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We propose a new one-sample test for normality in a Reproducing Kernel Hilbert Space (RKHS). Namely,
we test the null-hypothesis of belonging to a given family of Gaussian distributions. Hence, our procedure
may be applied either to test data for normality or to test parameters (mean and covariance) if data are
assumed Gaussian. Our test is based on the same principle as the MMD (Maximum Mean Discrepancy)
which is usually used for two-sample tests such as homogeneity or independence testing. Our method makes
use of a special kind of parametric bootstrap (typical of goodness-of-fit tests) which is computationally more
efficient than standard parametric bootstrap. Moreover, an upper bound for the Type-II error highlights the
dependence on influential quantities. Experiments illustrate the practical improvement allowed by our test in
high-dimensional settings where common normality tests are known to fail. We also consider an application
to covariance rank selection through a sequential procedure.
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1. Introduction

Non-vectorial data such as DNA sequences or pictures often require a positive semi-definite ker-
nel [1] which plays the role of a similarity function. For instance, two strings can be compared by
counting the number of common substrings. Further analysis is then carried out in the associated
reproducing kernel Hilbert space (RKHS), that is the Hilbert space spanned by the evaluation
functions k(x, ·) for every x in the input space. Thus embedding data into this RKHS through
the feature map x �→ k(x, ·) allows to apply linear algorithms to initially non-vectorial inputs.

Embedded data are often assumed to have a Gaussian distribution. For instance supervised and
unsupervised classification are performed in [4] by modeling each class as a Gaussian process.
In [31], outliers are detected by modelling embedded data as a Gaussian random variable and by
removing points lying in the tails of that Gaussian distribution. This key assumption is also made
in [36] where a mean equality test is used in high-dimensional setting. Moreover, Principal Com-
ponent Analysis (PCA) and its kernelized version Kernel PCA [33] are known to be optimal for
Gaussian data as these methods rely on second-order statistics (covariance). Besides, a Gaussian
assumption allows to use Expectation–Minimization (EM) techniques to speed up PCA [32].

Depending on the (finite or infinite dimensional) structure of the RKHS, Cramer–von-Mises-
type normality tests can be applied, such as Mardia’s skewness test [27], the Henze–Zirkler test
[21] and the Energy-distance test [39]. However these tests become less powerful as dimension
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increases (see Table 3 in [39]). An alternative approach consists in randomly projecting high-
dimensional objects on one-dimensional directions and then applying univariate test on a few
randomly chosen marginals [10]. This projection pursuit method has the advantage of being
suited to high-dimensional settings. On the other hand, such approaches also suffer a lack of
power because of the limited number of considered directions (see Section 4.2 in [10]).

In the RKHS setting, [16] introduced the Maximum Mean Discrepancy (MMD) which quanti-
fies the gap between two distributions through distances between two elements of an RKHS. The
MMD approach has been used for two-sample testing [16] and for independence testing (Hilbert
Space Independence Criterion, [19]). However to the best of our knowledge, MMD has not been
applied in a one-sample goodness-of-fit testing framework.

The main contribution of the present paper is to provide a one-sample statistical test of nor-
mality for data in a general Hilbert space (which can be an RKHS), by means of the MMD
principle. This test features two possible applications: testing the normality of the data but also
testing parameters (mean and covariance) if data are assumed Gaussian. The latter application
encompasses many current methods that assume normality to make inferences on parameters,
for instance, to test the nullity of the mean [36] or to assess the sparse structure of the covariance
[2,38].

Once the test statistic is defined, a critical value is needed to decide whether to accept or reject
the Gaussian hypothesis. In goodness-of-fit testing, this critical value is typically estimated by
parametric bootstrap. Unfortunately, parametric bootstrap requires parameters to be computed
several times, hence heavy computational costs (i.e., diagonalization of covariance matrices). Our
test bypasses the recomputation of parameters by implementing a faster version of parametric
bootstrap. Following the idea of [25], this fast bootstrap method “linearizes” the test statistic
through a Fréchet derivative approximation and thus can estimate the critical value by a weighted
bootstrap (in the sense of [6]) which is computationally more efficient. Furthermore our version
of this bootstrap method allows parameters estimators that are not explicitly “linear” (i.e., that
consist of a sum of independent terms) and that take values in possible infinite-dimensional
Hilbert spaces.

Finally, we illustrate our test and present a sequential procedure that assesses the rank of a
covariance operator. The problem of covariance rank estimation is addressed in several domains:
functional regression [5,7], classification [40] and dimension reduction methods such as PCA,
Kernel PCA and Non-Gaussian Component Analysis [3,11,12] where the dimension of the kept
subspace is a crucial problem.

Here is the outline of the paper. Section 2 sets our framework and Section 3 introduces the
MMD and how it is used for our one-sample test. The new normality test is described in Section 4,
while both its theoretical and empirical performances are detailed in Section 5 in terms of control
of Type-I and Type-II errors. A sequential procedure to select covariance rank is presented in
Section 6.

2. Framework

Let (H,A) be a measurable space, and Y1, . . . , Yn ∈H denote a sample of independent and iden-
tically distributed (i.i.d.) random variables drawn from an unknown distribution P ∈ P , where
P is a set of distributions defined on A.
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In our framework, H is a separable Hilbert space endowed with a dot product 〈·, ·〉H and the
associated norm ‖ · ‖H (defined by ‖h‖H = 〈h,h〉1/2

H for any h ∈H). Our goal is to test whether
Yi is a Gaussian random variable (r.v.) of H, which is defined as follows.

Definition 2.1 (Gaussian random variable in a Hilbert space). Let (�,F,P) a measure space,
(H,F ′) a measurable space where H is a Hilbert space, and Y : � →H a measurable map.

Y is a Gaussian r.v. of H if 〈Y,h〉H is a univariate Gaussian r.v. for any h ∈ H.
Assuming that EY ‖Y‖H < +∞, there exists m ∈H such that:

∀h ∈H, 〈m,h〉H = EY 〈Y,h〉H,

and a (finite trace) operator � : H → H satisfying:

∀h,h′ ∈H,
〈
�h,h′〉

H = cov
(〈Y,h〉H,

〈
Y,h′〉

H
)
.

m and � are respectively, the mean and the covariance operator of Y . The distribution of Y is
denoted N (m,�).

More precisely, the tested hypothesis is that Yi follows a Gaussian distribution N (m0,�0),
where (m0,�0) ∈ �0 and �0 is a subset of the parameter space �.1 Following [26], let us define
the null hypothesis H0 : P ∈P0, and the alternative hypothesis H1 : P /∈ P \P0 where the subset
of null-hypotheses P0 ⊆P is

P0 = {
N (m0,�0)|(m0,�0) ∈ �0

}
.

The purpose of a statistical test T (Y1, . . . , Yn) of H0 against H1 is to distinguish between the
null (H0) and the alternative (H1) hypotheses. It requires two elements: a statistic n�̂2 (which we
define in Section 4.1) that measures the gap between the empirical distribution of the data and the
considered family of normal distributions P0, and a rejection region Rα (at a level of confidence
0 < α < 1). H0 is accepted if and only if n�̂2 /∈ Rα . The rejection region is determined by the
distribution of n�̂2 under the null-hypothesis such that the probability of wrongly rejecting H0
(Type-I error) is controlled by α.

3. The maximum mean discrepancy (MMD)

Following [16] the gap between two distributions P and Q on H is measured by

�(P,Q) = sup
f ∈F

∣∣EY∼P f (Y ) −EZ∼Qf (Z)
∣∣, (3.1)

1The parameter space � is endowed with the dot product 〈(m,�), (m′,�′)〉� = 〈m,m′〉H + 〈�,�′〉HS(H) , where
HS(H) is the space of Hilbert–Schmidt (finite trace) operators H → H and 〈�,�′〉HS(H) = ∑

i≥1〈�ei,�
′ei 〉H for

any complete orthonormal basis (ei )i≥1 of H. Therefore, for any θ ∈ �, the tensor product θ⊗2 is defined as the operator
� → �,θ ′ �→ 〈θ, θ ′〉�θ . For any θ ∈ � and h̄ ∈ H(K), the tensor product h̄ ⊗ θ is the operator � → H(K), θ ′ �→
〈θ, θ ′〉�h̄.
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where F is a class of real valued functions on H. Regardless of F , (3.1) always defines a pseudo-
metric2 on probability distributions [35].

The choice of F is subject to two requirements: (i) (3.1) must define a metric between distri-
butions, that is

∀P,Q, �(P,Q) = 0 ⇒ P = Q, (3.2)

and (ii) (3.1) must be expressed in an easy-to-compute form (without the supremum term).
To solve those two issues, several papers [17–19] have considered the case when F is the unit

ball of a reproducing kernel Hilbert space (RKHS) H(K) associated with a positive semi-definite
kernel K : H×H →R.

Definition 3.1 (Reproducing Kernel Hilbert space, [1]). Let K be a symmetric, positive semi-
definite kernel, that is,

∀x1, . . . , xn ∈ H,∀α1, . . . , αn,

n∑
i,j=1

αiαjK(xi, xj ) ≥ 0.

There exists a unique Hilbert space H(K) of real-valued functions on H which satisfies:

• ∀x ∈ H,K(x, ·) ∈ H(K),
• ∀f ∈H,∀x ∈ X , 〈f,K(x, ·)〉H(K) = f (x).

H(K) is the reproducing kernel Hilbert space (RKHS) of K .

Let ‖ · ‖H(K) = 〈·, ·〉1/2 be the norm of H(K) and B1(K) = {f ∈ H(K)|‖f ‖H(K) ≤ 1} denote
the unit ball of H(K). When F = B1(K), �(·, ·) becomes a metric only for a class of kernels K

that are called characteristic.

Definition 3.2 (Characteristic kernel, [14]). Let F = B1(K) in (3.1) for some kernel K . Then
K is a characteristic kernel if �(P,Q) = 0 implies P = Q.

Most common kernels are characteristic: Gaussian kernels K(x,y) = exp(−σ‖x − y‖2
H)

where σ > 0, the exponential kernel K(x,y) = exp(〈x, y〉H) and Student kernels K(x,y) =
(1 + σ‖x − y‖2

H)−α where α,σ > 0, to name a few. Several criteria for a kernel to be character-
istic exist (see [9,15,35]).

Moreover taking F = B1(K) enables to cast �(P,Q) as an easy to compute quantity. This is
done by embedding any distribution P in the RKHS H(K) as follows.

Definition 3.3 (Hilbert space embedding, Lemma 3 from [17]). Let P be a distribution such
that EY∼P K1/2(Y,Y ) < +∞.

2A pseudo-metric �(·, ·) satisfies for any P , Q, R: (i) �(P,P ) = 0, (ii) �(P,Q) = �(Q,P ), and (iii) �(P,R) ≤
�(P,Q) + �(Q,R).
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Then there exists μP ∈ H(K) such that for every f ∈ H(K),

〈μP ,f 〉H(K) = Ef (Y ).

μP is called the Hilbert space embedding of P in H(K).

The existence of the embedding μP in Definition 3.3 is guaranteed by Riesz’s representation
theorem applied to the linear form f �→ Ef (Y ) where f ∈ H(K), which is bounded due to the
assumption EY∼P K1/2(Y,Y ) < +∞.

Thus �(P,Q) can be expressed as the gap between the Hilbert space embeddings of P and
Q (Lemma 4 in [17]):

�(P,Q) = sup
f ∈H(K),‖f ‖H(K)≤1

∣∣EP f (Y ) −EQf (Z)
∣∣

= sup
f ∈H(K),‖f ‖H(K)≤1

∣∣〈μP − μQ,f 〉H(K)

∣∣ (3.3)

= ‖μP − μQ‖H(K).

(3.3) is called the Maximum Mean Discrepancy (MMD) between P and Q.
Within our framework the goal is to compare P the true distribution of the data with a Gaussian

distribution P0 =N (m0,�0) for some (m0,�0) ∈ �0. Hence, the quantity of interest is

�2 = ‖μP − μP0‖2
H(K). (3.4)

For the sake of simplicity, we use the notation

μN (m,�) = N [m,�]
to denote the Hilbert space embedding of a Gaussian distribution.

4. Kernel normality test

This section introduces our one-sample test for normality based on the quantity (3.4). As said
in Section 2, we test the null-hypothesis H0 : P ∈ {N (m0,�0)|(m0,�0) ∈ �0} where �0 is a
subset of the parameter space. Therefore, our procedure may be used as a test for normality or a
test on parameter if data are assumed Gaussian. The test procedure is summed up in Algorithm 1.

4.1. Test statistic

As in [16], �2 can be estimated by replacing μP with the sample mean

μ̂P = μ
P̂

= (1/n)

n∑
i=1

K(Yi, ·),
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Algorithm 1 Kernel Normality Test procedure
Input: Y1, . . . , Yn ∈ H, K : H×H →R (kernel) and 0 < α < 1 (test level).

1. Compute K = [〈Yi, Yj 〉]i,j (Gram matrix).
2. Compute n�̂2 (test statistic) from (4.1) that depends on K and K (Section 4.1)
3. (a) Draw B (approximate) independent copies of n�̂2 under H0 by fast parametric boot-

strap (Section 4.2).
(b) Compute q̂α,n (1 − α quantile of n�̂2 under H0) from these replications.

Output: Reject H0 if n�̂2 > q̂α,n, and accept otherwise.

where P̂ = (1/n)
∑n

i=1 δYi
is the empirical distribution. The null-distribution embedding

N [m0,�0] is estimated by N [m̃, �̃] where m̃ and �̃ are appropriate and consistent (under H0)
estimators of m0 and �0. This yields the estimator

�̂2 = ∥∥μ̂P − N [m̃, �̃]∥∥2
H(K)

,

which can be explained by expanding the square of the norm and using the reproducing property
of H(K) as follows

�̂2 = 1

n2

n∑
i,j=1

K(Yi, Yj ) − 2

n

n∑
i=1

N [m̃, �̃](Yi) + ∥∥N [m̃, �̃]∥∥2
H(K)

. (4.1)

Proposition 4.1 ensures the consistency of the statistic (4.1).

Proposition 4.1. Assume that P is Gaussian N (m0,�0) where (m0,�0) ∈ �0 and (m̃, �̃) are
consistent estimators of (m0,�0). Also assume that K is continuous, EP K(Y,Y ) < +∞ and
N [m,�] is a continuous function of (m,�) on �0. Then �̂2 is a consistent estimator of �2.

Proof. First, note that μP exists since EK(Y,Y ) < +∞ implies EK1/2(Y,Y ) < +∞. Also
by the continuity of K , the mapping y �→ K(y, ·) is continuous and μ̂P as a function of
(Y1, . . . , Yn) ∈ Hn is also continuous hence measurable (with respect to Borel sets of Hn and
H(K)), so that μ̂P is a proper H(K)-valued random variable. Therefore the Law of Large
Numbers in Hilbert Spaces [22] can be applied and entails μ̂P −→

n→∞ μP P -almost surely since

E‖K(Y, ·) − μP ‖2
H(K) = EK(Y,Y ) − EK(Y,Y ′) ≤ EK(Y,Y ) + E

2K(Y,Y ′) < +∞. The con-

tinuity of N [m,�] (with respect to (m,�)) and the consistency of (m̃, �̃) yield N [m̃, �̃] P -a.s.−→
n→∞

N [m0,�0] P -a.s. Finally, the continuity of ‖ · ‖2
H leads to �̂2 P -a.s.−→

n→∞ �2. �

The expressions for N [m̃, �̃](Yi) and ‖N [m̃, �̃]‖2
H(K) in (4.1) depend on the choice of K .

Those are given by Propositions 4.2 and 4.3 when K is Gaussian and exponential. Note that in
these cases, the continuity assumption of N [m,�] required by Proposition 4.1 is satisfied.
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Before stating Propositions 4.2 and 4.3, the following notation is introduced. For a symmetric
operator L : H → H with eigenexpansion L = ∑

r≥1 λr�
⊗2
r , its determinant is denoted |L| =∏

r≥1 λr . For any q ∈ R, the operator Lq is defined as Lq = ∑
r≥1 λ

q
r 1{λr>0}�⊗2

r .

Proposition 4.2 (Gaussian kernel case). Let K(·, ·) = exp(−σ‖ · − · ‖2
H) where σ > 0. Then,

N [m̃, �̃](·) = |I + 2σ�̃|−1/2 exp
(−σ

∥∥(I + 2σ�̃)−1/2(· − m̃)
∥∥2
H

)
,∥∥N [m̃, �̃]∥∥2

H(K)
= |I + 4σ�̃|−1/2.

Proposition 4.3 (Exponential kernel case). Let K(·, ·) = exp(〈·, ·〉H). Assume that the largest
eigenvalue of �̃ is smaller than 1. Then,

N [m̃, �̃](·) = exp

(
〈m̃, ·〉H + 1

2
〈�̃·, ·〉H

)
,

∥∥N [m̃, �̃]∥∥2 = ∣∣I − �̃2
∣∣−1/2 exp

(∥∥(
I − �̃2)−1/2

m̃
∥∥2
H

)
.

The proofs of Propositions 4.2 and 4.3 are provided in Appendix B.1 in the supplemental
article [24].

For most estimators (m̃, �̃), the quantities provided in Propositions 4.2 and 4.3 are computable
via the Gram matrix K = [〈Yi, Yj 〉H]1≤i,j≤n. For instance, assume that (m̃, �̃) are the classical
estimators (m̂, �̂) where m̂ = (1/n)

∑n
i=1 Yi and �̂ = (1/n)

∑n
i=1(Yi − m̂)⊗2. Let In and Jn

be respectively, the n × n identity matrix and the n × n matrix whose all entries equal 1, H =
In − (1/n)Jn, and Kc = HKH be the centered Gram matrix. Then for any � ∈ R,

|I + ��̂| = det

(
In + �

n
Kc

)
,

where det(·) denotes the (matrix) determinant function and

∥∥(I + ��̂)−1/2Yi

∥∥2
H =

[(
In + �

n
Kc

)−1]
i,i

,

where [·]ii denotes the entry in the ith row and the ith column of a matrix.

4.2. Estimation of the critical value

Designing a test with confidence level 0 < α < 1 requires to compute the 1 − α quantile of the
n�̂2 distribution under H0 denoted by qα,n. Thus, qα,n serves as a critical value to decide whether
the test statistic �̂2 is significantly close to 0 or not, so that the probability of wrongly rejecting
H0 (Type-I error) is at most α.
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4.2.1. Classical parametric bootstrap

In the case of a goodness-of-fit test, a usual way of estimating qα,n is to perform a parametric
bootstrap. Parametric bootstrap consists in generating B samples of n i.i.d. random variables
Y

(b)
1 , . . . , Y

(b)
n ∼ N (m̃, �̃) (b = 1, . . . ,B). Each of these B samples is used to compute a boot-

strap replication

[
n�̂2]b = n

∥∥μ̂b
P − N

[
m̃b, �̃b

]∥∥2
H(K)

, (4.2)

where μ̂b
P , m̃b and �̃b are the estimators of μP , m and � based on Yb

1 , . . . , Y b
n .

It is known that parametric bootstrap is asymptotically valid. Namely according to [37], under
H0,

∀b = 1, . . . ,B,
(
n�̂2,

[
n�̂2]b) L−→

n→+∞
(
U,U ′),

where U and U ′ are i.i.d. random variables. In a nutshell, (4.2) is approximately an indepen-
dent copy of the test statistic n�̂2 (under H0). Therefore, B replications [n�̂2]b can be used to
estimate the 1 − α quantile qα,n of n�̂2 under the null-hypothesis.

However, this approach suffers heavy computational costs. In particular, each bootstrap repli-
cation involves the estimators (m̃b, �̃b). In our case, this leads to compute the eigendecompo-
sition of the B Gram matrices Kb = [〈Yb

i , Y b
j 〉]i,j of size n × n hence a complexity of order

O(Bn3).

4.2.2. Fast parametric bootstrap

This computational limitation is alleviated by means of another strategy described in [25]. Let us
consider in a first time the case when the estimators of m and � are the classical empirical mean
and covariance m̂ = (1/n)

∑n
i=1 Yi and �̂ = (1/n)

∑n
i=1(Yi − m̂)⊗2. Introducing the Fréchet

derivative [13] D(m,�)N at (m,�) of the function

N : � → H(K), (m,�) �→ N [m,�],
our bootstrap method relies on the following approximation under H0

√
n
(
μ̂P − N [m̂, �̂]) � √

n
(
μ̂P − N [m0,�0]︸ ︷︷ ︸

=μP under H0

−D(m0,�0)N [m̂ − m0, �̂ − �0]
)

= 1√
n

n∑
i=1

[
K(Yi, ·) − μP

]
(4.3)

− 1√
n

n∑
i=1

D(m0,�0)N
[
Yi − m0, (Yi − m0)

⊗2 − �0
]
.

Since (4.3) consists of a sum of centered independent terms (under H0), it is possible to generate
approximate independent copies of this sum via weighted bootstrap [6]. Given Zb

1 , . . . ,Zb
n i.i.d.
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real random variables of mean zero and unit variance and Z̄b their empirical mean, a bootstrap
replication of (4.3) is given by

1√
n

n∑
i=1

(
Zb

i − Z̄b
){

K(Yi, ·) − D(m0,�0)N
[
Yi, (Yi − m0)

⊗2]}. (4.4)

Taking the square of the norm of (4.4) in H(K) and replacing the unknown true parameters m0
and �0 by their estimators m̂ and �̂ yields the bootstrap replication [n�̂2]bfast of n�̂2

[
n�̂2]b

fast
�= ∥∥√

n
(
μ̂b

P − D
(m̂,�̂)

N
[
m̂b, �̂b

])∥∥2
H(K)

, (4.5)

where

μ̂b
P = (1/n)

n∑
i=1

(
Zb

i − Z̄b
)
K(Yi, ·),

m̂b = (1/n)

n∑
i=1

(
Zb

i − Z̄b
)
Yi,

�̂b = (1/n)

n∑
i=1

(
Zb

i − Z̄b
)(

Yi − m̂b
)⊗2

.

Therefore this approach avoids the recomputation of parameters for each bootstrap replication,
hence a computational cost of order O(Bn2) instead of O(Bn3). This is illustrated empirically
in the right half of Figure 1.

4.2.3. Fast parametric bootstrap for general parameter estimators

The bootstrap method proposed by [25] used in Section 4.2.2 requires that the estimators
(m̃, �̃) can be written as a sum of independent terms with an additive term which converges
to 0 in probability. Formally, (m̃, �̃) = (m0,�0) + (1/n)

∑n
i=1 ψ(Yi) + εn where Eψ(Y ) = 0,

Var(ψ(Y )) < +∞ and εn
P−→

n→+∞ 0. However, there are some estimators which cannot be writ-

ten in this form straightforwardly. This is the case for instance, if we test whether data fol-
low a Gaussian with covariance of fixed rank r (as in Section 6). In this example, the asso-
ciated estimators are m̃ = m̂ = (1/n)

∑n
i=1 Yi (empirical mean) and �̃ = �̂r = ∑r

s=1 λ̂s�̂
⊗2
s

where (λ̂s)s and (�̂s)s are the eigenvalues and eigenvectors of the empirical covariance operator
�̂ = (1/n)

∑n
i=1(Yi − μ̂)⊗2.

We extend (4.5) to the general case when �0 �= � and the estimators (m̃, �̃) are not the
classical (m̂, �̂). We assume that the estimators (m̃, �̃) are functions of the empirical estimators
m̂ and �̂, namely there exists a continuous mapping T such that

(m̃, �̃) = T (m̂, �̂) where T (�) ⊆ �0 and T |�0 = Id�0 .

Under this definition, (m̃, �̃) are consistent estimators of (m,�) when (m,�) ∈ �0. This kind
of estimators are met for various choices of the null-hypothesis:
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Figure 1. Left: Comparison of the distributions of n�̂2 (test statistic) and [n�̂2]bfast (fast bootstrap replica-
tion) when n = 1000. A Kolmogorov–Smirnov two-sample test applied to our simulations returns a p-value
of 0.978 which confirms the apparent similarity between the two distributions. Right: Comparison of the
execution time (in seconds) of both classical and fast bootstrap methods.

• Unknown mean and covariance: (m̃, �̃) = (m̂, �̂) and T is the identity map Id�,
• Known mean and covariance: (m̃, �̃) = (m0,�0) and T is the constant map T (m,�) =

(m0,�0),
• Known mean and unknown covariance: (m̃, �̃) = (m0, �̂) and T (m,�) = (m0,�),
• Unknown mean and covariance of known rank r : (m̃, �̃) = (m̂, �̂r ) and T (m,�) =

(m,�r) where �r is the rank r truncation of �.

By introducing T , we get a similar approximation to that in (4.3) by replacing the mapping
N : �0 → H(K) with NoT : �0 → H(K). This leads to the bootstrap replication

[
n�̂2]b

fast := ∥∥√
n
(
μ̂b

P − D
(m̂,�̂)

(NoT )
[
m̂b, �̂b

])∥∥2
H(K)

. (4.6)

The validity of this bootstrap method is justified in Section 4.2.4.
Finally we define an estimator q̂α,n of qα,n from the generated B bootstrap replications

[n�̂2]1
fast < · · · < [n�̂2]Bfast (assuming they are sorted)

q̂α,n = [
n�̂2](�(1−α)B�)

,

where �·� stands for the integer part. The rejection region is defined by

Rα = {
n�̂2 > q̂α,n

}
.

4.2.4. Validity of the fast parametric bootstrap

Proposition 4.4 hereafter shows the validity of the fast parametric bootstrap as presented in Sec-
tion 4.2.3. The proof of Proposition 4.4 is provided in Section B.2.
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Proposition 4.4. Assume EP K(Y,Y ),Tr(�) and EP ‖Y − m0‖4 are finite. Also assume that
NoT is continuously differentiable on �0 and that Dθ(NoT ) is bounded (for the operator norm)
for every θ ∈ �0.

If H0 is true, then for each b = 1, . . . ,B ,

(i)
√

n(μ̂P − N [m̃, �̃]) L−→
n→+∞ GP − D(m0,�0)(NoT )[UP ],

(ii)
√

n(μ̂b
P − D

(m̂,�̂)
(NoT )[m̂b, �̂b]) L−→

n→+∞ G′
P − D(m0,�0)(NoT )[U ′

P ],

where (GP ,UP ) and (G′
P ,U ′

P ) are i.i.d . random variables in H(K) × �.
If otherwise H0 is false, (ii) is still true.
Furthermore, GP and UP are zero-mean Gaussian r.v. with covariances

Var(GP ) = EY∼P

(
K(Y, ·) − μP

)⊗2
,

Var(UP ) = EY∼P

[
Y − m0, (Y − m0)

⊗2 − �
]⊗2

,

cov(GP ,UP ) = EY∼P

(
K(Y, ·) − μP

) ⊗ [
Y − m0, (Y − m0)

⊗ − �0
]
.

By the Continuous Mapping Theorem and the continuity of ‖ · ‖2
H(K), Proposition 4.4 guaran-

tees that the estimated quantile converges almost surely to the true one as n,B → +∞, so that
the type-I error equals α asymptotically.

Note that in [25] the parameter subspace �0 must be a subset of Rp for some integer p ≥ 1.
Proposition 4.4 allows �0 to be a subset of a possibly infinite-dimensional Hilbert space (m
belongs to H and � belongs to the space of finite trace operators H →H).

Figure 1 (left plot) compares empirically the bootstrap distribution of [n�̂2]bfast and the distri-
bution of n�̂2. When n = 1000, the two corresponding densities are superimposed and a two-
sample Kolmogorov–Smirnov test returns a p-value of 0.978 which confirms the strong similar-
ity between the two distributions. Therefore, the fast bootstrap method seems to provide a very
good approximation of the distribution of n�̂2 even for a moderate sample size n.

5. Test performances

5.1. An upper bound for the type-II error

Let us assume the null-hypothesis is false, that is P �= N (m0,�0) or (m0,�0) /∈ �0. Theo-
rem 5.1 gives the magnitude of the Type-II error, that is the probability of wrongly accepting H0.
The proof can be found in Appendix B.3 in the supplemental article [24].

Before stating Theorem 5.1, let us introduce or recall useful notation:

• � = ‖μP − (NoT )[m0,�0]]‖H(K),
• qα,n = Eq̂α,n,
• V 2

P = EP ‖D(m0,�0)(NoT )[�(Y)] − K(Y, ·) + μP ‖2
H(K),
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where �(Y) = (Y − m0, [Y − m0]⊗2 − �0) and D(m0,�0)(NoT ) denotes the Fréchet deriva-
tive of NoT at (m0,�0). According to Proposition 4.4 and the continuous mapping theo-
rem, q̂α,n corresponds to an order statistic of a random variable which converges weakly to
‖G′

P − D(m0,�0)(NoT )[U ′
P ]‖2 (as defined in Proposition 4.4). Therefore, its mean qα,n tends to

a finite quantity as n → +∞. � and V 2
P do not depend on n as well.

Theorem 5.1 (Type II error). Assume supx,y∈H0
|K(x,y)| = M < +∞ where H0 ⊆ H is the

support of the alternative P and q̂α,n is independent of n�̂2.
Then, for any n > qα,n�

−2

P
(
n�̂2 ≤ q̂α,n

) ≤ exp

(
− n(� − qα,n

n�
)2

2V 2
P + CVP M1/2(�2 − qα,n/n)

)
f (α,B,M,�), (5.1)

where

f (α,B,M,�) = (
1 + on(1)

)(
1 + CPb

C′�2M1/2VP

√
αB

+ oB(B−1/2)

C′′�4MV 2
P

)
,

and C,C′,C′′ are absolute constants and CPb only depends on the distribution of [n�̂2]bfast.

The first implication of Proposition (5.1) is that our test is consistent, that is,

P
(
n�̂2 ≤ q̂α,n|H0 false

) −→
n→+∞ 0.

Furthermore, the upper bound in (5.1) reflects the expected behaviour of the Type-II error
with respect to meaningful quantities. When � decreases, the bound increases (alternative more
difficult to detect). When α (Type-I error) decreases, qα,n gets larger and n has to be larger to get
the bound. The variance term V 2

P encompasses the difficulty of estimating μP and of estimating
the parameters as well. In the special case when m and � are known, T = Id and the chain
rule yields D(m0,�0)(NoT ) = (DT (m0,�0)N)o(D(m0,�0)T ) = 0 so that V 2

P = E‖φ̄(Y ) − μP ‖2

reduces to the variance of μ̂P . As expected, a large V 2
P makes the bound larger. Note that the

estimation of the critical value which is related to the term f (α,B,M,�) in (5.1) does not alter
the asymptotic rate of convergence of the bound.

Remark that assuming that q̂α,n is independent of n�̂2 is reasonable for a large n, since n�̂2

and q̂α,n are asymptotically independent according to Proposition 4.4.

5.2. Empirical study of type-I/II errors

Empirical performances of our test are inferred on the basis of synthetic data. For the sake of
brevity, our test is referred to as KNT (Kernel Normality Test) in the following.

One main concern of goodness-of-fit tests is their drastic loss of power as dimensionality
increases. Empirical evidences (see Table 3 in [39]) prove ongoing multivariate normality tests
suffer such deficiencies. The purpose of the present section is to check if KNT exhibits a good
behavior in high or infinite dimension.
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Throughout the following section, we have used a Gaussian kernel K(x,y) = exp(−σ‖x −
y‖2) where the parameter σ is set at the arbitrary value σ = 1. Kernel parameter choice for
MMD-based tests is beyond the scope of this article and is actually a difficult problem which has
been scarcely studied in the literature. See for instance [20] or [29] which both have to resort to
a “linearized” version of the MMD statistic to tackle the problem, which yields a less powerful
test.

5.2.1. Finite-dimensional case (synthetic data)

Reference tests. The power of our test is compared with that of two multivariate normality tests:
the Henze–Zirkler test (HZ) [21] and the energy distance (ED) test [39]. The main idea of these
tests is briefly recalled in Appendix A.1 and A.2 in the supplemental article [24].

Null and alternative distributions. Two alternatives are considered: a mixture of two Gaus-
sians with different means (μ1 = 0 and μ2 = 1.5(1,1/2, . . . ,1/d)) and same covariance � =
0.5 diag(1,1/4, . . . ,1/d2), whose mixture proportions equals either (0.5,0.5) (alternative HA1)
or (0.8,0.2) (alternative HA2). Furthermore, two different cases for d are considered: d = 2
(small dimension) and d = 100 (large dimension).

Simulation design. 200 simulations are performed for each test, each alternative and each n

(ranging from 100 to 500). B is set at B = 250 for KNT. The test level is set at α = 0.05 for all
tests.

Results. In the small dimension case (Figure 2, left column), the actual Type-I error of all
tests remain more or less around α (±0.02). Their Type-II errors are superimposed and quickly
decrease down to 0 when n ≥ 200. On the other hand, experimental results reveal different be-
haviors as d increases (Figure 2, right column). Whereas ED test lose power, KNT and HZ still
exhibits small Type-II error values. Besides, ED and KNT Type-I errors remain around the pre-
scribed level α while that of HZ is close to 1, which shows that its small Type-II error is artificial.
This seems to confirm that HZ and ED tests are not suited to high-dimensional settings unlike
KNT.

Interpretation. The results above may seem surprising as both KZ and ED can be seen as
RKHS-based tests (see [34] for Energy Distance). The key difference between our test and
HZ/ED tests is that the latter whiten (centering and normalizing) the data beforehand so that
they reduce to a test for N (0, Id) normality. The advantage of the whitening is that there is no
need to compute the parameters of the Gaussian distribution for each bootstrap replication (since
the tested Gaussian distribution has fixed parameters) hence a reduced computational cost. On
the other hand testing normalized observations seems to induce more variance for the test statis-
tic and the estimation of the critical value. To illustrate this, we have assessed the Type-I errors of
KNT in additional experiments (whose results can be found in Appendix C.1 in the supplemental
article [24]). These experiments show that in high-dimensional settings, the type-I error of our
test is no longer controlled when either the trace of the covariance matrix is too large or when the
eigenvalues of the covariance matrix decays too slowly, which may entail a loss of power. On the
other hand the type-I error of KNT remains controlled when the number of dimensions increases
while both the covariance trace and the decay of the eigenspectrum are fixed. Therefore in high-
dimensional settings, our test is less sensitive to loss of power than existing tests by bypassing
any whitening pre-process, and in the same time manages to avoid any additional computational
costs by means of the fast parametric bootstrap.
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Figure 2. Type-I and type-II errors of KNT (+ blue), Energy Distance (◦ black), and Henze–Zirkler (�
red). Two alternative distributions are considered: HA1 (rows 1 and 3) and HA2 (rows 2 and 4). Two settings
are considered: d = 2 (left) and d = 100 (right).
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Figure 3. 3D-Visualization (Kernel PCA) of the “Usps236” (top row, left) and “Usps358” (top row, right)
datasets; comparison of Type-II error (bottom row, left: “Usps236”, right: “Usps358”) for: KNT (× blue)
and Random Projection with p = 1 (• green), p = 5 (� purple) and p = 15 (+ red) random projections.

5.2.2. Infinite-dimensional case (real data)

Dataset and chosen kernel. Let us consider the USPS dataset which consists of handwritten digits
represented by a vectorized 8 × 8 greyscale matrix (X = R

64). A Gaussian kernel kG(·, ·) =
exp(−ν‖ · − · ‖2) is used with ν = 10−4 to obtain a new dataset in the infinite-dimensional
Hilbert space H = H(kG). Comparing sub-datasets “Usps236” (keeping the three classes “2”,
“3” and “6”, 541 observations) and “Usps358” (classes “3”, “5” and “8”, 539 observations), the
3D-visualization (Figure 3, top panels) suggests three well-separated Gaussian components for
“Usps236” (left panel), and more overlapping classes for “Usps358” (right panel).

References tests. KNT is compared with Random Projection (RP) test, specially designed for
infinite-dimensional settings. RP is presented in Appendix A.3 in the supplemental article [24].
Several numbers of projections p are considered for the RP test: p = 1,5 and 15.

Simulation design. We set α = 0.05 and 200 repetitions have been done for each sample size.
Results. (Figure 3, bottom plots) RP is by far less powerful KNT in both cases, no matter how

many random projections p are considered. Indeed, KNT exhibits a Type-II error near 0 when
n is barely equal to 100, whereas RP still has a relatively large Type-II error when n = 400.
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Algorithm 2 Sequential selection of covariance rank
Input: Gram matrix K = [K(Yi, Yj )]i,j , confidence level 0 < α < 1

1. Set r = 1 and test H0,r .
2. If H0,r is rejected and r < rmax, set r = r + 1 and return to 1.
3. Otherwise, set the estimator of the rank r̂ = r .

Output: estimated rank r̂

On the other hand, RP becomes more powerful as p gets larger as expected. A large enough
number of random projections may allow RP to catch up KNT in terms of power. But RP has a
computational advantage over KNT only when p = 1 where the RP test statistic is distribution-
free. This is no longer the case when p ≥ 2 and the critical value for the RP test is only available
through Monte-Carlo methods.

6. Application to covariance rank selection

6.1. Covariance rank selection through sequential testing

Under the Gaussian assumption, the null hypothesis becomes

H0 : (m0,�0) ∈ �0,

and our test reduces to a test on parameters.
We focus on the estimation of the rank of the covariance operator �. Namely, we consider a

collection of models (Mr )1≤r≤rmax such that, for each r = 1, . . . , rmax,

Mr = {
P =N (m,�r)|m ∈ H(k) and rk(�r) = r

}
.

Each of these models correspond respectively to the following null hypotheses

H0,r : rank(�) = r, r = 1, . . . , rmax,

and the corresponding tests can be used to select the most reliable model. These tests are per-
formed in a sequential procedure summarized in Algorithm 2. This sequential procedure yields
an estimator r̂ defined as

r̂
�= min

r̃
{H0,r rejected for r = 1, . . . , r̃ − 1 and H0,r̃ accepted}

or r̂
�= rmax if all of the hypotheses are rejected.

Sequential testing to estimate the rank of a covariance matrix (or more generally a noisy ma-
trix) is mentioned in [28] and [30]. Both of these papers focus on the probability to select a wrong
rank, that is P(r̂ �= r∗) where r∗ denotes the true rank. The goal is to choose a level of confidence
α such that this probability of error converges almost surely to 0 when n → +∞.
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There are two ways of guessing a wrong rank: either by overestimation or by underestimation.
Getting r̂ greater than r∗ implies that the null-hypothesis H0,r∗ was tested and wrongly rejected,
hence a probability of overestimating r∗ at most equal to α. Underestimating means that at least
one of the false null-hypothesis H0,1, . . . ,H0,r∗−1 was wrongly accepted (Type-II error). Let
βr(α) denote the Type-II error of testing H0,r with confidence level α for each r < r∗. Thus by
a union bound argument,

P
(
r̂ �= r∗) ≤

r∗−1∑
r=1

βr(α) + α. (6.1)

The bound in (6.1) decreases to 0 only if α converges to 0 but at a slow rate. Indeed, the Type-II
errors βr(α) grow with decreasing α but converge to zero when n → +∞. For instance, in the
case of the sequential tests mentioned in [28] and [30], the correct rate of decrease for α must
satisfy (1/n) log(1/α) = on(1).

6.2. Empirical performances

In this section, the sequential procedure to select covariance rank (as presented in Section 6.1) is
tested empirically on synthetic data.

Dataset. A sample of n zero-mean Gaussian with covariance �r∗ are generated, where n

ranges from 100 to 5000. �r∗ is of rank r∗ = 10 and its eigenvalues decrease either polyno-
mially (λr = r−1 for all r ≤ r∗) or exponentially (λr = exp(−0.2r) for all r ≤ r∗).

Benchmark. To illustrate the level of difficulty, we compare our procedure with an oracle
procedure which uses the knowledge of the true rank. Namely, the oracle procedure follows our
sequential procedure at a level αoracle defined as follows

αoracle = max
1≤r≤r∗−1

PZ

(
n�̂2

r ≤ Zr

)
,

where n�̂2
r is the observed statistic for the r th test and Zr follows the distribution of this statistic

under H0,r . Hence, αoracle is chosen such that the true rank r∗ is selected whenever it is possible.
Simulation design. To get a consistent estimation of r∗, the confidence level α must decrease

with n and is set at α = αn = exp(−0.125n0.45). Each time, 200 simulations are performed.
Results. The top panels of Figure 4 display the proportion of cases when the target rank is

found, either for our sequential procedure or the oracle one. When the eigenvalues decay poly-
nomially, the oracle shows that the target rank cannot be almost surely guessed until n = 1500.
When n ≤ 1500, our procedure finds the true rank with probability at least 0.8 and quickly
catches up to the oracle as n grows. In the exponential decay case, a similar observation is
made. This case seems to be easier, as our procedure performs almost as well as the oracle
when n ≥ 600. In all cases, the consistency of our procedure is confirmed by the simulations.

The bottom panels of Figure 4 compare α with the probability of overestimating r∗ (denoted
by p+). As noticed in Section 6.1, the former is an upper bound of the latter. But we must
check empirically whether the gap between those two quantities is not too large, otherwise the
sequential procedure would be too conservative and lead to excessive underestimation of r∗. In
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Figure 4. Top half : Probabilities of finding the right rank with respect to n for our sequential test (• red)
and the oracle procedure (� blue); bottom half : probabilities of overestimating the true rank with the se-
quential procedure compared with fixed alpha (+ green). In each case, two decreasing rate for covariance
eigenvalues are considered: polynomial (left column) and exponential (right column).

the polynomial decay case, the difference between α and p+ is small, even when n = 100. The
gap is larger in the exponential case but gets smaller when n ≥ 1500.

6.3. Robustness analysis

In practice, none of the models Mr is true. An additive full-rank noise term is often considered
in the literature [8,23]. Namely, we set in our case

Y = Z + ε, (6.2)

where Z ∼N (m,�r∗) with rk(�r∗) = r∗ and ε is the error term independent of Z. Note that the
Gaussian assumption concerns the main signal Z and not the error term whereas usual models
assume the converse [8,23].

Figure 5 illustrates the performance of our sequential procedure under the noisy model
(6.2). We set H = R

100, n = 600, r∗ = 3 and �r∗ = �3 = diag(λ1, . . . , λ3,0, . . . ,0) where



1834 J. Kellner and A. Celisse

Figure 5. Illustration of the robustness of our sequential procedure under a noisy model.

λr = exp(−0.2r) for r ≤ 3. The noise term is ε = (λ3ρ
−1ηi)1≤i≤100 where η1, . . . , η100 are i.i.d.

Student random variables with 10 degrees of freedom and ρ > 0 is the signal-to-noise ratio.
As expected, the probability of guessing the target rank r∗ decreases down to 0 as the signal-

to-noise ratio ρ diminishes. However, choosing a smaller level of confidence α allows to improve
the probability of right guesses for a fixed ρ. without sacrificing much for smaller signal-to-noise
ratios. This is due to the fact that each null-hypothesis H0,r is false, hence the need for a smaller
α (smaller Type-I error) which yields greater Type-II errors and avoids the rejection of all of the
null-hypotheses.

7. Conclusion

We introduced a new normality test suited to high-dimensional Hilbert spaces. It turns out to be
more powerful than ongoing high- or infinite-dimensional tests (such as random projection). In
particular, empirical studies showed a mild sensibility to high-dimensionality. Therefore, our test
can be used as a multivariate normality (MVN) test without strongly suffering a loss of power
when d gets larger unlike other MVN tests (Henze–Zirkler, Energy-distance).

If the Gaussian assumption is validated beforehand, our test becomes a general test on param-
eters. It is illustrated with an application to covariance rank selection that plugs our test into a
sequential procedure. Empirical evidences show the good performances and the robustness of
this method.
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As for future improvements, investigating the influence of the kernel K on the performance of
the test would be of interest. In the case of the Gaussian kernel for instance, a method to optimize
the Type-II error with respect to the hyperparameter σ would be welcomed (see Appendix C.2 in
the supplemental article [24] for simulations showing the influence of this hyperparameter). This
aspect has just began to be studied in [20] when performing homogeneity testing with a convex
combination of kernels.

Finally, the choice of the level α for the sequential procedure (covariance rank selection) is
another subject for future research. Indeed, an asymptotic regime for α has been exhibited to get
consistency, but setting the value of α when n is fixed remains an open question.

Supplementary Material

Supplement to “A one-sample test for normality with kernel methods” (DOI: 10.3150/18-
BEJ1037SUPP; .pdf). The supplemental article [24] to this article features appendix sections. In
Appendix A, normality tests mentioned throughout this article (such as Henze–Zirkler or Energy
distance) are briefly introduced. In Appendix B, the proofs of the theorems presented in this
article are detailed. Appendix C shows additional experiments. Finally, Appendix D explicitly
shows closed-forms expressions for the Fréchet derivative of N [θ ] for practitioners.
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