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The multiplicative coalescent is a mean-field Markov process in which any pair of blocks coalesces at rate
proportional to the product of their masses. In Aldous and Limic (Electron. J. Probab. 3 (1998) Paper no. 3)
each extreme eternal version of the multiplicative coalescent was described in three different ways, one of
which matched its (marginal) law to that of the ordered excursion lengths above past minima of a certain
Lévy-type process.

Using a modification of the breadth-first-walk construction from Aldous (Ann. Probab. 25 (1997) 812–
854) and Aldous and Limic (Electron. J. Probab. 3 (1998) Paper no. 3), and some new insight from the thesis
by Uribe Bravo (Markovian bridges, Brownian excursions, and stochastic fragmentation and coalescence
(2007) UNAM), this work settles an open problem (3) from Aldous (Ann. Probab. 25 (1997) 812–854)
in the more general context of Aldous and Limic (Electron. J. Probab. 3 (1998) Paper no. 3). Informally
speaking, each eternal version is entirely encoded by its Lévy-type process, and contrary to Aldous’ original
intuition, the time for the multiplicative coalescent does correspond to the linear increase in the constant
part of the drift of the Lévy-type process. In the “standard multiplicative coalescent” context of Aldous
(Ann. Probab. 25 (1997) 812–854), this result was first announced by Armendáriz in 2001, while its first
published proof is due to Broutin and Marckert (Probab. Theory Related Fields 166 (2016) 515–552), who
simultaneously account for the process of excess (or surplus) edge counts.

Keywords: entrance law; excursion; Lévy process; multiplicative coalescent; near-critical; random graph;
stochastic coalescent

1. Introduction

Erdős-Rényi [32] (binomial) random graph G(n,p) is one of the most studied objects of prob-
abilistic combinatorics. In this model there are n ≥ 2 vertices labeled by {1,2, . . . , n}, and each
of the

(
n
2

)
edges is present with probability p ∈ [0,1] (and absent otherwise), independently of

each other. So G(n,p) is a random sub-graph of a complete graph, that looks (qualitatively, in
the sense of distribution) the same when viewed from any of its vertices.

The most natural coupling of (G(n,p), p ∈ [0,1]) is in terms of a family of
(
n
2

)
independent

uniform random variables, indexed by the undirected edges {i, j}; an edge e = {i, j} is declared
“open (present) in G(n,p)” on the event {U{i,j} ≤ p}, and “closed in (absent from) G(n,p)”
on the complement. In this way, if p1 ≤ p2, then G(n,p1) is a random subgraph of G(n,p2).
A time-change q := − log(1 − p) transforms this model into a Markov chain running in con-
tinuous time. Its transitions are particularly simple: each undirected edge {i, j} arrives as an ex-
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ponential (rate 1) random variable, and stays in the graph forever after. Two different connected
components of this (growing) random graph process will merge at the minimal connection time
of a pair of vertices (or particles) (k, l), where k is from one, and l from the other component.
The mass (or size) of any connected component (or block) equals the number of its particles. Us-
ing elementary properties of independent exponentials, it is simple to see that the vector of block
sizes of (G(n,1 − e−q), q ≥ 0) is also a continuous-time Markov chain, evolving according to
the multiplicative coalescent dynamics:

each pair of blocks of mass x and y merges at rate xy

into a single block of mass x + y. (1.1)

1.1. The multiplicative coalescent in 1997

Suppose a slightly more general setting: let (x1, x2, . . . , xm) be the vector of initial block masses,
where xi is now a positive integer for each i. We can represent each initial block as a collection of
xi different particles of mass 1, which have been pre-connected in some specified arbitrary way.
In particular, the total number of vertices is now n = ∑m

i=1 xi . As in (G(n,1 − e−q), q ≥ 0),
for each edge {k, l} let ξk,l be an exponential (rate 1) arrival time of the edge connecting k

and l (independent over {k, l}). Then the process of connected component masses again evolves
according to (1.1).

A general multiplicative coalescent takes values in the space of collections of blocks, where
each block has mass in (0,∞). Informally, it is a stochastic process with transitions speci-
fied by (1.1). For a given initial state with a finite number of blocks (where block masses are
not necessarily integer-valued), it is easy to formalize (1.1), for example, via a similar “graph-
construction”, in order to define a continuous-time finite-state Markov process. Furthermore,
Aldous [5] extended the state space to include l2 configurations. More precisely, if (l2↘, d) is

the metric space of infinite sequences x = (x1, x2, . . .) with x1 ≥ x2 ≥ · · · ≥ 0 and
∑

i x
2
i < ∞,

where d(x,y) =
√∑

i (xi − yi)2, then the multiplicative coalescent is a Feller process on l2↘
(see [5], Proposition 5, or Section 2.1 in [46] for an alternative argument), evolving according
to description (1.1). The focus in [5] was on the existence and properties of the multiplicative
coalescent, as well as on the construction of a particular eternal version (X∗(t),−∞ < t < ∞),
called the (Aldous’) standard multiplicative coalescent. The standard version arises as a limit of
the classical random graph process near the phase transition (each particle has initial mass n−2/3

and the random graph is viewed at times n1/3 + O(1)). In particular, the marginal distribution
X∗(t) of X∗ was described in [5] as follows: if (W(s),0 ≤ s < ∞) is standard Brownian motion
and

Wt(s) = W(s) − 1

2
s2 + ts, s ≥ 0, (1.2)

and Bt is its “reflection above past minima”

Bt(s) = Wt(s) − min
0≤s′≤s

W t
(
s′), s ≥ 0, (1.3)
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then (see [5], Corollary 2) the ordered sequence of excursion (away from 0) lengths of Bt has
the same distribution as X∗(t). Note in particular that the total mass

∑
i X

∗
i (t) is infinite. The

entrance law X∗ “starts from dust” and ends by forming “a giant”: limt→−∞ ‖X∗(t)‖2 = 0 and
limt→∞ ‖X∗(t)‖2 = ∞.

The author’s thesis [46] was based on a related question: are there any other eternal versions
of the multiplicative coalescent, and, provided that the answer is positive, what are they? Paper
[6] completely described the entrance boundary of the multiplicative coalescent (or equivalently,
the set of all of its extreme eternal laws). The extreme eternal laws or versions are conveniently
characterized by the property that their corresponding tail σ -fields at time −∞ are trivial. Any
(other) eternal versions must be a mixture of extreme ones, see, for example, [31], Section 10.
Note that the word “version” is not used here in the classical (Markov process theory) sense.

1.2. Characterizations of eternal versions in 1998

The notation to be introduced next is inherited from [6]. We write l3↘ for the space of infinite

sequences c = (c1, c2, . . .) with c1 ≥ c2 ≥ · · · ≥ 0 and
∑

i c
3
i < ∞. For c ∈ l3↘, let (ξj , j ≥ 1) be

independent with exponential (rate cj ) distributions and consider

V c(s) =
∑
j

(
cj 1(ξj ≤s) − c2

j s
)
, s ≥ 0. (1.4)

We may regard V c as a Lévy-type process, where for each x only the first jump of size x is kept
(cf. Section 2.5 of [6], and Bertoin [14] for background on Lévy processes). In reality, the finite
number nx of jumps of size x is kept, where nx is the number of indices j for which x = cj . It
is easy to see that

∑
i c

3
i < ∞ is precisely the condition for (1.4) to yield a well-defined process

(see also Section 2.1 of [6] or [45], Section 2).
Define the parameter space

I := (
(0,∞) × (−∞,∞) × l3↘

) ∪ ({0} × (−∞,∞) × l3↘ \ l2↘
)
.

Now modify (1.2), (1.3) by defining, for each (κ, τ, c) ∈ I ,

W̃ κ,τ (s) = κ1/2W(s) + τs − 1

2
κs2, s ≥ 0, (1.5)

Wκ,τ,c(s) = W̃ κ,τ (s) + V c(s), s ≥ 0, (1.6)

Bκ,τ,c(s) = Wκ,τ,c(s) − min
0≤s′≤s

Wκ,τ,c(s′), s ≥ 0. (1.7)

So Bκ,τ,c(s) is again the reflected process with some set of (necessarily all finite, see Theorem 1.1
below) excursions away from 0.

Denote by μ̂(y) the distribution of the constant process

X(t) = (y,0,0,0, . . .), −∞ < t < ∞ (1.8)

where y ≥ 0 is arbitrary but fixed.
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Let X(t) = (X1(t),X2(t), . . .) ∈ l2↘ be the state of a particular eternal version of the multi-
plicative coalescent. Then Xj(t) is the mass of its j th largest block at time t . Write

S(t) = S2(t) =
∑

i

X2
i (t), and S3(t) =

∑
i

X3
i (t).

The main results of [6] are stated next.

Theorem 1.1 ([6], Theorems 2–4). (a) For each (κ, τ, c) ∈ I there exists an eternal multiplica-
tive coalescent X such that for each −∞ < t < ∞, X(t) is distributed as the ordered sequence
of excursion lengths of Bκ,t−τ,c.

(b) Denote by μ(κ, τ, c) the distribution of X from (a). The set of extreme eternal multiplicative
coalescent distributions is precisely{

μ(κ, τ, c) : (κ, τ, c) ∈ I
} ∪ {

μ̂(y) : 0 ≤ y < ∞}
.

(c) Let (κ, τ, c) ∈ I . An (extreme) eternal multiplicative coalescent X has distribution
μ(κ, τ, c) if and only if

|t |3S3(t) → κ +
∑
j

c3
j a.s. as t → −∞, (1.9)

t + 1

S(t)
→ τ a.s. as t → −∞, (1.10)

|t |Xj(t) → cj a.s. as t → −∞,∀j ≥ 1. (1.11)

In terms of the above defined parametrization, the Aldous [5] standard (eternal) multiplicative
coalescent has distribution μ(1,0,0). The parameters τ and κ correspond to time-centering and
time/mass scaling respectively: if X has distribution μ(1,0, c), then X̃(t) = κ−1/3X(κ−2/3(t −
τ)) has distribution μ(κ, τ, κ1/3c). Due to (1.11), the components of c may be interpreted as the
relative sizes of distinguished large blocks in the t → −∞ limit.

1.3. The main results

The rest of this work will mostly ignore the constant eternal multiplicative coalescents. For a
given (κ, τ, c) ∈ I we can clearly write Wκ,t−τ,c(s) = Wκ,−τ,c(s) + ts, s ≥ 0. The Lévy-type
process Wκ,−τ,c is particularly important for this work. As we are about to see, Wκ,−τ,c corre-
sponds to the Lévy-type process from the abstract as soon as X has law μ(κ, τ, c).

As noted in [6] and in [5] beforehand, at the time there was no appealing intuitive explana-
tion of why excursions of a stochastic process would be relevant in describing the marginal laws
in Theorem 1.1(a). One purpose of this work is to offer a convincing explanation (see Proposi-
tion 5 below and also in Section 4, then Lemma 9 in Section 5, and Lemma 11 in Section 6).
Furthermore, open problem (3) of [5] asks about the existence of a two parameter (non-negative)
process (Bt (s), s ≥ 0, t ∈ R) such that the excursion (away from 0) lengths of (B ·(s), s ≥ 0)
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evolve as X∗(·). The statement of this problem continues by offering an intuitive explanation for
why R1,0,0 := {reflected(W 1,0,0(s) + ts), s ≥ 0, t ≥ 0} should not be the answer to this problem.
Aldous’ argument is more than superficially convincing, but the striking reality is that, on the
contrary, the simplest guess R1,0,0 is the correct answer. Armendáriz [11] obtained but never
published this result, and Broutin and Marckert [27] recently derived it, via a different approach
from either [11] or the one presented here, while considering in addition the excess-edge data in
agreement with [5] (thus improving on the Armendáriz claim).

Popular belief judges the breadth-first-walk construction, on which [5,6] reside, as “inade-
quate” and the main reason for the just described “confusion” in the statement of [5], open prob-
lem (3). One of the main points of this work is to show the contrary. Indeed, a modification of
the original (Aldous’) breadth-first-walk from [5,6], combined with a rigorous formulation (see
Proposition 3) of Uribe’s [63] graphical interpretation of the Armendáriz’ representation [11],
yields the following claim of independent interest, here stated for readers’ benefit in the simplest
(purely) homogeneous setting.

Claim (Proposition 5, special case). Suppose that x1 = x2 = · · · = xn = 1, for some n ∈ N, and
define for q > 0

Zq(s) :=
n∑

i=1

1(ξi≤q·s) − s, s ≥ 0,

where ξi , i = 1, . . . , n is a family of i.i.d. exponential (rate 1) random variables. For each q > 0,
let “blocks at time q” be the finite collection of excursions (above past minima) of Zq , and for
each block let its mass be the corresponding excursion length. Set X(0) to be the configuration
of n blocks of mass 1, and for q > 0 let X(q) be the configuration of masses of blocks at time q

(X(q) is a vector with components listed in non-increasing order, and infinitely many 0s may be
appended to make it an element of l2↘). Then (X(q), q ≥ 0) evolves according to (1.1).

To the best of our knowledge, even the “static” statement that matches the law of X(q) to
the law of the component sizes of the continuous-time homogeneous Erdős-Rényi random graph
for each fixed time q separately, was not previously recorded (even though the analysis of [63],
on pages 111–112 is implicitly equivalent). To have a glimpse at the power of this approach,
the reader is invited to fix c > 1, and consider the asymptotic behavior (as n → ∞) of a related
process Z(1/n,...,1/n),cn(s) := ∑n

i=1
1
n

1(nξi≤cns) − s, s ≥ 0, (see Section 2 or Proposition 5 for
notation) in order to determine (in a few lines only) the asymptotic size of the giant component
in the supercritical regime. In addition, the simultaneous breadth-first walks framework allows
for a particularly elegant treatment of surplus edges, carried out in [48].

The analysis similar to that of [6] (to be done in Sections 5 and 6) now yields the following
theorem.

Theorem 1.2. Fix a Lévy-type process Wκ,−τ,c, and for any t ∈ (−∞,∞) define

Wκ,t−τ,c(s) := Wκ,−τ,c(s) + ts, s ≥ 0.
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Let Bκ,t−τ,c be defined as in (1.7). For each t , let X(t) = Xκ,τ,c(t) be the infinite vector of ordered
excursion lengths of Bκ,t−τ,c away from 0. Then (X(t), t ∈ (−∞,∞)) is a càdlàg realization of
μ(κ, τ, c).

1.4. Further comments on the literature and related work

For almost two decades the only stochastic merging process widely studied by probabilists was
the (Kingman) coalescent [43,44]. Starting with Aldous [5,9], and Pitman [55], Sagitov [58],
and Donnelly and Kurtz [29], the main-stream probability research on coalescents was much
diversified.

The Kingman coalescent and, more generally, the mass-less (exchangeable) coalescents of
[29,55,58] mostly appear in connection to the mathematical population genetics, as universal
(robust) scaling limits of genealogical trees (see, for example, [19,53,59,60], or a survey [13]).

The standard multiplicative coalescent is the universal scaling limit of numerous stochastic
(typically combinatorial or graph-theoretic) homogeneous (or symmetric) merging-like models
[1,5,10,20,21,23,57,61]. The “non-standard” eternal extreme laws from [6] are also scaling limits
of inhomogeneous random graphs and related processes, under appropriate assumptions [6,22,
24,26].

The two nice graphical constructions for coalescents with masses were discovered early on:
by Aldous in [5] for the multiplicative case, and almost simultaneously by Aldous and Pitman
[7] for the additive case (here any pair of blocks of mass x and y merges at rate x + y), via
cutting the continuum random tree [4] (see also Remark 2.1(c) in the next section). The analogue
of [6] in the additive coalescent case is again due to Aldous and Pitman [8]. No nice graphical
construction for another (merging rate) coalescent with masses seems to have been found since.
For studies of stochastic coalescents with general kernel, see Evans and Pitman [34] and Fournier
[35,36]. Interest for probabilistic study of related Smoluchowski’s equations (with general merg-
ing kernels) was also sparked by [9], see, for example, Norris [54], Jeon [41], then Fournier and
Laurençot [37,38] and Bertoin [18] for more recent, and Merle and Normand [51,52] for even
more recent developments. All of the above mentioned models are mean-field. See, for example,
[12,39,49] for studies of (mass-less) coalescent models in the presence of spatial structure.

As already mentioned, Broutin and Marckert [27] obtain Theorem 1.2 in the standard mul-
tiplicative coalescent case, via Prim’s algorithm construction invented for the purpose of their
study, and notably different from the approach presented here. Before them Bhamidi et al. [20,
21] proved f.d.d. convergence for models similar to Erdős-Rényi random graph. For the standard
additive coalescent, analogous results were obtained rather early by Bertoin [15,16] and Chas-
saing and Louchard [28], and are rederived in [27], again via an appropriate Prim’s algorithm
representation.

In parallel to and independently from the research presented here, both Martin and Ráth [50]
and Uribe Bravo [62] have been studying closely related models and questions. Their approaches
seem to be quite different from the one taken here, with some notable similarities. James Martin
and Balázs Ráth [50] introduce a coalescence-fragmentation model called the multiplicative coa-
lescent with linear deletion (MCLD). Here in addition to (and independently of) the multiplicative
coalescence, each component is permanently removed from the system at a rate proportional to
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its mass (this proportionality parameter is denoted by λ). In the absence of deletion (i.e., when
λ = 0), their “tilt (and shift) operator” representation of the MCLD leads to an alternative proof
of Theorem 1.2, sketched in detail in [50], Section 6.1 (see [50], Corollary 6.6). Further com-
ments on links and similarities to [50] will be made along the way, most frequently in Section 3.
Gerónimo Uribe [62] relies on a generalization of the construction from [27], explains its links
to Armendáriz’ representation, and works towards another derivation of Theorem 1.2.

The arguments presented in the sequel are partially relying on direct applications of a non-
trivial result from [6], Section 2.6 (depending on [6], Section 2.5) in Section 6 (more precisely,
Corollary 10). In comparison, (a) [27] also rely on the convergence results of [5] in the standard
multiplicative coalescent setting, as well as additional estimates proved in [1], and (b) the analysis
done in [50], Sections 4 and 5 seems to be a formal analogue of that in [6], Sections 2.5–2.6.

The present approach to Theorem 1.2 is of independent interest even in the standard multi-
plicative coalescent setting (where Section 5 would simplify further, since c = 0, and already
Lemma 8 from [5] would be sufficient for making conclusions in Section 6). In addition, it may
prove useful for continued analysis of the multiplicative coalescents, as well as various other
processes in the multiplicative coalescent “domain of attraction”.

The reader is referred to Bertoin [17] and Pitman [56] for further pointers to stochastic coales-
cence literature, and to Bollobas [25] and Durrett [30] for the random graph theory and literature.

The rest of the paper is organized as follows: Section 2 introduces the simultaneous breadth-
first walks and explains their link to the (marginal) law of the multiplicative coalescent, and the
original breadth-first walks of [5,6]. Section 3 recalls Uribe’s diagrams and includes Proposi-
tion 3, that connects the diagrams to the multiplicative coalescent. In Section 4, the simultane-
ous BFWs and Uribe’s diagrams are linked, and as a result an important conclusion is made in
Proposition 5 (the generalized version of the claim preceding Theorem 1.2). All the processes
considered in Sections 2–4 have finite initial states. Section 5 serves to pass to the limit where the
initial configuration is in l2↘. The similarities to and differences from [6] are discussed along the
way, and in the accompanying paper [45]. Theorem 1.2 is proved in Section 6. Supplementary
material [45] is described in the paragraph preceding the bibliography.

2. Simultaneous breadth-first walks

This section revisits the Aldous [5] breadth-first walk construction of the multiplicative coa-
lescent started from a finite vector x (see, for example, [45], Section 3), with two important
differences (or modifications), to be described along the way.

Recall that “breadth-first” refers here to the order in which the vertices of a given connected
graph (or one of its spanning trees) are explored. Such exploration process starts at the root,
visits all of its children (these vertices become the 1st generation), then all the children of all the
vertices from the 1st generation (these vertices become the 2nd generation), then all the children
of the 2nd generation, and keeps going until all the vertices (of all the generations) are visited, or
until forever (if the tree is infinite).

Refer to x = (x1, x2, x3, . . .) ∈ l2↘ as finite, if for some i ∈N we have xi = 0. Let the length of

x be the number len(x) of non-zero coordinates of x. Fix a finite initial configuration x ∈ l2↘. For
each i ≤ len(x) let ξi have exponential (rate xi ) distribution, independently over i.
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As before, X is used to denote a stochastic process evolving according to the multiplicative
coalescent dynamics. In this section, the initial configuration X(0) = x is discrete (finite), so X
is the law of the continuous-time random graph connected component masses. Given ξ , simulta-
neously for all q > 0, we next construct the modified (with respect to [5,6]) breadth-first walk,
coupled with X(q) started from X(0) = x at time 0 (see Propositions 1 and 5). This simultaneity
in q is a new feature with respect to [5,6]. To the best of our knowledge, the powerful (full law)
coupling of Proposition 5 (see also the simplified Claim in the introduction) was previously un-
known. The family of processes defined in (2.1) below will be henceforth called the simultaneous
breadth-first walks.

Fix q > 0, and consider the sequence (ξi/q)i≤len(x). Let us introduce the abbreviation ξ
q
i :=

ξi/q . The order statistics of (ξ
q
i )i≤len(x) are (ξ

q

(i))i≤len(x). Define

Zx,q (s) :=
len(x)∑
i=1

xi1(ξ
q
i ≤s) − s =

len(x)∑
i=1

x(i)1(ξ
q

(i)
≤s) − s, s ≥ 0, q > 0. (2.1)

In words, Zx,q has a unit negative drift and successive positive jumps, which occur precisely
at times (ξ

q

(i))i≤len(x), and where the magnitude of the ith successive jump is denoted by x(i).

Figure 1 shows graphs of Zx,q and of Zx,4q/3 for the same realization as that depicted on Figure 2.
The three ticks on the x-axis of each graph correspond to ξ

q

1 , ξ
q

5 and ξ
q

6 (resp. to ξ
4q/3
1 , ξ

4q/3
5

and ξ
4q/3
6 ). The meaning of the intervals indicated in gray or blue below each graph will become

clear shortly (see also Figure 2).
Here is the first important observation. For each q , the multiplicative coalescent started from

x and evaluated at time q can be constructed in parallel to Zx,q via a breadth-first walk coupling,
similar to the one from [5,6]. The interval F

q

1 := [0, ξ
q

(1)] is the first “load-free” period. Set
J0 := {1,2, . . . , len(x)}. At the time of the first jump of Zx,q we note

π1 := i if and only if ξi = ξ(1), and J1 := J0 \ {π1},

so that π1 is the index of the first size-biased pick from (xi )
len(x)
i=1 using ξ s (or equally, ξqs).

Figure 1. Graphs of joint realizations of Zx,q and Zx,4q/3.
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Furthermore, let us define for l ≤ len(x)

πl := i if and only if ξi = ξ(l), l ∈ {
1, . . . , len(x)

}
, and Jl := Jl−1 \ {πl}. (2.2)

In this way, (xπ1 , xπ2, . . . , xπlen(x)
) is the size-biased random ordering of the initial non-trivial

block masses, and in particular xπi
equals x(i) from (2.1). As already noted, the random permu-

tation π does not depend on q .
Let Fq

s := σ {{{ξq
i > u} : i ∈ J0}, u ≤ s}. Then Fq = {Fq

s , s ≥ 0} is the filtration generated by
the arrivals of ξqs. Due to elementary properties of independent exponentials, it is clear that the
above defined process Zx,q is a continuous-time Markov chain with respect to Fq . Indeed, given
Fq

s , the (residual) clocks ξ
q
i ∨ s − s are again mutually independent, and moreover on the event

{ξq
i > s} we clearly have P(ξ

q
i − s > u|Fq

s ) = e−xiqu = P(ξ
q
i > u). Furthermore, ξ

q

(1) is a finite
stopping time with respect to Fq and

P
(
ξ

q
i − ξ

q

(1) > u|Fq
ξ(1)

)
1(i∈J1) = e−xiqu1(i∈J1) = P

(
ξ

q
i > u

)
1(i∈J1). (2.3)

Let I0 =∅ and I1 := (ξ
q

(1), ξ
q

(1) +xπ1]. Note that the length of the interval I1 is the same (positive)
quantity xπ1 for all q > 0. During the time interval I1 the dynamics “listens for the children of
π1”. More precisely, if for some j we have ξ

q
j ∈ I1, or equivalently, if ξ

q
j − ξ

q

(1) ≤ xπ1 , we can
interpret this as

edge j ↔ π1 appears before time q in the multiplicative coalescent.

Indeed, as argued above, P(ξ
q
j − ξ

q

(1) > xπ1 |Fq

ξ
q

(1)

) = e−qxj xπ1 , and this is precisely the multi-

plicative coalescent probability of the j th and the π1st block not merging before time q .
For any two reals a < b and an interval [c, d] where 0 ≤ c < d , define the concatenation

(a, b] ⊕ [c, d] := (a + c, b + d].
Recall that I1 = (ξ

q

(1), ξ
q

(1) + xπ1], and define N1 to be the number of ξqs that rung during I1 (this
is the size of the 1st generation in the exploration process). For any l ≥ 2 define recursively: if
Il−1 is defined

I
q
l ≡ Il :=

⎧⎨
⎩Il−1 ⊕ [0, xπl

], provided
ξ(l)

q
∈ Il−1,

undefined, otherwise,
(2.4)

and if Il is defined in (2.4), let

N
q
l ≡ Nl := the number of ξqs that rung during Il, (2.5)

and otherwise let Nl be (temporarily) undefined. Since ξqs decrease in q , the intervals I
q· defined

in this (coupling) construction do vary over q (their endpoints decrease in q), but all of their
lengths are constant in q . In fact, if defined, Il equals (ξ

q

(1), ξ
q

(1) + ∑l
m=1 xπm ]. We henceforth

abuse the notation and mostly omit the superscript q when referring to I s or Ns.
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During each Il \ Il−1 the coupling dynamics “listens for the children of πl”, among all the
ξqs which have not been heard before (i.e., they did not ring during Il−1). If Il is defined in
(2.4), the set of children of πl in the above breadth-first order is precisely JNl−1 \ JNl

(J s were
defined in (2.2)), which will be empty if and only if Nl = Nl−1. The same memoryless property
of exponential random variables as used above (e.g. in (2.3)) ensures that

P
(
ξ

q
k ∈ Il \ Il−1|Fξ

q

(1)
+xπ1 +···+xπl−1

)
1(k∈JNl−1 )

= P(k ∈ JNl−1 \ JNl
|Fξ

q

(1)
+xπ1 +···+xπl−1

)1(k∈JNl−1 ) = e−qxkxπl 1(k∈JNl−1 ) a.s. (2.6)

Due to independence of ξ s, the residual clocks have again the (conditional) multi-dimensional
product law. So for each l, the set of children of πl equals in law to the set of blocks which
are connected by an edge to the πl th block in the multiplicative coalescent at time q , given that
they did not get connected by an edge (before time q) to any of the previously recorded blocks
π1, . . . , πl−1.

The above procedure may (and typically will) stop at some l1 ≤ len(x), due to ξ
q

(l1)
not arriving

in Il1−1. This will happen if and only if the whole connected component of the π1st initial block
(in the multiplicative coalescent, observed at time q) was explored during Il1−1, and the πl1−1st
initial block was its last visited “descendant”, while the rest of the graph was not yet “seen”
during F

q

1 ∪ Il1−1. Indeed, if a1 = ξ
q

(1) and b1 = ξ
q

(1) + xπ1 + · · · + xπl1−1 , it is straight-forward
to see that

Zx,q (s) > Zx,q (a1) = Zx,q (b1), ∀s ∈ (a1, b1). (2.7)

In words, the interval Cl(Il1−1) = [a1, b1] is an excursion of Zq,x above past minima of length
b1 − a1 = xπ1 + · · · + xπl1−1 , which is the total mass of the first (explored) spanning tree in the
breadth-first walk. Due to (2.3), (2.6) and the related observations made above, this (random)
tree matches the spanning tree of the connected component of π1 in the coupled multiplicative
coalescent, observed at time q . This (first) spanning tree is rooted at π1 (cf. Figures 2 and 3) for
all q > 0. It will be clear from construction, that the roots of subsequently explored spanning
trees can (and inevitably do) change at some q > 0.

The next interval of time F
q

2 := (ξ
q

(1)
+ xπ1 + · · · + xπl1−1 , ξ

q

(l1)
] is again “load-free” for the

breadth-first walk. Repeating the above exploration procedure starting from ξ
q

(l1)
amounts to

defining I
q
l1

≡ Il1 := (ξ
q

(l1)
, ξ

q

(l1)
+ xπl1

] and listening for the children of πl1 st block during Il1 ,
and then running the recursion (2.4), (2.5) for l ≥ l1 + 1 until it stops, which occurs when all
the vertices (blocks) of the second connected component are explored. This exploratory coupling
construction continues until all the initial blocks of positive mass are accounted for, or equiva-
lently until ξ

q

(len(x)). Clearly no ξ can ring during Ilen(x) \ Ilen(x)−1 (which is open on the left), and
Zx,q continues its evolution as a deterministic process (line of slope −1) starting from the left
endpoint of Ilen(x).

Figures 1 and 2 illustrate the just described coupling. In the current notation x = (1.1,0.8,0.5,

0.4,0.4,0.3,0.2,0,0, . . .) so that len(x) = 7. The three “load-free” intervals F
q
i , i = 1,2,3 are

indicated in gray. The interval I
q
i or I

q
i \ I

q

i−1 (the latter corresponds to non-leading blocks)
is indicated in blue with marker i on top. The excursions of Zx,q above past minima are the
(closed) disjoint unions of blue intervals. Each excursion of Zx,q above past minima corresponds
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Figure 2. A magnified view of the left graph in Figure 1.

uniquely to a connected component in the coupled multiplicative coalescent evaluated at time q .
It is clear from (2.4), (2.5) that the order of blocks visited within any given connected component
is breadth-first. Note as well that the connected components are explored in the size-biased order.
Indeed, the fact that the initial block of the next component to be explored is picked in a size-
biased way, with respect to block masses, induces size-biasing of connected components (again
with respect to mass) in the multiplicative coalescent at time q .

The above reasoning can be also summarized as follows:

Proposition 1. Let x be finite, and q > 0. Let the breadth-first walk Zx,q encode X(q) ∈ l2↘ as
follows: for each excursion (above past minima) of Zx,q record its length, and let X(q) be the
vector of thus obtained decreasingly ordered excursion lengths, appended with infinitely many
0s. Then X(q) has the marginal law of the multiplicative coalescent started from X(0) = x and
observed at time q .

Since (Zx,q )q>0 exist on one and the same probability space, the process

X := (
X(q), q > 0

)
and X(0) = x

is well defined, and we refer to it temporarily as the multiplicative coalescent marginals coupled
to Zx,·.

In the original breadth-first construction (coupling) in [5,6], the leading block of each com-
ponent did not correspond to a jump of the walk. It was chosen instead via an auxiliary source
of randomness. In comparison, each non-leading block was uniquely matched to a jump of the
breadth-first walk, and for a non-leading block of mass m, this jump had size m and was expo-
nentially distributed with rate m. As in the simultaneous construction, all the exponential jumps
were mutually independent. The reader is also referred to [45], Section 3 for further details.
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Figure 3. Comparison of the original and the simultaneous breadth-first walk paths.

Figure 3 (without the vertical dashed lines and their labels) is a duplicate of [6], Figure 1. Here
we assume that it shows the graph of the original breadth-first walk (at multiplicative coalescent-
time q), corresponding to the same realization as the one used in Figure 2. In particular x =
(1.1,0.8,0.5,0.4,0.4,0.3,0.2,0,0, . . .) and xπi

≡ v(i). Note that the segment marked by i in
Figure 2 has exactly the same length as the segment marked by v(i) in Figure 3. One can read
off from Figure 3 that π belongs to {(2,4,3,7,6,5,1), (2,5,3,7,6,4,1)}. However, ξ(1) = ξ2,
ξ(5) = ξ6 and ξ(6) = ξ5 (or ξ(6) = ξ4, depending on π ) are not observed. In comparison, in the
simultaneous breadth-first walk construction, the ξ

q

(1) (here it equals ξ2), ξ(5) (here it equals ξ6)
and ξ(6) all influence (see (2.1) or Figure 2) the walk. The additional vertical dashed lines (not
existing in [6], Figure 1) and their labels illustrate the link between the two breadth-first walk
constructions (see also Figure 2 and the explanations provided below it). In particular, the first
jump of the original breadth-first walk happens at time (distributed as) ξ

q

(2) − ξ
q

(1), the second

one happens at time (distributed as) ξ
q

(3) − ξ
q

(1), and this continues until the first component is
exhausted. The next jump happens at the time the next non-leading block is encountered.

Moreover, due to elementary properties of residual exponentials, the following is true.
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Lemma 2. Fix a finite initial configuration x and (multiplicative coalescent) time q > 0, recall
Zx,q from (2.1), and the load-free intervals F

q
i , i ≥ 1. If F

q
i , i ≥ 1 are all cut from the abscissa,

and the jumps which happen at the end points of F
q· are all ignored (deleted), then (the graph

of) Zx,q transformed in this way has the law of (the graph of) the breadth-first walk from [5,6],
corresponding to q .

Most of the argument is included in the above made observations and explanations. Figures 2
and 3 illustrate the claim. Time s for Zx,q (on Figure 2) corresponds to time s−ξ

q

(L+1)+
∑K

i=1 xπi

in the original breadth-first walk (on Figure 3), where L is the number of connected components
completely explored via Zx,q before time s, and (xπi

)Ki=1 is the total mass of these L connected
components (on L = 0 this mass is naturally 0). The consecutive load-free intervals and their
final jumps, which are cut out by the transformation, serve as the auxiliary source of randomness
used for choosing leading blocks in the exploration of [5,6]. The details are left to the reader.

Remark 2.1. (a) At the moment it may seem that the main (potential) gain of the just described
modified breadth-first construction is in “compactifying” the input data (compare with [6], Sec-
tion 2.3 or [27], Section 6.1 for alternatives). It will become apparent in the sequel (see Proposi-
tion 5 and Section 5) that this construction is quite natural, in that stronger convergence results
can be obtained from it with less effort.

(b) As q ↘ 0, the ξq diverge to ∞, but more importantly they diverge from each other, so
X(q) → x = X(0) almost surely. It is not difficult to see that for any q ≥ 0, X is also almost
surely right-continuous at q (see Section 4).

(c) A little thought is needed to realize that as q increases, the excursion families of Zx,·
are “nested”: with probability 1, if q1 < q2 and two blocks k, l are merged in X(q1), they are
also merged in X(q2) (an example of this is depicted in Figure 1). This fact is encouraging, but
cannot ensure on its own that the multiplicative coalescent marginals coupled to Zx,· is in fact
a multiplicative coalescent process. Moreover, while the nesting is encouraging, the following
observation will likely increase the level of reader’s skepticism about X having the multiplica-
tive coalescent law: if e

q1
1 , e

q1
2 and e

q1
3 are three different excursions of Zx,q1 explored in the

increasing order of their indices, and if the initial blocks k, l, m are contained in the connected
components matched to e

q1
1 , e

q1
2 , e

q1
3 , respectively, then it is impossible that k and m are merged

in X(q2) without l being merged with k (and therefore with m) in X(q2). If there is a simul-
taneous (for all q) scaling limit of (Zx,q ,X(q)) (under well chosen hypotheses), the just men-
tioned property persists in the limit. This observation is perhaps the strongest intuitive argument
pointing against the claim of Proposition 5 and Theorem 1.2. On the other hand, analogous rep-
resentations of the standard additive coalescent are well-known (cf. [15,16,28]). One may be less
surprised there, due to the “cutting the CRT” dual (from [7]), and the well-known connection
between the exploration process of continuum trees and forests on the one hand, and Brownian
excursions on the other (cf. [4,17,56]). As Nicolas Broutin (personal communication) points out,
any (binary) fragmentation can be formally represented as a “stick-breaking” process, in which
the two broken pieces of any split block remain nearest neighbors (in some arbitrary but fixed
way). The reversed “coalescent” will then have the above counterintuitive property by definition.
However, one is particularly fortunate if both of these processes (time-reversals of each other)
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are Markov, and if in addition the “sticks” are the excursions of a (generalized) random walk or
a related process.

(d) Let us denote by C the operation on paths (i.e., the cutting and pasting transformation)
from Lemma 2. In [6], the non-trivial multiplicative coalescent extreme entrance laws were ob-
tained by taking limits of Aldous’ breadth-first walks (see Section 5 below), and the limits of
their excursions (nearly) above past minima. It was shown that these excursion lengths, consid-
ered as an l2↘-valued random object, converge in law to the excursion lengths above past minima
of the limiting “walk” (a member of the family defined in (1.6)). Lemma 2 makes this latter
(somewhat technical) step redundant in the present setting. More precisely, if one can show that
under the same hypotheses as those in [6], (Zt+n1/3,x(n)

)n (see Section 5 for precise definitions)
converges to the same Wκ,t−τ,c as their (C(Zt+n1/3,x(n)

))n, the conclusion about the ordered ex-
cursion lengths is immediate. Indeed, the sequence of excursion above past minima of Zt+n1/3,x(n)

almost surely matches the sequence of excursions (nearly) above past minima of C(Zt+n1/3,x(n)
),

for which Propositions 7 and 9 of [6] (including the results in [6], Section 2.6) apply verbatim.

3. Uribe’s diagram

We start by recalling the insight given in Chapter 4 of Uribe [63], in the notation analogous to
that of Section 2. In particular, x = (x1, x2, . . . , xn) is a finite-dimensional vector with n ≥ 2, ξi

is an exponential (rate xi ) random variable, and ξ s are mutually independent. Denote by π the
size-biased random reordering of x, which is determined by ξ s, so that ξπi

≡ ξ(i), ∀i (almost
surely).

Define n different half-lines: for s ≥ 0

L′
1 : s �→ ξ(1) − 0 · s,

L′
2 : s �→ ξ(2) − xπ1s,

L′
3 : s �→ ξ(3) − (xπ1 + xπ2)s,

. . . . . . . . .

. . . . . . . . .

L′
n : s �→ ξ(n) − (xπ1 + xπ2 + · · · + xπn−1)s.

Consider two integers k, j such that 1 ≤ j < k ≤ n. Since L′
k starts (a.s.) at a strictly larger value

than L′
j , and it has (absolute) slope strictly greater than L′

j , it is clear that L′
k and L′

j intersect at
some sk,j > 0. For each k = 2, . . . , n define

sk := min
j<k

sk,j , �k := {1 ≤ j < k : sk = sk,j }.

There are (almost surely) no ties among sk or sk,j for different indices k, j (see also Remark 3.1
below). Uribe’s diagram consists of line segments (see Figures 4 and 5)

L1 : s �→ ξ(1) − 0 · s, s ∈ [0, s2 ∨ · · · ∨ sn],
L2 : s �→ ξ(2) − xπ1s, s ∈ [0, s2],
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Figure 4. An illustration of Uribe’s diagram.

L3 : s �→ ξ(3) − (xπ1 + xπ2)s, s ∈ [0, s3],
. . . . . . . . .

. . . . . . . . .

Ln : s �→ ξ(n) − (xπ1 + xπ2 + · · · + xπn−1)s, s ∈ [0, sn].
The image of a realization of L in Figure 4 is inspired by [63], Chapter 4, Figure 1. It is

interesting to note that its reflection in the x axis is a redrawing of [50], Figure 1.3. A more
detailed figure, which will correspond in terms of the values of x, q and ξ s to the images in
Figures 2 and 3 is provided in Section 4.

According to [63], Chapter 4, Section 2, Armendáriz’ representation of the multiplicative co-
alescent [11] is this graphical summary (introduced in [63] for enhanced understanding) joint
with an informal description of the following kind:

– the state space is R
n+, its elements are interpreted as lists of block masses, not necessarily

ordered,
– at time 0 match the block of mass xπi

to L′
i ,

– whenever two of the lines intersect, merge the corresponding blocks, form the new vector
of block masses accordingly, continue drawing the lowest indexed line (now matched to the
new block), as well as any line that has not participated in the intersection,

– keep going as long as there is more than one line remaining.

Another construction, advocated as “essentially Armendáriz’ representation” (but better for cer-
tain applications) is described at the beginning of [63], Chapter 4, Section 3. This latter construc-
tion strongly resembles the “tilt” representation of Martin and Ráth (see [50], Definition 2.7 and
Theorem 2.8).

The rest of this section is only one possible rigorous formulation of the aforementioned pic-
ture. Here Proposition 3 is stated and proved (in [45]) in a particularly convenient partition-valued
framework. Corollary 4 features a process that should be the analogue of the Armendáriz rep-
resentation according to [63]. It serves here as a step in obtaining Theorem 1.2, through the
equivalence obtained in Section 4, suggesting its potential relevance elsewhere. An alternative
approach is the particle representation of Martin and Ráth [50], Section 3.2, developed in the
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Figure 5. Uribe’s diagram of the realization for which the simultaneous and the original breadth-first walks,
corresponding to the coalescent time q = 2, are depicted in Figures 2 and 3.

more general setting of multiplicative coalescent with linear deletion. Interestingly, the analysis
of [50] is again based on an analogue of (a reflection of) Uribe’s diagram.

Uribe’s diagram could be interpreted as a “genealogical tree”. More precisely, let us match
each point on the diagram

⋃n
i=1

⋃
s∈[0,si ] Li(s) to a subset of {1,2, . . . , n} in the following way.
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For each i, set Ti(0) := {πi}. Each Ti is piece-wise constant, and jumps according to the follow-
ing algorithm:

Ti(s) := Ti(s−) ∪
n⋃

j=i+1:sj =s,�j =i

Tj (s−), i ∈ {1,2, . . . , n},

and Ti(s) := ∅, ∀s ≥ si . In words, for each i, the contents of Ti are moved (without re-
placement) to T�i

at time si , and there is no other copying, cutting or pasting done. Define
T (s) := {T1(s), . . . , Tn(s)}, s ≥ 0, where the empty sets are ignored. Note that in this way each
s ≥ 0 is mapped to a partition T (s) of {1,2, . . . , n}. The reader is referred to an analogous look-
down construction of [29], which has since been extensively used in the setting of massless
(usually called exchangeable) coalescents.

Clearly the partitions along each path of T are nested: if s1 < s2 and l and k are in the same
equivalence class of T (s1), they are (almost surely) in the same equivalence class of T (s2). So
T can also be regarded as a random coalescent on the space of partitions of {1,2, . . . , n}. Its
initial state is the trivial partition θ0 := {{π1}, {π2}, . . . , {πn}} = {{1}, {2}, . . . , {n}}. Denote by
Gt := σ {T (s), s ≤ t}, t ≥ 0, so that G := (Gt )t≥0 is the filtration generated by T . The process T

will be referred to in the sequel as Uribe’s coalescent process.
It is evident that Uribe’s diagram L is a deterministic function of x and ξ s, and when needed

we shall underline this fact by writing L(ξ1, ξ2, . . . , ξn;x).

Remark 3.1. The ξ s are independent and continuous, and therefore (with probability 1) no two
pairs of lines in L′ can meet simultaneously. Therefore T (viewed as path-valued) takes value in
the space of step functions, such that successive values on a typical path are nested (sub)partitions
of θ0, each having exactly one fewer equivalence class than the prior one. In particular, Gt is
generated by events of the following type: for k ≥ 1{

T (0) = θ0, T (t1) = θ1, T (t2) = θ2, . . . , T (tk) = θk

}
, 0 < t1 < · · · < tk ≤ t,

where θj+1 is either equal to θj or to a “coarsening” of θj obtained by merging two different
equivalent classes in θj , 0 ≤ j ≤ k − 1.

Let us now account for the masses: for any i and s ≥ 0 define Mi(s) := ∑
l∈Ti(s)

xl , with the
convention that a sum over an empty set equals 0. In this way, to each non-trivial equivalence
class of T (s) a positive mass is uniquely assigned, and the sum of the masses

∑
i Mi(s) is the

identity
∑n

i=1 xi , almost surely.
Suppose for a moment that n = 2. For Uribe’s diagram, there are two possibilities: either π is

the identity, or π is the transposition. In either case, the two initial equivalence classes {1} and
{2} merge at random time s2 which we denote by S. Note that the event {S > s} is (almost surely)
identical to the union of the following two disjoint events {ξ2 > ξ1 + sx1} and {ξ1 > ξ2 + sx2}.
Thus

P(S > s) =
∫ ∞

0
x1e

−x1ue−x2(u+sx1) du +
∫ ∞

0
x2e

−x2ue−x1(u+sx2) du, (3.1)
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and the reader can easily verify that the RHS equals e−x1x2s . So if n = 2, the coalescent time is
distributed equally in the random graph (component masses) and in Uribe’s coalescent.

Even with this hint in mind, the next result will likely seem at least counterintuitive if not
striking to an non-expert reader.

Proposition 3. Uribe’s coalescent process T has the law of the partition-valued process gener-
ated by the connected components of the continuous-time random graph. More precisely, it is a
continuous-time Markov chain, such that any two equivalence classes in T merge, independently
of all the other merger events, at the rate equal to the product of their masses (where the mass of
an equivalence class is the sum of xs over its elements).

The argument given in the supplement [45], Section 4 is based on a sequence of elementary
observations, and its outline is comparable to that of [11], Lemma 15. Some care is however
needed in correctly setting up the conditioning (otherwise the statement of the proposition would
seem obvious from the start). In particular, there seems to be no way of a priori knowing that
T with respect to G has the Markov property. The argument exhibits the transition rates in the
process of checking for Markovianity.

Recall that, for i = 1,2, . . . , n, Mi(s) is the mass of the equivalence class Ti(s), provided
that Ti(s) �= ∅, and it is defined to be 0 otherwise. Now let Y(s) be a l2↘-valued random vari-
able, formed by listing the components of (M1(s),M2(s), . . . ,Mn(s)) in decreasing order, and
appending infinitely many zeros (to obtain a vector in l2↘). It is clear that Y = (Y(s), s ≥ 0) is
adapted to G. Moreover, Proposition 3 can be restated as the following.

Corollary 4. The process Y is a multiplicative coalescent started from the decreasing ordering
of (x1, x2, . . . , xn,0, . . .).

In the case where all the n initial masses are equal, a subset of the just derived identities
was already known to Gumbel [40]. It is well known (see, for example, the discussion in [63],
Chapter 4, or [25], Chapter 7, or [30], Chapter 2, Section 8) that the connectivity time of the (clas-
sical) Erdős-Rényi random graph, is of the order (logn + G + o(1))/n, where G has Gumbel’s
law P(G ≤ g) = e−e−g

, g ∈ R.

4. Breadth-first walks meet Uribe’s diagram

In this section, we will compare the simultaneous breadth-first random walks of Section 2 with
Uribe’s diagram of Section 3. More precisely, a coupling of these random objects will be realized
on one and the same probability space, so that the multiplicative coalescent marginals X coupled
to Zx,· (see Section 2) can be matched to Y derived from Uribe’s diagram (see Section 3).

As an immediate corollary we obtain the following.

Proposition 5. Let x be finite. Then the multiplicative coalescent marginals X coupled to Zx,·
has the law of a multiplicative coalescent started from x.
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Let x be finite, set n := len(x), and recall the construction from Section 2. Use the same
(ξ1, . . . , ξn) to form the corresponding Uribe diagram L(ξ1, ξ2, . . . , ξn;x). The notation is
slightly abused here since in Section 2 (resp. 3) vectors have infinite (resp. finite) length, but
the correspondence between the two is clear (appending infinitely many zeros to the finite vector
will give the infinite one).

Assume for a moment that x = (1.1,0.8,0.5,0.4,0.4,0.3,0.2), and let us pretend that the
realization from Figures 2 and 3 corresponds to the time parameter q equal to 2. Let us
assume in addition that π = τ := (2,4,3,7,6,5,1). This means that (ξ(1), ξ(2), . . . , ξ(7)) =
(ξ2, ξ4, ξ3, ξ7, ξ6, ξ5, ξ1) = (0.2,0.7,1.4,3.4,4.6,5.6,6).

The corresponding Uribe’s diagram L(ξ,x) is shown in Figure 5. For any time s, the partition
T (s) can be read from the graph as it could be read from a genealogical tree. Each of the “active”
lines represents a different equivalence class. The blue vertical dashed line marks time q = 2. In
T (2) there are three equivalence classes, matched to L1, L5 and L6, as shown in the figure. This
partition is, of course, the same as the one given in terms of trees depicted on Figure 3 (recall
that the same realization is being illustrated in Figures 2, 3 and 5).

The coupling stated at the beginning of the section is realized in the most natural way. Recall
that both (Zx,q , q > 0) and L(ξ ;x) (and therefore T and Y) are functions of ξ s and x. It is
important here to let the finite family of independent exponential random variables ξ·, used in the
construction of Zx,· and L(ξ ;x), be the same, almost surely.

As already noted (see Remark 2.1(c)), the partition structure induced by the evolution of Zx,·
gets coarser as q increases. In addition, only pairs of neighboring blocks or families of blocks,
with respect to the random order established by π , can coalesce either in X or in T (that is,
in Y). Note that, for each multiplicative coalescent time q , the relation of being connected by
a path of edges ↔ that occurred before time q is an equivalence relation on the initial set of
blocks. Hence it suffices to show that, almost surely, for each q > 0 and i ∈ {1,2, . . . , n − 1}
it is true that πi ↔ πj with respect to Zx,q (see Section 2) if and only if πi ∼ πj with re-
spect to T (see Section 3). At time q = 0 the just made claim is clearly correct, since there
are no edges ↔ in X, and the partition of T is trivial. Suppose that random time Q1 > 0
is such that T (Q1−) = θ0 and T (Q1) contains {πi,πi+1}. This means that the lines L′

i and
L′

i+1 intersect at time Q1, and no other pair of lines intersects before time Q1. Or equivalently,

ξ(i+1) − ξ(i) = Q1xπi
and ξ(j+1) − ξ(j) > Q1xπj

for j �= i. Or equivalently, ξ
Q1
(i+1) − ξ

Q1
(i) = xπi

,

and ξ
Q1
(j+1) − ξ

Q1
(j) > xπj

for j �= i. A quick check of the construction in Section 2 suffices to
see that, on the above event, the edge πi ↔ πi+1 arrives at time Q1 in X, and no edge ar-
rives to X before time Q1. At time Q1, the line L′

i+1 stops being active in Uribe’s diagram.
The new neighbors of {πi,πi+1} are πi+2 and πi−1. All the active lines above L′

i account
for the new mass xπi

+ xπi+1 of {πi,πi+1}, since this quantity is built into their slope (to-
gether with masses corresponding to any other active lines underneath them). Similarly, Zx,q

for q > Q1 does not need to observe ξ
q

(i+1) any longer, it suffices to attribute the cumulative

“listening length” xπi
+ xπi+1 to the breadth-first walk time ξ

q

(i) at which the leading particle
of the component {πi,πi+1} is seen by the walk. Due to these two observations, one can con-
tinue the comparison of the coalescence of the remaining blocks driven by (T (q), q ≥ Q1) to
that driven by (Zx,q , q ≥ Q1), and conclude by induction that in both processes the sequence
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of pairs of blocks that coalesce, and their respective times of coalescence, are identical, almost
surely.

As already noted, Proposition 5 is a direct consequence. Note that in the sense of the just
produced coupling, the simultaneous breadth-first walks of Section 2 are equivalent to Uribe’s
diagram. In comparison, the original breadth-first walk of [5] coupling is “static” (it works for
one q at a time), and it seems difficult to turn it into a “dynamic” version due to a certain (small
but present) loss of information (see Lemma 2).

5. Scaling limits for simultaneous breadth-first walks

This section imitates the approach of Section 2.4 in [6]. It is interesting to note that these scaling
limits are simpler to derive here than they were for the original multiplicative coalescent encoding
walks in [6].

Given x ∈ l2↘ let

σr(x) :=
∑

i

xr
i , r = 1,2,3.

For each n ≥ 1, let x(n) be a finite vector (in the sense of Section 2). Let ((Zx(n),q (s), s ≥ 0), q ≥
0) and (X(n)(q), q ≥ 0) be the simultaneous breadth-first walks, and the multiplicative coalescent
coupled to Zx(n),· (see Section 2 and Proposition 5), respectively.

Suppose that for some κ ∈ [0,∞) and c ∈ l3↘, the following hypotheses are true:

σ3(x(n))

(σ2(x(n)))3
→ κ +

∑
j

c3
j , (5.1)

x
(n)
j

σ2(x(n))
→ cj , j ≥ 1, (5.2)

σ2
(
x(n)

) → 0, (5.3)

as n → ∞. It is easy to convince oneself (or see Lemma 8 of [6] or [45], Section 6) that for any
(κ,0, c) ∈ I there exists a finite vector valued sequence (x(n))n≥1 satisfying (5.1)–(5.3).

As in [6], we furthermore pick an integer valued sequence (m(n))n≥1, which increases to
infinity sufficiently slowly so that

∣∣∣∣∣
m(n)∑
i=1

(x
(n)
i )2

(σ2(x(n)))2
−

m(n)∑
i=1

c2
i

∣∣∣∣∣ → 0,

∣∣∣∣∣
m(n)∑
i=1

(
x

(n)
i

σ2(x(n))
− ci

)3
∣∣∣∣∣ → 0, (5.4)

and σ2
(
x(n)

)m(n)∑
i=1

c2
i → 0. (5.5)
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Fix t ∈ R and let qn := 1
σ2(x(n))

+ t . Recall (2.1), and define

Zn := Zx(n),qn ,

Rn(s) :=
m(n)∑
i=1

(
x

(n)
i 1(ξ

qn
i ≤s) − (x

(n)
i )2

σ2(x(n))
s

)
, and Yn(s) := Zn(s) − Rn(s), s ≥ 0.

It is implicit in the notation that ξ
qn

i := ξ
(n)
i /qn, where ξ

(n)
i has exponential (rate x

(n)
i ) distribu-

tion, and where (ξ
(n)
i )i are independent over i, for each n.

Define Z̄n, R̄n, Ȳn to be respectively, Zn, Rn, Yn multiplied by 1
σ2(x(n))

, so that Z̄n ≡ Ȳn + R̄n.
It should not be surprising that both the shift in the multiplicative coalescent time and the spatial
scaling applied to the walks are the same as in [6]. It is clear that, for each n, Rn and Yn are
independent (the former depends only on the first m(n) terms of the sequence (ξ

(n)
i )i , and the

latter only on the other terms).
Recall the definitions (1.5)–(1.7). The following result is a direct analogue of [6], Proposi-

tion 9.

Proposition 6. If (κ,0, c) ∈ I , and provided (5.1)–(5.3) are satisfied as n → ∞, then

(Ȳn, R̄n)
d→ (

W̃ κ,t , V c), as n → ∞,

where W̃ κ,t and V c are independent, and therefore Z̄n
d→ Wκ,t,c.

The rest of this section is devoted to the proof of the above proposition, and some of its
consequences. As already mentioned, the argument is a simplification of that given in Section 2.4
of [6], for the main reason that the current Yn has a simpler explicit form. From now on assume
that t ∈R is the one fixed in Proposition 6 via the definition of qn.

Note that the independence of Yn and Rn clearly implies that of Ȳn and R̄n. So provided
that each of the sequences converges in law, the joint convergence in law to the product limit
law is a trivial consequence. Furthermore, the convergence of R̄n can be verified in a standard
way (for each k, the kth largest jump of R̄n converges to the kth largest jump of V c, and the
second-moment MG estimates are used to bound the tails), as was already done in [6] (see the
supplement [45], Section 7).

Lemma 7. We have

R̄n
d→ V c(s), as n → ∞. (5.6)

It remains to study the convergence of (Ȳn)n. This sequence of processes differs from the
equally named sequence in [6]. Write σn

r for σr(x(n)), r = 1,2,3 in the sequel. An important
observation is that

Ȳn(s) :=
len(x(n))∑

i=m(n)+1

x
(n)
i

σ n
2

1(ξ
qn
i ≤s) − s

σn
2

+
m(n)∑
i=1

(x
(n)
i )2

(σ n
2 )2

s. (5.7)
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The infinitesimal drift and variance calculations are now straightforward. Let Fn
s := σ {Ȳn(u) :

u ≤ s}, so that Fn := (Fn
s )s≥0 is the filtration generated by Ȳn. The proof of the following result

is also provided in [45], Section 7.

Lemma 8. For each fixed s,

E
(
dȲn(s)|Fn

s

) p→ (t − κs) ds, as n → ∞, (5.8)

E
((

dȲn(s)
)2|Fn

s

) p→ κ ds, as n → ∞. (5.9)

Since the largest jump of Ȳn is of size x
(n)
m(n)+1/σ

n
2 = on(1), the classical martingale central

limit theorem (cf. [33]) implies that

Ȳn
d→ W̃ κ,t , as n → ∞,

and, as already argued, this concludes the proof of the proposition.

Remark 5.1. By the Cauchy–Schwarz inequality, (σ n
2 )2 ≤ σn

1 σn
3 , and so (5.1), (5.3) imply that

σn
1 → ∞ as n → ∞. While this fact was needed in the proof of the analogous [6], Proposition 9,

here it could slip by unnoticed. If κ > 0, it is easy to see that the limit Wκ,t,c of Z̄n has (countably)
infinitely many excursions above past minima. If κ = 0 and c ∈ l3↘ \ l2↘, the same was proved in
[6], Proposition 14.

Using the Skorokhod representation theorem, we may assume that the convergence stated in
Proposition 6 holds in the almost sure sense. To state the next result (essential for the conclusions
to be made in Section 6), redefine qn(t) := t + 1

σn
2

, for t ∈R. Then let Zt
n := Zx(n),qn(t) and Z̄t

n :=
Zt

n/σ
n
2 . The (almost sure version of) Proposition 6 says that there exists a Brownian motion W

and an independent jump process V c, such that

Z̄t
n → Wκ,t,c, almost surely, as n → ∞,

where the convergence of paths is considered in the Skorokhod J1 topology. Let

At := {
ω : Z̄t

n(·)(ω) → Wκ,t,c(·)(ω) in the Skorokhod J1 topology
}
.

Lemma 9. On the event At , for any z ∈R(
Z̄z

n(s), s ≥ 0
) → (

Wκ,t,c(s) + (z − t)s, s ≥ 0
) ≡ Wκ,z,c, as n → ∞,

in the Skorokhod J1 topology.

Proof. Recall the explicit form (2.1) of Z·,· Observe the following identity:

Zz
n

(
s · qn(t)

qn(z)

)
= Zt

n(s) + s

(
1 − qn(t)

qn(z)

)
, ∀s ≥ 0.
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Since clearly limn→∞ qn(t)
qn(z)

= 1, and moreover since

1

σn
2

(
1 − qn(t)

qn(z)

)
= z − t + Oz,t

(
σn

2

)
,

the convergence stated in the lemma follows omega-by-omega on At .

6. Conclusions

Propositions 7 and 9 from [6] are stated in [45], Section 5. Here is an immediate consequence of
them and Lemma 2, as announced in Remark 2.1(d).

Corollary 10. Assume the hypotheses of Proposition 6. Then for each fixed t , the sequence
(X(n)(qn(t)))n converges in law (with respect to l2↘-metric) to the sequence of ordered excursions
of Bκ,t,c (away from 0).

But in fact more is true in view of Lemma 9. From now on we take the families (Wκ,t,c, t ∈R)

and (Bκ,t,c, t ∈R) to be jointly defined on a common probability space, as in Section 1.3 (and in
Theorem 1.2) via a given pair (W,V c), where W is Brownian motion and V c is an independent
jump process from (1.4).

Let us denote by A the event At of full probability from Lemma 9. For each t ∈ R, define
�(n)(t) to be the point process on [0,∞) × (0,∞) such that (x, y) is in �(n)(t) if and only
if there is an excursion above past minima of Z̄t

n (see (2.7) and Figure 2), starting from x and
ending at x + y. Similarly, let �(∞)(t) be the point process on [0,∞) × (0,∞) such that (x, y)

is in �(∞)(t) if and only if there is an excursion away from 0 of Bκ,t,c, starting from x and
ending at x + y. One can then apply deterministic result stated as [5], Lemma 7 to conclude the
following: on the event A of full probability, for each t ∈R, one has

lim
n→∞�(n)(t) = �(∞)(t), (6.1)

in the sense of vague convergence of counting measures on [0,∞) × (0,∞) (see, e.g., [42]). As
in [5,6], write π for the “project onto the y-axis” defined on R

2, and “ord” for the “decreasing
ordering” map defined on infinite-length vectors, respectively. For a fixed (think large) K < ∞,
define in addition πK to be the “project the strip [0,K]× (0,∞) onto the y-axis” analogue of π .
Then one can recognize ord(π(�(n)(t))) as X(n)(qn(t)), and X(∞)(t) := ord(π(�(∞)(t))) as the
infinite vector of excursion lengths of Bκ,t,c. Similarly πK(�(∞)(t)) (resp. πK(�(n)(t))) is the
collection of all the excursions of Bκ,t,c (resp. Z̄t

n), which start before time K .
We already know that the law of X(∞)(t) is that of the marginal of μ(κ,0, c) at time t (or

equivalently, the marginal of μ(κ, t, c) at time 0). The vague convergence (6.1) now easily im-
plies that there exists a (random) order of πK(�(n)(t)), here temporarily denoted by ord�(n),�(∞) ,
since it is induced by the similarity of the �s, such that∥∥ord�(n),�(∞)

(
πK

(
�(n)(t)

)) − ord
(
πK

(
�(∞)(t)

))∥∥
2 → 0, on the event A. (6.2)
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In words, if considering only the starts before time K , it is possible to order the excursions of
Z̄t

n so that the corresponding infinite vector (obtained by appending an infinite sequence of 0s to
the elements of πK(�(n)(t))) matches the infinite vector ord(πK(�(∞)(t))) in l1-norm up to an
on(1) error term. Moreover, convergence in l1-norm implies convergence in l2-norm.

Take z > t , another real number, and let ε > 0 be fixed but arbitrarily small. From now on, u

will denote either t or z. In order to upgrade (6.2) to the convergence of X(n)(qn(u)) to X(∞)(u)

with respect to distance d(·, ·), one can make the following observations. For x ∈ l2↘, let fm(x) :=
(x1, . . . , xm,0,0, . . .) be the “projection” onto the first m components. Take some arbitrarily large
integer k, and choose mk ∈N such that

P
(
d
(
X(∞)(u), fmk

(
X(∞)(u)

))
> ε

)
<

1

2k
. (6.3)

Since X(n)(qn(t))
d→ X(∞)(t) with respect to d , for this k and possibly larger but still finite mk

we can have in addition

lim sup
n

P
(
d
(
X(n)

(
qn(u)

)
, fmk

(
X(n)

(
qn(u)

)))
> ε

)
<

1

2k
. (6.4)

In words, with an overwhelming probability, all the (random) infinite vectors under consideration
are well-approximated (in the l2-norm) by their first mk components.

Since π(�(∞)(·)) is l2-valued, and since its elements are listed in size-biased order, one can
easily deduce that for the above mk , there exists some large time Kk := K(mk) < ∞, such that

P
(
fmk

(
ord

(
πK

(
�(∞)(u)

))) �= fmk

(
X(∞)(u)

))
<

1

2k
. (6.5)

In words, K is sufficiently large so that with high probability the largest mk elements
of π(�(∞)(u)), all correspond to excursions that started before time K . Again due to

X(n)(qn(u))
d→ X(∞)(u), the analogous

lim sup
n

P
(
fmk

(
ord

(
πK

(
�(n)

(
qn(u)

)))) �= fmk

(
X(n)

(
qn(u)

)))
<

1

2k
(6.6)

is implied for some (possibly larger but) finite K = K(mk).
Apply the triangle inequality to bound d(X(n)(qn(u)),X(∞)(u)) by the sum of the fol-

lowing terms: d(X(n)(qn(u)), fmk
(X(n)(qn(u)))), d(fmk

(X(n)(qn(u))), fmk
(X(∞)(u))), and

d(fmk
(X(∞)(u)), X(∞)(u)). The initial and the final term are controlled by (6.3)–(6.4), while

the middle term is controlled by (6.5)–(6.6) and (6.2), where one makes use of the elementary
inequality: for x,y ∈ l2,

d
(
ord(x),ord(y)

) ≤
∑

i

(xi − yb(i))
2,

regardless of the choice of bijection b : N→N.
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Remark 6.1. It is clear (for example from (5.8)–(5.9), think about redefining qn(t) as 1
σ2(x(n))

+
t − τ ), that the parameter τ corresponds to the time-shift of the eternal multiplicative coalescent,
and so the above conclusions automatically extend to the setting where τ �= 0.

An immediate conclusion is the following.

Lemma 11. If ((Z̄x(n),qn(t)(s), s ≥ −1/σn
2 ), t ∈ R) −→ ((Wκ,t−τ,c(s), s ≥ 0), t ∈ R), as n →

∞, in the sense of Lemma 9, and if X(∞)(t) ∈ l2↘ is the vector of ordered excursion lengths of
Bκ,t−τ,c, then

(i) for any t ∈ R

d
(
X(n)

(
qn(t)

)
,X(∞)(t)

) p→ 0, as n → ∞,

(ii) for any finite sequence of times t1 < t2 < · · · < tm, one can find a subsequence (nj )j such
that almost surely

d
(
X(nj )

(
qnj

(tk)
)
,X(∞)(tk)

) → 0, for all k = 1, . . . ,m,as j → ∞.

Recalling that (X(n)(qn(s)), s ≥ −1/σn
2 ) has the law of the multiplicative coalescent (see

Proposition 5), and applying the Feller property together with Lemma 11(i), where one should
identify X(∞) with X, will complete the proof of the claim about the distribution of X in Theo-
rem 1.2. It is easy to see (using arguments analogous to those given above) that the realization
X(∞) ≡ X of each eternal version from Theorem 1.2 is a càdlàg (rcll) process on an event of full
probability.

Remark 6.2. Recall the COL operation of [6], Section 5. In particular, each ci > 0 is interpreted
as the rate of Poisson coloring (per unit mass) by marks of the ith “color”, applied to the standard
Aldous’ multiplicative coalescent X∗. Once all the color marks are deposited, any two blocks of
X∗ that share at least one mark of the same color are instantaneously and simultaneously merged
together. The jump in Wκ,·−τ,c at time ξi of size ci corresponds precisely to the effect of coloring
by the ith color. Moreover, one could argue that if W̃ κ,·−τ,0 and W̃ κ,·−τ,c are given in (1.6) using
the same Brownian motion W , then the excursions of the corresponding (Bκ,t−τ+‖c‖2,c, t ∈ R)

(suppose for simplicity that c ∈ l2↘) away from 0 are almost surely the result of the above COL

operation executed on the excursions of (Bκ,t−τ,0, t ∈ R). The fact that, as time increases, each
color “spreads” in this coupling (almost surely) only over the “neighboring” blocks may again
seem counterintuitive. The point is that COL commutes with the multiplicative coalescent dy-
namics, and that therefore it can be pushed to −∞. The infinitesimally small dust particles of
X∗(−∞) are mutually interchangeable. The ith color at time −∞ is represented as an additional
dust particle, of mass much superior to standard dust, but still negligible (a formal statement of
this is (1.11) or (5.2)). One can naturally couple the representation of the multiplicative coales-
cent using simultaneous breadth-first walks (or Uribe’s diagram) started only from standard dust
as t → −∞, with the same representation of the multiplicative coalescent started from the union
of two types of dust as t → −∞. Proposition 6 and Lemma 9 do this formally (their predecessor
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is [6], Proposition 41). In this coupling every color gradually spreads only to neighboring blocks
of those already marked by it.
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Supplement to “The eternal multiplicative coalescent encoding via excursions of Lévy-type
processes” (DOI: 10.3150/18-BEJ1060SUPP; .pdf). The accompanying text consists of eight
sections (including a short introductory note). The title of each section summarizes its contents.
A fraction of the material presented ([45], Sections 2, 3, 5 and 6) is intended to help readers gain
time (reduce the need for consulting external literature) while reading this article. The rest ([45],
Sections 4 and 7) contains novel arguments or open problems ([45], Section 8), of which some
are related to recent studies [2,3].
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