 
→ (x − μ)ϕ(x) and
x 
→ τν(x)ϕ′(x) are ν-integrable and [τνpϕ]ba = 0. It is well-known (Ledoux, Nourdin and Pec-
cati [38], Courtade, Fathi and Pananjady [26], Ley, Reinert and Swan [40]), that under our as-
sumptions the Stein kernel τν exists, is unique up to sets of ν-measure zero and a version of the
latter is given by the following formula,

τv(x) = 1

p(x)

∫ ∞

x

(y − μ)p(y)dy, (6)

for any x ∈ I (ν). Formula (6) comes from a simple integration by parts. Notice that τν is almost
surely positive on the interior of the support of ν.

Although we will focus only on dimension one, it is worth noting that the definition of a
Stein kernel extends to higher dimension, where it is matrix-valued. The question of existence
of the Stein kernel for a particular multi-dimensional measure ν is nontrivial and only a few
general results are known related to this problem (see, for instance, Ledoux, Nourdin and Pec-
cati [38], Courtade, Fathi and Pananjady [26] and Fathi [30]). In particular, Courtade, Fathi and
Pananjady [26] proves that the existence of a Stein kernel is ensured whenever a (converse
weighted) Poincaré inequality is satisfied for the probability measure ν. Recently, Stein ker-
nels that are positive definite matrices have been constructed in Fathi [30] using transportation
techniques.

In this section, that essentially aims at stating some background results that will be instrumen-
tal for the rest of the paper, we will among other things recover Identity (6) and introduce a new
formula for the Stein kernel by means of a covariance identity recently obtained in Menz and
Otto [44] and further developed in Saumard and Wellner [50]. It actually appears that Menz and
Otto’s covariance identity is a consequence of an old result by Hoeffding (see the discussion in
Saumard and Wellner [51]).
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We define a non-negative and symmetric kernel kν on R
2 by

kν(x, y) = F(x ∧ y) − F(x)F (y), for all (x, y) ∈R
2. (7)

For any p ∈ [1,+∞], we denote by Lp(ν) the space of measurable functions f such that ‖f ‖p
p =∫ |f |p dν < +∞ for p ∈ [1,+∞) and ‖f ‖∞ = ess supx∈R |f (x)| < +∞ for p = +∞. If f ∈

Lp(ν), g ∈ Lq(ν), p−1 + q−1 = 1, we also write

Cov(f, g) =
∫ (

f −
∫

f dν

)
g dν

the covariance of f and g with respect to ν. For f ∈ L2(ν), we write Var(f ) = Cov(f,f ) the
variance of f with respect to ν. For a random variable X of distribution ν, we will also write
E[h(X)] = E[h] = ∫

hdν.

Proposition 1 (Corollary 2.2, Saumard and Wellner [50]). If g and h are absolutely continu-
ous and g ∈ Lp(ν), h ∈ Lq(ν) for some p ∈ [1,∞] and p−1 + q−1 = 1, then

Cov(g,h) =
∫∫

R2
g′(x)kν(x, y)h′(y) dx dy. (8)

It is worth mentioning that the covariance identity (8) heavily relies on dimension one, since it
uses the properties of the cumulative distribution function F through the kernel kν . In dimension
greater than or equal to 2, a covariance identity of the form of (8) – with derivatives replaced by
gradients, – would actually imply that the measure ν is Gaussian (for more details, see Bobkov,
Götze and Houdré [7] and also Remark 2 below).

Remark 2. In the context of goodness-of-fit tests, Liu, Lee and Jordan [41] introduce the notion
of kernelized Stein discrepancy as follows. If K(x,y) is a kernel on R

2, p and q are two den-
sities and (X,Y ) is a pair of independent random variables distributed according to p, then the
kernelized Stein discrepancy SK(p,q) between p and q related to K is

SK(p,q) = E
[
δq,p(X)K(X,Y )δq,p(Y )

]
,

where δq,p(x) = (logq(x))′ − (logp(x))′ is the difference between scores of p and q . This
notion is in fact presented in Liu, Lee and Jordan [41] in higher dimension and is used as an
efficient tool to assess the proximity of the laws p and q . From formula (8), we see that if we
take Kν(x, y) = kν(x, y)pν(x)−1pν(y)−1, then we get the following formula, valid in dimension
one,

SKν (p, q) = Varν

(
log

(
p

q

))
.

In higher dimension, Bobkov, Götze and Houdré [7] proved that the Gaussian measures satisfy
a covariance identity of the same form as in (8) above, with derivatives replaced by gradients.
More precisely, let (X,Y ) be a pair of independent normalized Gaussian vectors in R

d , let μα
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be the measure of the pair (X,αX + √
1 − α2Y) and let pN(x, y) be the density associated the

measure
∫ 1

0 μα dα. Then we have

Cov
(
g(X),h(X)

) =
∫∫

R2
∇g(x)T pN(x, y)∇h(y)dx dy.

This gives that for a kernel KN(x, y) = pN(x, y)ϕ−1(x)ϕ−1(y), where ϕ is the standard normal
density on R

d , we also have

SKN
(p,q) = Var

(
log

(
p

q

)
(X)

)
.

The following formulas will also be useful. They can be seen as special instances of the previ-
ous covariance representation formula.

Corollary 3 (Corollary 2.1, Saumard and Wellner [50]). For an absolutely continuous func-
tion h ∈ L1(F ),

F(z)

∫
R

hdν −
∫ z

−∞
hdν =

∫
R

kν(z, y)h′(y) dy (9)

and

−(
1 − F(z)

) ∫
R

hdν +
∫

(z,∞)

h dν =
∫
R

kν(z, y)h′(y) dy. (10)

By combining Theorem 1 and Corollary 3, we get the following covariance identity.

Proposition 4. Let ν be a probability measure on R and p,q ≥ 1 such that p−1 + q−1 = 1.
Denote Lh(x) = ∫ ∞

x
hdν − (1 − F(x))

∫
R

hdν = F(x)
∫
R

hdν − ∫ x

−∞ hdν for every x∈R. If
g ∈ Lp(ν) and h ∈ Lq(ν) are absolutely continuous and if g′Lh is integrable with respect to the
Lebesgue measure, then

Cov(g,h) =
∫
R

g′(x)Lh(x)dx. (11)

Furthermore, if ν has a density p with respect to the Lebesgue measure that has a connected
support, then

Cov(g,h) =
∫
R

g′(x)L̄h(x)p(x)dx = E
[
g′(X)L̄h(X)

]
, (12)

where, for every x ∈ I (ν),

L̄h(x) = p(x)−1Lh(x) = 1

p(x)

∫ ∞

x

hdν − 1 − F(x)

p(x)
E[h]. (13)

If x /∈ I (v), we take L̄h(x) = 0.
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Proof. Identity (11) consists in applying Fubini theorem in the formula of Theorem 1 and then
using Corollary 3. If ν has a density p with respect to the Lebesgue measure that has a connected
support, then for every x /∈ I (ν) we have Lh(x) = 0. Consequently, from Identity (11) we get,
for g ∈ L∞(ν), h ∈ L1(ν) absolutely continuous,

Cov(g,h) =
∫

I (ν)

g′(x)Lh(x)dx =
∫

I (ν)

g′(x)L̄h(x)p(x)dx

and so Identity (12) is proved. �

From Proposition 4, we can directly recover formula (6) for the Stein kernel, when it is as-
sumed that the measure has a connected support and finite first moment. Indeed, by taking
h(x) = x − μ, we have h ν-integrable and differentiable and so, for any absolutely continuous
function g ∈ L∞(ν) such that g′L̄h is ν-integrable, applying Identity (12) – since g′Lh = g′L̄hp

a.s. is Lebesgue integrable – yields

Cov(g,h) =
∫
R

(x − μ)g(x)p(x)dx =
∫
R

g′L̄hdν. (14)

As by a standard approximation argument, identity (14) can be extended to any g such that the
functions x 
→ (x − μ)g(x) and x 
→ τν(x)g′(x) are ν-integrable and [τνpg]ba = 0, we deduce
that a version of the Stein kernel τν is given by L̄h, which is nothing but the right-hand side of
Identity (6).

Following the nice recent survey Ley, Reinert and Swan [40] related to the Stein method in
dimension one, identity (12) is exactly the so-called “generalized Stein covariance identity”,
written in terms of the inverse of the Stein operator rather than the Stein operator itself. Indeed,
it is easy to see that the inverse Tν of the operator L̄ acting on integrable functions with mean
zero is given by the following formula

Tνf = (fp)′

p
1I (ν),

which is exactly the Stein operator (see Definition 2.1 of Ley, Reinert and Swan [40]).
It is also well known, see again Ley, Reinert and Swan [40], that the inverse of the Stein

operator, that is L̄, is highly involved in deriving bounds for distances between distributions.
From Corollary 3, we have the following seemingly new formula for this important quantity,

T −1
ν h(x) = L̄h(x) = 1

p(x)

∫
R

kν(x, y)h′(y) dy. (15)

Particularizing the latter identity with h(x) = x − μ, we obtain the following identity for the
Stein kernel,

τν(x) = 1

p(x)

∫
R

kν(x, y) dy. (16)

A consequence of (16) that will be important in Section 3 when deriving weighted functional
inequalities is that for any x ∈ I (ν) the function y 
→ kν(x, y)(p(x)τν(x))−1 can be seen as the
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density – with respect to the Lebesgue measure – of a probability measure, since it is nonnegative
and integrates to one.

We also deduce from (15) the following upper bound,

∣∣T −1
ν h(x)

∣∣ ≤ ‖h′‖∞
p(x)

∫
R

kν(x, y) dy = ‖h′‖∞
p(x)

(
F(x)

∫
R

x dν(x) −
∫ x

−∞
x dν(x)

)
,

which is exactly the formula given in Proposition 3.13(a) of Döbler [27].
Let us note ϕ(x) = − logp(x) when p(x) > 0 and +∞ otherwise, the so-called potential of

the density p. If on I (ν), ϕ has derivative ϕ′ ∈ L1(ν) absolutely continuous, then Corollary 2.3
in Saumard and Wellner [50] gives∫

R

kν(x, y)ϕ′′(y) dy = p(x).

Using the latter identity together with (15), we deduce the following upper-bound: if p is strictly
log-concave (that is ϕ′′ > 0 on I (ν)), then

sup
x∈I (ν)

∣∣T −1
ν h(x)

∣∣ ≤ sup
x∈I (ν)

|h′(x)|
ϕ′′(x)

. (17)

In particular, if p is c-strongly log-concave, meaning that ϕ′′ ≥ c > 0 on R, then the Stein kernel
is uniformly bounded and ‖τν‖∞ ≤ c−1. For more about the Stein method related to (strongly)
log-concave measures, see, for instance, Mackey and Gorham [42].

Furthermore, by differentiating (15), we obtain for any x ∈ I (ν),

(
T −1

ν h
)′
(x) = ϕ′(x)T −1

ν h(x) − h(x) −
∫
R

F(y)h′(y) dy

= ϕ′(x)T −1
ν h(x) − h(x) +E

[
h(X)

]
,

that is (
T −1

ν h
)′
(x) − ϕ′(x)T −1

ν h(x) = −h(x) +E
[
h(X)

]
.

This is nothing but the so-called Stein equation associated to the Stein operator.
We conclude this section with the following formulas, that are available when considering a

density with connected support and that will be useful in the rest of the paper (see in particular
Sections 3.2 and 5).

Proposition 5. Assume that X is a random variable with distribution ν having a density p with
connected support with respect to the Lebesgue measure on R. Take h ∈ L1(ν) with E[h(X)] = 0
and assume that the function L̄h defined in (13) is ν-almost surely strictly positive. We have, for
any x0, x ∈ I (ν),

p(x) = E[h(X)1{X≥x0}]
L̄h(x)

exp

(
−

∫ x

x0

h(y)

L̄h(y)
dy

)
. (18)
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Consequently, if X has a finite first moment, for any x ∈ I (ν),

p(x) = E[|X − μ|]
2τν(x)

exp

(
−

∫ x

μ

y − μ

τν(y)
dy

)
. (19)

By setting Th(x) = exp(− ∫ x

x0

h(y)

L̄h(y)
dy) and I (ν) = (a, b), if the function h is ν-almost positive,

differentiable on (x, b) and if the ratio Th(y)/h(y) tends to zero when y tends to b−, then we
have, for any x0, x ∈ I (ν),

P(X ≥ x) = E
[
h(X)1{X≥x0}

](Th(x)

h(x)
−

∫ b

x

h′(y)

h2(y)
Th(y) dy

)
. (20)

Formula (18) can also be found in Döbler [27], Equation (3.11), under the assumption that
h is decreasing and for a special choice of x0. Since E[h(X)] = 0, it is easily seen through its
definition (13), that if h �= 0 ν-a.s. then L̄h > 0 ν-a.s. When h = Id − μ, formulas (19) and
(20) were first proved respectively in Nourdin and Viens [47] and Viens [55], although with
assumption that the random variable X belongs to the space D1,2 of square integrable random
variables with the natural Hilbert norm of their Malliavin derivative also square integrable.

In order to take advantage of formulas (18) and (20), one has to use some information
about L̄h. The most common choice is h = Id − μ, which corresponds to the Stein kernel
L̄(Id − μ) = τν .

Proof. Begin with Identity (18). As x0 ∈ I (ν) and the function Lh defined in (4) is ν-almost
surely positive, we have for any x ∈ I (v),

Lh(x) = Lh(x0) exp

(∫ x

x0

(
ln(Lh)

)′
(y) dy

)
.

To conclude, note that Lh(x0) = E[h(X)1{X≥x0}] and (ln(Lh))′ = −h/L̄h. To prove (19), simply
remark that is follows from (18) by taking h = Id − μ and x0 = μ.

It remains to prove (20). We have from (18), p = E[h(X)1{X≥x0}]Th/L̄h and by definition of
Th, T ′

h = −hTh/L̄h. Hence, integrating between x and b gives

P(X ≥ x) = E
[
h(X)1{X≥x0}

] ∫ b

x

Th(y)

L̄h(y)
dy

= E
[
h(X)1{X≥x0}

] ∫ b

x

−T ′
h(y)

h(y)
dy

= E
[
h(X)1{X≥x0}

]([−Th

h

]b

x

−
∫ b

x

h′(y)Th(y)

h2(y)
dy

)

= E
[
h(X)1{X≥x0}

](Th(x)

h(x)
−

∫ b

x

h′(y)Th(y)

h2(y)
dy

)
. �
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3. Some weighted functional inequalities

Weighted functional inequalities appear naturally when generalizing Gaussian functional in-
equalities such as Poincaré and log-Sobolev inequalities. They were put to emphasis for the gen-
eralized Cauchy distribution and more general κ-concave distributions by Bobkov and Ledoux
[10,11], also in connection with isoperimetric-type problems, weighted Cheeger-type inequali-
ties and concentration of measure. Then several authors proved related weighted functional in-
equalities (Bakry, Cattiaux and Guillin [2], Bonnefont and Joulin [13], Bonnefont, Joulin and
Ma [14,15], Cattiaux et al. [18], Cattiaux, Guillin and Wu [17], Cordero-Erausquin and Gozlan
[25], Gozlan [36]). In the following, we show the strong connection between Stein kernels and
the existence of weighted functional inequalities. Note that a remarkable first result in this direc-
tion was recently established by Courtade, Fathi and Pananjady [26] who proved that a reversed
weighted Poincaré inequality is sufficient to ensure the existence of a Stein kernel in R

d , d ≥ 1.
Our results are derived in dimension one. Indeed, the proofs of weighted Poincaré inequalities

(Section 3.1) and asymmetric Brascamp–Lieb type inequalities (Section 1.3, Saumard [49]) rely
on covariance identities stated in Section 2, that are based on properties of cumulative distribution
functions available in dimension one. Recently, Fathi [30] generalized in higher dimension the
weighted Poincaré inequalities derived in Section 3.1 using transportation techniques. We also
derive in Section 3.2 some weighted log-Sobolev inequalities, that are derived through the use
of some Muckenhoupt-type criteria that are only valid in dimension one. However, it is natural
to conjecture a multi-dimensional generalization, especially using tools developed in Fathi [30],
but this remains an open question. Finally, using a formula for the isoperimetric constant in
dimension one due to Bobkov and Houdré [8], we prove that a uniformly bounded Stein kernel
is essentially sufficient to ensure a positive isoperimetric constant. Again, the problem in higher
dimension seems much more involved and is left as an interesting open question.

3.1. Weighted Poincaré-type inequality

According to Bobkov and Ledoux [11], a measure ν on R is said to satisfy a weighted Poincaré
inequality if there exists a nonnegative measurable weight function ω such that for any smooth
function f ∈ L2(ν),

Var
(
f (X)

) ≤ E
[
ω(X)

(
f ′(X)

)2]
. (21)

The following theorem shows that a probability measure having a finite first moment and density
with connected support on the real line satisfies a weighted Poincaré inequality, with the weight
being its Stein kernel.

Theorem 6. Take a real random variable X of distribution ν with density p with respect to the
Lebesgue measure on R. Assume that E[|X|] < +∞, p has a connected support and denote τν

the Stein kernel of ν. Take f ∈ L2(ν), absolutely continuous. Then

Var
(
f (X)

) ≤ E
[
τν(X)

(
f ′(X)

)2]
. (22)
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The preceding inequality is optimal whenever ν admits a finite second moment, that is E[X2] <

+∞, since equality is reached for f = Id, by definition of the Stein kernel.

Proof. We have

Var
(
f (X)

) = E

[√
τν(X)f ′(X)

L̄f (X)√
τν(X)

]

≤
√
E

[
τν(X)

(
f ′(X)

)2]√
E

[
τν(X)

( L̄f (X)

τν(X)

)2]
.

By the use of Jensen’s inequality, for any x ∈ I (ν),

( L̄f (x)

τν(x)

)2

=
(∫

f ′(y)
kν(x, y)∫
kν(x, z) dz

dy

)2

≤
∫ (

f ′(y)
)2 kν(x, y)∫

z
kν(x, z) dz

dy

=
∫

kν(x, y)

τν(x)p(x)

(
f ′(y)

)2
dy.

Hence,

E

[
τν(X)

( L̄f (X)

τν(X)

)2]
≤

∫
τv(x)p(x)

(∫
kν(x, y)

τν(x)p(x)

(
f ′(y)

)2
dy

)
dx

=
∫∫

kν(x, y)
(
f ′(y)

)2
dx dy

=
∫

τν(y)
(
f ′(y)

)2
p(y)dy,

which concludes the proof. �

It is worth mentioning that the famous Brascamp–Lieb inequality provides another weighted
Poincaré inequality in dimension one: if ν is strictly log-concave, of density p = exp(−ϕ) with
a smooth potential ϕ, then for any smooth function f ∈ L2(ν),

Var
(
f (X)

) ≤ E
[(

ϕ′′(X)
)−1(

f ′(X)
)2]

. (23)

In particular, if ν is strongly log-concave (that is ϕ′′ ≥ c > 0 for some constant c > 0), then both
the Brascamp–Lieb inequality (23) and inequality (22) – combined with the estimate ‖τν‖∞ ≤
c−1 coming from inequality (17) – imply the Poincaré inequality Var(f (X)) ≤ c−1

E[(f ′(X))2],
that also follows from the Bakry–Émery criterion. However, in general, the Stein kernel appear-
ing in (22) may behave differently from the inverse of the second derivative of the potential and
there is no general ordering between the right-hand sides of inequalities (22) and (23).
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Indeed, let us discuss the situation for a classical class of examples in functional inequalities,
namely the class of Subbotin densities pα(x) = Z−1

α exp(−|x|α/α) for x ∈ R, where Zα > 0 is
the normalizing constant. Recall that densities pα are not strongly log-concave and do not satisfy
the Bakry–Émery criterion – except for α = 2 which corresponds to the normal density – but they
satisfy a Poincaré inequality if and only if α ≥ 1 and a log-Sobolev inequality if and only if α ≥ 2
(see Latała and Oleszkiewicz [37] and also Bonnefont and Joulin [13] for a thorough discussion
on optimal constants in these inequalities). We restrict our discussion to the condition α > 1 for
which pα is strictly log-concave, so that the Brascamp–Lieb inequality applies. More precisely,
by writing pα = exp(−ϕα), we have (ϕ′′)−1(x) = (α − 1)−1|x|2−α . Using the explicit formula
(16) for the Stein kernel and an integration by parts, one can easily check that if α ∈ (1,2),
then τα(x) < |x|2−α where τα is the Stein kernel associated to pα . We thus get, for α ∈ (1,2),
(ϕ′′)−1(x) > τα(x) for any x ∈ R and so the Brascamp–Lieb inequality is less accurate than
Theorem 6 in this case. Furthermore, if α > 2 then τα(x) > |x|2−α and so (ϕ′′)−1(x) < τα(x)

for any x ∈ R, which means that the Brascamp–Lieb inequality is more accurate than Theorem
6 for α > 2. However, we can not recover through the use of Theorem 6 – or the Brascamp–
Lieb inequality – the existence of a spectral gap for α ∈ [1,2). Finally, Theorem 6 gives us
the existence of some weighted Poincaré inequalities for any α > 0, whereas Brascamp–Lieb
inequality only applies for α > 1.

It is also worth mentioning that Theorem 6 has been recently generalized to higher dimension
by Fathi [30], for a Stein kernel that is a positive definite matrix and that is defined through the
use of a so-called moment map. The proof of this (non-trivial) extension of our result is actually
based on the Brascamp–Lieb inequality itself, but applied to a measure also defined through the
moment map problem.

Let us now detail some classical examples falling into the setting of Theorem 6.
The beta distribution Bα,β , α,β > 0 is supported on (0,1), with density pα,β given by

pα,β(x) = xα−1(1 − x)β−1

B(α,β)
, 0 < x < 1. (24)

The normalizing constant B(α,β) is the classical beta function of two variables. The beta
distribution has been for instance recently studied in Bobkov and Ledoux [12] in connection
with the analysis of the rates of convergence of the empirical measure on R for some Kan-
torovich transport distances. The Stein kernel τα,β associated to the Beta distribution is given by
τα,β(x) = (α + β)−1x(1 − x) for x ∈ (0,1) (see, for instance, Ley, Reinert and Swan [40]) and
thus Theorem 6 allows to exactly recover Proposition B.5 of Bobkov and Ledoux [12] (which
is optimal for linear functions as noticed in Bobkov and Ledoux [12]). Our techniques are no-
ticeably different since the weighted Poincaré inequality is proved in Bobkov and Ledoux [12]
by using orthogonal (Jacobi) polynomials. Notice also that the beta density pα,β is strictly log-
concave on the interior of its support. Indeed, by writing pα,β = exp(−ϕα,β), we get, for any
x ∈ (0,1),

(
ϕ′′)−1

(x) = x2(1 − x)2

(α − 1)(1 − x)2 + (β − 1)x2
.

Remark that, for instance, (ϕ′′)−1(x) ∼x→0+ x2/(α − 1), whereas τα,β(x) ∼x→0+ x/(α + β),
so the weights in the Brascamp–Lieb inequality (23) and in inequality (22) are not of the same
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order at 0 (or by symmetry at 1), although it is also easy to show that there exists a constant
cα,β > 0 – cα,β = (α + β)/(2

√
(α − 1)(β − 1)) works – such that (ϕ′′)−1(x) ≤ cα,βτα,β(x) for

any x ∈ (0,1).
Note that considering Laguerre polynomials, that are eigenfunctions of the Laguerre operator

for which the Gamma distribution is invariant and reversible, one can also show an optimal
weighted Poincaré inequality for the Gamma distribution, which include as a special instance
the exponential distribution (see Bobkov and Ledoux [9] and also Bakry, Gentil and Ledoux
[3], Section 2.7). Theorem 6 also gives an optimal weighted Poincaré inequality for the Gamma
distribution and more generally for Pearson’s class of distributions (see below).

Note also that the beta distribution seems to be outside of the scope of the weighted Poincaré
inequalities described in Bonnefont, Joulin and Ma [14] since it is assumed in the latter article that
the weight of the considered Poincaré-type inequalities is positive on R, which is not the case
for the beta distribution. Furthermore, Bobkov and Ledoux [12] also provides some weighted
Cheeger inequality for the Beta distribution, but such a result seems outside the scope of our
approach based on covariance identity (8). When considering concentration properties of beta
distributions in Section 4 below, we will however provide some improvements compared to the
results of Bobkov and Ledoux [12].

Furthermore, it has also been noticed that the generalized Cauchy distribution satisfies a
weighted Poincaré distribution, which also implies in this case a reverse weighted Poincaré in-
equality (see Bobkov and Ledoux [11], Bonnefont, Joulin and Ma [14]). In fact, Bobkov and
Ledoux [11] shows that the generalized Cauchy distribution plays a central role when consider-
ing functional inequalities for κ-concave measures, with κ < 0.

The generalized Cauchy distribution νβ of parameter β > 1/2 has density pβ(x) = Z−1
β (1 +

x2)−β for x ∈R and normalizing constant Zβ > 0. Its Stein kernel τβ exists for β > 1 and writes
τβ(x) = (1+x2)/(2(β −1)). This allows us to recover in the case where β > 3/2 – that is νβ has
a finite second moment – the optimal weighted Poincaré inequality also derived in Bonnefont,
Joulin and Ma [14], Theorem 3.1. Note that Theorem 3.1 of Bonnefont, Joulin and Ma [14] also
provides the optimal constant in the weighted Poincaré inequality with a weight proportional to
1 + x2 in the range β ∈ (1/2,3/2].

Let us conclude this short list of examples by mentioning Pearson’s class of distributions, for
which the density p is solution to the following differential equation,

p′(x)

p(x)
= α − x

β2(x − λ)2 + β1(x − λ) + β0
, (25)

for some constants λ, α, βj , j = 0,1,2. This class of distributions, that contains for in-
stance Gaussian, Gamma, Beta and Student distributions, has been well studied in the context
of Stein’s method, see Ley, Reinert and Swan [40] and references therein. In particular, if a
density satisfies (25) with β2 �= 1/2, then the corresponding distribution ν has a Stein kernel
τν(x) = (1 − 2β2)

−1(β0 + β1x + β2x
2), for any x ∈ I (ν). Particularizing to the Student distri-

bution tα with density pα proportional to (α + x2)−(1+α)/2 on R for α > 1, we get that for any
smooth function f ∈ L2(tα),

Vartα (f ) ≤ 1

α − 1

∫ (
x2 + α

)
f ′2(x) dtα(x).
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Some further comments related to some concentration inequalities that can be proved from
weighted Poincaré inequalities and to links between converse weighted Poincaré inequalities
and existence of a Stein kernel can be found in Saumard [49], Section 1.1.

3.2. Links with Muckenhoupt-type criteria

It is well known that the Muckenhoupt criterion (Muckenhoupt [46]), which provides a necessary
and sufficient condition for a (weighted) Hardy inequalty to hold on the real line, can be used to
sharply estimate the best constant in Poincaré inequalities (see, for instance, Ané et al. [1] and
Miclo [45] and references therein). The following theorem, providing sharp estimates, is given
in Miclo [45].

Theorem 7 (Miclo [45]). Let η be a probability measure on R with median m and let χ be a
measure on R with Radon–Nikodym derivative with respect to the Lebesgue measure denoted by
n. The best constant CP such that, for every locally Lipschitz f :R→ R it holds

Varη(f ) ≤ CP

∫ (
f ′)2

dχ,

verifies max{B+,B−} ≤ CP ≤ 4 max{B+,B−} where

B+ = sup
x>m

η
([x,+∞)

)∫ x

m

dt

n(t)
and B− = sup

x<m
η
(
(−∞, x]) ∫ m

x

dt

n(t)
.

Considering Theorem 6, a natural question is: can we recover (up to a constant) Inequality
(22) from Theorem 7 above? The answer is positive. Indeed, we want to show that max{B+,B−}
is finite. We will only discuss computations for B+ since B− can be treated symmetrically. With
the notations of Theorems 6 and 7, we take η = ν and n(t) = τν(t)p(t). This gives

B+ = sup
x>m

ν
([x,+∞)

) ∫ x

m

dt

τv(t)p(t)
= sup

x>m
ν
([x,+∞)

)∫ x

m

dt∫ ∞
t

(y − μ)p(y)dy
.

Furthermore, there exists δ > 0 such that v([x0,+∞)) > 0 for x0 = max{m,μ} + δ. Hence, for
any x ≥ x0,

ν
([x,+∞)

) ∫ x

m

dt∫ ∞
t

(y − μ)p(y)dy
≤ ν([x,+∞))∫ ∞

x
(y − μ)p(y)dy

≤ 1

δ
.

As

sup
x∈(m,x0)

ν
([x,+∞)

)∫ x

m

dt∫ ∞
t

(y − μ)p(y)dy
≤ x0 − m∫ ∞

m
(y − μ)p(y)dy ∧ ∫ ∞

x0
(y − μ)p(y)dy

< +∞,

we get B+ < +∞. Consequently, we quickly recover under the assumptions of Theorem 6 the
fact that the measure ν satisfies a weighted Poincaré inequality of the form of (22), although with
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a multiplicative constant at the right-hand side that a priori depends on the measure ν. Using (22)
together with Theorem 7, we have in fact max{B+,B−} ≤ 1, but we couldn’t achieve this bound –
even up to a numerical constant – by direct computations. It is maybe worth mentioning that the
proof of Theorem 7 in Miclo [45] is technically involved and that the bound max{B+,B−} ≤ 1
in our case might be rather difficult to establish by direct computations.

Let us turn now to the important, natural question of the existence of weighted log-Sobolev
inequalities under the existence of a Stein kernel.

Theorem 8. Take a real random variable X of distribution ν with density p with respect to the
Lebesgue measure on R. Assume that E[|X|] < +∞, p has a connected support [a, b] ⊂ R̄ and
denote τν the Stein kernel of ν. Take g absolutely continuous. Then the following inequality holds

Entν
(
g2) ≤ Cν

∫
τ 2
ν

(
g′)2

dν, (26)

for some constant Cν > 0 if one of the following aymptotic condition holds at the supremum of
its support, together with one of the symmetric conditions – that we don’t write explicitely since
they are obviously deduced – at the infinimum of its support:

• b < +∞ and τ−1
ν is integrable at b− with respect to the Lebesgue measure.

• b = +∞ and 0 < c− ≤ τν(x) ≤ c+x2/ logx for some constants c− and c+ and for x large
enough.

• b = +∞ and 0 < c−x ≤ τν(x) for a constant c− and for x large enough.

Reciprocally, if b = +∞ and τν →x→±∞ 0 then inequality (26) can not be satisfied for every
smooth function g.

Theorem 8 gives a sufficient condition for the weighted log-Sobolev inequality (26) to hold
when the support is a bounded interval: it suffices that the inverse of the Stein kernel is in-
tegrable at the edges of the support. Furthermore, when an edge is infinite, if the weighted
log-Sobolev inequality (26) is valid, then the Stein kernel does not tend to zero around this
edge.

The proof of Theorem 8, which is detailed in Saumard [49], Section 1.2, is based on a
Muckenhoupt-type criterion due to Bobkov and Götze [6] (see also Barthe and Roberto [5] for a
refinement) giving a necessary and sufficient condition for existence of (weighted) log-Sobolev
inequalities on R, together with the use of the formulas given in Propostion 5 above.

Consider the Subbotin densities, defined by pα(x) = Z−1
α exp(−|x|α/α) for α > 0 and x ∈R.

There Stein kernels τα satisfy τα(x) ∼x→+∞ x2−α (see the discussion in Section 3.1 above),
so they achieve a weighted log-Sobolev inequality (26) if and only if α ∈ (0,2]. In the case
where α ∈ [2,+∞), they actually achieve a (unweighted) log-Sobolev inequality (Latała and
Oleszkiewicz [37]).

It is reasonable to think that inequality (26) should be true under suitable conditions in higher
dimension, with the right-hand side replaced by

∫ |τν∇f |2 dν up to a constant, where τν is the
Stein kernel constructed by Fathi [30] using moment maps. However, some technical details
remain to be solved at this point of our investigations.
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Furthermore, notice that Theorem 8 allows to recover in dimension one and with a worst
constant, a result due to Bobkov and Ledoux [10] in dimension d ≥ 1, stating that generalized
Cauchy distributions (see Section 3.1 above for a definition) verify the following weighted log-
Sobolev inequality,

Entνβ

(
g2) ≤ 1

β − 1

∫ (
1 + x2)2(

g′(x)
)2

dνβ(x), β > 1. (27)

Using the Muckenhoupt-type criterion due to Bobkov and Götze [6], we can actually sharpen
and extend the previous inequality in the following way. There exists a constant Cβ such that, for
any smooth function g,

Entνβ

(
g2) ≤ Cβ

∫ (
1 + x2) log

(
1 + x2)(g′(x)

)2
dνβ(x), β > 1/2. (28)

Indeed, using the quantities defined in Saumard [49], Eq. (4), with dη = dνβ = Z−1
β (1 +

x2)−β dx and n(t) = Z−1
β (1+x2)−β+1 log(1+x2), we note that m = 0, L+ = L− and by simple

computations, we have for β > 1/2,

∫ x

m

dt

n(t)
= Ox→+∞

(
x2β−1

logx

)
, 


(
νβ

([x,+∞)
)) = Ox→+∞

(
x−2β+1 logx

)
.

This means that L+ is finite and so, Inequality (28) is valid, which constitutes an improvement
upon inequality (27). A natural question that remains open, is wether the weighted log-Sobolev
inequality obtained for generalized Cauchy measures in Bobkov and Ledoux [10] can be also
improved in dimension d ≥ 2?

3.3. Isoperimetric constant

Let us complete this section about some functional inequalities linked to the Stein kernel by
studying the isoperimetric constant. Recall that for a measure ν on R

d , an isoperimetric inequal-
ity is an inequality of the form

ν+(A) ≥ c min
{
ν(A),1 − ν(A)

}
, (29)

where c > 0, A is an arbitrary measurable set in R
d and ν+(A) stands for the ν-perimeter of A,

defined to be

ν+(A) = lim inf
r→0+

ν(Ar) − ν(A)

r
,

with Ar = {x ∈ R
d : ∃a ∈ A, |x − a| < r} the r-neighborhood of A. The optimal value of c =

Is(ν) in (29) is referred to as the isoperimetric constant of ν.
The next proposition shows that existence of a uniformly bounded Stein kernel is essentially

sufficient for guaranteeing existence of a positive isoperimetric constant.
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Proposition 9. Assume that the probability measure ν has a connected support, finite first mo-
ment and continuous density p with respect to the Lebesgue measure. Assume also that its Stein
kernel τν is uniformly bounded on I (ν), ‖τν‖∞ < +∞. Then ν admits a positive isoperimetric
constant Is(ν) > 0.

More precisely, from the proof of Proposition 9 (see below), we can extract a quantitative
estimate of the isoperimetric constant. Indeed, under the assumptions of Proposition 9, denote by
qβ the quantile of order β ∈ (0,1) of the measure ν and by μ its mean. Then, for any α ∈ (0,1)

such that qα < μ < q1−α , we have

Is(ν) ≥ min

{
α−1 min

x∈[qα,q1−α ]
{
p(x)

}
,

min{μ − qα, q1−α − μ}
‖τν‖∞

}
.

Measures having a uniformly bounded Stein kernel include strongly log-concave measures –
as proved in Section 2 above, – but also smooth perturbations of the normal distribution that are
Lipschitz and bounded from below by a positive constant (see Remark 2.9 in Ledoux, Nourdin
and Peccati [38]). In addition, bounded perturbations of measures having a bounded Stein kernel
given by formula (6) and a density that is bounded away from zero around its mean also have
a bounded Stein kernel. Indeed, take κ a measure having a density pκ with connected support
[a, b] ⊂ R̄, a < 0 < b, mean zero and a finite first moment so that its Stein kernel τκ is unique –
up to sets of Lebesgue measure zero – and given by formula (6). Assume also that the density pκ

is bounded away from zero around zero, that is there exists L,δ > 0 such that [−δ, δ] ⊂ (a, b)

and infx∈[−δ,δ] pκ(x) ≥ L > 0. Now, consider a function ρ on R such that C−1 ≤ ρ(x) ≤ C for
any x ∈ (a, b) and for some constant C > 0, such that p(x) = ρ(x)pκ(x) is the density of a
probability measure ν with support [a, b]. As ν has a finite first moment, it also admits a Stein
kernel τν , given by formula (6). Furthermore, τν is uniformly bounded and easy computations
using the formula (6) give

‖τν‖∞ ≤ C2
(

‖τκ‖∞ + |μ|max

{
1

L
,
‖τκ‖∞

δ

})
,

where μ is the mean of ν.
It would be interesting to know if Proposition 9 also holds in higher dimension, but this ques-

tion remains open. A further natural question would be: does a measure having a Stein kernel
satisfy a weighted isoperimetric-type inequality, with a weight related to the Stein kernel? So far,
we couldn’t give an answer to this question. Note that Bobkov and Ledoux [10,11] proved some
weighted Cheeger and weighted isoperimetric-type inequalities for the generalized Cauchy and
for κ-concave distributions.

Proof. Let F be the cumulative distribution function of ν, μ be its mean and let ε > 0 be such
that [μ − ε,μ + ε] ⊂ I (ν). Recall (Bobkov and Houdré [8], Theorem 1.3) that the isoperimetric
constant associated to ν satisfies

Is(ν) = ess inf
a<x<b

p(x)

min{F(x),1 − F(x)} ,
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where a < b are the edges of the support of ν. Take x ∈ I (ν) such that x − μ ≥ ε/2, then

τv(x) = 1

p(x)

∫ ∞

x

(y − μ)p(y)dy

≥ ε
1 − F(x)

2p(x)

≥ ε

2

min{F(x),1 − F(x)}
p(x)

.

The same estimate holds for x ≤ μ − ε/2 since τv(x) = p(x)−1
∫ x

−∞(μ − y)p(y)dy. Hence,

ess inf
x∈I (ν),|x−μ|≥ε/2

p(x)

min{F(x),1 − F(x)} ≥ 2

ε‖τν‖∞
> 0. (30)

Furthermore, we have

inf|x−μ|≤ε/2

p(x)

min{F(x),1 − F(x)} ≥ inf|x−μ|≤ε/2 p(x)

min{F(μ − ε/2),1 − F(μ + ε/2)} > 0. (31)

The conclusion now follows from combining (30) and (31). �

4. Concentration inequalities

We state in this section some concentration inequalities related to Stein kernels in dimension
one. Due to the use of covariance identities stated in Section 2, the proofs indeed heavily rely on
dimension one. We can however notice that it is known from Ledoux, Nourdin and Peccati [38]
that a uniformly bounded (multi-dimensional) Stein kernel ensures a sub-Gaussian concentration
rate. We derive sharp sub-Gaussian inequalities in Theorem 11. It is also reasonable to think that
results such as in Theorem 14 could be generalized to higher dimension, but this seems rather
nontrivial and is left as an open question.

From Proposition 4, Section 2, we get the following proposition.

Proposition 10. Assume that ν has a a finite first moment and a density p with respect to the
Lebesgue measure that has a connected support. If g ∈ L∞(ν) and h ∈ L1(ν) are absolutely
continuous and h is 1-Lipschitz, then∣∣Cov(g,h)

∣∣ ≤ E
[∣∣g′∣∣ · τv

]
, (32)

where τv is given in (6) and is the Stein kernel. Furthermore, if the Stein kernel is uniformly
bounded, that is τv ∈ L∞(ν), then∣∣Cov(g,h)

∣∣ ≤ ‖τv‖∞E
[∣∣g′∣∣]. (33)
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Proof. Start from identity (12) and simply remark that, for hν(x) = x,

∣∣L̄h(x)
∣∣ =

∣∣∣∣ 1

p(x)

∫
R

kν(x, y)h′(y) dy

∣∣∣∣ ≤ ‖h′‖∞
p(x)

∫
R

kν(x, y) dy = ∥∥h′∥∥∞τv(x). �

Applying techniques similar to those developed in Bobkov, Götze and Houdré [7] for Gaus-
sian vectors (see especially Theorem 2.2), we have the following Gaussian type concentration
inequalities when the Stein kernel is uniformly bounded.

Theorem 11. Assume that ν has a finite first moment and a density p with respect to the
Lebesgue measure that has a connected support. Assume also that the Stein kernel τv is uni-
formly bounded, τv ∈ L∞(ν), and denote c = ‖τv‖−1∞ . Then the following concentration inequal-
ities hold. For any 1-Lipschitz function g,

P

(
g ≥

∫
g dν + r

)
≤ e−cr2/2. (34)

Furthermore, the function Tg(r) = ecr2/2
E(g −Eg)1{g−Eg≥r} is non-increasing in r ≥ 0. In par-

ticular, for all r > 0,

P(g −Eg ≥ r) ≤ E(g −Eg)+
e−cr2/2

r
, (35)

P
(|g −Eg| ≥ r

) ≤ E|g −Eg|e
−cr2/2

r
. (36)

Inequality (34) is closely related to Chatterjee’s Gaussian coupling for random variables with
bounded Stein kernel Chatterjee [20]. To our knowledge, refined concentration inequalities such
as (35) and (36) are only available in the literature for Gaussian random variables or by extension,
for strongly log-concave measures. Indeed, these inequalities can be established for strongly log-
concave measures as an immediate consequence of the Caffarelli contraction theorem, which
states that such measures can be realized as the pushforward of the Gaussian measure by a Lips-
chitz function. We refer to these inequalities as generalized Mills’ type inequalities since taking
g = Id in Inequality (36) allows to recover Mills’ inequality (see, for instance, Dümbgen [28]):
if Z is the normal distribution, then for any t > 0,

P
(|Z| > t

) ≤
√

2

π

e−t2/2

t
.

Here the setting of a bounded Stein kernel is much larger and include for instance, smooth pertur-
bations of the normal distribution that are Lipschitz and bounded away from zero (see Remark 2.9
in Ledoux, Nourdin and Peccati [38]) or bounded perturbations of measures having a bounded
Stein kernel and a density bounded away from zero around its mean (see Section 3.3 above for
more details).
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Proof of Theorem 11. Take g to be 1-Lipschitz and mean zero with respect to ν, then for any
λ ≥ 0,

E
[
geλg

] = Cov
(
g, eλg

) ≤ ‖τv‖∞E
[∣∣(eλg

)′∣∣] ≤ λ

c
E

[
eλg

]
.

Define J (λ) = logE[eλg], λ ≥ 0. We thus have the following differential inequality, J ′(λ) ≤
λ/c. Since J (0) = 0, this implies that J (λ) ≤ λ2/(2c). Equivalently, E[eλg] ≤ eλ2/(2c), which
by the use of Chebyshev’s inequality gives (34). Now, assume that as a random variable g has a
continuous positive density p on the whole real line. Take f = U(g) where U is a non-decreasing
(piecewise) differentiable function on R. Applying (33), we get

E
[
gU(g)

] ≤ E
[
U ′(g)

]
/c. (37)

Let G be the distribution function of g. Given r > 0 and ε > 0, applying (37) to the function
U(x) = min{(x − r)+, ε} leads to∫ r+ε

r

x(x − h)dG(x) + ε

∫ +∞

r+ε

x dG(x) ≤ G(r + ε) − G(r)

c
.

Dividing by ε and letting ε tend to 0, we obtain, for all h > 0,
∫ ∞
r

x dG(x) ≤ p(r)/c. Thus,

the function V (r) = ∫ +∞
r

x dG(x) = ∫ +∞
r

xp(x)dx satisfies the differential inequality V (r) ≤
−V ′(r)/(cr), that is (logV (r))′ ≤ −c, which is equivalent to saying that logV (r) + cr2/2 is
non-increasing, and therefore the function Tg(r) is non-increasing. �

We relax now the condition on Stein kernels, by assuming that it is “sub-linear”. This condi-
tion is fulfilled by many important distributions, for instance by the Gaussian, Gamma or Beta
distributions. We deduce a sub-Gamma behavior.

Theorem 12. Assume that ν has a finite first moment and a density p with respect to the
Lebesgue measure that has a connected support. Assume also that the Stein kernel τv is sub-
linear, that is τv(x) ≤ a|x − μ| + b, where μ is the mean value of ν. Then for any 1-Lipschitz
function g and any r > 0,

P

(
g ≥

∫
g dν + r

)
≤ e− r2

2ar+2b . (38)

When g = Id, inequality (38) was proved by Nourdin and Viens [47] under the stronger con-
dition that τv(x) ≤ a(x − μ) + b (which induces that the support of ν is bounded from below if
a > 0).

Proof. Take g to be 1-Lipschitz and mean zero with respect to ν. Without loss of generality, we
may assume that g is bounded (otherwise we approximate g by thresholding its largest values).
Then for any λ ≥ 0,

E
[
geλg

] = Cov
(
g, eλg

) ≤ E
[∣∣(eλg

)′∣∣τv

] ≤ λE
[
eλgτv

]
. (39)
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Furthermore,

E
[
eλgτv

] ≤ aE
[|X − μ|eλg(X)

] + bE
[
eλg

]
(40)

and E[|X − μ|eλg(X)] = E[(X − μ)h(X)] where h(x) = sign(x − μ) exp(λg(x)) and sign(x −
μ) = 2 · 1{x ≥ μ} − 1. As h′(x) = sign(x − μ)λg′(x) exp(λg(x)) a.s., we get

E
[|X − μ|eλg(X)

] = λE
[
sign(X − μ)g′(X)eλg(X)τv(X)

] ≤ λE
[
eλgτv

]
,

which gives, by combining with (40), E[eλgτv] ≤ λaE[eλgτv] + bE[eλg]. If λ < 1/a, this gives

E
[
eλgτv

] ≤ b

1 − λa
E

[
eλg

]
. (41)

Combining (39) and (41), we obtain, for any λ < 1/a, E[geλg] ≤ E[eλg]λb/(1 − λa). De-
fine J (λ) = logE[eλg], λ ≥ 0. We thus have the following differential inequality, J ′(λ) ≤
λb/(1 − λa). Since J (0) = 0, this implies that J (λ) ≤ λ2b/(2(1 − λa)). Equivalently, E[eλg] ≤
eλ2b/(2(1−λa)), which by the use of Chebyshev’s inequality gives (34). �

Actually, particularizing to the variable X itself, we have the following concentration bounds,
in the spirit of the generalized Mills’ type inequalities obtained in Theorem 11.

Theorem 13. Assume that ν has a finite first moment and a density p with respect to the
Lebesgue measure that has a connected support. Assume also that the Stein kernel τv is “sub-
linear”, that is τv(x) ≤ a|x − μ| + b for some a > 0 and b ≥ 0, where μ is the mean value of ν.
Then the function

T (r) = (ar + b)−b/a2
er/a

E
[
(X − μ)1{X−μ≥r}

]
is non-increasing in r ≥ 0. In particular, for all r > 0,

P(X ≥ μ + r) ≤ E(X − μ)+
(ar + b)b/a2

e−r/a

r
, (42)

P
(|X − μ| ≥ r

) ≤ E|X − μ| (ar + b)b/a2
e−r/a

r
. (43)

The concentration bounds (42) and (43), that seem to be new, have an interest for large values
of r , where they improve upon Theorem 12 if a > 0, due to the factor 2 in front of the constant
a in the right-hand side of (38).

Let us now state a more general theorem.

Theorem 14. Assume that ν has a finite first moment, a density p with respect to the Lebesgue
measure that has a connected support and denote τν its Stein kernel. Set X a random variable of
distribution ν. Take f a 1-Lipschitz function with mean zero with respect to ν and assume that
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f has an exponential moment with respect to ν, that is there exists a > 0 such that E[eaf (X)] <

+∞. Then for any λ ∈ (0, a),

E
[
eλf (X)

] ≤ E
[
eλ2τν(X)

]
. (44)

Consequently, if we denote ψτ (λ) = lnE[eλ2τν(X)] ∈ [0,+∞] and ψ∗
τ (t) = supλ∈(0,a){tλ −

ψτ (λ)} the Fenchel–Legendre dual function of ψλ, then for any r > 0,

P
(
f (X) > r

) ∨ P
(
f (X) < −r

) ≤ exp
(−ψ∗

τ (r)
)
. (45)

Theorem 14 states that the concentration of Lipschitz functions taken on a real random variable
with existing Stein kernel is controlled by the behavior of the exponential moments of the Stein
kernel itself – if it indeed admits finite exponential moments.

Let us now briefly detail how to recover from Theorem 14 some results of Theorems 11 and
12, although with less accurate constants. If ‖τν‖∞ < +∞, then inequality (44) directly implies

E
[
eλf (X)

] ≤ eλ2‖τν‖∞ ,

which gives

P
(
f (X) > r

) ∨ P
(
f (X) < −r

) ≤ exp

(
− r2

4‖τν‖∞

)
.

The latter inequality takes the form of Inequality (34) of Theorem 11, although with a factor 1/2
in the argument of the exponential in the right-hand side of the inequality.

Assume now, as in Theorem 12, that the Stein kernel τν is sub-linear, that is there exist a, b ∈
R+ such that τν(x) ≤ a(x − μ) + b, where μ is the mean value of ν. Inequality (44) implies in
this case,

E
[
eλf (X)

] ≤ E
[
eaλ2(X−μ)

]
ebλ2

. (46)

The latter inequality being valid for any f being 1-Lipschitz and centered with respect to ν, we
can apply it for f (X) = X − μ. This gives

E
[
eλ(X−μ)

] ≤ E
[
eaλ2(X−μ)

]
ebλ2

.

Now, considering λ < a−1, we have by Hölder’s inequality, E[eaλ2(X−μ)] ≤ E[eλ(X−μ)]aλ. Plug-
ging this estimate in the last inequality and rearranging the terms of the inequality gives

E
[
eλ(X−μ)

] ≤ e
bλ2

1−λa .

Going back to inequality (46), we obtain, for any λ ∈ (0, a−1),

E
[
eλf (X)

] ≤ E
[
eλ(X−μ)

]aλ
ebλ2 ≤ ebλ2( λa

1−λa
+1) = e

bλ2
1−λa .

By the use of Cramèr–Chernoff method, this gives the result of Theorem 12, although with a
constant 1/2 in the argument of the exponential term controlling the deviations.
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Proof. First note that Inequality (45) is direct consequence of Inequality (44) via the use of the
Cramèr–Chernoff method (see for instance Section 2.2 of Boucheron, Lugosi and Massart [16]).
To prove Inequality (44), also note that by Lemma 15 below, it suffices to prove that for any
λ ∈ (0, a),

E
[
λf (X)eλf (X)

] ≤ E
[
λ2τν(X)eλf (X)

]
. (47)

Take λ ∈ (0, a), it holds by identity (12),

E
[
f (X)eλf (X)

] = Cov
(
f (X), eλf (X)

) = E
[
λf ′(X)L̄(λf )(X)eλf (X)

]
.

Hence, we obtain

E
[
f (X)eλf (X)

] ≤ λ2
E

[∣∣f ′(X)
∣∣τν(X)eλf (X)

] ≤ E
[
λ2τν(X)eλf (X)

]
.

Inequality (47) is thus proved, which completes the proof. �

Lemma 15. Take X a random variable on a measurable space (X ,T ). Take g and h two mea-
surable functions from X to R such that

E
[
g(X)eg(X)

] ≤ E
[
h(X)eg(X)

]
< +∞. (48)

Then it holds,

E
[
eg(X)

] ≤ E
[
eh(X)

]
. (49)

Lemma 15 summarizes the essence of the argument used in the proof of Theorem 2.3 of
Bobkov, Götze and Houdré [7]. We could not find a reference in the literature for Lemma 15.
We point out that Lemma 15 may have an interest by itself as it should be very handy when
dealing with concentration inequalities using the Cramèr–Chernoff method. Its scope may thus
go beyond our framework related to the behavior of the Stein kernel.

Proof. Note that if E[eh(X)] = +∞ then Inequality (49) is satisfied. We assume now that
E[eh(X)] < +∞ and β = ln(E[eh(X)]). By setting U = h(X) − β , we get E[eU ] = 1 and so,
by the duality formula for the entropy (see for instance Theorem 4.13 in Boucheron, Lugosi and
Massart [16]), we have

E
[
Ueg(X)

] ≤ Ent
(
eg(X)

) = E
[
g(X)eg(X)

] −E
[
eg(X)

]
ln

(
E

[
eg(X)

])
.

Furthermore,

E
[
g(X)eg(X)

] − βE
[
eg(X)

] ≤ E
[
Ueg(X)

]
.

Putting the above inequalities together, we obtain β ≥ ln(E[eg(X)]), which is equivalent to
(49). �
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5. Tail bounds

In the following theorem, we establish lower tail bounds when the Stein kernel is uniformly
bounded away from zero. In particular, the support of the measure is R in this case, as can be
seen from the explicit formula (6). Some further tail bounds can be found in Saumard [49],
Section 3.

Theorem 16. Take a real random variable X of distribution ν with density p with respect to the
Lebesgue measure on R. Assume that E[X] = 0, p has a connected support and denote τν the
Stein kernel of ν. If τν ≥ σ 2

min > 0 ν-almost surely, then the density p of ν is positive on R and
the function

R(x) = ex2/2σ 2
min

∫ +∞

x

yp(y)dy

is nondecreasing on R+. In particular, for any x ≥ 0,∫ +∞

x

yp(y)dy ≥ E
[
(X)+

]
e−x2/2σ 2

min . (50)

By symmetry, for any x ≤ 0,

−
∫ x

−∞
yp(y)dy ≥ E

[
(X)−

]
e−x2/2σ 2

min . (51)

Assume in addition that the function L(x) = x1+βp(x) is nonincreasing on [s,+∞), s > 0. Then
for all x ≥ s, it holds

P(X ≥ x) ≥
(

1 − 1

β

)
E[(X)+]

x
exp

(
− x2

2σ 2
min

)
. (52)

Alternatively, assume that there exists α ∈ (0,2) such that lim supx→+∞ x−α log τν(x) < +∞.
Then for any δ ∈ (0,2), there exist L,x0 > 0 such that, for all x > x0,

P(X ≥ x) ≥ L

x
exp

(
− x2

(2 − δ)σ 2
min

)
. (53)

The results presented in Theorem 16 can be found in Nourdin and Viens [47] under the addi-
tional assumption, related to the use of Malliavin calculus, that the random variable X ∈ D1,2.

Proof. For any smooth function ϕ nondecreasing,

E
[
Xϕ(X)

] = E
[
τν(X)ϕ′(X)

] ≥ σ 2
minE

[
ϕ′(X)

]
.

Take ϕ(x) = min{(x − c)+, ε}, for some c ∈R and ε > 0. Then

E
[
Xϕ(X)

] =
∫ c+ε

c

x(x − c)p(x)dx + ε

∫ +∞

c+ε

xp(x)dx
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and E[ϕ′(X)] = P(X ∈ (c, c + ε]). Dividing the latter two terms by ε and letting ε tend to zero
gives, ∫ +∞

c

xp(x)dx ≥ σ 2
minp(c). (54)

Now set V (c) = ∫ +∞
c

xp(x)dx. Inequality (54) writes, for any c ≥ 0, cσ−2
minV (c) ≥ −V ′(c).

Then define, for any c ≥ 0, R(c) = V (c) exp(c2/(2σ 2
min)). We can differentiate R and we have

R′(c) =
(

V ′(c) + c

σ 2
min

V (c)

)
exp

(
c2

2σ 2
min

)
≥ 0.

In particular R(c) ≥ R(0), which gives (50). As τ−X(x) = τX(−x), we deduce by symmetry that
(51) also holds. The proof of inequalities (52) and (53) follows from the same arguments as in
the proof of points (ii) and (ii)′, Theorem 4.3, Nourdin and Viens [47]. We give them, with slight
modifications, for the sake of completeness. By integration by parts, we have

V (c) = cP(X ≥ c) +
∫ +∞

c

P(X ≥ x)dx.

We also have, for x > 0,

P(X ≥ x) =
∫ +∞

x

y1+βp(y)

y1+β
dy ≤ x1+βp(x)

∫ +∞

x

dy

y1+β
= xp(x)

β
.

Hence,

V (c) ≤ cP(X ≥ c) + β−1
∫ +∞

c

xp(x)dx = cP(X ≥ c) + V (c)

β

or equivalently, P(X ≥ c) ≥ (1 − 1/β)V (c)/c. The conclusion follows by combining the latter
inequality with inequality (50). It remains to prove (53). By formula (20) applied with h(y) ≡ y

– note that this is possible since by assumption τν > 0 on R, – it holds

p(x) = E[|X|]
2τν(x)

exp

(
−

∫ x

0

y

τν(y)
dy

)
≥ E[|X|]

2τν(x)
exp

(
− x2

2σ 2
min

)
.

Let us fix ε > 0. By assumption on τν , we get that there exists a positive constant C such that,
for x large enough,

p(x) ≥ C exp

(
− x2

2σ 2
min

− xα

)
≥ C exp

(
− x2

(2 − ε)σ 2
min

)
.

Hence, for x large enough,

P(X ≥ x) ≥ C

∫ +∞

x

exp

(
− y2

(2 − ε)σ 2
min

)
dy.
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The conclusion now easily follows from the following classical inequality:
∫ +∞
x

e−y2/2 dy ≥
(x/(1 + x2)) exp(−x2/2). �
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