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The main result of this paper is the rate of convergence to Hermite-type distributions in non-central limit
theorems. To the best of our knowledge, this is the first result in the literature on rates of convergence
of functionals of random fields to Hermite-type distributions with ranks greater than 2. The results were
obtained under rather general assumptions on the spectral densities of random fields. These assumptions are
even weaker than in the known convergence results for the case of Rosenblatt distributions. Additionally,
Lévy concentration functions for Hermite-type distributions were investigated.

Keywords: Hermite-type distribution; long-range dependence; non-central limit theorems; random field;
rate of convergence

1. Introduction

This research will focus on the rate of convergence of local functionals of real-valued homo-
geneous random fields with long-range dependence. Non-linear integral functionals on bounded
sets of Rd are studied. These functionals are important statistical tools in various fields of ap-
plication, for example, image analysis, cosmology, finance, and geology. It was shown in [12,
38] and [39] that these functionals can produce non-Gaussian limits and require normalizing
coefficients different from those in central limit theorems.

Since many modern statistical models are now designed to deal with non-Gaussian data, non-
central limit theory is gaining more and more popularity. Some novel results using different
models and asymptotic distributions were obtained during the past few years, see [1,4,7,24,34,
38] and references therein. Despite such developments of the asymptotic theory, only a few of
the existing studies are concerned with rate of convergence, especially in the non-central case.

There are two popular approaches to investigate the rate of convergence in the literature: the
direct probability approach [1,21], and the Stein–Malliavin method introduced in [28].

As the name suggests, the Stein–Malliavin method combines Malliavin calculus and Stein’s
method. The main strength of this approach is that it does not impose any restrictions on the mo-
ments of order higher than four (see, for example, [28]) and even three in some cases (see [25]).
For a more detailed description of the method, the reader is referred to [28]. At this moment, the
Stein–Malliavin approach is well developed for stochastic processes. However, many problems
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concerning non-central limit theorems for random fields remain unsolved. The full list of the
already solved problems can be found in [26].

One of the first papers which obtained the rate of convergence in the central limit theorem
using the Stein–Malliavin approach was [28]. The case of stochastic processes was considered.
Further refinement of these results can be found in [29], where optimal Berry-Esseen bounds for
the normal approximation of functionals of Gaussian fields are shown. However, it is known that
numerous functionals do not converge to the Gaussian distribution. The conditions to obtain the
Gaussian asymptotics can be found in so-called Breuer-Major theorems, see [2] and [13]. These
results are based on the method of cumulants and diagram formulae. Using the Stein–Malliavin
approach, [30] derived a version of a quantitative Breuer-Major theorem that contains a stronger
version of the results in [2] and [13]. The rate of convergence for Wasserstein topology was
found and an upper bound for the Kolmogorov distance was given as a relationship between the
Kolmogorov and Wasserstein distances. In [18], the authors directly derived the upper-bound for
the Kolmogorov distance in the same quantitative Breuer-Major theorem as in [30] and showed
that this bound is better than the known bounds in the literature, since it converges to zero faster.
The results described above are the most general results currently known concerning the rate of
convergence in the central limit theorem using the Stein–Malliavin approach.

Related to [30] is the work [36] where, using the same arguments, the author found the rate of
convergence for the central limit theorem of sojourn times of Gaussian fields. Similar results for
the Kolmogorov distance were obtained in [18].

Concerning non-central limit theorems, only partial results have been found. It is known from
[9,13] and [38] that, depending on the value of the Hurst parameter, functionals of fractional
Brownian motion can converge either to the standard Gaussian distribution or a Hermite-type
distribution. This idea was used in [7] and [8] to obtain the first rates of convergence in non-
central limit theorems using the Stein–Malliavin method. Similar to the case of central limit
theorems, these results were obtained for stochastic processes. In [8], fractional Brownian mo-
tion was considered, and rates of convergence for both Gaussian and Hermite-type asymptotic
distributions were given. Furthermore all the results of [8] were refined in [7] for the case of the
fractional Brownian sheet as an initial random element. For the case of random fields with long-
range dependence, [8] is the only known work that uses the Stein–Malliavin method to provide
the rate of convergence.

Separately stands [3]. This work followed a new approach based only on Stein’s method with-
out Malliavin calculus. The authors worked with Wasserstein-2 metrics and showed the rate of
convergence of quadratic functionals of i.i.d. Gaussian variables. It is one of the convergence
results which cannot be obtained using the regular Stein–Malliavin method [3]. However, we are
not aware of extensions of these results to the multi-dimensional and non-Gaussian cases.

The classical probability approach employs direct probability methods to find the rate of con-
vergence. Its main advantage over the other methods is that it directly uses the correlation func-
tions and spectral densities of the involved random fields. Therefore, asymptotic results can be
explicitly obtained for wide classes of random fields using slowly varying functions. Using this
approach, the first rate of convergence in the central limit theorem for Gaussian fields was ob-
tained in [21]. In the following years, some other results were obtained, but all of them studied
the convergence to the Gaussian distribution.
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As for convergence to non-Gaussian distributions, the only known result using the classical
probability approach is [1]. For functionals of Hermite rank-2 polynomials of long-range de-
pendent Gaussian fields, it investigated the rate of convergence in the Kolmogorov metric of
these functionals to the Rosenblatt-type distribution. In this paper, we generalize these results to
Hermite-type distributions.

The main result is given in Theorem 5. It establishes an upper bound of the form

ρ
(
Kr/C(r),Xκ(�)

)= o
(
r−κ

)
, r → ∞,

for the Kolmogorov distance ρ(·, ·) between non-linear functionals Kr of random fields and
Hermite-type random variables Xκ(�) from the κ th order Wiener chaos. Explicit expressions
for the normalizing factor C(r) and the power κ in the rate of convergence are provided.

It is worth mentioning that these results are obtained under more natural and much weaker
assumptions on the spectral densities than those in [1]. These quite general assumptions allow to
consider various new asymptotic scenarios even for the Rosenblatt-type case in [1].

It is also worth mentioning that in the known Stein–Malliavin results, the rate of convergence
was obtained only for a leading term or a fixed number of chaoses in the Wiener chaos expan-
sion. However, while other expansion terms in higher level Wiener chaoses do not change the
asymptotic distribution, they can substantially contribute to the rate of convergence. The method
proposed in this manuscript takes into account all terms in the Wiener chaos expansion to derive
rates of convergence.

It is well known, see [9,27,37], that the probability distributions of Hermite-type random vari-
ables are absolutely continuous. In this paper, we investigate some fine properties of these dis-
tributions which are required to derive rates of convergence. Specifically, we discuss the cases
of bounded probability density functions of Hermite-type random variables. Using the method
proposed in [31], we derive the anti-concentration inequality that can be applied to estimate the
Lévy concentration function of Hermite-type random variables.

The article is organized as follows. In Section 2, we recall some basic definitions and formulae
of the spectral theory of random fields. The main assumptions and auxiliary results are stated in
Section 3. In Section 4, we discuss some fine properties of Hermite-type distributions. Section 5
provides the results concerning the rate of convergence. Some conclusions are drawn in Section 6.

2. Notations

In what follows | · | and ‖ · ‖ denote the Lebesgue measure and the Euclidean distance in R
d ,

respectively. We use the symbols C and δ to denote constants which are not important for our
exposition. Moreover, the same symbol may be used for different constants appearing in the same
proof. It is assumed that all random variables are defined on a fixed probability space (�,F,P ).

We consider a measurable mean-square continuous zero-mean homogeneous isotropic real-
valued Gaussian random field η(x), x ∈R

d , with the covariance function, see [17],

B(r) := Cov
(
η(x), η(y)

)=
∫ ∞

0
Yd(rz)d�(z), x, y ∈R

d , (1)
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where r := ‖x − y‖, �(·) is the isotropic spectral measure, the function Yd(·) is defined by

Yd(z) := 2(d−2)/2	

(
d

2

)
J(d−2)/2(z)z

(2−d)/2, z ≥ 0, (2)

and J(d−2)/2(·) is the Bessel function of the first kind of order (d − 2)/2.

Definition 1 ([17]). The random field η(x), x ∈ R
d , as defined above is said to possess an abso-

lutely continuous spectrum if there exists a function f (·) such that

�(z) = 2πd/2	−1(d/2)

∫ z

0
ud−1f (u)du, z ≥ 0, ud−1f (u) ∈ L1(R+). (3)

The function f (·) is called the isotropic spectral density function of the field η. In this case, the
field η with an absolutely continuous spectrum has the isonormal spectral representation

η(x) =
∫
Rd

ei(λ,x)
√

f
(‖λ‖)W(dλ),

where W(·) is the complex Gaussian random measure on R
d .

Consider a Jordan-measurable bounded set � ⊂ R
d such that |�| > 0 and � contains the

origin in its interior. Let �(r), r > 0, be the homothetic image of the set �, with the centre of
homothety at the origin and the coefficient r > 0, that is |�(r)| = rd |�|.

Consider the uniform distribution on �(r) with the probability density function (pdf)
r−d |�|−1χ�(r)(x), x ∈R

d , where χA(·) is the indicator function of a set A.

Definition 2. Let U and V be two random vectors which are independent and uniformly dis-
tributed inside the set �(r). We denote by ψ�(r)(z), z ≥ 0, the pdf of the distance ‖U − V ‖
between U and V .

Note that ψ�(r)(z) = 0 if z > diam{�(r)}. Using the above notations, one can obtain the
representation∫

�(r)

∫
�(r)

Υ
(‖x − y‖)dx dy = |�|2r2dEΥ

(‖U − V ‖)

= |�|2r2d

∫ diam{�(r)}

0
Υ (z)ψ�(r)(z)dz, (4)

where Υ (·) is an integrable Borel function.

Remark 1. If �(r) is the ball v(r) := {x ∈R
d : ‖x‖ < r}, then

ψv(r)(z) = dr−dzd−1I1−(z/2r)2

(
d + 1

2
,

1

2

)
, 0 ≤ z ≤ 2r,
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where

Iμ(p, q) := 	(p + q)

	(p)	(q)

∫ μ

0
up−1(1 − u)q−1 du, μ ∈ (0,1],p > 0, q > 0,

is the incomplete beta function, see [17].

Let Hk(u), k ≥ 0, u ∈R, be the Hermite polynomials, see [34]. The Hermite polynomials form
a complete orthogonal system in the Hilbert space

L2
(
R, φ(w)dw

)=
{
G :

∫
R

G2(w)φ(w)dw < ∞
}
, φ(w) := 1√

2π
e− w2

2 .

An arbitrary function G(w) ∈ L2(R, φ(w)dw) admits the mean-square convergent expansion

G(w) =
∞∑

j=0

CjHj (w)

j ! ,Cj :=
∫
R

G(w)Hj (w)φ(w)dw. (5)

By Parseval’s identity

∞∑
j=0

C2
j

j ! =
∫
R

G2(w)φ(w)dw. (6)

Definition 3 ([38]). Let G(·) ∈ L2(R, φ(w)dw) and assume there exists an integer κ ∈ N such
that Cj = 0, for all 0 ≤ j ≤ κ − 1, but Cκ 
= 0. Then κ is called the Hermite rank of G(·) and is
denoted by H rankG.

Remark 2. Note, that E(Hm(η(x))) = 0 and

E
(
Hm1

(
η(x)

)
Hm2

(
η(y)

))= δm2
m1

m1!Bm1
(‖x − y‖), x, y ∈R

d,

where δ
m2
m1 is the Kronecker delta function.

Definition 4 ([5]). A measurable function L : (0,∞) → (0,∞) is said to be slowly varying at
infinity if for all t > 0,

lim
r→∞

L(rt)

L(r)
= 1.

By the representation theorem [5], Theorem 1.3.1, there exists C > 0 such that for all r ≥ C

the function L(·) can be written in the form

L(r) = exp

(
ζ1(r) +

∫ r

C

ζ2(u)

u
du

)
,

where ζ1(·) and ζ2(·) are such measurable and bounded functions that ζ2(r) → 0 and ζ1(r) → C0
(|C0| < ∞), when r → ∞.
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Remark 3. By Proposition 1.3.6 in [5], if L(·) varies slowly, then for an arbitrary δ > 0

rδL(r) → ∞ and r−δL(r) → 0 when r → ∞. (7)

Definition 5 ([5]). A measurable function g : (0,∞) → (0,∞) is said to be regularly varying at
infinity, denoted g(·) ∈ Rτ , if there exists τ such that, for all t > 0, it holds that

lim
r→∞

g(rt)

g(r)
= t τ .

Definition 6 ([5]). Let g : (0,∞) → (0,∞) be a measurable function and g(x) → 0 as x → ∞.
Then a slowly varying function L(·) is said to be slowly varying with remainder of type 2, or that
it belongs to the class SR2, if

∀x > 1,
L(rx)

L(r)
− 1 ∼ k(x)g(r), r → ∞,

for some function k(·).
If there exists x such that k(x) 
= 0 and k(xμ) 
= k(μ) for all μ, then g(·) ∈ Rτ for some τ ≤ 0

and k(x) = Chτ (x), where

hτ (x) =
⎧⎨
⎩

ln(x) if τ = 0,

xτ − 1

τ
if τ 
= 0.

(8)

3. Assumptions and auxiliary results

In this section, we list the main assumptions and some auxiliary results from [20] which will be
used to obtain the rate of convergence in non-central limit theorems.

Assumption 1. Let η(x), x ∈ R
d , be a homogeneous isotropic Gaussian random field with

Eη(x) = 0 and a covariance function B(x) such that

B(0) = 1, B(x) = Eη(0)η(x) = ‖x‖−αL0
(‖x‖),

where L0(·) is a function slowly varying at infinity.

In this paper, we restrict our consideration to α ∈ (0, d/κ), where κ is the Hermite rank in
Definition 3. For such α the covariance function B(·) satisfying Assumption 1 is not integrable,
which corresponds to the case of long-range dependence.

Let us denote

Kr :=
∫

�(r)

G
(
η(x)

)
dx and Kr,κ := Cκ

κ!
∫

�(r)

Hκ

(
η(x)

)
dx,

where Cκ is defined by (5).
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Theorem 1 ([20]). Suppose that η(x), x ∈ R
d , satisfies Assumption 1 and H rankG = κ ∈ N. If

at least one of the following random variables

Kr√
VarKr

,
Kr√

VarKr,κ

and
Kr,κ√

VarKr,κ

,

has a limit distribution, then the limit distributions of the other random variables also exist and
they coincide when r → ∞.

Assumption 2. The random field η(x), x ∈R
d , has the spectral density

f
(‖λ‖)= c2(d,α)‖λ‖α−dL

(
1

‖λ‖
)

,

where

c2(d,α) := 	(d−α
2 )

2απd/2	(α
2 )

,

and L is a locally bounded function which is slowly varying at infinity and satisfies for suffi-
ciently large r the condition ∣∣∣∣1 − L(tr)

L(r)

∣∣∣∣≤ Cg(r)hτ (t), t ≥ 1, (9)

where g(·) ∈ Rτ , τ ≤ 0, such that g(x) → 0, x → ∞, and hτ (t) is defined by (8).

Remark 4. For L0(·) and L(·) given in Assumptions 1 and 2, by Tauberian and Abelian theo-
rems [19], it holds L0(r) ∼ L(r), r → +∞.

Remark 5. In applied statistical analysis of long-range dependent models, researchers often as-
sume an equivalence of Assumptions 1 and 2. However, this claim is not true in general, see
[14,19]. This is the main reason for using both assumptions to formulate the most general result
in Theorem 5. However, in various specific cases just one of the assumptions may be sufficient.
For example, if f (·) is decreasing in a neighborhood of zero and continuous for all λ 
= 0, then
by Tauberian Theorem 4 in [19] both assumptions are simultaneously satisfied. A detailed dis-
cussion of relations between Assumption 1 and 2 and various examples can be found in [19,32].
Some important models used in spatial data analysis and geostatistics that simultaneously satisfy
Assumptions 1 and 2 are Cauchy’s and Linnik’s fields, see [1]. Their covariance functions are of
the form B(x) = (1 + ‖x‖σ )−θ , σ ∈ (0,2], θ > 0. Exact expressions for their spectral densities
in the form required by Assumption 2 are provided in [1], Section 5.

Two simple examples of covariance functions and spectral densities of random fields that
satisfy Assumption 2 are given below.
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Example 1. Let τ = 0 and

L(x) =
{

0, x < 1,

4 ln(x), x ≥ 1.

Then for t > 1 and r > 1 ∣∣∣∣1 − L(tr)

L(r)

∣∣∣∣=
∣∣∣∣1 − 4 ln(tr)

4 ln(r)

∣∣∣∣= ln(t)

ln(r)
.

Thus, L(·) satisfies condition (9) with g(r) = 1/ ln(r), hτ (t) = ln(t), and τ = 0.
Let d = 3, κ = 2, and α = 2. In this case

f
(‖λ‖)= c2(3,2)‖λ‖−1L

(
1

‖λ‖
)

= − 1

π

ln(‖λ‖)
‖λ‖ χ(0,1]

(‖λ‖).
By (1), (2) and (3)

B(r) =
∫ ∞

0
Y3(rz)d�(z)

= 16π

∫ ∞

0

sin(rz)

rz
z2f (z)dz

= −4

r

∫ 1

0
sin(rz) ln(z)dz

= 4
ln(r) + γ − Ci(r)

r2
,

where Ci(r) = − ∫∞
r

cos(z)
z

dz is the cosine integral, see (6.2.11) [33], and γ is Euler’s constant.

By (6.2.13) [33] we have ln(r)+ γ − Ci(r) = ∫ r

0
1−cos(z)

z
dz. Therefore, by the L’Hospital rule

we get

B(0) = 4 lim
r→0

ln(r) + γ − Ci(r)

r2
= 4 lim

r→0

∫ r

0
1−cos(z)

z
dz

r2
= 1.

Also,

B(r) = 4r−2(ln(r) + γ − Ci(r)
)= r−2L0(r),

where L0(r) = 4(ln(r) + γ − Ci(r)) ∼ 4 ln(r) = L(r), as by (6.2.14) [33] it holds Ci(r) → 0,
when r → ∞.

Example 2. Now, we consider the case of τ < 0. Let

L(x) =
⎧⎨
⎩

0, x < 1,

6

(
1 − 1

x

)
, x ≥ 1.
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For t > 1 and r > 1 it holds∣∣∣∣1 − L(tr)

L(r)

∣∣∣∣=
∣∣∣∣1 −

tr−1
tr

r−1
r

∣∣∣∣= 1

r − 1

t − 1

t
.

Thus, L(·) satisfies condition (9) with g(r) = 1
r−1 , hτ (t) = t−1

t
, and τ = −1.

Let d = 3, κ = 2, and α = 2. In this case f (‖λ‖) = 3
2π

1−‖λ‖
‖λ‖ χ(0,1](‖λ‖).

Therefore

B(r) = 6

r

∫ 1

0
sin(rz)(1 − z)dz = 6

r − sin(r)

r3
.

Note, that by the L’Hospital rule we get

B(0) = 6 lim
r→0

r − sin(r)

r3
= 1.

Also,

B(r) = 6
r − sin(r)

r3
= r−2L0(r),

where L0(r) = 6 r−sin(r)
r

∼ 6 r−1
r

= L(r).

The remarks below clarify condition (9) and compare it with the assumptions used in [1].

Remark 6. Assumption 2 implies weaker restrictions on the spectral density than the ones used
in [1]. Slowly varying functions in Assumption 2 can tend to infinity or zero. This is an im-
provement over [1] where slowly varying functions were assumed to converge to a constant. For
example, a function that satisfies this assumption, but would not fit that of [1], is ln(·).

Remark 7. Slowly varying functions that satisfy condition (9) belong to the class SR2 from
Definition 6.

Remark 8. By Corollary 3.12.3 [5] for τ 
= 0 the slowly varying function L(·) in Assumption 2
can be represented as

L(x) = C
(
1 + cτ−1g(x) + o

(
g(x)

))
.

As we can see L(·) converges to some constant as x goes to infinity. This makes the case τ = 0
particularly interesting as this is the only case when a slowly varying function with remainder
can tend to infinity or zero.

Lemma 1. If L satisfies (9), then for any k ∈ N, δ > 0, and sufficiently large r∣∣∣∣1 − Lk/2(tr)

Lk/2(r)

∣∣∣∣≤ Cg(r)hτ (t)t
δ, t ≥ 1.
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Proof. Applying the mean value theorem to the function f (u) = un, n ∈ R, on A = [min(1, u),

max(1, u)] we obtain the inequality∣∣1 − xn
∣∣= nθn−1|1 − x| ≤ n|1 − x|max

(
1, xn−1), θ ∈ A.

Now, using this inequality for x = L(tr)
L(r)

and n = k/2 we get

∣∣∣∣1 − Lk/2(tr)

Lk/2(r)

∣∣∣∣≤ κ

2

∣∣∣∣1 − L(tr)

L(r)

∣∣∣∣max

(
1,

(
L(tr)

L(r)

) k
2 −1)

. (10)

By Theorem 1.5.6 in [5], we know that for large enough r there exists C > 0 such that for any
δ1 > 0

L(tr)

L(r)
≤ C · tδ1, t ≥ 1.

Applying this result and condition (9) to (10), and by choosing δ = δ1(
k
2 − 1), we get

∣∣∣∣1 − Lk/2(tr)

Lk/2(r)

∣∣∣∣≤ Cg(r)hτ (t)max
(
1, tδ1(

k
2 −1)

)≤ Cg(r)hτ (t)t
δ, t ≥ 1. �

Let us denote the Fourier transform of the indicator function of the set � by

K�(x) :=
∫

�

ei(x,u) du, x ∈R
d .

Lemma 2 ([20]). If t1, . . . , tκ , κ ≥ 1, are positive constants such that it holds
∑κ

i=1 ti < d , then∫
Rdκ

∣∣K�(λ1 + · · · + λκ)
∣∣2 dλ1 · · ·dλκ

‖λ1‖d−t1 · · · ‖λκ‖d−tκ
< ∞.

Theorem 2 ([20]). Let η(x), x ∈ R
d , be a homogeneous isotropic Gaussian random field with

Eη(x) = 0. If Assumptions 1 and 2 hold, then for r → ∞ the random variables

Xr,κ := r(κα)/2−dL−κ/2(r)

∫
�(r)

Hκ

(
η(x)

)
dx

converge weakly to

Xκ(�) := c
κ/2
2 (d,α)

∫ ′

Rdκ

K�(λ1 + · · · + λκ)
W(dλ1) . . .W(dλκ)

‖λ1‖(d−α)/2 . . .‖λκ‖(d−α)/2
, (11)

where
∫ ′
Rdκ denotes the multiple Wiener–Itô integral.

Remark 9. If κ = 1 the limit Xκ(�) is Gaussian. However, for the case κ > 1 distributional
properties of Xκ(�) are almost unknown. It was shown that the integrals in (11) possess abso-
lutely continuous densities, see [9,37]. The article [1] proved that these densities are bounded if
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κ = 2. Also, for the Rosenblatt distribution, that is, κ = 2 and a rectangular �, the density and
cumulative distribution functions of Xκ(�) were studied in [40]. An approach to investigate the
boundedness of densities of multiple Wiener–Itô integrals was suggested in [9]. However, it is
difficult to apply this approach to the case κ > 2 as it requires a classification of the peculiarities
of general nth degree forms.

Definition 7. Let Y1 and Y2 be arbitrary random variables. The uniform (Kolmogorov) metric
for the distributions of Y1 and Y2 is defined by the formula

ρ(Y1, Y2) = sup
z∈R

∣∣P(Y1 ≤ z) − P(Y2 ≤ z)
∣∣.

The following result follows from Lemma 1.8 in [35].

Lemma 3. If X,Y and Z are arbitrary random variables, then for any ε > 0:

ρ(X + Y,Z) ≤ ρ(X,Z) + ρ(Z + ε,Z) + P
(|Y | ≥ ε

)
.

4. Lévy concentration functions for Xk(�)

In this section, we will investigate some fine properties of probability distributions of Hermite-
type random variables. These results will be used to derive upper bounds of ρ(Xκ(�) + ε,

Xκ(�)) in the next section. The following function from Section 1.5 in [35] will be used in
this section.

Definition 8. The Lévy concentration function of a random variable X is defined by

Q(X,ε) := sup
z∈R

P(z < X ≤ z + ε), ε ≥ 0.

Remark 10. By Definitions 7 and 8

Q
(
Xκ(�), ε

) = sup
z∈R

(
P
(
Xκ(�) ≤ z + ε

)− P
(
Xκ(�) ≤ z

))
= sup

z∈R

∣∣P(Xκ(�) ≤ z
)− P

(
Xκ(�) + ε ≤ z

)∣∣
= ρ

(
Xκ(�) + ε,Xκ(�)

)
.

We will discuss two important cases, and show how to estimate the Lévy concentration func-
tion in each of them.

If Xk(�) has a bounded probability density function pXκ(�)(·), then it holds

Q
(
Xκ(�), ε

)= sup
z∈R

∫ z+ε

z

pXκ(�)(t)dt ≤ ε sup
z∈R

pXκ(�)(z) ≤ εC. (12)
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This inequality is probably the sharpest known upper bound of the Lévy concentration function
of Xk(�). It is discussed in case 1.

Case 1. If the Hermite rank of G(·) is equal to κ = 2 we are dealing with the so-called
Rosenblatt-type random variable. It is known that the probability density function of this variable
is bounded, consult [1,9,10,22,23] for proofs by different methods. Thus, one can use estimate
(12).

Case 2. When there is no information about boundedness of the probability density function,
anti-concentration inequalities can be used to obtain estimates of the Lévy concentration func-
tion, see Theorem 3 below.

Let us denote by Iκ(·) a multiple Wiener–Itô stochastic integral of order dκ , i.e. Iκ(f ) =∫ ′
Rdκ f (λ1, . . . , λκ)W(dλ1) · · ·W(dλκ), where f (·) ∈ Ls

2(R
dκ). Here Ls

2(R
dκ) denotes the space

of symmetrical functions in L2(R
dκ). Note, that any F ∈ L2(�) can be represented as F =

E(F ) + ∑∞
q=1 Iq(fq), where the functions fq are determined by F . The multiple Wiener–Itô

integral Iq(fq) coincides with the orthogonal projection of F on the qth Wiener chaos associated
with X.

The following lemma uses the approach suggested in [31].

Lemma 4. For any κ ∈N, t ∈R, and ε̂ > 0 it holds

P
(∣∣Xκ(�) − t

∣∣≤ ε̂
)≤ cκ ε̂1/κ

(C‖K̂�‖2
L2(R

dκ )
+ t2)1/κ

,

where K̂�(x1, . . . , xκ) := K�(x1+···+xκ )

‖x1‖(d−α)/2...‖xκ‖(d−α)/2 and cκ is a constant that depends on κ .

Proof. Let {ei}i∈N be an orthogonal basis of L2(R
d). Then, K̂� ∈ L2(R

dκ) can be represented
as

K̂� =
∑

(i1,...,iκ )∈Nκ

ci1,...,iκ ei1 ⊗ · · · ⊗ eiκ .

For each n ∈ N, set

K̂n
� =

∑
(i1,...,iκ )∈{1,...,n}κ

ci1,...,iκ ei1 ⊗ · · · ⊗ eiκ .

Note, that both K̂� and K̂n
� belong to the space Ls

2(R
dκ).

By (11) it follows that Xκ(�) = c
κ/2
2 (d,α)Iκ(K̂�). Let Xn

κ(�) := c
κ/2
2 (d,α)Iκ(K̂n

�). As
n → ∞, K̂n

� → K̂� in L2(R
dκ). Thus, Xn

κ(�) → Xκ(�) in L2(�,F,P ). Hence, there exists a
strictly increasing sequence nj for which X

nj
κ (�) → Xκ(�) almost surely as j → ∞.
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It also follows that

Xn
κ(�) = c

κ/2
2 (d,α)Iκ

( ∑
(i1,...,iκ )∈{1,...,n}κ

ci1,...,iκ ei1 ⊗ · · · ⊗ eiκ

)

= c
κ/2
2 (d,α)

κ∑
m=1

∑
1≤i′1<···<i′m≤n

κ1+···+κm=κ

c
κ1,...,κm

i′1,...,i′m
Iκ

(
e
⊗κ1
i′1

⊗ · · · ⊗ e
⊗κm

i′m
)
,

where κi ∈ N, i = 1, . . . ,m, c
κ1,...,κm

i′1,...,i′m
= ∑

(i1,...,iκ )∈A
κ1,...,κm

i′1,...,i′m
ci1,...,iκ , and A

κ1,...,κm

i′1,...,i′m
:= {(i1, . . . ,

iκ ) ∈ {1, . . . , n}κ : κ1 indices il = i′1, . . . , κm indices il = i′m, l = 1, . . . , κ}.
By the Itô isometry [17]:

Iκ1+···+κm

(
e
⊗κ1
i1

⊗ · · · ⊗ e
⊗κm

im

)=
m∏

j=1

Hκj

(∫
Rd

ej (λ)W(dλ)

)
=

m∏
j=1

Hκj
(ξj ),

where ξj ∼N (0,1).
Thus, Xn

κ(�) can be represented as Xn
κ(�) = Un,κ(ξ1, . . . , ξn), where Un,κ(·) is a polynomial

of degree at most κ . Furthermore, Xn
κ(�) − t is also a polynomial of degree at most κ .

Now, applying Carbery–Wright inequality, see Theorem 2.5 in [31], one obtains that there
exists a constant ĉκ such that for any n ∈N and ε̂ > 0

P
(∣∣Xn

κ(�) − t
∣∣≤ ε̂

(
E
(
Xn

κ(�) − t
)2) 1

2
)≤ ĉκ ε̂1/κ .

Analogously to [31], using Fatou’s lemma and the correspondingly selected subsequence {nj }
we get

P
(∣∣Xκ(�) − t

∣∣≤ ε̂
(
E
(
Xκ(�) − t

)2) 1
2
)≤ ĉκ21/κ ε̂1/κ = cκ ε̂1/κ .

It is known, see (1.3) and (1.5) in [15], that EXκ(�) = 0 and EX2
κ(�) = C‖K̂�‖2

L2(R
dκ )

. Thus,
the above inequality can be rewritten as

P
(∣∣Xκ(�) − t

∣∣≤ ε̂
)≤ cκ ε̂1/κ

(E(Xκ(�) − t)2)
1

2κ

= cκ ε̂1/κ

(C‖K̂�‖2
L2(R

dκ )
+ t2)1/κ

.
�

The following theorem combines the two cases above and provides an upper-bound estimate
of the Lévy concentration function.

Theorem 3. For any κ ∈N and an arbitrary positive ε it holds

Q
(
Xκ(�), ε

)≤ Cεa,

where the constant a equals 1 if κ = 2 and 1/κ if κ > 2.
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Proof. If κ = 2, following the discussion of case 1 above, the result of the theorem is an imme-
diate corollary of (12) and the boundedness of pXκ(�)(·).

If κ > 2, applying Lemma 4 with t = z + ε
2 and ε̂ = ε

2 we get

Q
(
Xκ(�), ε

) = sup
z∈R

P

(∣∣∣∣Xκ(�) −
(

z + ε

2

)∣∣∣∣≤ ε

2

)

≤ sup
z∈R

(
cκ( ε

2 )1/κ

(C‖K̂�‖2
L2(R

dκ )
+ (z + ε

2 )2)
1

2κ

)

≤ cκε1/κ

(2C‖K̂�‖L2(R
dκ ))

1
κ

= Cε1/κ .
�

Remark 11. There are other cases when the constant a also is equal to 1. For example, some
interesting results about boundedness of probability density functions of Hermite-type random
variables were obtained in [16] by Malliavin calculus. To recapture a key result of [16] we recall
some definitions from Malliavin calculus.

Let X = {X(h),h ∈ L2(Rd)} be an isonormal Gaussian process defined on a complete
probability space (�,F,P ). Let S denote the class of smooth random variables of the form
F = f (X(h1), . . . ,X(hn)), n ∈ N, where h1, . . . , hn are in L2(Rd), and f is a function, such
that f itself and all its partial derivatives have at most polynomial growth.

The Malliavin derivative DF of F = f (X(h1), . . . ,X(hn)) is the L2(Rd) valued random
variable given by

DF =
n∑

i=1

∂f

∂xi

(
X(h1), . . . ,X(hn)

)
hi.

The operator D is a closable operator on L2(�) taking values in L2(�;L2(Rd)). By iteration
one can define higher order derivatives DkF ∈ L2(�;L2(Rd)�k), where � denotes the symmet-
ric tensor product. For any integer k ≥ 0 and any p ≥ 1 we denote by D

k,p the closure of S with
respect to the norm ‖ · ‖k,p given by

‖F‖p
k,p =

k∑
i=0

E
(∥∥DiF

∥∥p

L2(Rd )⊗i

)
.

Let us denote by δ the adjoint operator of D from a domain in L2(�;L2(Rd)) to L2(�). An
element u ∈ L2(�;L2(Rd)) belongs to the domain of δ if and only if for any F ∈D

1,2 it holds

E
[〈DF,u〉]≤ cu

√
E
[
F 2

]
,

where cu is a constant depending only on u.
The following theorem gives sufficient conditions to guarantee boundedness of Hermite-type

densities.
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Theorem 4 ([16]). Let F ∈ D
2,s such that E[|F |2q ] < ∞ and

E
[‖DF‖−2r

L2(Rd )

]
< ∞, (13)

where q, r, s > 1 satisfy 1
q

+ 1
r

+ 1
s

= 1.

Denote w = ‖DF‖2
L2(Rd )

and u = w−1DF . Then u ∈ D
1,q ′

with q ′ = q
q−1 and F has

a density given by pF (x) = E[1F>xδ(u)]. Furthermore, pF (x) is bounded and pF (x) ≤
Cq‖w−1‖r‖F‖2,s min(1, |x−2‖F‖2

2q), for any x ∈ R, where Cq is a constant depending only
on q .

Note, that the Hermite-type random variable Xκ(�) does belong to the space D
2,s , s > 1, and

E[|Xκ(�)|2q ] < ∞ by the hypercontractivity property, see (2.11) in [16]. Thus, if the condition
(13) holds, then Xκ(·) possess a bounded probability density function. In general, it is very
difficult to verify the condition (13).

5. Rate of convergence

In this section, we consider the case of Hermite-type limit distributions in Theorem 2. The
main result describes the rate of convergence of κ!

Cκr
d− κα

2 L
κ
2 (r)

∫
�(r)

G(η(x))dx to Xκ(�) =
c
κ/2
2 (d,α)

∫ ′
Rdκ K�(λ1 + · · ·+λκ)

W(dλ1)···W(dλκ )

‖λ1‖(d−α)/2···‖λκ‖(d−α)/2 , when r → ∞. To prove it, we use some
techniques and facts from [6,20,22].

Theorem 5. Let Assumptions 1 and 2 hold and H rankG = κ ∈N.
If τ ∈ (− d−κα

2 ,0) then for any κ < a
2+a

min(
α(d−κα)

d−(κ−1)α
,κ1)

ρ

(
κ!Kr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)
= o

(
r−κ

)
, r → ∞,

where a is the constant from Theorem 3, Cκ is defined by (5), and

κ1 := min

(
−2τ,

1
1

d−2α
+ · · · + 1

d−κα
+ 1

d+1−κα

)
.

If τ = 0 then

ρ

(
κ!Kr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)
= O

(
g

2a
2+a (r)

)
, r → ∞,

where g(·) is from Assumption 2.

Remark 12. For κ = 1 the result of Theorem 5 holds and κ1 = min(−2τ, d +1−α). Theorem 5
generalizes the result for the Rosenblatt-type case (κ = 2) in [1] to Hermite-type asymptotics
(κ > 2). It also relaxes the assumptions on the spectral density used in [1], see Remarks 6–8.
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Proof. The value of τ in the proof is in (− d−κα
2 ,0]. The situations where special considerations

are required for the case τ = 0 are emphasised and corresponding derivations are provided in the
proof.

Since H rankG = κ , it follows that Kr can be represented in the space of squared-integrable
random variables L2(�) as

Kr = Kr,κ + Sr := Cκ

κ!
∫

�(r)

Hκ

(
η(x)

)
dx +

∑
j≥κ+1

Cj

j !
∫

�(r)

Hj

(
η(x)

)
dx,

where Cj are coefficients of the Hermite series (5) of the function G(·).
Notice that EKr,κ = ESr = EXκ(�) = 0, and

Xr,κ = κ!Kr,κ

Cκrd− κα
2 L

κ
2 (r)

.

Since the weak limit Xκ(�) and the random variables Xr,κ are not necessarily defined on the
same probability space, let us consider the distributional couples X∗

r,κ of Xr,κ that share the same
random measure as Xκ(�).

A short scheme of the proof is as follows. First, we show how to estimate VarSr . Then, we
apply Lemma 3 to X = Xr,κ , Y = κ!Sr

Cκ r
d− κα

2 L
κ
2 (r)

, and Z = Xκ(�). Thus, the upper bound can be

given as

ρ
(
X∗

r,κ ,Xκ(�)
)+ ρ

(
Xκ(�) + ε,Xκ(�)

)+ P

(∣∣∣∣ κ!Sr

Cκrd− κα
2 L

κ
2 (r)

∣∣∣∣≥ ε

)
,

for any positive ε. The second summand is the Lévy concentration function of Xκ(·) and can be
estimated using the results of Section 4. The third summand can be bounded by applying Cheby-
shev’s inequality and the estimate of VarSr . To estimate ρ(X∗

r,κ ,Xκ(�)), we apply Lemma 3
once more. The obtained bound is ρ(Xκ(�) + ε,Xκ(�)) +ε−2 Var(X∗

r,κ − Xκ(�)). The rest of
the proof shows how to estimate Var(X∗

r,κ − Xκ(�)).
Sr used in this paper is a particular case of Vr in [20], p. 1470, when the random field is

scalar-valued. By the estimate of VarVr in [20], p. 1471,

VarSr ≤ |�|2r2d−(κ+1)α
∑

j≥κ+1

C2
j

j !
∫ diam{�}

0
z−(κ+1)αLκ+1

0 (rz)ψ�(z) dz

≤ |�|2r2d−καLκ
0(r)

∑
j≥κ+1

C2
j

j !
∫ diam{�}

0
z−κα

Lκ
0(rz)

Lκ
0(r)

L0(rz)

(rz)α
ψ�(z)dz. (14)

We represent the integral in (14) as the sum of two integrals I1 and I2 with the ranges of
integration [0, r−β1 ] and (r−β1 ,diam{�}] respectively, where β1 ∈ (0,1).
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It follows from Assumption 1 that |L0(u)/uα| = |B(u)| ≤ B(0) = 1 and for r > 1 we can
estimate the first integral as

I1 ≤
∫ r−β1

0
z−κα

Lκ
0(rz)

Lκ
0(r)

ψ�(z)dz ≤
(

sup0≤s≤r sδ/κL0(s)

rδ/κL0(r)

)κ ∫ r−β1

0
z−δz−καψ�(z)dz,

where δ is an arbitrary number in (0,min(α, d − κα)).
By Assumption 1 the function L0(·) is locally bounded. By Theorem 1.5.3 in [5], there exists

r0 > 0 and C > 0 such that for all r ≥ r0

sup0≤s≤r sδ/κL0(s)

rδ/κL0(r)
≤ C.

Using (4) with r = 1 we obtain

∫ r−β1

0
z−δz−καψ�(z)dz = 1

|�|2
∫

�

∫
�

‖x − y‖−δ−καχ[0,r−β1 ]
(‖x − y‖)dx dy

≤ sup
y∈�

1

|�|
∫

�−y

‖u‖−δ−καχ[0,r−β1 ]
(‖u‖)du

= sup
y∈�

1

|�|
∫

�−y∩v(r−β1 )

‖u‖−δ−κα du

≤ C

|�|
∫ r−β1

0
τd−κα−1−δ dτ = Cr−β1(d−κα−δ)

(d − κα − δ)|�| ,

where � − y = {x ∈R
d : x + y ∈ �} and v(r) is a ball with center 0 and radius r .

Notice that

I2 ≤ supr1−β1≤s≤r·diam{�} sδLκ
0(s)

rδLκ
0(r)

· sup
r1−β1≤s≤r·diam{�}

L0(s)

sα

∫ diam{�}

0
z−(δ+κα)ψ�(z)dz.

Applying Theorem 1.5.3 in [5], and property (7) we get

I2 = o
(
r−(α−δ)(1−β1)

)
.

According to (6)

∑
j≥κ+1

C2
j

j ! ≤
∫
R

G2(w)φ(w)dw < +∞.

Hence, for sufficiently large r

VarSr ≤ Cr2d−καLκ
0(r)

(
r−β1(d−κα−δ) + o

(
r−(α−δ)(1−β1)

))
.
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Since, by Remark 4, L0(·) ∼ L(·), we can replace L0(·) by L(·) in the above estimate. Also, by
choosing β1 = α

d−(κ−1)α
to minimize the upper bound we get

VarSr ≤ Cr2d−καLκ(r)r
− α(d−κα)

d−(κ−1)α
+δ

.

It follows from Theorem 3 with Remark 10 that

ρ
(
Xκ(�) + ε,Xκ(�)

)≤ Cεa.

Applying Chebyshev’s inequality and Lemma 3 to X = Xr,κ , Y = κ!Sr

Cκ r
d− κα

2 L
κ
2 (r)

, and Z =
Xκ(�), we get

ρ

(
κ!Kr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)
= ρ

(
Xr,κ + κ!Sr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)

≤ ρ
(
X∗

r,κ ,Xκ(�)
)+ C

(
εa + ε−2r

− α(d−κα)
d−(κ−1)α

+δ)
,

for a sufficiently large r .

Choosing ε := r
− α(d−κα)

(2+a)(d−(κ−1)α) to minimize the second term we obtain

ρ

(
κ!Kr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)
≤ ρ

(
X∗

r,κ ,Xκ(�)
)+ Cr

−aα(d−κα)
(2+a)(d−(κ−1)α)

+δ
. (15)

Applying Lemma 3 once again to X = Xκ(�), Y = X∗
r,κ −Xκ(�), and Z = Xκ(�) we obtain

for ε1 > 0

ρ
(
X∗

r,κ ,Xκ(�)
) ≤ εa

1C + P
{∣∣X∗

r,κ − Xκ(�)
∣∣≥ ε1

}
≤ εa

1C + ε−2
1 Var

(
X∗

r,κ − Xκ(�)
)
. (16)

Now we show how to estimate Var(X∗
r,κ − Xκ(�)).

By the self-similarity of Gaussian white noise and formula (2.1) in [12]

X∗
r,κ

D= c
κ
2
2 (d,α)

∫
Rdκ

′
K�(λ1 + · · · + λκ)Qr(λ1, . . . , λκ)

W(dλ1) . . .W(dλκ)

‖λ1‖(d−α)/2 . . .‖λκ‖(d−α)/2
,

where

Qr(λ1, . . . , λκ) := r
κ
2 (α−d)L− κ

2 (r)c
− κ

2
2 (d,α)

[
κ∏

i=1

‖λi‖d−αf

(‖λi‖
r

)]1/2

.

Notice that

Xκ(�) = c
κ
2
2 (d,α)

∫
Rdκ

′
K�(λ1 + · · · + λκ)

W(dλ1) . . .W(dλκ)

‖λ1‖(d−α)/2 . . .‖λκ‖(d−α)/2
.
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By the isometry property of multiple stochastic integrals

Rr := E|X∗
r,κ − Xκ(�)|2
cκ

2 (d,α)
=
∫
Rκd

|K�(λ1 + · · · + λκ)|2(Qr(λ1, . . . , λκ) − 1)2

‖λ1‖d−α . . .‖λκ‖d−α
dλ1 . . . dλκ.

Let us rewrite the integral Rr as the sum of two integrals I3 and I4 with the integration regions
A(r) := {(λ1, . . . , λκ) ∈ R

κd : maxi=1,...,κ (‖λi‖) ≤ rγ } and R
κd \ A(r) respectively, where γ ∈

(0,1). Our intention is to use the monotone equivalence property of regularly varying functions
in the regions A(r).

First, we consider the case of (λ1, . . . , λκ) ∈ A(r). By Assumption 2 and the inequality

∣∣∣∣∣
√√√√ κ∏

i=1

xi − 1

∣∣∣∣∣≤
κ∑

i=1

∣∣x κ
2
i − 1

∣∣
we obtain

∣∣Qr(λ1, . . . , λκ) − 1
∣∣=

∣∣∣∣∣
√√√√ κ∏

j=1

L( r
‖λj ‖ )

L(r)
− 1

∣∣∣∣∣≤
κ∑

j=1

∣∣∣∣L
κ
2 ( r

‖λj ‖ )

L
κ
2 (r)

− 1

∣∣∣∣.
By Lemma 1, if ‖λj‖ ∈ (1, rγ ), j = 1, . . . , κ , then for arbitrary δ1 > 0 and sufficiently large r

we get

∣∣∣∣1 −
L

κ
2 ( r

‖λj ‖ )

L
κ
2 (r)

∣∣∣∣ =
L

κ
2 ( r

‖λj ‖ )

L
κ
2 (r)

·
∣∣∣∣1 − L

κ
2 (r)

L
κ
2 ( r

‖λj ‖ )

∣∣∣∣

≤ C
L

κ
2 ( r

‖λj ‖ )

L
κ
2 (r)

g

(
r

‖λj‖
)

‖λj‖δ1hτ

(‖λj‖
)

= C‖λj‖δ1hτ

(‖λj‖
)
g(r)

g( r
‖λj ‖ )

g(r)

(L( r
‖λj ‖ )

L(r)

) κ
2

.

For any positive β2 and β3, applying Theorem 1.5.6 in [5] to g(·) and L(·) and using the fact
that hτ (

1
t
) = − 1

tτ
hτ (t) we obtain

∣∣∣∣1 −
L

κ
2 ( r

‖λj ‖ )

L
κ
2 (r)

∣∣∣∣ ≤ C‖λj‖δ1+ κβ2
2 +β3‖λj‖−τ hτ

(‖λj‖
)
g(r)

= C‖λj‖δ

∣∣∣∣hτ

(
1

‖λj‖
)∣∣∣∣g(r). (17)

By Lemma 1 for ‖λj‖ ≤ 1, j = 1, . . . , κ , and arbitrary δ > 0, we obtain

∣∣∣∣1 −
L

κ
2 ( r

‖λj ‖ )

L
κ
2 (r)

∣∣∣∣≤ C‖λj‖−δhτ

(
1

‖λj‖
)

g(r). (18)
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Hence, by (17) and (18)

∣∣Qr(λ1, . . . , λκ) − 1
∣∣2 ≤ κ

κ∑
j=1

∣∣∣∣L
κ
2 ( r

‖λj ‖ )

L
κ
2 (r)

− 1

∣∣∣∣
2

≤ C

κ∑
j=1

h2
τ

(
1

‖λj‖
)

g2(r)max
(‖λj‖−δ,‖λj‖δ

)
,

for (λ1, . . . , λκ) ∈ A(r).
Notice that in the case τ = 0 for any δ > 0 there exists C > 0 such that h0(x) = ln(x) <

Cxδ, x ≥ 1, and h0(x) = ln(x) < Cx−δ, x < 1. Hence, by Lemma 2 for −τ ≤ d−κα
2 we get

∫
A(r)∩Rκd

h2
τ (

1
‖λj ‖ )max(‖λj‖−δ,‖λj‖δ)|K�(

∑κ
i=1 λi)|2 dλ1 . . .dλκ

‖λ1‖d−α . . .‖λκ‖d−α
< ∞.

Therefore, we obtain for sufficiently large r

I3 ≤ Cg2(r)

κ∑
j=1

∫
A(r)∩Rκd

h2
τ (

1
‖λj ‖ ) · max(‖λj‖−δ,‖λj‖δ)

‖λ1‖d−α . . .‖λκ‖d−α

× ∣∣K�(λ1 + · · ·λκ)
∣∣2dλ1 . . .dλκ

≤ Cg2(r)

∫
A(r)∩Rκd

h2
τ (

1
‖λ1‖ )

‖λ1‖d−α . . .‖λκ‖d−α

× max
(‖λ1‖−δ,‖λ1‖δ

)∣∣K�(λ1 + · · · + λκ)
∣∣2 dλ1 . . .dλκ ≤ Cg2(r). (19)

It follows from Assumption 2 and the specification of the estimate (23) in the proof of Theo-
rem 5 in [20] that for each positive δ there exists r0 > 0 such that for all r ≥ r0, (λ1, . . . , λκ) ∈
B(1,μ2,...,μκ ) = {(λ1, . . . , λκ) ∈ R

κd : ‖λj‖ ≤ 1, if μj = −1, and ‖λj‖ > 1, if μj = 1, j = 1, k},
and μj ∈ {−1,1}, it holds

|K�(λ1 + · · · + λκ)|2(Qr(λ1, . . . , λκ) − 1)2

‖λ1‖d−α . . .‖λκ‖d−α

≤ C|K�(λ1 + · · · + λκ)|2
‖λ1‖d−α . . .‖λκ‖d−α

+ C
|K�(λ1 + · · · + λκ)|2

‖λ1‖d−α−δ‖λ2‖d−α−μ2δ . . .‖λκ‖d−α−μκδ
.
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Since the integrands are non-negative, we can estimate I4 as it is shown below

I4 ≤ κ

∫
R(κ−1)d

∫
‖λ1‖>rγ

|K�(λ1 + · · · + λκ)|2(Qr(λ1, . . . , λκ) − 1)2 dλ1 . . .dλκ

‖λ1‖d−α . . .‖λκ‖d−α

≤ C

∫
R(κ−1)d

∫
‖λ1‖>rγ

|K�(λ1 + · · · + λ2)|2 dλ1 . . .dλκ

‖λ1‖d−α . . .‖λκ‖d−α

+ C
∑

μi∈{0,1,−1}
i∈2,...,κ

∫
R(κ−1)d

∫
‖λ1‖>rγ

|K�(λ1 + · · · + λκ)|2 dλ1 . . .dλκ

‖λ1‖d−α−δ‖λ2‖d−α−μ2δ . . .‖λκ‖d−α−μκδ

≤ C max
μi∈{0,1,−1}

i∈2,...,κ

[∫
R(κ−1)d

∫
‖λ1‖>rγ

|K�(λ1 + · · · + λκ)|2 dλ1 . . .dλκ

‖λ1‖d−α−δ‖λ2‖d−α−μ2δ . . .‖λκ‖d−α−μκδ

]
. (20)

Lemma 5. Let 2 ≤ m ≤ κ and

I (m,γ ) := max
μi∈{0,1,−1}

i∈m,...,κ

[∫
R(κ−m+1)d

∫
‖v‖>rγ

|K�(v + λm + · · · + λκ)|2 dv dλm . . .dλκ

‖v‖d−(m−1)(α+δ)‖λm‖d−α−μmδ . . .‖λκ‖d−α−μκδ

]
.

Then, for any γ0 ∈ (0, γ ) and sufficiently large r it holds

I (m,γ ) ≤ C
(
r−(γ−γ0)(d−mα−mδ) + I (m + 1, γ0)

)
, if m < κ,

and

I (κ, γ ) ≤ C

(
r−(γ−γ0)(d−κα−κδ) +

∫
‖u‖>rγ0

|K�(u)|2 du

‖u‖d−κα−κδ

)
.

Proof. First, let us consider the case m < κ . By replacing v + λm by u in I (m,γ ) we obtain

I (m,γ ) ≤ max
μi∈{0,1,−1}

i∈m,...,κ

[∫
R(κ−m+1)d

∫
‖v‖>rγ

|K�(u + λm+1 + · · · + λκ)|2
‖v‖d−(m−1)(α+δ)‖u − v‖d−α−μmδ

× dv dudλm+1 . . .dλκ

‖λm+1‖d−α−μm+1δ . . .‖λκ‖d−α−μκδ

]

≤ max
μi∈{0,1,−1}

i∈m,...,κ

[∫
R(κ−m+1)d

1

‖u‖d−mα−(μm+m−1)δ

× |K�(u + λm+1 + · · · + λκ)|2
‖λm+1‖d−α−μm+1δ . . .‖λκ‖d−α−μκδ

×
∫

‖v‖> rγ

‖u‖

dv dudλm+1 . . .dλκ

‖v‖d−(m−1)(α+δ)‖ u
‖u‖ − v‖d−α−μmδ

]
.
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Let us show that for δ ∈ (0,min(α, d/κ − α)) it holds

sup
u∈Rd\{0}

∫
Rd

dv

‖v‖d−(m−1)(α+δ)‖ u
‖u‖ − v‖d−α−μmδ

= sup
u:‖u‖=1

∫
Rd

dv

‖v‖d−(m−1)(α+δ)‖ u
‖u‖ − v‖d−α−μmδ

< ∞.

One can split Rd into three disjoint regions A1 := {v ∈ R
n : ‖v‖ < 1

2 }, A2 := {v ∈ R
n : 1

2 ≤
‖v‖ < 3

2 } and A3 := {v ∈ R
n : ‖v‖ ≥ 3

2 }. The integrand has only singularity in each of the first
two regions and no singularities but the infinite integration range A3 in the third case. After
proceeding to the spherical coordinates the integral is bounded by the sum of three univariate
integrals: IA1 , IA2 and the improper integral IA3 . Integrals IA1 and IA2 are finite since the powers
of the integrand at their singular points are (m − 1)(α + δ) − 1 and α + μmδ − 1, respectively
that are greater than −1. The integral IA3 is finite since the powers of the integrand at infinity is
−(d + 1 − (m − 1)(α + δ) − (α + μmδ)) ≤ −(d + 1 − mα − mδ) < −1.

Therefore, we obtain

I (m,γ ) ≤ max
μi∈{0,1,−1}

i∈m,...,κ

[∫
R(κ−m)d

∫
‖u‖≤rγ0

1

‖u‖d−mα−(μm+m−1)δ

× |K�(u + λm+1 + · · · + λκ)|2
‖λm+1‖d−α−μm+1δ . . .‖λκ‖d−α−μκδ

×
∫

‖v‖>rγ−γ0

dv dudλm+1 . . .dλκ

‖v‖d−(m−1)(α+δ)‖ u
‖u‖ − v‖d−α−μmδ

+ C

∫
R(κ−m)d

∫
‖u‖>rγ0

|K�(u + λm+1 + · · · + λκ)|2 dudλm+1 . . .dλκ

‖u‖d−mα−(μm+m−1)δ‖λm+1‖d−α−μm+1δ . . .‖λκ‖d−α−μκδ

]
,

where γ0 ∈ (0, γ ).
By Lemma 2, there exists r0 > 1 such that for all r ≥ r0 the first summand is bounded by

max
μi∈{0,1,−1}

i∈m,...,κ

[∫
R(κ−m)d

∫
‖u‖≤rγ0

|K�(u + λm+1 + · · · + λκ)|2 dudλm+1 . . .dλκ

‖u‖d−mα−(μm+m−1)δ‖λm+1‖d−α−μm+1δ . . .‖λκ‖d−α−μκδ

×
∫

‖v‖>rγ−γ0

C dv

‖v‖2d−mα−(m−1)δ−μmδ

]

≤ Cr−(γ−γ0)(d−mα−mδ).
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When ‖u‖ > rγ0 , r > 1, for any μm ∈ {0,1,−1} it holds 1
‖u‖d−mα−(μm+m−1)δ ≤ 1

‖u‖d−mα−mδ . There-
fore, for sufficiently large r ,

I (m,γ )

≤ Cr−(γ−γ0)(d−mα−mδ)

+ C max
μi∈{0,1,−1}

i∈m,...,κ

[∫
R(κ−m)d

∫
‖u‖>rγ0

|K�(u + λm+1 + · · · + λκ)|2 dudλm+1 . . .dλκ

‖u‖d−mα−mδ‖λm+1‖d−α−μm+1δ . . .‖λκ‖d−α−μκδ

]
.

Since the second summand does not depend on μm, it is easy to see that it is equal C · I (m +
1, γ0). Thus, we obtain

I (m,γ ) ≤ C
(
r−(γ−γ0)(d−mα−mδ) + I (m + 1, γ0)

)
.

Following the same arguments as above, it is straightforward to obtain the statement of the
lemma in the case m = κ . �

Therefore, applying Lemma 5 (κ − 1) times to (20) one obtains

I4 ≤ Cr−(γ−γ0)(d−2α−2δ) + · · · + Cr−(γκ−3−γκ−2)(d−κα−κδ)

+ C

∫
‖u‖>rγκ−2

|K�(u)|2 du

‖u‖d−κα−κδ
, (21)

where γ > γ0 > γ1 > · · · > γκ−2 > 0.
By the spherical L2-average decay rate of the Fourier transform [6] for δ < d + 1 − κα and

sufficiently large r we get the following estimate of the integral in (21)

∫
‖u‖>rγκ−2

|K�(u)|2 du

‖u‖d−κα−κδ
≤ C

∫
z>rγκ−2

∫
Sd−1

|K�(zω)|2
z1−κα−κδ

dω dz

≤ C

∫
z>rγκ−2

dz

zd+2−κα−κδ

= Cr−γκ−2(d+1−κα−κδ)

= Cr−(γκ−2−γκ−1)(d+1−κα−κδ), (22)

where Sd−1 := {x ∈R
d : ‖x‖ = 1} is a sphere of radius 1 in R

d and γκ−1 = 0.
Now let us consider the case τ < 0. In this case by Theorem 1.5.6 in [5] for any δ > 0, we can

estimate g(r) as follows

g(r) ≤ Crτ+δ. (23)
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Combining estimates (15), (16), (19), (21), (22),(23) and choosing ε1 := r−β , we obtain

ρ

(
κ!Kr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)
≤ C

(
r
− aα(d−κα)

(2+a)(d−(κ−1)α)
+δ + r−aβ + r2τ+2δ+2β

+ r−(γ−γ0)(d−2α−2δ)+2β + · · · + r−(γκ−3−γκ−2)(d−κα−κδ)+2β

+ r−(γκ−2−γκ−1)(d+1−κα−κδ)+2β
)
.

Therefore, for any κ̃1 ∈ (0, 2+a
a

κ0) one can choose a sufficiently small δ > 0 such that

ρ

(
κ!Kr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)
≤ Crδ

(
r
− aα(d−κα)

(2+a)(d−(κ−1)α) + r− aκ̃1
2+a

)
, (24)

where

κ0 := sup
1>γ>γ0>···>γκ−1=0

β>0

min
(
aβ,−2τ − 2β, (γ − γ0)(d − 2α) − 2β, . . . ,

(γκ−3 − γκ−2)(d − κα) − 2β, (γκ−2 − γκ−1)(d + 1 − κα) − 2β
)
.

Lemma 6. Let � = {γ = (γ1, . . . , γn+1)||b = γ0 > γ1 > · · · > γn+1 = 0} and x = (x0, . . . , xn) ∈
R

n+1+ be some fixed vector.
The function G(γ ) = mini (γi − γi+1)xi reaches its maximum at γ̄ = (γ̄0, . . . , γ̄n+1) ∈ � such

that for any 0 ≤ i ≤ n it holds

(γ̄i − γ̄i+1)xi = (γ̄i+1 − γ̄i+2)xi+1. (25)

Proof. Let us show that any deviation of γ from γ̄ leads to a smaller value. Consider a vector γ̂

such that for some i ∈ {1, . . . , n} and some ε > 0 the following relation is true

γ̂i − γ̂i+1 = γ̄i − γ̄i+1 + ε.

Since
∑n

i=0 γ̂i − γ̂i+1 = γ̂0 − γ̂n+1 = b we can conclude that there exist some ε1 > 0 and j 
=
i, j = 1, . . . , n, such that γ̂j − γ̂j+1 = γ̄j − γ̄j+1 − ε1.

Obviously, in this case

G(γ̂ ) ≤ (γ̂j − γ̂j+1)xj = (γ̄j − γ̄j+1 − ε1)xj = (γ̄j − γ̄j+1)xj − ε1xj .

Since ε1 > 0 and xj > 0 it follows from (25) that

G(γ̂ ) ≤ (γ̄j − γ̄j+1)xj − ε1xj < (γ̄j − γ̄j+1)xj = G(γ̄ ).

So it is clearly seen that any deviation from γ̄ will yield a smaller value. �
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Note, that κ0 can be rewritten as

κ0 = sup
β>0

sup
γ∈(0,1)

sup
γ>γ0>···>γκ−1=0

min
(
aβ,−2τ − 2β, (γ − γ0)(d − 2α) − 2β,

. . . , (γκ−3 − γκ−2)(d − κα) − 2β, (γκ−2 − γκ−1)(d + 1 − κα) − 2β
)
.

Now,

min
(
aβ,−2τ − 2β, (γ − γ0)(d − 2α) − 2β, . . . , (γκ−3 − γκ−2)(d − κα) − 2β,

(γκ−2 − γκ−1)(d + 1 − κα) − 2β
)

= min
(
aβ,−2τ − 2β,min

(
(γ − γ0)(d − 2α), . . . ,

(γκ−3 − γκ−2)(d − κα), (γκ−2 − γκ−1)(d + 1 − κα)
)− 2β

)
,

and the first two terms aβ and −2τ − 2β do not depend on γ, γ0, . . . , γκ−1. Therefore, using the
fact that supγ min(A,B,C(γ )) = min(A,B, supγ C(γ )), where A and B do not depend on γ ,
we obtain

κ0 = sup
β>0

min
(
aβ,−2τ − 2β, sup

γ∈(0,1)

sup
γ>γ0>···>γκ−1=0

min
(
(γ − γ0)(d − 2α),

. . . , (γκ−3 − γκ−2)(d − κα), (γκ−2 − γκ−1)(d + 1 − κα)
)− 2β

)
.

For fixed γ ∈ (0,1) by Lemma 6

sup
γ>γ0>···>γκ−1=0

min
(
(γ − γ0)(d − 2α), . . . , (γκ−3 − γκ−2)(d − κα),

(γκ−2 − γκ−1)(d + 1 − κα)
)= γ

1
d−2α

+ · · · + 1
d−κα

+ 1
d+1−κα

and

sup
γ∈(0,1)

γ

1
d−2α

+ · · · + 1
d−κα

+ 1
d+1−κα

= 1
1

d−2α
+ · · · + 1

d−κα
+ 1

d+1−κα

.

Thus, κ0 = supβ>0 min(aβ,κ1 − 2β) = aκ1
2+a

.
Finally, from (24) for κ̃1 < κ1 the first statement of the theorem follows.
Now let us consider the case τ = 0. In this case by Theorem 1.5.6 in [5] for any s > 0 and

sufficiently large r

g(r) > r−s . (26)

Combining estimates (15), (16), (19), (21), (22), replacing all powers of r for g2(r) using (26),
and choosing ε1 := gβ(r), β ∈ (0,1) we obtain

ρ

(
κ!Kr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)
≤ C

(
g2(r) + gaβ(r) + g2−2β(r)

)
.
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Since supβ∈(0,1) min(2, aβ,2 − 2β) = 2a
2+a

, it follows that

ρ

(
κ!Kr

Cκrd− κα
2 L

κ
2 (r)

,Xκ(�)

)
≤ Cg

2a
2+a (r).

This proves the second statement of the theorem. �

Remark 13. The derived rate does depend on the magnitude of the higher-order terms. Namely,

the upper bound Cr2d−καLκ(r)r
− α(d−κα)

d−(κ−1)α
+δ for the higher-order terms is given in the estimate

of VarSr . Then, this bound appears in the final expression of the rate of convergence as κ <

min( a
2+a

× α(d−κα)
d−(κ−1)α

, a
2+a

κ1).
For the particular case κ = 2, the importance of the contribution of higher-order terms was

illustrated in [1]. In Example 6 [1], it was shown that the contribution of the high-order terms
can be larger than the contribution of the leading 2nd order term. The analogous arguments and
examples are valid for any κ ≥ 2.

Remark 14. The bound (15) in the above proof requires to estimate ρ(X∗
r,κ ,Xκ(�)) which is

the Kolmogorov distance between two Wiener–Itô integrals of the same order. It can be written
as ρ(Iκ(fr), Iκ(f )), where fr and f are appropriate functions. This distance is estimated as

ρ
(
Iκ(fr), Iκ(f )

)≤ C‖fr − f ‖ 1
κ+1/2 . (27)

Since the Kolmogorov distance ρ(·) is majorised by the total variation distance ρT V (·)
(ρ(ξ, η) ≤ ρT V (ξ, η)), the result ρT V (Iκ(fr), Iκ(f )) ≤ C‖fr − f ‖ 1

κ in [11] would be an im-
provement of our estimate. However, only a sketch of a proof was provided in [11], and [31] ques-

tioned the result. Therefore, the new bound ρT V (Iκ(f1), Iκ(f2)) ≤ C‖f1 − f2‖ 1
2κ was proved in

[31]. Note, that this result is worse than ours for the Kolmogorov distance. Thus, estimate (27)
was used as the best available fully proven self-contained result.

Remark 15. It follows from the proof that similar upper bounds exist in L2, discrepancy, Lévy,
and other equivalent metrics.

Remark 16. If τ ∈ (− d−κα
2 ,0), then the convergence rate in Theorem 5 is o(r−κ), where κ is

strictly smaller than the critical value κc = a
2+a

min(
α(d−κα)

d−(κ−1)α
,κ1). This is due to the presence

of slowly varying functions in the assumptions. A slowly varying function can be unbounded,
but, by Remark 3, for an arbitrary positive δ it holds L(r) < rδ if r is large enough. Hence,
the inequality for κ must be strict because Theorem 5 derives the power upper bound. In the
particular case, when slowly varying functions are replaced by constants, the multiplier rδ in the
proof is redundant and the rate of convergence would be of order r−κc .

Remark 17. The upper bound on the rate of convergence in Theorem 5 is given by explicit
formulae that are easy to evaluate and analyze. For example, for fixed values of α and κ it is
simple to see that the upper bound for κ approaches a

2+a
min(α,−2τ), when d → +∞. For
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fixed values of d and κ the upper bound for κ is of the order O(d − κα), when α → d/κ . This
result is expected as the value α = d/κ corresponds to the boundary where a phase transition
between short- and long-range dependence occurs.

6. Conclusion

The rate of convergence to Hermite-type limit distributions in non-central limit theorems was
investigated. The results were obtained under rather general assumptions on the spectral densities
of the considered random fields, that weaken the assumptions used in [1]. Similar to [1], the direct
probabilistic approach was used, which has, in our view, an independent interest as an alternative
to the methods in [7,28,29]. Additionally, some fine properties of the probability distributions
of Hermite-type random variables were investigated. Some special cases when their probability
density functions are bounded were discussed. New anti-concentration inequalities were derived
for Lévy concentration functions.
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