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We consider in this paper the problem of sampling a high-dimensional probability distribution π hav-
ing a density w.r.t. the Lebesgue measure on R

d , known up to a normalization constant x �→ π(x) =
e−U(x)/

∫
Rd e−U(y) dy. Such problem naturally occurs for example in Bayesian inference and machine

learning. Under the assumption that U is continuously differentiable, ∇U is globally Lipschitz and U is
strongly convex, we obtain non-asymptotic bounds for the convergence to stationarity in Wasserstein dis-
tance of order 2 and total variation distance of the sampling method based on the Euler discretization of the
Langevin stochastic differential equation, for both constant and decreasing step sizes. The dependence on
the dimension of the state space of these bounds is explicit. The convergence of an appropriately weighted
empirical measure is also investigated and bounds for the mean square error and exponential deviation in-
equality are reported for functions which are measurable and bounded. An illustration to Bayesian inference
for binary regression is presented to support our claims.

Keywords: Langevin diffusion; Markov chain Monte Carlo; Metropolis adjusted Langevin algorithm; rate
of convergence; total variation distance

1. Introduction

Interest for Bayesian inference methods for high-dimensional models has recently received re-
newed attention often motivated by machine learning applications. Rather than obtaining a point
estimate, Bayesian methods attempt to sample the full posterior distribution over the parame-
ters and possibly latent variables which provides a way to assert uncertainty in the model and
prevents from overfitting [31,40].

The problem can be formulated as follows. We aim at sampling a posterior distribution π on
R

d , d ≥ 1, with density x �→ e−U(x)/
∫
Rd e−U(y) dy w.r.t. the Lebesgue measure, where U is

continuously differentiable. The Langevin stochastic differential equation associated with π is
defined by:

dYt = −∇U(Yt )dt + √
2 dBt , (1)

where (Bt )t≥0 is a d-dimensional Brownian motion defined on the filtered probability space
(�,F, (Ft )t≥0,P), satisfying the usual conditions. Under mild technical conditions, the
Langevin diffusion admits π as its unique invariant distribution.
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We study the sampling method based on the Euler–Maruyama discretization of (1). This
scheme defines the (possibly) non-homogeneous, discrete-time Markov chain (Xk)k≥0 given by

Xk+1 = Xk − γk+1∇U(Xk) + √
2γk+1Zk+1, (2)

where (Zk)k≥1 is an i.i.d. sequence of d-dimensional standard Gaussian random variables and
(γk)k≥1 is a sequence of step sizes, which can either be held constant or be chosen to decrease
to 0. This algorithm has been first proposed by [15] and [33] for molecular dynamics applications.
Then it has been popularized in machine learning by [19,20] and computational statistics by [31]
and [35]. Following [35], in the sequel this method will be referred to as the unadjusted Langevin
algorithm (ULA). When the step sizes are held constant, under appropriate conditions on U , the
homogeneous Markov chain (Xk)k≥0 has a unique stationary distribution πγ , which in most
cases differs from the distribution π . It has been proposed in [36] and [35] to use a Metropolis–
Hastings step at each iteration to enforce reversibility w.r.t. π . This algorithm is referred to as the
Metropolis adjusted Langevin algorithm (MALA).

The ULA algorithm has already been studied in depth for constant step sizes in [35,38] and
[30]. In particular, [38], Theorem 4, gives an asymptotic expansion for the weak error between π

and πγ . When limk→+∞ γk = 0 and
∑∞

k=1 γk = ∞, weak convergence of the weighted empirical
distribution of the ULA algorithm has been established in [26,27] and [28].

Contrary to these reported works, we focus in this paper on non-asymptotic results. These
questions have been addressed previously in [9] and [10]. [9] establishes explicit bounds on the
total variation distance between the distribution of the nth iterate of the Markov chain defined
in (2) and the target distribution π for fixed step size and a strongly convex potential U . It
is shown that if the initial distribution is an appropriately chosen Gaussian or if a warm-start
is used, the number of iterations required to get a sample ε-close to π in total variation is of
order O(d3ε−2) and O(dε−2) respectively. The results of [9] were later sharpened in [10], using
different technical arguments. In particular, [10] shows that starting from a minimizer of U , the
number of iterations to get a sample ε-close from π in total variation is of order O(dε−2) and
that therefore a warm start is not necessary. [10] also extends the results of [9] to non-convex
potentials and non-increasing sequences of step sizes. It also establish some bounds between π

and πγ in V -norm which scale as γ 1/2 as γ → 0.
In this work, we focus on the case where U is strongly convex. Compared to [9] and [10], our

contributions are as follows.

• We give explicit bounds between the distribution of the nth iterate of the Markov chain
defined in (2) and the target distribution π in Wasserstein and total variation distance for
fixed and non-increasing step sizes. The obtained bounds improve those reported in [9] and
[10] for the total variation distance.

• For fixed step sizes (γk = γ for all k ≥ 0), we analyse both fixed horizon (the total com-
putational budget is fixed and the step size is chosen to minimize the upper bound on the
Wasserstein or total variation distance) and fixed precision (for a fixed target precision, the
number of iterations and the step size are optimized simultaneously to meet this constraint).
For a fixed precision ε > 0, we show that the number of iterations n ≥ 0, for ULA to get a
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sample ε-close to π in Wasserstein distance / total variation of order O(dε−2) or O(dε−1)

(up to logarithmic terms), depending on the smoothness of U . We show that our result is
optimal (up to logarithmic factors again) for d-dimensional Gaussian distribution. We show
in the finite horizon setting that if the total number of iterations is n, we may choose the
step size γ = γn > 0 such that the Wasserstein distance between the distribution of the nth
iterate and π is bounded by O(n−1/2) and O(n−1) depending on the smoothness of U .

• When limk→+∞ γk = 0 and
∑∞

k=1 γk = ∞, we show that the marginal distribution of the
non-homogeneous Markov chain (Xk)k≥0 converges to the target distribution π and provide
explicit convergence bounds in the case γk = γ1k

−α , α ∈ (0,1]. The optimal rate of conver-
gence derived from our bounds for the Wasserstein/total variation distance is obtained for
α = 1 with γ1 > 0 large enough. The convergence rates we report, improve those given in
[10].

• Quantitative estimates between π and πγ are obtained in Wasserstein and total variation
distance. The bound on the total variation distance between π and πγ we derive improves
the one reported in [10]. In particular, when U is smooth enough, ‖π − πγ ‖TV scales as γ

as γ → 0.
• Convergence of weighted empirical measure is studied through bounds on the mean square

error and exponential deviation of an estimator of
∫
Rd f (x)dπ(x), for functions f : Rd →R

which are either Lipschitz or bounded and measurable. When f is Lipschitz, U is smooth
enough and in the any-time setting, the optimal rate of convergence for the MSE, using
non-increasing sequences γk = γ1/kα , is obtained for α = 1/3 (which coincides with the
rate used in [26] to derive a central limit theorem). If the step size is held constant, we get
that the number of iterations for the mean square error to be smaller than ε > 0 is of order
O(dε−4) or O(dε−3), depending on the smoothness of U . The case where f is bounded and
measurable is an important result in Bayesian statistics to estimate credibility regions. For
that purpose, we study the convergence of the Euler–Maruyama discretization towards its
stationary distribution in total variation using a discrete time version of reflection coupling
introduced in [4]. For fixed step size, the conclusion on the sufficient number of iterations
for the mean square error to be smaller than ε > 0 is the same (up to logarithmic terms) as
for Lipschitz functions.

In this paper, a special attention is paid to the dependency of the obtained bounds on the dimen-
sion of the state space, since we are particularly interested in the applications of this method to
sampling in high-dimension.

The paper is organized as follows. In Section 2, we study the convergence in the Wasserstein
distance of order 2 of the Euler discretization for constant and decreasing step sizes. In Section 3,
we give non asymptotic bounds in total variation distance between the Euler discretization and π .
This study is completed in Section 4 by non-asymptotic bounds of convergence of the weighted
empirical measure applied to functions which are either Lipschitz or bounded and measurable.
Our claims are supported in a Bayesian inference for a binary regression model in Section 5.
Finally in Section 6, some results of independent interest, used in the proofs, on functional au-
toregressive models are gathered. Most proofs and derivations are postponed and carried out in a
supplementary paper [11].
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Notations and conventions

Denote by B(Rd) the Borel σ -field of Rd , F(Rd) the set of all Borel measurable functions on
R

d and for f ∈ F(Rd), ‖f ‖∞ = supx∈Rd |f (x)|. For μ a probability measure on (Rd,B(Rd))

and f ∈ F(Rd) a μ-integrable function, denote by μ(f ) the integral of f w.r.t. μ. We say that
ζ is a transference plan of μ and ν if it is a probability measure on (Rd × R

d,B(Rd × R
d))

such that for all measurable set A of Rd , ζ(A ×R
d) = μ(A) and ζ(Rd × A) = ν(A). We denote

by �(μ,ν) the set of transference plans of μ and ν. Furthermore, we say that a couple of Rd -
random variables (X,Y ) is a coupling of μ and ν if there exists ζ ∈ �(μ,ν) such that (X,Y )

are distributed according to ζ . For two probability measures μ and ν, we define the Wasserstein
distance of order p ≥ 1 as

Wp(μ,ν) =
(

inf
ζ∈�(μ,ν)

∫
Rd×Rd

‖x − y‖p dζ(x, y)

)1/p

.

By [39], Theorem 4.1, for all μ, ν probability measures on R
d , there exists a transference

plan ζ � ∈ �(μ,ν) such that for any coupling (X,Y ) distributed according to ζ �, Wp(μ,ν) =
E[‖X−Y‖p]1/p . This kind of transference plan (respectively coupling) will be called an optimal
transference plan (respectively optimal coupling) associated with Wp . We denote by Pp(Rd) the
set of probability measures with finite p-moment: for all μ ∈ Pp(Rd),

∫
Rd ‖x‖p dμ(x) < +∞.

By [39], Theorem 6.16, Pp(Rd) equipped with the Wasserstein distance Wp of order p is a
complete separable metric space.

Let f : Rd → R be a Lipschitz function, namely there exists C ≥ 0 such that for all x, y ∈R
d ,

|f (x) − f (y)| ≤ C‖x − y|. Then we denote

‖f ‖Lip = inf
{∣∣f (x) − f (y)

∣∣‖x − y‖−1 | x, y ∈R
d, x �= y

}
.

The Monge–Kantorovich theorem (see [39], Theorem 5.9) implies that for all μ, ν probability
measures on R

d ,

W1(μ, ν) = sup

{∫
Rd

f (x)dμ(x) −
∫
Rd

f (x)dν(x)

∣∣∣ f : Rd → R; ‖f ‖Lip ≤ 1

}
.

Denote by Fb(R
d) the set of all bounded Borel measurable functions on R

d . For f ∈ Fb(R
d)

set osc(f ) = supx,y∈Rd |f (x) − f (y)|. For two probability measures μ and ν on R
d , the total

variation distance distance between μ and ν is defined by ‖μ−ν‖TV = supA∈B(Rd ) |μ(A)−ν(A)|.
By the Monge–Kantorovich theorem the total variation distance between μ and ν can be written
on the form:

‖μ − ν‖TV = inf
ζ∈�(μ,ν)

∫
Rd×Rd

1Dc(x, y)dζ(x, y),

where D = {(x, y) ∈ R
d × R

d | x = y}. For all x ∈ R
d and M > 0, we denote by B(x,M), the

ball centered at x of radius M . For a subset A⊂ R
d , denote by Ac the complementary of A. Let

n ∈ N
∗ and M be a n × n-matrix, then denote by MT the transpose of M and ‖M‖ the operator
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norm associated with M defined by ‖M‖ = sup‖x‖=1 ‖Mx‖. Define the Frobenius norm associ-
ated with M by ‖M‖2

F = Tr(MT M). Let n,m ∈ N
∗ and F : Rn → R

m be a twice continuously
differentiable function. Denote by ∇F and ∇2F the Jacobian and the Hessian of F respectively.
Denote also by �
F the vector Laplacian of F defined by: for all x ∈ R

d , �
F(x) is the vector of
R

m such that for all i ∈ {1, . . . ,m}, the ith component of �
F(x) equals to
∑d

j=1(∂
2Fi/∂x2

j )(x).
In the sequel, we take the convention that

∑n
p = 0 and

∏n
p = 1 for n,p ∈N, n < p.

2. Non-asymptotic bounds in Wasserstein distance of order 2
for ULA

Consider the following assumption on the potential U :

H1. The function U is continuously differentiable on R
d and gradient Lipschitz: there exists

L ≥ 0 such that for all x, y ∈R
d , ‖∇U(x) − ∇U(y)‖ ≤ L‖x − y‖.

Under H1, for all x ∈R
d by [24], Theorem 2.5, Theorem 2.9, Chapter 5, there exists a unique

strong solution (Yt )t≥0 to (1) with Y0 = x. Denote by (Pt )t≥0 the semi-group associated with
(1). It is well known that π is its (unique) invariant probability. To get geometric convergence of
(Pt )t≥0 to π in Wasserstein distance of order 2, we make the following additional assumption on
the potential U .

H2. U is strongly convex, i.e. there exists m > 0 such that for all x, y ∈R
d ,

U(y) ≥ U(x) + 〈∇U(x), y − x
〉 + (m/2)‖x − y‖2.

Under H2, [32], Theorem 2.1.8, shows that U has a unique minimizer x� ∈ R
d . We briefly

summarize some background material on the stability and the convergence in W2 of the over-
damped Langevin diffusion under H1 and H2. Most of the statements in Proposition 1 are known
and are recalled here for ease of references; see, for example, [5].

Proposition 1. Assume H1 and H2.

(i) For all t ≥ 0 and x ∈ R
d ,∫

Rd

∥∥y − x�
∥∥2

Pt (x,dy) ≤ ∥∥x − x�
∥∥2e−2mt + (d/m)

(
1 − e−2mt

)
.

(ii) The stationary distribution π satisfies
∫
Rd ‖x − x�‖2π(dx) ≤ d/m.

(iii) For any x, y ∈ R
d and t > 0, W2(δxPt , δyPt ) ≤ e−mt‖x − y‖.

(iv) For any x ∈ R
d and t > 0, W2(δxPt ,π) ≤ e−mt {‖x − x�‖ + (d/m)1/2}.

Proof. The proof is given in the supplementary document [11], Section 1.1. �
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Note that the convergence rate in Proposition 1(iv) does not depend on the dimension. Let
(γk)k≥1 be a sequence of positive and non-increasing step sizes and for n, � ∈N, denote by

�n,� =
�∑

k=n

γk, �n = �1,n. (3)

For γ > 0, consider the Markov kernel Rγ given for all A ∈ B(Rd) and x ∈R
d by

Rγ (x,A) =
∫

A
(4πγ )−d/2 exp

(−(4γ )−1
∥∥y − x + γ∇U(x)

∥∥2)dy. (4)

The process (Xk)k≥0 given in (2) is an inhomogeneous Markov chain with respect to the family
of Markov kernels (Rγk

)k≥1. For �,n ∈ N
∗, � ≥ n, define

Qn,�
γ = Rγn · · ·Rγ�

, Qn
γ = Q1,n

γ (5)

with the convention that for n, � ∈ N, � < n, Qn,�
γ is the identity operator.

We first derive a Foster–Lyapunov drift condition for Qn,�
γ , �,n ∈N

∗, � ≥ n. Set

κ = 2mL

m + L
, (6)

where m and L are defined in H1.

Proposition 2. Assume H1 and H2.

(i) Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m + L). Let x� be the unique
minimizer of U . Then for all x ∈ R

d and n, � ∈ N
∗,∫

Rd

∥∥y − x�
∥∥2

Qn,�
γ (x,dy) ≤ �n,�(x),

where �n,�(x) is given by

�n,�(x) =
�∏

k=n

(1 − κγk)
∥∥x − x�

∥∥2 + 2dκ−1

{
1 − κ−1

�∏
i=n

(1 − κγi)

}
. (7)

(ii) For any γ ∈ (0,2/(m + L)], Rγ has a unique stationary distribution πγ and∫
Rd

∥∥x − x�
∥∥2

πγ (dx) ≤ 2dκ−1.

Proof. The proof is postponed to [11], Section 1.2. �

We now proceed to establish that Qn
γ is a strict contraction in W2 for any n ≥ 1. This result

implies the geometric convergence of the sequence (δxR
n
γ )n≥1 to πγ in W2 for all x ∈ R

d . Note
that the convergence rate again does not depend on the dimension.
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Proposition 3. Assume H1 and H2. Then:

(i) Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m + L). For all x, y ∈ R
d and

� ≥ n ≥ 1,

W2
(
δxQ

n,�
γ , δyQ

n,�
γ

) ≤
{

�∏
k=n

(1 − κγk)

}1/2

‖x − y‖.

(ii) For any γ ∈ (0,2/(m + L)), for all x ∈R
d and n ≥ 1,

W2
(
δxR

n
γ ,πγ

) ≤ (1 − κγ )n/2{∥∥x − x�
∥∥2 + 2κ−1d

}1/2
.

Proof. The proof is postponed to [11], Section 1.3. �

Corollary 4. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m +
L). Then for all Lipschitz functions f : Rd → R and � ≥ n ≥ 1, Qn,�

γ f is a Lipschitz function
with ‖Qn,�

γ f ‖Lip ≤ ∏�
k=n(1 − κγk)

1/2‖f ‖Lip.

Proof. The proof follows from Proposition 3(i) using∣∣Qn,�
γ f (y) − Qn,�

γ f (z)
∣∣ ≤ ‖f ‖LipW2

(
δyQ

n,�
γ , δzQ

n,�
γ

)
. �

We now proceed to establish explicit bounds for W2(δxQ
n
γ ,π), with x ∈R

d .

Theorem 5. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 1/(m +
L). Then for all x ∈ R

d and n ≥ 1,

W 2
2

(
δxQ

n
γ ,π

) ≤ u(1)
n (γ )

{∥∥x − x�
∥∥2 + d/m

} + u(2)
n (γ ),

where

u(1)
n (γ ) = 2

n∏
k=1

(1 − κγk/2), (8)

κ is defined in (6) and

u(2)
n (γ ) = L2d

n∑
i=1

[
γ 2
i

{
κ−1 + γi

}{
2 + L2γi

m
+ L2γ 2

i

6

} n∏
k=i+1

(1 − κγk/2)

]
. (9)

Proof. The proof is postponed to [11], Section 1.4. �

Corollary 6. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤
1/(m + L). Assume that limk→∞ γk = 0 and limn→+∞ �n = +∞. Then for all x ∈ R

d ,
limn→∞ W2(δxQ

n
γ ,π) = 0.
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Proof. The proof is postponed to [11], Section 1.5. �

In the case of constant step sizes γk = γ for all k ≥ 1, we can deduce from Theorem 5, a bound
between π and the stationary distribution πγ of Rγ .

Corollary 7. Assume H1 and H2. Let (γk)k≥1 be a constant sequence γk = γ for all k ≥ 1 with
γ ≤ 1/(m + L). Then

W 2
2 (π,πγ ) ≤ 2κ−1L2γ

{
κ−1 + γ

}(
2d + dL2γ /m + dL2γ 2/6

)
.

Proof. Since by Proposition 3, for all x ∈ R
d , (δxR

n
γ )n≥0 converges to πγ as n → ∞ in

(P2(R
d),W2), the proof then follows from Theorem 5 and [10], Lemma S3, applied with

� = 1. �

We can improve the bound provided by Theorem 5 under additional regularity assumptions on
the potential U .

H3. The potential U is three times continuously differentiable and there exists L̃ such that for
all x, y ∈ R

d , ‖∇2U(x) − ∇2U(y)‖ ≤ L̃‖x − y‖.

Note that under H1 and H3, we have that for all x, y ∈R
d ,∥∥∇2U(x)y

∥∥ ≤ L‖y‖, ∥∥ �
(∇U)(x)
∥∥2 ≤ d2L̃2. (10)

Theorem 8. Assume H1, H2 and H3. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤
1/(m + L). Then for all x ∈ R

d and n ≥ 1,

W 2
2

(
δxQ

n
γ ,π

) ≤ u(1)
n (γ )

{∥∥x − x�
∥∥2 + d/m

} + u(3)
n (γ ),

where u
(1)
n is given by (8), κ in (6) and

u(3)
n (γ ) =

n∑
i=1

[
dγ 3

i

{
2L2 + γiL

4
(

γi

6
+ m−1

)
+ κ−1

(
4dL̃2

3
+ γiL

4 + 4L4

3m

)}

×
n∏

k=i+1

(
1 − κγk

2

)]
. (11)

Proof. The proof is postponed to [11], Section 1.6. �

If γk = γ for all k ≥ 1, we can deduce from Theorem 8, a sharper bound between π and the
stationary distribution πγ of Rγ .
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Table 1. Dependencies of the number of iterations nε to get
W2(δx�R

nε
γε

,π) ≤ ε

Parameter d, ε

Theorem 5 and Proposition 3(ii) O(d log(d)ε−2| log(ε)|)
Theorem 8 and Proposition 3(ii) O(d log(d)ε−1| log(ε)|)

Corollary 9. Assume H1, H2 and H3. Let (γk)k≥1 be a constant sequence γk = γ for all k ≥ 1
with γ ≤ 1/(m + L). Then

W 2
2 (π,πγ ) ≤ 2κ−1dγ 2

{
2L2 + γL4(γ /6 + m−1) + κ−1

(
4dL̃2

3
+ γL4 + 4L4

3m

)}
.

Proof. The proof follows the same line as the proof of Corollary 7 and is omitted. �

Using Proposition 3(ii) and Corollary 6 or Corollary 9, given ε > 0, we determine the number
of iterations nε and an associated step size γε to ensure that W2(δx�Rn

γε
,π) ≤ ε for all n ≥ nε .

The precise expression of nε directly computed using Theorem 5 and Theorem 8 are also given
in [11], Section 5.1–Section 6.1. Dependencies in dimension d and precision ε of nε are reported
in Table 1. Under H1 and H2, the complexity matches the results reported in [10] for the total
variation distance. Under H3, the dependency in the precision ε can be improved. If L̃ = 0 (for
example, for non-degenerate d-dimensional Gaussian distributions), then the dependency in d

given by Theorem 8 is of order O(d1/2 log(d)).
In a recent work [8] (based on a previous version of this paper), an improvement of the proof

of Theorem 5 has been proposed for constant step size. Whereas the constants are sharper, de-
pendency in dimension d and precision ε > 0 is the same (first line of Table 1).

Under H1 and H2, by Theorem 5, in the finite horizon setting, then for any n ≥ 1, we may
choose a step size γ = γn > 0 such that W 2

2 (δx�Rn
γn

,π) = O(log(n)/n) and W 2
2 (δx�Rn

γn
,π) ≤

O(log(n)/n)2 if H3 holds by Theorem 8. The precise statement of these results are given by
[11], Corollary S16–Corollary S19, in [11], Section 5.3–Section 6.3.

For simplicity, consider sequences (γk)k≥1 defined for all k ≥ 1 by γk = γ1/kα , for γ1 <

1/(m + L) and α ∈ (0,1). Then for n ≥ 1, u
(1)
n = O(e−κ�n/2), u

(2)
n = dO(n−α) and u

(3)
n =

d2O(n−2α) (see [11], Section 5.2–Section 6.2, for details). For γk = γ1/k, we need to extend
Theorem 5 and Theorem 8 to non-increasing sequence such that there exists n1 ≥ 1 such that
γn1 < 1/(m + L). It is done in [11], Theorem S25 in Section 7. Using this result in [11], Sec-
tion 7.1, we get that under H1 and H2, that W 2

2 (δx�Qn
γ ,π) = O(n−1) for γ1 > 2κ−1. If in

addition H3 holds, we have W 2
2 (δx�Qn

γ ,π) = O(n−1) for γ1 > 4κ−1. However, note that the
constants are exponential in γ1. The conclusions of this discussion are summarized in Table 2.

Note that these rates are explicit compared to those reported in [10], Proposition 3. In addition,
two regimes can be observed as in stochastic approximation in the case α = 1.
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Table 2. Order of convergence of W2
2 (δx�Qn

γ ,π) for γk = γ1/kα

α ∈ (0,1) α = 1

Theorem 5 d O(n−α) d O(n−1) for γ1 > 2κ−1 see [11], Section 7.1
Theorem 8 d2 O(n−2α) d2 O(n−2) for γ1 > 4κ−1 see [11], Section 7.1

Details and further discussions are included in [11], Section 5–Section 6. In particular, the
dependencies of the obtained bounds with respect to the constants m and L which appear in H1,
H2 are evidenced.

3. Quantitative bounds in total variation distance

We develop in this section quantitative bounds in total variation distance. For Bayesian inference
application, total variation bounds are useful for computing highest posterior density (HPD)
credible regions and intervals. For computing such bounds we will use the results of Section 2
combined with the regularizing property of the semigroup (Pt )t≥0.

The first key result consists in upper-bounding the total variation distance ‖μPt − νPt‖TV for
μ,ν ∈ P1(R

d). To that purpose, we use the coupling by reflection; see [29], Section 3, or [5],
Example 3.7, for its construction, and [3,13,14] for applications. It is defined as the unique strong
solution (Xt ,Yt )t≥0 of the SDE:{

dXt = −∇U(Xt )dt + √
2 dBd

t ,

dYt = −∇U(Yt )dt + √
2
(
Id − 2et e

T
t

)
dBd

t ,
where et = e(Xt − Yt ) (12)

with X0 = x, Y0 = y, e(z) = z/‖z‖ for z �= 0 and e(0) = 0 otherwise. Define the coupling time
Tc = inf{s ≥ 0 | Xs = Ys}. By construction Xt = Yt for t ≥ Tc. Using Levy’s characterization,
B̃d

t = ∫ t

0 (Id − 2ese
T
s )dBd

s is a d-dimensional Brownian motion, therefore (Xt )t≥0 and (Yt )t≥0
are weak solutions to (1) started at x and y respectively. Then by Lindvall’s inequality, for all
t > 0 we have ‖Pt(x, ·) − Pt(y, ·)‖TV ≤ P(Xt �= Yt ).

Denote by � the cumulative distribution function of the standard normal distribution. For
a > 0, define χa for all t ≥ 0 by

χa(t) =
√

(4/a)
(
e2at − 1

)
. (13)

Theorem 10. Assume H1 and H2.

(i) For any x, y ∈R
d and t > 0, it holds∥∥Pt (x, ·) − Pt (y, ·)∥∥TV ≤ 1 − 2�

{−‖x − y‖/χm(t)
}
,

where χm is defined in (13) and m is the strong convexity constant.
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(ii) For any μ,ν ∈P1(R
d) and t > 0,

‖μPt − νPt‖TV ≤ 21/2 W1(μ, ν)/
(
π1/2χm(t)

)
.

(iii) For any x ∈ R
d and t ≥ 0,

‖π − δxPt‖TV ≤ 21/2{(d/m)1/2 + ∥∥x − x�
∥∥}

/
(
π1/2χm(t)

)
.

Proof. (i) Denote for t > 0, B1
t = ∫ t

0 1{s<Tc}eT
s dBd

s . We compute a bound for the coupling time.
On {t < Tc}, by (12), we get

d{Xt − Yt } = −{∇U(Xt ) − ∇U(Yt )
}

dt + 2
√

2et dB1
t .

Itô’s formula on {t < Tc} yields

emt‖Xt − Yt‖ = ‖x − y‖ + m

∫ t

0
ems‖Xs − Ys‖ds

−
∫ t

0
ems

〈∇U(Xs) − ∇U(Ys), es

〉
ds + 2

√
2
∫ t

0
ems dB1

s .

Then by H2, we obtain on {t < Tc}, ‖Xt − Yt‖ ≤ Ut , where (Ut )t∈(0,Tc) is the one-dimensional
Ornstein–Uhlenbeck process defined by

Ut = e−mt‖x − y‖ + 2
√

2
∫ t

0
em(s−t) dB1

s .

Therefore, for all x, y ∈ R
d and t ≥ 0, we get

P(Tc > t) ≤ P

(
min

0≤s≤t
Us > 0

)
.

Finally the proof follows from [2], Formula 2.0.2, page 542. For completeness, this formula is
given in [11], Section 4.2.

(ii) Let μ,ν ∈ P1(R
d) and ξ ∈ �(μ,ν) be an optimal transference plan for (μ, ν) w.r.t. W1.

Since for all s > 0, 1/2 − �(−s) ≤ (2π)−1/2s, (i) implies that for all x, y ∈R
d and t > 0,

‖μPt − νPt‖TV ≤ 2
∫
Rd×Rd

‖x − y‖
(2π)1/2χm(t)

dξ(x, y),

which is the desired result.
(iii) The proof is a straightforward consequence of (ii) and Proposition 1(iv). �

Since for all s > 0, s ≤ es − 1, note that Theorem 10(ii) implies that for all t > 0 and μ,ν ∈
P1(R

d),

‖μPt − νPt‖TV ≤ (4πt)−1/2W1(μ, ν). (14)
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Therefore for all bounded measurable function f , Ptf is a Lipschitz function for all t > 0 with
Lipshitz constant

‖Ptf ‖Lip ≤ (4πt)−1/2 osc(f ). (15)

We will now study the contraction of Qn,�
γ in total variation for non-increasing sequences

(γk)k≥1. Strikingly, we are able to derive results which closely parallel Theorem 10. The proof
is nevertheless completely different because the reflection coupling is no longer applicable in
discrete time. We use a coupling construction inspired by the method of [4], Section 3.3, for
Gaussian random walks. This construction has been used in [12] to establish convergence of
homogeneous Markov chain in Wasserstein distances using different method of proof. So as not
to interrupt the argument, this construction is postponed to Section 6.

For all n, � ≥ 1, n < � and (γk)k≥1 a non-increasing sequence denote by

�n,�(γ ) = κ−1

{
�∏

j=n

(1 − κγj )
−1 − 1

}
, ��(γ ) = �1,�(γ ). (16)

Theorem 11. Assume H1 and H2.

(i) Let (γk)k≥1 be a non-increasing sequence satisfying γ1 ≤ 2/(m + L). Then for all x, y ∈
R

d and n, � ∈N
∗, n < �, we have∥∥δxQ

n,�
γ − δyQ

n,�
γ

∥∥
TV ≤ 1 − 2�

{−‖x − y‖/{8�n,�(γ )
}1/2}

.

(ii) Let (γk)k≥1 be a non-increasing sequence satisfying γ1 ≤ 2/(m+L). Then, for all μ,ν ∈
P1(R

d) and �,n ∈ N
∗, n < �, we have∥∥μQn,�

γ − νQn,�
γ

∥∥
TV ≤ {

4π�n,�(γ )
}−1/2

W1(μ, ν).

(iii) Let γ ∈ (0,2/(m + L)]. Then for any x ∈R
d and n ≥ 1,∥∥πγ − δxR

n
γ

∥∥
TV ≤ {

4πκ
(
1 − (1 − κγ )n/2)}−1/2

(1 − κγ )n/2{∥∥x − x�
∥∥ + (

2κ−1d
)1/2}

.

Proof. (i) By (S1) for all x, y and k ≥ 1, we have∥∥x − γk∇U(x) − y + γk∇U(y)
∥∥ ≤ (1 − κγk)

1/2‖x − y‖.
Let n, � ≥ 1, n < �, then applying Theorem 19 in Section 6, we get∥∥δxQ

n,�
γ − δyQ

n,�
γ

∥∥
TV ≤ 1 − 2�

(−‖x − y‖/{8�n,�(γ )
}1/2)

.

(ii) Let f ∈ Fb(R
d) and � > n ≥ 1. For all x, y ∈ R

d by definition of the total variation distance
and (i), we have∣∣Qn,�

γ f (x) − Qn,�
γ f (y)

∣∣ ≤ osc(f )
∥∥δxQ

n,�
γ − δyQ

n,�
γ

∥∥
TV

≤ osc(f )
{
1 − 2�

(−‖x − y‖/{8�n,�(γ )
}1/2)}

.

Using that for all s > 0, 1/2 − �(−s) ≤ (2π)−1/2s concludes the proof.
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(iii) The proof follows from (iii), the bound for all s > 0, 1/2 − �(−s) ≤ (2π)−1/2s and
Proposition 2(ii). �

We can combine Theorem 5 or Theorem 8 with Theorem 10 and Theorem 11 to obtain ex-
plicit bounds in total variation between the Euler–Maruyama discretization and the target distri-
bution π . To that purpose, we use the following decomposition, for all non-increasing sequence
(γk)k≥1, initial point x ∈ R

d and � ≥ 0:∥∥π − δxQ
�
γ

∥∥
TV ≤ ‖π − δxP��

‖TV + ∥∥δxP��
− δxQ

�
γ

∥∥
TV. (17)

The first term is dealt with Theorem 10(iii). It remains to bound the second term in (17). Since we
will use Theorem 5 and Theorem 8, we have two different results depending on the assumptions
on U . Define for all x ∈R

d and n,p ∈ N,

ϑ(1)
n,p(x) = L2

n∑
i=1

γ 2
i

n∏
k=i+1

(1 − κγk/2)
[{

κ−1 + γi

}(
2d + dL2γ 2

i /6
)

+ L2γiδi,n,p(x)
{
κ−1 + γi

}]
, (18)

ϑ(2)
n,p(x) =

n∑
i=1

γ 3
i

n∏
k=i+1

(1 − κγk/2)
[
L4δi,n,p(x)

(
4κ−1/3 + γn+1

)
+ d

{
2L2 + 4κ−1(dL̃2/3 + γn+1L

4/4
) + γ 2

n+1L
4/6

}]
, (19)

where

δi,n,p(x) = e−2m�i−1�n,p(x) + (
1 − e−2m�i−1

)
(d/m),

and �n,p(x) is given by (7).

Theorem 12. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 1/(m +
L). Then for all x ∈ R

d and �,n ∈N
∗, � > n,∥∥δxP��

− δxQ
�
γ

∥∥
TV ≤ (

ϑn(x)/(4π�n+1,�)
)1/2

+ 2−3/2L

(
�∑

k=n+1

{(
γ 3
k L2/3

)
�1,k−1(x) + dγ 2

k

})1/2

, (20)

where �1,n(x) is defined by (7), ϑn(x) is equal to ϑ
(2)
n,0(x) given by (19), if H3 holds, and to

ϑ
(1)
n,0(x) given by (18) otherwise.

Proof. The proof is postponed to [11], Section 2.1. �
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Consider the case of decreasing step sizes of the form γk = γ1/kα for k ≥ 1 and α ∈ (0,1).
Under H1 and H2, setting n = � − ��α�, � ∈N

∗, we have for i = 2,3,

lim
n→+∞�n,� = 1,

�∑
k=n+1

γ i
k ≤ γ i

n+1(� − n) ≤ γ i
1

⌊
�α

⌋
/
(
� − ⌊

�α
⌋)iα

. (21)

In addition, by Table 2, ϑn(x) = dO(�−α). Therefore combining this result and (21) in the bound
of Theorem 12, we get that ‖δx�Q�

γ − π‖TV = d1/2O(�−α/2). In the case γk = γ1/kα for k ≥ 1
and α = 1, setting n = � − ��/2�, � ∈N

∗, � > 2, we have for i = 2,3,

lim
n→+∞�n,� = 1/2,

�∑
k=n+1

γ i
k ≤ γ i

n+1(� − n) ≤ γ i
1/(�/2 − 1). (22)

In addition, by Table 2, ϑn(x) = dO(�−1), for γ1 > 2κ−1. Therefore combining this result and
(22) in the bound of Theorem 12, we get that ‖δx�Q�

γ − π‖TV = d1/2O(�−1/2).
Note that these rates for γk = γ1/kα , k ∈ N

∗ and α ∈ (0,1] improve those obtained in [10],
Proposition 3, for potentials satisfying H1 but not necessarily convex since [10], Proposition 3,
only requires the additional assumption that (Pt )t≥0 is geometrically ergodic in total variation.

Assume H1, H2 and H3 and that γk = γ1/kα for k ≥ 1 and α ∈ (0,1]. setting n = � − ��α/2�,
� ∈ N

∗, we have for i = 2,3,

lim
n→+∞�n,� = 1,

�∑
k=n+1

γ i
k ≤ γ i

n+1(� − n) ≤ γ i
1

⌊
�α/2⌋/

(
� − ⌊

�α/2⌋)iα
. (23)

In addition (see Table 2) ϑn(x) = d2O(�−2α), with γ1 > 4κ−1 in the case α = 1. Therefore
combining this result and (23) in the bound of Theorem 12, we get that ‖δx�Q�

γ − π‖TV =
d1/2O(�−3α/4). These discussions are summarized in Table 3.

When γk = γ ∈ (0,1/(m + L)) for all k ≥ 1, under H1 and H2, for � > �γ −1� choosing
n = � − �γ −1� implies that (see the supplementary document [11], Section 2.2)∥∥δxR

�
γ − δxP�γ

∥∥
TV ≤ (4π)−1/2[γ D1(γ, d) + γ 3D2(γ )D3(γ, d, x)

]1/2 + D4(γ, d, x), (24)

Table 3. Order of convergence of ‖δx�Q�
γ −π‖TV for γk = γ1/kα

based on Theorem 12

α ∈ (0,1) α = 1

Theorem 5 d1/2 O(�−α/2) d1/2 O(�−1/2) for γ1 > 2κ−1

Theorem 8 d1/2 O(�−3α/4) d1/2 O(�−3/4) for γ1 > 4κ−1
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where

D1(γ, d) = 2L2κ−1(κ−1 + γ
)(

2d + L2γ 2/6
)
,

D2(γ ) = L4(κ−1 + γ
)
,

D3(γ, d, x) = {(
� − ⌈

γ −1⌉)
e−mγ (�−�γ −1�−1)

∥∥x − x�
∥∥2 + 2d(κγm)−1},

D4(γ, d, x) = 2−3/2L
[
dγ (1 + γ )

+ (
L2γ 3/3

){(
1 + γ −1)(1 − κγ )�−�γ −1�∥∥x − x�

∥∥2 + 2(1 + γ )κ−1d
}]1/2

.

(25)

Using this bound and Theorem 10(iii), the number of iterations �ε > 0 to achieve ‖δx�R
�ε
γε −

π‖TV ≤ ε is of order d log(d)O(| log(ε)|ε−2) (the proper choice of the step size γε is given in
Table 5). This result is the same than the one obtained in [10].

Letting � go to infinity in (24) we get the following result.

Corollary 13. Assume H1 and H2. Let γ ∈ (0,1/(m + L)]. Then it holds

‖πγ − π‖TV ≤ 2−3/2L
[
dγ (1 + γ ) + 2

(
L2γ 3/3

)
(1 + γ )κ−1d

]1/2

+ (4π)−1/2[γ D1(γ, d) + 2dγ 2D2(γ )(κm)−1]1/2
,

where D1(γ ) and D2(γ ) are given in (25).

Note that Corollary 13 shows that ‖πγ − π‖V 1/2 ≤ C1γ
1/2 for some constant C1 ≥ 0. Under

H1 and the assumption and Rγ and (Pt )t≥0 are V -uniformly geometrically ergodic, [10], Theo-
rem 10, establishes that ‖πγ − π‖V 1/2 ≤ C2γ

1/2 for some explicit constant C2 ≥ 0. In the case
where U satisfies H2, then we can take V = ‖ · ‖2 and C2 is very similar to C1. In particular both
C1 and C2 are of order d1/2.

However, if H3 holds, for constant step sizes, we can improve with respect to the step size γ ,
the bounds given by Corollary 13.

Theorem 14. Assume H1, H2 and H3. Let γ ∈ (0,1/(m + L)]. Then it holds

‖πγ − π‖TV ≤ (4π)−1/2{γ 2E1(γ, d) + 2dγ 2E2(γ )/(κm)
}1/2

+ (4π)−1/2⌈log
(
γ −1)/ log(2)

⌉{
γ 2E1(γ, d) + γ 2E2(γ )

(
2κ−1d + d/m

)}1/2

+ 2−3/2L
{
2dγ 3L2/(3κ) + dγ 2}1/2

,

where E1(γ, d) and E2(γ ) are defined by

E1(γ, d) = 2dκ−1{2L2 + 4κ−1(dL̃2/3 + γL4/4
) + γ 2L4/6

}
,

E2(γ ) = L4(4κ−1/3 + γ
)
.
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Proof. The proof is postponed to [11], Section 2.3. �

Note that the bound provided by Theorem 14 is of order dO(γ | log(γ )|), improving the de-
pendency given by Corollary 13 and [10], Theorem 10, with respect to the step size γ , but
Theorem 14 requires that H3 holds contrary to Corollary 13 and [10], Theorem 10. Furthermore
when L̃ = 0, this bound given by Theorem 14 is of order d1/2O(γ | log(γ )|) and is sharp up
to a logarithmic factor. Indeed, assume that π is the d-dimensional standard Gaussian distribu-
tion. In such case, the ULA sequence (Xk)k≥0 is the autoregressive process given for all k ≥ 0
by Xk+1 = (1 − γ )Xk + √

2γZk+1. For γ ∈ (0,1), this sequence has a stationary distribution
πγ , which is a d-dimensional Gaussian distribution with zero-mean and covariance matrix σ 2

γ Id ,

with σ 2
γ = (1 − γ /2)−1. Therefore, using [25], Lemma 4.9 (or the Pinsker inequality), we get

the following upper bound: ‖π − πγ ‖TV ≤ Cd1/2|σ 2
γ − 1| = Cd1/2γ /2, where C is a universal

constant.
We can also for a precision target ε > 0 choose γε > 0 and the number of iterations nε > 0

to get ‖δxR
nε
γε − π‖TV ≤ ε. By Theorem 10(iii), Theorem 11(iii) and Theorem 14, a sufficient

number of iterations �ε is of order d log2(d)O(ε−1 log2(ε)) for a well chosen step size γε . This
result improves the conclusion of [10] and Corollary 13 with respect to the precision parameter
ε, which provides an upper bound of the number of iterations of order d log(d)O(ε−2 log2(ε)).
We can also compare our reported upper bound with the one obtained for the d-dimensional
standard Gaussian distribution. If the initial distribution is the Dirac mass at zero (the minimum
of the potential U(x) = ‖x‖2/2) and γ ∈ (0,1), the distribution of the ULA sequence after n

iterations is zero-mean Gaussian with covariance (1 − (1 − γ )2(n+1))/(1 − γ /2)Id . If we use
[25], Lemma 4.9, again, we get for γ ∈ (0,1),∥∥δ0R

n
γ − π

∥∥
TV ≤ Cd1/2γ

∣∣1 − 2γ −1(1 − γ )2(n+1)
∣∣,

where C is a universal constant. To get an ε precision, we need to choose γε = d−1/2ε/(2C)

and then nε = �(1/2) log(γε/4)/ log(1 − γε)� = d1/2 log(d)O(ε−1| log(ε)|). On the other hand
since L̃ = 0, based on the bound given by Theorem 14, a sufficient number of iterations to get
‖δxR

nε
γε − π‖TV ≤ ε is of order d1/2 log2(d)O(ε−1 log2(ε)). It follows that our upper bound for

the step size and the optimal number of iterations is again sharp up to a logarithmic factor in the
dimension and the precision. The discussions on the bounds for constant sequences of step sizes
are summarized in Table 4 and Table 5.

Table 4. Order of the bound between π and πγ in total vari-
ation function of the step size γ > 0 and the dimension d

H1, H2 H1, H2 and H3

‖π − πγ ‖TV d1/2O(γ 1/2) dO(γ | log(γ )|)
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Table 5. Order of the step size γε > 0 and the number of iterations
nε ∈N

∗ to get ‖δx�R
nε
γε

− π‖TV ≤ ε for ε > 0

H1, H2 H1, H2 and H3

γε d−1O(ε2) d−1 log−1(d)O(ε| log−1(ε)|)
nε d log(d)O(ε−2| log(ε)|) d log2(d)O(ε−1 log2(ε))

4. Mean square error and concentration for bounded
measurable functions

Let (Xk)k≥0 be the Euler discretization of the Langevin diffusion (2) associated with the sequence
of non-increasing step sizes (γk)k≥1. The result of the previous section allows us to study the
approximation of π(f ) by the weighted average estimator π̂N

n (f ) defined, for f : Rd → R,
N,n ∈ N, n ≥ 1 by

π̂N
n (f ) =

N+n∑
k=N+1

ωN
k,nf (Xk), ωN

k,n = γk+1�
−1
N+2,N+n+1. (26)

In all this section, Px and Ex denote the probability and the expectation respectively, induced
on ((Rd)N,B(Rd)N) by the Markov chain (Xn)n≥0 started at x ∈R

d . First we derive a bound on
the mean-square error, defined as

MSEN,n
f = Ex

[∣∣π̂N
n (f ) − π(f )

∣∣2]
,

for f : Rd → R, which is either Lipschitz or measurable and bounded. This quantity can be
decomposed as the sum of the squared bias and variance:

MSEN,n
f = {

Ex

[
π̂N

n (f )
] − π(f )

}2 + Varx
{
π̂N

n (f )
}
.

We first obtain a bound for the bias for f Lipschitz. For all k ∈ {N + 1, . . . ,N +n}, denote by
ξk the optimal transference plan between δxQ

k
γ and π for W2, i.e. W 2

2 (δxQ
k
γ ,π) = ∫

Rd×Rd ‖x −
y‖2 dξk(x, y). Then by the Jensen inequality and because f is Lipschitz, we have:

{
Ex

[
π̂N

n (f )
] − π(f )

}2 =
(

N+n∑
k=N+1

ωN
k,n

∫
Rd×Rd

{
f (z) − f (y)

}
ξk(dz,dy)

)2

≤ ‖f ‖2
Lip

N+n∑
k=N+1

ωN
k,n

∫
Rd×Rd

‖z − y‖2ξk(dz,dy)

≤ ‖f ‖2
Lip

N+n∑
k=N+1

ωN
k,nW

2
2

(
δxQ

k
γ ,π

)
. (27)
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Similarly, if f is bounded,

(
Ex

[
π̂N

n (f )
] − π(f )

)2 ≤ osc(f )2
N+n∑

k=N+1

ωN
k,n

∥∥δxQ
k
γ − π

∥∥2
TV.

Using the results of Sections 2 and 3, we can deduce different bounds for the bias, depending
on the assumptions on U and the sequence of step sizes (γk)k≥1. We now derive a bound for the
variance. We get then two different results depending on the class to which the function f be-
longs. In the case of Lipschitz function, we adapt the proof of [23], Theorem 2, for homogeneous
Markov chain to our inhomogeneous setting.

Theorem 15. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m +
L) and f : Rd → R be a Lipschitz function. Then for all N ≥ 0 and n ≥ 1, we get Varx{π̂N

n (f )} ≤
8κ−2‖f ‖2

Lip�
−1
N+2,N+n+1vN,n(γ ), where

vN,n(γ ) = {
1 + �−1

N+2,N+n+1

(
κ−1 + 2/(m + L)

)}
. (28)

Proof. The proof is postponed to [11], Section 3.1.1. �

It is noteworthy to observe that the bound for the variance does not depend on the dimension.
We may now discuss the bounds on the MSE (obtained by combining the bounds for the squared
bias (27) from Theorems 5 and 8, and the variance Theorem 15) for step sizes given for k ≥ 1 by
γk = γ1/kα where α ∈ [0,1] and γ1 < 1/(m + L). Details of these calculations are postponed to
[11], Sections 8.1 and 8.2. The order of the bounds (up to numerical constants) of the MSE are
summarized in Table 6 and Table 7 as a function of γ1, n and N . Then, we can conclude that in
the infinite horizon setting, it is optimal to take α = 1/2 under H1 and H2, and α = 1/3 under
H1, H2 and H3. Note that [26] shows also that the optimal value for α is 1/3 by studying the
asymptotic behaviour of π̂0

n(f ) as n → +∞ for smooth functions f : Rd → R.
In the case γk = γ for all k ∈ N

∗ and the total number of iterations n + N is held fixed (fixed
horizon setting), we optimize the value of the step size γ but also of the burn-in period N to get
an upper bound of order n−1/2 under H1 and H2, and n−2/3 under H1, H2 and H3.

In the case where f is measurable and bounded, we have the following result.

Table 6. Bound for the MSE for γk = γ1k−α for fixed γ1 and N under H1
and H2

Bound for the MSE

α = 0 γ1 + (γ1n)−1{1 + exp(−κγ1N/2)}
α ∈ (0,1/2) γ1n−α + (γ1n1−α)−1{1 + exp(−κγ1N1−α/(2(1 − α)))}
α = 1/2 γ1 log(n)n−1/2 + (γ1n1/2)−1{1 + exp(−κγ1N1/2/4)}
α ∈ (1/2,1) nα−1[γ1 + γ −1

1 {1 + exp(−κγ1N1−α/(2(1 − α)))}]
α = 1 O(log(n)−1) for γ1 > 2κ−1
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Table 7. Bound for the MSE for γk = γ1k−α for fixed γ1 and N under H1,
H2 and H3

Bound for the MSE

α = 0 γ 2
1 + (γ1n)−1{1 + exp(−κγ1N/2)}

α ∈ (0,1/3) γ 2
1 n−2α + (γ1n1−α)−1{1 + exp(−κγ1N1−α/(2(1 − α)))}

α = 1/3 γ 2
1 log(n)n−2/3 + (γ1n2/3)−1{1 + exp(−κγ1N1/2/4)}

α ∈ (1/3,1) nα−1[γ 2
1 + γ −1

1 {1 + exp(−κγ1N1−α/(2(1 − α)))}]
α = 1 O(log(n)−1) for γ1 > 4κ−1

Theorem 16. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m +
L) and f : Rd → R be a measurable and bounded function. Then for all N ≥ 0, n ≥ 1, x ∈ R

d ,
we get

Varx
{
π̂N

n (f )
} ≤ osc(f )2{2γ1�

−1
N+2,N+n+1 + u

(4)
N,n(γ )

}
,

u
(4)
N,n(γ ) =

N+n−1∑
k=N

γk+1

{
N+n∑

i=k+2

ωN
i,n

(π�k+2,i (γ ))1/2

}2

+ κ−1

{
N+n∑

i=N+1

ωN
i,n

(4π�N+1,i (γ ))1/2

}2

, (29)

for n1, n2 ∈N, �n1,n2(γ ) is given by (16).

Proof. The proof is postponed to [11], Section 3.1.2. �

To illustrate the result Theorem 16, we first illustrate numerically the behaviour (u
(4)
N,n)n≥1 for

κ = 1 N = 0, and four different non-increasing sequences of step sizes (γk)k≥1, γk = (1 + k)−α

for α = 1/4,1/2,3/4 and γk = 1/2 for k ≥ 1. These results are gathered in Figure 1, where it can
be observed that (�nu

(4)
0,n(γ ))n≥1 converges to a limit as n → +∞. In [11], Section 3.2, we show

that there exist C1,C2 > 0 independent of (γk)k≥1, such that C1�
−1
n ≤ u

(4)
0,n(γ ) ≤ C2�

−1
n , for

non-increasing sequence (γk)k≥1 satisfying limk→+∞ γk = 0 and limk→+∞ �k = +∞. There-
fore, the consequences of Theorem 16 are similar to those of Theorem 15 and are omitted.

We now establish an exponential deviation inequality for π̂N
n (f ) − Ex[π̂N

n (f )] given by (26)
for a bounded measurable function f .

Theorem 17. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m +
L). Then for all N ≥ 0, n ≥ 1, r > 0 and Lipschitz functions f : Rd →R:

Px

[
π̂N

n (f ) ≥ Ex

[
π̂N

n (f )
] + r

] ≤ exp

(
− r2κ2�N+2,N+n+1

16‖f ‖2
LipvN,n(γ )

)
,

where vN,n(γ ) is defined by (28).
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Figure 1. Plots of (u
(4)
0,n

)n≥1�n for four sequences of step sizes (γk)k≥1, γk = (1 + k)−α for
α = 0,1/4,1/2,3/4.

Proof. The proof is postponed to [11], Section 3.3. �

If we apply this result to the sequence (γk)k≥1 defined for all k ≥ 1 by γk = γ1k
−α , for

α ∈ [0,1], we end up with a concentration of order exp(−Cr2γ1n
1−α) for α ∈ [0,1), for some

constant C ≥ 0 independent of γ1 and n.

Theorem 18. Assume H1 and H2. Let (γk)k≥1 be a non-increasing sequence with γ1 ≤ 2/(m +
L). Let (Xn)n≥0 be given by (2) and started at x ∈ R

d . Then for all N ≥ 0, n ≥ 1, r > 0, and
functions f ∈ Fb(R

d):

Px

[
π̂N

n (f ) ≥ Ex

[
π̂N

n (f )
] + r

] ≤ e−{r−osc(f )(�N+2,N+n+1)
−1}2/{2 osc(f )2u

(5)
N,n(γ )}

,

where

u
(5)
N,n(γ ) =

N+n−1∑
k=N

γk+1

{
N+n∑

i=k+2

ωN
i,n

(π�k+2,i )1/2

}2

+ κ−1

{
N+n∑

i=N+1

ωN
i,n

(π�N+1,i )1/2

}2

.

Proof. The proof is postponed to [11], Section 3.4. �

Note that u
(5)
N,n(γ ) is up to numerical constants similar to u

(4)
N,n(γ ) given in (29). Therefore,

using the same calculations as in [11], Section 3.2, there exist C1,C2 > 0 such that C1�
−1
n ≤

u
(5)
0,n(γ ) ≤ C2�

−1
n , for γk = γ1/k−α , α ∈ [0,1]. Then, if we apply Theorem 18 to the sequence
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(γk)k≥1 defined for all k ≥ 1 by γk = γ1k
−α , for α ∈ [0,1], we end up with a concentration of

order exp(−Cr2γ1n
1−α) for α ∈ [0,1), for some constant C ≥ 0 independent of γ1 and n.

5. Numerical experiments

Consider a binary regression set-up in which the binary observations (responses) {Yi}pi=1 are
conditionally independent Bernoulli random variables with parameters {�(βT Xi)}pi=1, where �

is the logistic function defined for z ∈ R by �(z) = ez/(1 + ez) and {Xi}pi=1 and β are d dimen-
sional vectors of known covariates and unknown regression coefficients, respectively. The prior
distribution for the parameter β is a zero-mean Gaussian distribution with covariance matrix �β .
The density of the posterior distribution of β is up to a proportionality constant given by

πβ

(
β|{(Xi, Yi)

}p

i=1

) ∝ exp

(
p∑

i=1

{
Yiβ

T Xi − log
(
1 + eβT Xi

)} − 2−1βT �−1
β β

)
.

Bayesian inference for the logistic regression model has long been recognized as a numeri-
cally involved problem. Several algorithms have been proposed, trying to mimick the data-
augmentation (DA) approach of [1] for probit regression; see [17,22] and [18]. Recently, a very
promising DA algorithm has been proposed in [34], using the Pólya-Gamma distribution in the
DA part. This algorithm has been shown to be uniformly ergodic for the total variation by [6],
Proposition 1, which provides an explicit expression for the ergodicity constant. This constant is
exponentially small in the dimension of the parameter space and the number of samples. More-
over, the complexity of the augmentation step is cubic in the dimension, which prevents from
using this algorithm when the dimension of the regressor is large.

We apply ULA to sample from the posterior distribution πβ(·|{(Xi, Yi)}pi=1). The gradient of
its log-density may be expressed as

∇ log
{
πβ

(
β|{Xi,Yi}pi=1

)} =
p∑

i=1

{
YiXi − Xi

1 + e−βT Xi

}
− �−1

β β.

Therefore − logπβ(·|{Xi,Yi}pi=1) is strongly convex H2 with m = λ−1
max(�β) and satisfies H1

with L = (1/4)
∑p

i=1 XT
i Xi +λ−1

min(�β), where λmin(�β) and λmax(�β) denote the minimal and
maximal eigenvalues of �β , respectively. We first compare the histograms produced by ULA and
the Pólya-Gamma Gibbs sampling from [34]. For that purpose, we take d = 5, p = 100, gener-
ate synthetic data (Yi)1≤i≤p and (Xi)1≤i≤p , and set �−1

β = (dp)−1(
∑p

i=1 XT
i Xi) Id . We pro-

duce 108 samples from the Pólya-Gamma sampler using the R package BayesLogit [41]. Next,
we make 103 runs of the Euler approximation scheme with n = 106 effective iterations, with a
constant sequence (γk)k≥1, γk = 10(κn1/2)−1 for all k ≥ 0 and a burn-in period N = n1/2. The
histogram of the Pólya-Gamma Gibbs sampler for first component, the corresponding mean of
the obtained histograms for ULA and the 0.95 quantiles are displayed in Figure 2. The same pro-
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Figure 2. Empirical distribution comparison between the Pólya-Gamma Gibbs Sampler and ULA. Left
panel: constant step size γk = γ1 for all k ≥ 1; right panel: decreasing step size γk = γ1k−1/2 for all k ≥ 1.

cedure is also applied with the decreasing step size sequence (γk)k≥1 defined by γk = γ1k
−1/2,

with γ1 = 10(κ log(n)1/2)−1 and for the burn in period N = log(n), see also Figure 2. In ad-
dition, we also compare MALA and ULA on five real data sets, which are summarized in Ta-
ble 8. Note that for the Australian credit data set, the ordinal covariates have been stratified by
dummy variables. Furthermore, we normalized the data sets and consider the Zellner prior set-
ting �−1 = (π2d/3)�−1

X where �X = p−1 ∑p

i=1 XiX
T
i ; see [21,37] and the references therein.

Also, we apply a pre-conditioned version of MALA and ULA, targeting the probability density
π̃β(·) ∝ πβ(�

1/2
X ·). Then, we obtain samples from πβ by post-multiplying the obtained draws

by �
1/2
X . We compare MALA and ULA for each data sets by estimating for each component

i ∈ {1, . . . , d} the marginal accuracy between their d marginal empirical distributions and the d

marginal posterior distributions, where the marginal accuracy between two probability measure
μ,ν on (R,B(R)) is defined by

MA(μ, ν) = 1 − (1/2)‖μ − ν‖TV.

Table 8. Dimension of the data sets

Dimensions

Data set Observations p Covariates

German credit1 1000 25
Heart disease2 270 14
Australian credit3 690 35
Pima indian diabetes4 768 9
Musk5 476 167

1http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
2http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
3http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
4http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
5https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)

http://archive.ics.uci.edu/ml/datasets/Statlog+(German+Credit+Data)
http://archive.ics.uci.edu/ml/datasets/Statlog+(Heart)
http://archive.ics.uci.edu/ml/datasets/Statlog+(Australian+Credit+Approval)
http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)
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Figure 3. Marginal accuracy across all the dimensions. Upper left: German credit data set. Upper right:
Australian credit data set. Lower left: Heart disease data set. Lower right: Pima Indian diabetes data set. At
the bottom: Musk data set.

This quantity has already been considered in [16] and [7] to compare approximate samplers. To
estimate the d marginal posterior distributions, we run 2 · 107 iterations of the Pólya-Gamma
Gibbs sampler. Then 100 runs of MALA and ULA (106 iterations per run) have been performed.
For MALA, the step size is chosen so that the acceptance probability at stationarity is approxi-
mately equal to 0.5 for all the data sets. For ULA, we choose the same constant step size than
MALA. We display the boxplots of the mean of the estimated marginal accuracy across all the
dimensions in Figure 3. These results all imply that ULA is an alternative to the Pólya–Gibbs
sampler and the MALA algorithm.

6. Contraction in total variation for functional autoregressive
models

In this section, we consider functional autoregressive models defined for k ≥ 0 by

Xk+1 = hk+1(Xk) + σk+1Zk+1, (30)

where (Zk)k≥1 is a sequence of i.i.d. d dimensional standard Gaussian random variables, (σk)k≥1
is a sequence of positive real numbers and (hk)k≥1 is a sequence of measurable functions from
R

d to R
d which satisfies the following assumption:

AR1. For all k ≥ 1, hk is �k-Lipschitz.
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The sequence {Xk, k ∈ N} is an inhomogeneous Markov chain with Markov kernels (Pk)k≥1
on (Rd ,B(Rd)) given for all x ∈ R

d and A ∈ R
d by

Pk(x,A) = 1

(2πσ 2
k )d/2

∫
A

exp
(−∥∥y − hk(x)

∥∥2
/
(
2σ 2

k

))
dy. (31)

We denote for all n ≥ 1 by Qn the marginal distribution of Xn given by

Qn = P1 · · ·Pn. (32)

In this section we compute an upper bound of ‖δxQn − δyQn‖TV which does not depend on the
dimension d . Define for x, y ∈R

d

Ek(x, y) = hk(y) − hk(x), ek(x, y) =
{

Ek(x, y)/
∥∥Ek(x, y)

∥∥ if Ek(x, y) �= 0,

0 otherwise.
(33)

For all x, y, z ∈ R
d , x �= y, define

Fk(x, y, z) = hk(y) + (
Id − 2ek(x, y)ek(x, y)T)

z, (34)

αk(x, y, z) =
ϕσ 2

k
(‖Ek(x, y)‖ − 〈ek(x, y), z〉)

ϕσ 2
k
(〈ek(x, y), z〉) , (35)

where ϕσ 2
k

is the probability density of a zero-mean gaussian variable with variance σ 2
k . Let Z1

be a standard d-dimensional Gaussian random variable. Set X1 = hk(x) + σkZ1 and

Y1 =
{

hk(y) + σkZ1 if Ek(x, y) = 0,

B1 X1 + (1 − B1)Fk(x, y, σkZ1) if Ek(x, y) �= 0,

where given Z1, B1 is a Bernoulli random variable with success probability

pk(x, y, σkZ1) = 1 ∧ αk(x, y, σkZ1).

The construction above defines for all (x, y) ∈ R
d × R

d the Markov kernel Kk on (Rd ×
R

d,B(Rd) ⊗B(Rd)) given for all (x, y) ∈R
d ×R

d and A ∈ B(Rd) ⊗B(Rd) by

Kk

(
(x, y),A

)
= 1D(hk(x),hk(y))

(2πσ 2
k )d/2

∫
Rd

1A(x̃, x̃)e−‖τk(x̃,x)‖2/(2σ 2
k ) dx̃

+ 1Dc(hk(x),hk(y))

(2πσ 2
k )d/2

[∫
Rd

1A(x̃, x̃)pk

(
x, y, τk(x̃, x)

)
e−‖τk(x̃,x)‖2/(2σ 2

k ) dx̃

+
∫
Rd

1A
(
x̃,Fk

(
x, y, τk(x̃, x)

)){
1 − pk

(
x, y, τk(x̃, x)

)}
e−‖τk(x̃,x)‖2/(2σ 2

k ) dx̃

]
, (36)
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where for all x̃ ∈ R
d , τk(x̃, x) = x̃ − hk(x) and D = {(x̃, ỹ) ∈ R

d × R
d | x̃ = ỹ}. It is shown in

[4], Section 3.3, that for all x, y ∈ R
d and k ≥ 1, Kk((x, y), ·) is a transference plan of Pk(x, ·)

and Pk(y, ·). For completeness, the proof is given in [11], Section 4.1. Furthermore, we have for
all x, y ∈R

d and k ≥ 1

Kk

(
(x, y),D

) = 2�

(
−‖Ek(x, y)‖

2σk

)
. (37)

For all initial distribution μ0 on (Rd × R
d,B(Rd) ⊗ B(Rd)), P̃μ0 and Ẽμ0 denote the

probability and the expectation respectively, associated with the sequence of Markov kernels
(Kk)k≥1 defined in (36) and μ0 on the canonical space ((Rd × R

d)N, (B(Rd) ⊗ B(Rd))⊗N),
{(Xi ,Yi ), i ∈ N} denotes the canonical process and {F̃i , i ∈N} the corresponding filtration. Then
if (X0,Y0) = (x, y) ∈ R

d × R
d , for all k ≥ 1 (Xk,Yk) is a coupling of δxQk and δyQk . Using

Lindvall’s inequality, bounding ‖δxQn − δyQn‖TV amounts to evaluate P̃(x,y)(Xn �= Yn).

Theorem 19. Assume AR1. Then for all x, y ∈ R
d and n ≥ 1,

∥∥δxQn − δyQn
∥∥

TV ≤ 1Dc
(
(x, y)

){
1 − 2�

(
−‖x − y‖

2�
1/2
n

)}
,

where (�i)i≥1 is defined for all k ≥ 1 by �k = ∑k
i=1{σ 2

i /
∏i

j=1 � 2
j }.

We preface the proof by a technical lemma.

Lemma 20. For all ς, a > 0 and t ∈R+, the following identity holds∫
R

ϕϕϕς2(y)

{
1 − 1 ∧ ϕϕϕς2(t − y)

ϕϕϕς2(y)

}{
1 − 2�

(
−|2y − t |

2a

)}
dy

= 1 − 2�

(
− t

2(ς2 + a2)1/2

)
.

Proof. Let ς, a > 0 and t ∈ R+. Let us denote by I the integral on the left-hand side in the
expression above. Then,

I =
∫ t/2

−∞
{
ϕϕϕς2(y) −ϕϕϕς2(t − y)

}{
1 − 2�

(
2y − t

2a

)}
dy

=
∫ t/2

−∞
ϕϕϕς2(y)

{
1 − 2�

(
2y − t

2a

)}
dy

−
∫ −t/2

−∞
ϕϕϕς2(y)

{
1 − 2�

(
t + 2y

2a

)}
dy. (38)

Now to simplify the proof, we give a probabilistic interpretation of these two integrals. Let X and
Y be two real Gaussian random variables with zero mean and variance a2 and ς2 respectively.
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Since for all u ∈ R+, 1 − 2�(−u/(2a)) = P[|X| ≤ u/2], we have by (38)

I = P(Y ≤ t/2,X + Y ≤ t/2,Y − X ≤ t/2)

− P(Y ≥ t/2,X + Y ≥ t/2,Y − X ≥ t/2).

Using that Y and −Y have the same law in the second term, we get I = I1 + I2 where

I1 = P(Y ≤ t/2,X + Y ≤ t/2,Y − X ≤ t/2,X ≥ 0)

− P(Y ≤ −t/2,X − Y ≥ t/2,Y + X ≤ −t/2,X ≥ 0)

= P
(|X + Y| ≤ t/2,X ≥ 0

)
, (39)

and

I2 = P(Y ≤ t/2,X + Y ≤ t/2,Y − X ≤ t/2,X ≤ 0)

− P(Y ≤ −t/2,X − Y ≥ t/2,Y + X ≤ −t/2,X ≤ 0).

Using again that Y and −Y have the same law in the two terms we have

I2 = P(Y ≥ −t/2,X − Y ≤ t/2,Y + X ≥ −t/2,X ≤ 0)

− P(Y ≥ t/2,X + Y ≥ t/2,X − Y ≤ −t/2,X ≤ 0)

= P
(|X + Y| ≤ t/2,X ≤ 0

)
. (40)

Combining (39), (40), we get I = P(|X + Y| ≤ t/2). The proof follows from the fact that X + Y
is a real Gaussian random variable with mean zero and variance a2 + ς2, since X and Y are
independent. �

Proof of Theorem 19. Since for all k ≥ 1, (Xk,Yk) is a coupling of δxQk and δyQk , ‖δxQk −
δyQk‖TV ≤ P̃(x,y)(Xk �= Yk).

Define for all k1, k2 ∈ N
∗, k1 ≤ k2, �k1,k2 = ∑k2

i=k1
{σ 2

i /
∏i

j=k1
� 2

j }. Let n ≥ 1. We show by
backward induction that for all k ∈ {0, . . . , n − 1},

P̃(x,y)(Xn �= Yn) ≤ Ẽ(x,y)

[
1Dc(Xk,Yk)

[
1 − 2�

{
− ‖Xk − Yk‖

2(�k+1,n)1/2

}]]
. (41)

Note that the inequality for k = 0 will conclude the proof.
Since Xn �= Yn implies that Xn−1 �= Yn−1, the Markov property and (37) imply

P̃(x,y)(Xn �= Yn) = Ẽ(x,y)

[
1Dc(Xn−1,Yn−1)Ẽ(Xn−1,Yn−1)

[
1Dc(X1,Y1)

]]
≤ Ẽ(x,y)

[
1Dc(Xn−1,Yn−1)

[
1 − 2�

{
−‖En−1(Xn−1,Yn−1)‖

2σn

}]]
.

Using AR1 and (33), ‖En(Xn−1,Yn−1)‖ ≤ �n‖Xn−1 −Yn−1‖, showing (41) holds for k = n−1.
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Assume that (41) holds for k ∈ {1, . . . , n − 1}. On {Xk �= Yk}, we have

‖Xk − Yk‖ = ∣∣−∥∥Ek(Xk−1,Yk−1)
∥∥ + 2σkek(Xk−1,Yk−1)

TZk

∣∣,
which implies

1Dc(Xk,Yk)

[
1 − 2�

{
−‖Xk − Yk‖

2�
1/2
k+1,n

}]

= 1Dc(Xk,Yk)

[
1 − 2�

{
−|2σkek(Xk−1,Yk−1)

TZk − ‖Ek(Xk−1,Yk−1)‖|
2�

1/2
k+1,n

}]
.

Since Zk is independent of F̃k−1, σkek(Xk−1,Yk−1)
TZk is a real Gaussian random variable with

zero mean and variance σ 2
k , therefore by Lemma 20, we get

Ẽ
F̃k−1
(x,y)

[
1Dc(Xk,Yk)

[
1 − 2�

{
−‖Xk − Yk‖

2�
1/2
k+1,n

}]]

≤ 1Dc(Xk−1,Yk−1)

[
1 − 2�

{
−‖Ek(Xk−1,Yk−1)‖

2(σ 2
k + �k+1,n)1/2

}]
.

Using by AR1 that ‖Ek(Xk−1,Yk−1)‖ ≤ �k‖Xk−1 − Yk−1‖ concludes the induction. �
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rithm” (DOI: 10.3150/18-BEJ1073SUPP; .pdf). Most proofs and derivations are postponed and
carried out in a supplementary paper.
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