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Positively (resp. negatively) associated point processes are a class of point processes that induce attraction
(resp. inhibition) between the points. As an important example, determinantal point processes (DPPs) are
negatively associated. We prove α-mixing properties for associated spatial point processes by controlling
their α-coefficients in terms of the first two intensity functions. A central limit theorem for functionals of
associated point processes is deduced, using both the association and the α-mixing properties. We discuss
in detail the case of DPPs, for which we obtain the limiting distribution of sums, over subsets of close
enough points of the process, of any bounded function of the DPP. As an application, we get the asymptotic
properties of the parametric two-step estimator of some inhomogeneous DPPs.

Keywords: determinantal point process; negative association; parametric estimation; positive association;
strong mixing

1. Introduction

Positive association (PA) and negative association (NA) [1,19] are properties that quantify the
dependence between random variables. They have found many applications in limit theorems for
random fields [9,40]. Even if the extension of PA to point processes have been used in analysis
of functionals of random measures [11,20], there are no general applications of PA or NA to
limit theorems for point processes. We contribute in this paper to this aspect for spatial point
processes on Rd . We especially discuss in detail the case of determinantal point processes (DPPs
for short), that are an important example of negatively associated point processes. DPPs are a
type of repulsive point processes that were first introduced by Macchi [32] in 1975 to model
systems of fermions in the context of quantum mechanics. They have been extensively studied
in Probability theory with applications ranging from random matrix theory to non-intersecting
random walks, random spanning trees and more (see [26]). From a statistical perspective, DPPs
have applications in machine learning [29], telecommunication [15,22,33], biology, forestry [30]
and computational statistics [2].

As a first result, we relate the association property of a point process to its α-mixing properties.
First introduced in [36], α-mixing is a measure of dependence between random variables, which
is actually more popular than PA or NA. It has been used extensively to prove central limit
theorems for dependent random variables [7,16,23,27,36]. More details about mixing can be
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found in [8,16]. We derive in Section 2 an important covariance inequality for associated point
processes (Theorem 2.5), that turns out to be very similar to inequalities established in [18] for
weakly dependent continuous random processes. We show that this inequality implies α-mixing
and precisely allows to control the α-mixing coefficients by the first two intensity functions of
the point process. This result for point processes is in contrast with the case of random fields
where it is known that association does not imply α-mixing in general (see Examples 5.10–5.11
in [9]). However, this implication holds true for integer-valued random fields (see [17] or [9]). As
explained in [17], this is because the σ -algebras generated by countable sets are much poorer than
σ -algebras generated by continuous sets. In fact, by this aspect and some others (for instance,
our proofs boil down to the control of the number of points in bounded sets), point processes are
very similar to discrete processes.

We then establish in Section 3 a general central limit theorem (CLT) for random fields defined
as a function of an associated point process (Theorem 3.1). A standard method for proving this
kind of theorem is to rely on sufficiently fast decaying α-mixing coefficients along with some
moment assumptions. We use an alternative procedure that exploits both the mixing properties
and the association property. This results in weaker assumptions on the underlying point process,
that can have slower decaying mixing coefficients. This improvement allows in particular to
include all standard DPPs, some of them being otherwise excluded with the first approach (like
for instance DPPs associated to the Bessel-type kernels [4]).

Section 4 discusses in detail the case of DPPs, where we derive a tight explicit bound for
their α-mixing coefficients and prove a central limit theorem for certain functionals of a DPP
(Theorem 4.4). Specifically, these functionals write as a sum of a bounded function of the DPP,
over subsets of close-enough points of the DPP. A particular case concerns sums over p-tuple of
close enough points of the DPP, which are frequently encountered in asymptotic inference. Limit
theorems in this setting have been established in [38] when p = 1, and in [3] for stationary DPPs
and p ≥ 1. We thus extend these studies to sums over any subsets and without the stationary
assumption. As a statistical application, we consider the parametric estimation of second-order
intensity reweighted stationary DPPs. These DPPs have an inhomogeneous first order intensity,
but translation-invariant higher order (reweighted) intensities. We prove that the two-step es-
timator introduced in [39], designed for this kind of inhomogeneous point process models, is
consistent and asymptotically normal when applied to DPPs.

2. Associated point processes and α-mixing

2.1. Notation

In this paper, we consider locally finite simple point processes on R
d , for a fixed d ∈ N. Some

theoretical background on point processes can be found in [12,34]. We denote by � the set of
locally finite point configurations in R

d . For X ∈ � and A ⊂R
d , we write

N(A) := card(X ∩ A)
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for the random variable representing the number of points of X that fall in A. We also denote by
B(A) the Borel σ -algebra of A and by E(A) the σ -algebra generated by X ∩ A, defined by

E(A) := σ
({

X ∈ � : N(B) = m
}
,B ∈ B(A),m ∈ N

)
.

The notation | · | will have a different meaning depending on the object it is applied. For x ∈ R
d ,

|x| stands for the Euclidean norm. For a set A ⊂ R
d , |A| := ∫

A
dx is the Euclidean volume of

A, and for a set I ⊂ Z
d we write |I | for the cardinal of I . For A, B two subsets of Rd (resp.

Z
d ) we define dist(A,B) as infx∈A,y∈B |y − x| and diam(A) as supx,y∈A |y − x| where | · | is the

associated norm on R
d (resp. Zd ). For i ∈ Z

d , |i|1 denotes the �1-norm. Finally, we write B(x, r)

for the Euclidean ball centred at x with radius r and ‖ · ‖p for the p-norm of random variables
and functions where 1 ≤ p ≤ ∞.

We recall that the intensity functions of a point process (when they exist), with respect to the
Lebesgue measure, are defined as follows.

Definition 2.1. Let X ∈ � and n ≥ 1 be an integer. If there exists a non-negative function ρn :
(Rd)n →R such that

E

[ 
=∑
x1,...,xn∈X

f (x1, . . . , xn)

]
=
∫

(Rd )n
f (x1, . . . , xn)ρn(x1, . . . , xn)dx1 · · · dxn

for all locally integrable functions f : (Rd)n → R then ρn is called the nth order intensity func-
tion of X.

In particular, ρn(x1, . . . , xn)dx1 · · · dxn can be viewed as the probability that X has a point in
each of the infinitesimally small sets around x1, . . . , xn with volumes dx1, . . . , dxn respectively.

We further introduce the notation

D(x,y) := ρ2(x, y) − ρ1(x)ρ1(y). (2.1)

This quantity is involved in the following equality, deduced from the previous definition and used
several times throughout the paper:

Cov
(
N(A),N(B)

)=
∫

A×B

D(x, y)dx dy. (2.2)

2.2. Negative and positive association

Our goal in this section is to prove a crucial covariance inequality and to deduce an α-mixing
property for associated point processes. We recall that associated point processes are defined the
following way (see Definitions 2.11–2.12 in [6] for example).
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Definition 2.2. A point process X is said to be negatively associated (NA for short) if, for all
families of pairwise disjoint Borel sets (Ai)1≤i≤k and (Bi)1≤i≤l such that(⋃

i

Ai

)
∩
(⋃

j

Bj

)
=∅ (2.3)

and for all coordinate-wise increasing functions F :Nk �→ R and G :Nl �→ R it satisfies

E
[
F
(
N(A1), . . . ,N(Ak)

)
G
(
N(B1), . . . ,N(Bl)

)]
≤ E

[
F
(
N(A1), . . . ,N(Ak)

)]
E
[
G
(
N(B1), . . . ,N(Bl)

)]
.

(2.4)

Similarly, a point process is said to be positively associated (PA for short) if it satisfies the
reverse inequality for all families of pairwise disjoint Borel sets (Ai)1≤i≤k and (Bi)1≤i≤l (but
not necessarily satisfying (2.3)). If a point process is NA or PA it is said to be associated.

The main difference between the definition of PA and NA is the restriction (2.3) that only
affects NA point processes. Notice that without (2.3), E[N(A)]2 ≤ E[N(A)2] contradicts (2.4)
hence the need to consider functions depending on disjoint sets for NA point processes.

These inequalities extend to the more general case of functionals of point processes. The first
thing we need is a more general notion of increasing functions. We associate to � the partial
order X ≤ Y iff X ⊂ Y and then call a function on � increasing if it is increasing respective to
this partial order. The association property can then be extended to these functions. A proof in
a general setting can be found in [31], Lemma 3.6, but we give an alternative elementary one in
Appendix A.

Theorem 2.3. Let X be a NA point process on R
d and A, B be disjoint subsets of Rd . Let

F : � →R and G : � → R be bounded increasing functions, then

E
[
F(X ∩ A)G(X ∩ B)

]≤ E
[
F(X ∩ A)

]
E
[
G(X ∩ B)

]
. (2.5)

If X is PA then, for all A, B ⊂R
d not necessarily disjoint,

E
[
F(X ∩ A)G(X ∩ B)

]≥ E
[
F(X ∩ A)

]
E
[
G(X ∩ B)

]
. (2.6)

Association is a very strong dependence condition. As proved in the following theorem, it
implies a strong covariance inequality that is only controlled by the behaviour of the first two
intensity functions of X (assuming their existence). To state this result, we need to introduce the
following seminorm for functionals over point processes.

Definition 2.4. For any A ⊂R
d , ‖ · ‖A is the seminorm on the functions f : � → C defined by

‖f ‖A := sup
X∈�,X⊂A

x∈A

∣∣f (X) − f
(
X ∪ {x})∣∣.
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Note that ‖ · ‖A is a Lipschitz norm in the sense that it controls the way f (X) changes when a
point is added to X ∩ A.

Theorem 2.5. Let X be an associated point process and A, B ⊂ R
d be two disjoint bounded

subsets. Let f : � → R and g : � → R be two functions such that f (X ∩ A) and g(X ∩ B) are
bounded, then ∣∣Cov

(
f (X ∩ A),g(X ∩ B)

)∣∣≤ ‖f ‖A‖g‖B

∣∣Cov
(
N(A),N(B)

)∣∣. (2.7)

Moreover, if X is PA then it also satisfies the same inequality for all A, B ⊂ R
d not necessarily

disjoint.

Proof. The proof mimics the one from [10] for associated random fields. We only consider the
case of NA point processes but the PA case can be treated in the same way.

Consider the functions f+, f− : � → R, E(A)-measurable, and g+, g− : � → R, E(B)-
measurable, defined by {

f±(X) = f (X ∩ A) ± ‖f ‖AN(A),

g±(X) = g(X ∩ B) ± ‖g‖BN(B).

For all x ∈ A\X, f+(X∪{x})−f+(X) = f (X∪{x}∩A)−f (X∩A)+‖f ‖A which is positive
by definition of ‖f ‖A. f+ is thus an increasing function. With the same reasoning, g+ is also
increasing and f−, g− are decreasing. f+ is not bounded but it is non-negative and almost surely
finite so it can be seen as an increasing limit of the sequence of functions min(f+, k) when k

goes to infinity. These functions are non-negative, increasing and bounded so for any k and any
bounded increasing function g, (2.5) applies where f is replaced by min(f+, k). By a limiting
argument, the same inequality holds true for f = f+. We can also treat the other functions the
same way and we get from (2.5)

Cov
(
f+(X), g+(X)

)≤ 0 and Cov
(
f−(X), g−(X)

)≤ 0.

Since these expressions are equal to

Cov
(
f±(X), g±(X)

)= Cov
(
f (X ∩ A),g(X ∩ B)

)+ ‖f ‖A‖g‖B Cov
(
N(A),N(B)

)
± (‖g‖B Cov

(
f (X ∩ A),N(B)

)+ ‖f ‖A Cov
(
N(A),g(X ∩ B)

))
,

adding these two expressions together yields the upper bound in (2.7):

Cov
(
f (X ∩ A),g(X ∩ B)

)≤ −‖f ‖A‖g‖B Cov
(
N(A),N(B)

)
.

The lower bound is obtained by replacing f by −f in the previous expression. �

A similar inequality as in Theorem 2.5 can also be obtained for complex-valued functions
since ‖(f )‖A and ‖�(f )‖A are bounded by ‖f ‖A, where (f ) and �(f ) refer to the real and
imaginary part of f respectively.
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Corollary 2.6. Let X be an associated point process and A, B ⊂ R
d be two disjoint bounded

subsets. Let f : � → C and g : � → C be two functions such that f (X ∩ A) and g(X ∩ B) are
bounded, then ∣∣Cov

(
f (X ∩ A),g(X ∩ B)

)∣∣≤ 4‖f ‖A‖g‖B

∣∣Cov
(
N(A),N(B)

)∣∣.
Moreover, if X is PA then it also satisfies the same inequality for all A, B ⊂ R

d not necessarily
disjoint.

If the first two intensity functions of X are well-defined then D in (2.1) is well-defined. As a
consequence of Theorem 2.5 and from (2.2), if |D(x,y)| vanishes fast enough when |y −x| goes
to infinity then any two events respectively in E(A) and E(B) will get closer to independence as
dist(A,B) tends to infinity, as specified by the following corollary.

Corollary 2.7. Let X be an associated point process on Rd whose first two intensity functions
are well-defined. Let A, B be two bounded disjoint sets of Rd such that dist(A,B) ≥ r . Then, for
all functions f : � →R and g : � →R such that f (X ∩ A) and g(X ∩ B) are bounded,

∣∣Cov
(
f (X ∩ A),g(X ∩ B)

)∣∣≤ sd |A| ‖f ‖A‖g‖B

∫ ∞

r

td−1 sup
|x−y|=t

∣∣D(x,y)
∣∣dt, (2.8)

where sd is the (d −1)-dimensional area measure of the unit sphere in R
d . Moreover, if f and/or

g are complex-valued functions, the same inequality holds true with an extra factor 4 on the
right-hand side.

Proof. Consider A, B to be two bounded disjoint sets of Rd such that dist(A,B) ≥ r then, from
(2.2),

∣∣Cov
(
N(A),N(B)

)∣∣= ∣∣∣∣∫
A×B

D(x, y)dx dy

∣∣∣∣
≤ |A| sup

x∈A

∫
B

∣∣D(x,y)
∣∣dy

≤ |A| sup
x∈A

∫
B(x,r)c

∣∣D(x,y)
∣∣dy

≤ |A| sup
x∈A

∫
B(x,r)c

sup
u∈Rd

|u−x|=|y−x|

∣∣D(x,u)
∣∣dy

≤ |A|sd
∫ ∞

r

td−1 sup
|u−v|=t

∣∣D(u,v)
∣∣dt.

The final result is then a consequence of Theorem 2.5 and Corollary 2.6. �
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2.3. Application to α-mixing

Let us first recall some generalities about mixing. Consider a probability space (X ,F,P) and
A, B two sub σ -algebras of F . The α-mixing coefficient is defined as the following measure of
dependence between A and B:

α(A,B) := sup
{∣∣P(A ∩ B) − P(A)P(B)

∣∣ : A ∈ A,B ∈ B
}
.

In particular, A and B are independent iff α(A,B) = 0. This definition leads to the essential
covariance inequality due to Davydov [13] and later generalised by Rio [35]: For all random
variables X, Y measurable with respect to A and B respectively,∣∣Cov(X,Y )

∣∣≤ 8α1/r (A,B)‖X‖p‖Y‖q, where p,q, r ∈ [1,∞] and
1

p
+ 1

q
+ 1

r
= 1.

(2.9)
This definition is adapted to random fields the following way (see [16] or [23]). Let Y = (Yi)i∈Zd

be a random fields on Z
d and define

αp,q(r) := sup
{
α
(
σ
({Yi, i ∈ A}), σ ({Yi, i ∈ B})) : |A| ≤ p, |B| ≤ q,dist(A,B) > r

}
with the convention αp,∞(r) = supq αp,q(r). The coefficients αp,q(r) describe how close two
events happening far enough from each other are from being independent. The parameters p

and q play an important role since, in general, we cannot get any information directly on the
behaviour of α∞,∞(r).

We can adapt this definition to point processes the following way. For a point process X on
Rd , define

αp,q(r) := sup
{
α
(
E(A),E(B)

) : |A| ≤ p, |B| ≤ q,dist(A,B) > r
}

with the convention αp,∞(r) = supq αp,q(r).
As a consequence of Corollary 2.7, the α-mixing coefficients of an associated point process

tend to 0 when D(x,y) vanishes fast enough as |y − x| goes to infinity. More precisely, we have
the following inequalities.

Proposition 2.8. Let X be an associated point process on R
d whose first two intensity functions

are well-defined, then for all p,q > 0,⎧⎪⎪⎨⎪⎪⎩
αp,q(r) ≤ pq sup

|x−y|≥r

∣∣D(x,y)
∣∣,

αp,∞(r) ≤ psd

∫ ∞

r

td−1 sup
|x−y|=t

∣∣D(x,y)
∣∣dt.

(2.10)

Proof. We can write

α
(
E(A),E(B)

)= sup
A∈E(A)
B∈E(B)

Cov
(
1A(X ∩ A),1B(X ∩ B)

)
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so Proposition 2.8 is a direct consequence of Theorem 2.5 and Corollary 2.7 applied to indicator
functions. �

3. Central limit theorem for associated point processes

Consider the lattice (xi)i∈Zd defined by xi = R · i, where R > 0 is a fixed constant. We denote
by Ci , i ∈ Z

d , the d-dimensional cube with centre xi and side length s, where s ≥ R is another
fixed constant. Note that the union of these cubes forms a covering of Rd . Let X be an associated
point process and (fi)i∈Zd be a family of real-valued measurable functions defined on �. We
consider the centred random field (Yi)i∈Zd defined by

Yi := fi(X ∩ Ci) −E
[
fi(X ∩ Ci)

]
, i ∈ Z

d, (3.1)

and we are interested in this section by the asymptotic behavior of Sn :=∑
i∈In

Yi , where (In)n∈N
is a sequence of strictly increasing finite domains of Zd .

As a consequence of Proposition 2.8, we could directly use one of the different CLT for α-
mixing random fields that already exist in the literature [7,16,23] to get the asymptotic distri-
bution of Sn. But, the coefficients αp,∞ decreasing much slower than the coefficients αp,q , this
would imply an unnecessary strong assumption on D. Precisely, this would require D(x,y) to

decay at a rate at least o(|y − x|−2(d+ε) 2+δ
δ ), where ε > 0 and δ is a positive constant depending

on the behaviour of the moments of X. In the next theorem, we bypass this issue by exploiting
both the behaviour of the mixing coefficients αp,q when p < ∞ and q < ∞, and the association
property through inequality (2.8). We show that we can still get a CLT when D(x,y) decays at a

rate o(|y − x|−(d+ε) 2+δ
δ ). This improvement is important to include DPPs with a slow decaying

kernel, thus inducing more repulsiveness, such as Bessel-type kernels, see the applications to
DPPs in Section 4.2 and especially the discussion at the end of the section. Let us also remark
that another technique, based on the convergence of moments, is sometimes used to establish a
CLT for point processes. This has been exploited especially for Brillinger mixing point processes
in [25,28] and other papers. As an example, DPPs have been proved to be Brillinger mixing in
[3,24]. However, this condition applies to stationary point processes only.

Theorem 3.1. Consider the random field Y given by (3.1), a sequence (In)n∈N of strictly increas-
ing finite domains of Zd and Sn = ∑

i∈In
Yi . Let σ 2

n := Var(Sn). Assume that for some ε, δ > 0
the following conditions are satisfied:

(C1) X is an associated point process on R
d whose first two intensity functions are well-

defined;
(C2) supi∈Zd ‖Yi‖2+δ = M < ∞;

(C3) sup|x−y|≥r |D(x,y)| = o(r−(d+ε) 2+δ
δ ) where D is given by (2.1);

(C4) lim infn |In|−1σ 2
n > 0.

Then

1

σn

Sn
L−→ N (0,1).
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Proof. First, we notice that Y inherits its strong mixing coefficients from X. This is due to
the fact that we have σ({Yi : i ∈ I }) ⊂ E(

⋃
i∈I Ci) for all I ⊂ Z

d as a consequence of (3.1).
Moreover, we have dist(Ci,Cj ) ≥ 1√

d
(|i − j |1R − sd) as a consequence of Lemma B.2, and

since |⋃i∈I Ci | ≤ sd |I |, this gives us the inequality

∀p,q > 0,∀r >
sd

R
, αY

p,q(r) ≤ αX
psd ,qsd

(
1√
d

(rR − sd)

)
,

where we denote by αX , αY the α-mixing coefficients of X and Y respectively. In particular,
conditions (C1), (C3) and identity (2.10) yields

∀p,q > 0, αY
p,q(r) = o

r→∞
(
r−(d+ε) 2+δ

δ
)
. (3.2)

We deal with the proof in two steps: first, we consider the case of bounded variables and then
we extend the result to the more general case.

The first step of the proof follows the approach used by Bolthausen [7] and Guyon [23], while
the second step exploits elements from [27]. The main difference lies in the way we deal with
the term A3 that appears later on in the proof.

First step: Bounded variables. Without loss of generality, we consider that E[fi(X ∩ Ci)] = 0
for all i ∈ Z

d . Suppose that we have supi ‖Yi‖∞ := supi ‖fi(· ∩ Ci)‖∞ = M < ∞ instead of
Assumption (C2). Since αY

p,q(r) is non increasing in r and is a o(r−d) by (3.2), we can choose a
sequence (rn)n∈N such that

αY
p,q(rn)

√|In| → 0 and r−d
n

√|In| → ∞.

For i ∈ Z
d , define

Si,n =
∑
j∈In|i−j |1≤rn

Yj , S∗
i,n = Sn − Si,n,

an =
∑
i∈In

E[YiSi,n], S̄n = 1√
an

Sn, S̄i,n = 1√
an

Si,n.

We have σ 2
n = Var(Sn) = an +∑

i∈In
E[YiS

∗
i,n] and, as a consequence of the typical covariance

inequality (2.9) for α-mixing random variables, we get∣∣∣∣∑
i∈In

E
[
YiS

∗
i,n

]∣∣∣∣≤ ∑
i,j∈In|i−j |1>rn

∣∣Cov(Yi, Yj )
∣∣≤ 8M2

∑
i,j∈In|i−j |1>rn

αY
1,1

(|i − j |1
)

≤ 8M2|In|
∑
r>rn

∣∣{k ∈ Z
d : |k|1 = r

}∣∣αY
1,1(r).

The number of k ∈ Z
d satisfying |k|1 = r is bounded by 2(2r + 1)d−1. This is because each of

the d − 1 first coordinates of k takes its values in {−r, . . . , r} and the last coordinate is fixed by
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the other ones, up to the sign, since |k|1 = r . Therefore,∣∣∣∣∑
i∈In

E
[
YiS

∗
i,n

]∣∣∣∣≤ 16M2|In|
∑
r>rn

(2r + 1)d−1αY
1,1(r).

By Assumption (3.2), this quantity is o(|In|) and thus σ 2
n ∼ an as a consequence of As-

sumption (C4). We then only need to prove the asymptotic normality of �Sn. Moreover, since
supnE[�Sn

2] < ∞ then this will be a consequence of the following condition (see [5,7])

lim
n→∞E

[
(iλ − �Sn) exp(iλ�Sn)

]= 0, ∀λ ∈R.

We can split this expression into (iλ − �Sn) exp(iλ�Sn) = A1 − A2 − A3 where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 = iλ exp(iλ�Sn)

(
1 − 1

an

∑
j∈In

YjSj,n

)
,

A2 = 1√
an

exp(iλ�Sn)
∑
j∈In

Yj

(
1 − iλ�Sj,n − exp(−iλ�Sj,n)

)
,

A3 = 1√
an

∑
j∈In

Yj exp
(
iλ(�Sn − �Sj,n)

)
.

It was proved by Bolthausen [7] that E[A2
1] and E[|A2|] vanish when n goes to infinity if∑

rd−1αY
p,q(r) < ∞ for p + q ≤ 4 which is the case here. We show that E[A3] vanishes at

infinity using (2.8). Notice that we have

∣∣E[A3]
∣∣≤ |In|√

an

sup
j∈In

∣∣∣∣Cov

(
fj (X ∩ Cj ), exp

(
iλ√
an

∑
k∈In|k−j |1>rn

fk(X ∩ Ck)

))∣∣∣∣.
Define the function

gj : X �→ exp

(
iλ√
an

∑
k∈In|k−j |1>rn

fk(X ∩ Ck)

)
.

This function is bounded by 1 and E(Bj )-measurable where Bj := ⋃
k∈In, |k−j |1>rn

Ck is a

bounded set and dist(Cj ,Bj ) ≥ (Rrn − sd)/
√

d (see Lemma B.2). We have ‖fj‖Cj
≤ 2M and

for all X ∈ �, for all x ∈ Bj , if we denote by Jx = {k : x ∈ Ck} the set of cubes that contain x

then

∣∣gj

(
X ∪ {x})− gj (X)

∣∣= ∣∣∣∣1 − exp

(
iλ√
an

∑
k∈Jx

(
fk

(
X ∩ Ck ∪ {x})− fk(X ∩ Ck)

))∣∣∣∣≤ 2λM|Jx |√
an

.
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Lemma B.2 gives us the bound |Jx | ≤ (2sd/R+1)d and thus ‖gj‖Bj
≤ 2λM(2sd/R+1)d/

√
an.

Finally, using Corollary 2.7 we get

∣∣E[A3]
∣∣≤ 4|In|sd√

an

|Cj |‖fj‖Cj
‖gj‖Bj

∫ ∞

dist(Bj ,Cj )

td−1 sup
|x−y|≥t

∣∣D(x,y)
∣∣dt

≤ 16sdM2
(

2s2d

R
+ s

)d

λ
|In|
an

∫ ∞
1√
d
(Rrn−sd)

td−1 sup
|x−y|≥t

∣∣D(x,y)
∣∣dt.

(3.3)

By assumption (C3) we have that td−1 sup|x−y|≥t |D(x,y)| is integrable and by assumption (C4)
we have |In| = O(an) which shows that limn→∞ E[A3] = 0 concluding the proof of the theorem
for bounded variables.

Second step: General Case. For N > 0, we define⎧⎪⎪⎨⎪⎪⎩
S1,n :=

∑
i∈In

(
FN(Yi) −E

[
FN(Yi)

])
where FN : x �→ x1|x|≤N,

S2,n :=
∑
i∈In

(
F̃N (Yi) −E

[
F̃N (Yi)

])
where F̃N : x �→ x1|x|>N .

Let σ 2
n (N) := Var(S1,n), from the first step of the proof we have σn(N)−1S1,n

L−→ N (0,1). Let
1 > γ > (1 + ε

d
(1 + δ

2 ))−1 and define CN := supi ‖Yi1|Yi |>N‖2+δγ . By assumption (C2), we
have that CN vanishes when N → ∞ and by assumption (C4) we have that |In| ≤ cσ 2

n for a
sufficiently large n, where c is a positive constant. By (2.9),

1

σ 2
n

Var(S2,n) = 1

σ 2
n

∑
i,j∈In

Cov
(
F̃N (Yi), F̃N (Yj )

)
≤ |In|

σ 2
n

C2
N sup

i∈In

∑
j∈In

8αY
1,1

(|i − j |1
) δγ

2+δγ

≤ 16 cC2
N

∞∑
r=0

(2r + 1)d−1αY
1,1(r)

δγ
2+δγ .

By assumption (C3) and the choice of γ we have
∑

(2r + 1)d−1αY
1,1(r)

δγ
2+δγ < ∞ so σ−1

n S2,n

converges in mean square to 0 when N goes to infinity, uniformly in n. With the same reasoning,
we also get the inequality

1

σ 2
n

∣∣Cov(S1,n, S2,n)
∣∣≤ 16 cMCN

∞∑
r=0

(2r + 1)d−1αY
1,1(r)

δγ
2+δγ ,

where the right-hand side tends to 0 when N goes to infinity, uniformly in n. Hence, σ 2
n (N) tends

to σ 2
n uniformly in n as N goes to infinity.
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Finally, for all constants ν > 0 arbitrary small, we can choose N such that E[σ−1
n |S2,n|] ≤ ν

and |1 − σn(N)/σn| ≤ ν for all n sufficiently large. By looking at the characteristic function of
σ−1

n Sn we get

∣∣E(e ixSn
σn

)− e− 1
2 x2 ∣∣≤ ∣∣E(e ixS1,n

σn

)−E
(
e

ixS1,n
σn(N)

)∣∣+ ∣∣E(e ixS1,n
σn(N)

)− e− 1
2 x2 ∣∣+ ∣∣E(e ixS2,n

σn − 1
)∣∣

≤ xE

(∣∣∣∣ S1,n

σn(N)

∣∣∣∣)∣∣∣∣1 − σn(N)

σn

∣∣∣∣+ o(1) + xν

≤ 2xν + o(1)

concluding the proof. �

4. Application to determinantal point processes

In this section, we give a CLT for a wide class of functionals of DPPs. This result is a key tool
for the asymptotic inference of DPPs. As an application treated in Section 4.3, we get the con-
sistency and the asymptotic normality of the two-step estimation method of [39] for a parametric
inhomogeneous DPP.

4.1. Negative association and α-mixing for DPPs

We recall that a DPP X on R
d is defined trough its intensity functions with respect to the

Lebesgue measure that must satisfy

∀n ∈ N,∀x ∈ (
R

d
)n

, ρn(x1, . . . , xn) = det
(
K[x]) with K[x] := (

K(xi, xj )
)
i,j∈{1,...,n}.

The function K : (Rd)2 → C is called the kernel of X and is assumed to satisfy the following
standard general condition ensuring the existence of X.

Condition H. The function K : (Rd)2 → C is a locally square integrable hermitian measurable
function such that its associated integral operator K is locally of trace class with eigenvalues in
[0,1].

This condition is not necessary for existence, in particular there are examples of DPPs having a
non-hermitian kernel. It is nonetheless very general and is assumed in most studies on DPPs. Ba-
sic properties of DPPs can be found in [26,31,37]. In particular, from [21] and [31], Theorem 3.7
and Theorem 1.4, we know that DPPs are NA.

Theorem 4.1 ([21,31]). Let K satisfy Condition H, then a DPP with kernel K is NA.

By definition, for a DPP with kernel K we have D(x,y) = −|K(x,y)|2 where D is introduced
in (2.1). Hence, using the last theorem and Proposition 2.8 we get the following strong mixing
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coefficients of a DPP, where we define

ω(r) := sup
|x−y|≥r

∣∣K(x,y)
∣∣. (4.1)

Corollary 4.2. Let X be a DPP with kernel K satisfying H. Then, for all p,q > 0,⎧⎪⎪⎪⎨⎪⎪⎪⎩
αp,q(r) ≤ sup

|A|<p,|B|<q
dist(A,B)>r

∫
A×B

∣∣K(x,y)
∣∣2 dx dy ≤ pqω(r)2,

αp,∞(r) ≤ psd

∫ ∞

r

ω2(t)td−1 dt.

(4.2)

It is worth noticing that this result, and so the covariance inequality (2.7), is optimal in the
sense that for a wide class of DPPs, the α-mixing coefficient αp,q(r) do not decay faster than
sup|A|<p,|B|<q

dist(A,B)>r

|Cov(N(A),N(B))| when r goes to infinity, as stated in the following proposi-

tion.

Proposition 4.3. Let X be a DPP with kernel K satisfying H. We further assume that K is
bounded, takes its values in R+ and is such that ‖K‖ < 1 where ‖ · ‖ is the operator norm. Then,
for all p,q, r > 0,

(
1 − ‖K‖) (p+q)‖K‖∞‖K‖ sup

|A|<p,|B|<q
dist(A,B)>r

∫
A×B

∣∣K(x,y)
∣∣2 dx dy ≤ αp,q(r)

≤ sup
|A|<p,|B|<q
dist(A,B)>r

∫
A×B

∣∣K(x,y)
∣∣2 dx dy.

(4.3)

Proof. The upper bound for αp,q(r) is just the one in (4.2). The lower bound is obtained through
void probabilities. Let p,q, r > 0 and A, B ⊂R

d such that |A| < p, |B| < q and dist(A,B) > r .
By definition, for any such sets A and B , αp,q(r) ≥ |P(N(A) = 0)P(N(B) = 0)−P(N(A∪B) =
0)|. The void probabilities of DPPs are known (see [37]) and equal to

P
(
N(A) = 0

)= exp

(
−
∑
n≥1

Tr(Kn
A)

n

)
,

where KA is the projection of K on the set of square integrable functions f : A → R. Moreover,
P(N(A) = 0)P(N(B) = 0) − P(N(A ∪ B) = 0) ≥ 0 by negative association, and we have

P
(
N(A) = 0

)
P
(
N(B) = 0

)− P
(
N(A ∪ B) = 0

)
= exp

(
−
∑
n≥1

Tr(Kn
A∪B)

n

)(
exp

(∑
n≥1

Tr(Kn
A∪B) − Tr(Kn

A) − Tr(Kn
B)

n

)
− 1

)
(4.4)
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≥ exp

(
−
∑
n≥1

Tr(Kn
A∪B)

n

)∑
n≥1

Tr(Kn
A∪B) − Tr(Kn

A) − Tr(Kn
B)

n
.

Using the classical trace inequality, we get

Tr
(
Kn

A∪B

)≤ ‖KA∪B‖n−1 Tr(KA∪B) ≤ ‖K‖n−1
∫

A∪B

K(x, x)dx ≤ ‖K‖n−1(p + q)‖K‖∞,

thus

exp

(
−
∑
n≥1

Tr(Kn
A∪B)

n

)
≥ (

1 − ‖K‖) (p+q)‖K‖∞‖K‖ . (4.5)

Moreover, since A and B are disjoint sets, we can write

Tr
(
Kn

A∪B

)− Tr
(
Kn

A

)− Tr
(
Kn

B

)
=
∫

(A∪B)n
K(x1, x2) · · ·K(xn−1, xn)K(xn, x1)dx1 · · · dxn

−
∫

An∪Bn

K(x1, x2) · · ·K(xn−1, xn)K(xn, x1)dx1 · · · dxn,

(4.6)

which vanishes when n = 1, is equal to 2
∫
A×B

|K(x,y)|2 when n = 2 and is non-negative for
n ≥ 3 since K is assumed to be non-negative. Finally, by combining (4.4), (4.5) and (4.6) we get
the lower bound in (4.3). �

4.2. Central limit theorem for functionals of DPPs

We investigate the asymptotic distribution of functions that can be written as a sum over subsets
of close enough points of X, namely

f (X) :=
∑
S⊂X

f0(S), (4.7)

where f0 is a bounded function vanishing when diam(S) > τ for a certain fixed constant τ >

0. The typical example, encountered in asymptotic inference, concerns functions f0 that are
supported on sets S having exactly p elements, in which case (4.7) often takes the form

f (X) = 1

p!

=∑

x1,...,xp∈X

f0(x1, . . . , xp), (4.8)

where the sum is done over ordered p-tuples of X and the symbol 
= means that we consider
distinct points. The asymptotic distribution of (4.8) has been investigated in [38] when p = 1
and in [3] for general p and stationary DPPs.
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In the next theorem, we extend these settings to functionals like (4.7) applied to general
non-stationary DPPs. Some discussion and comments are provided after its proof. We use
Minkwoski’s notation and write A ⊕ r for the set

⋃
x∈A B(x, r).

Theorem 4.4. Let X be a DPP associated to a kernel K that satisfies H and that is further
bounded. Let τ > 0 and f : � → R be a function of the form

f (X) :=
∑
S⊂X

f0(S),

where f0 is a bounded function vanishing when diam(S) > τ . Let (Wn)n∈N be a sequence of
increasing subsets of Rd such that |Wn| → ∞ and let σ 2

n := Var(f (X ∩ Wn)). Assume that there
exists ε > 0 and ν > 0 such that the following conditions are satisfied:

(H1) |∂Wn ⊕ (τ + ν)| = o(|Wn|);
(H2) ω(r) = o(r−(d+ε)/2);
(H3) lim infn |Wn|−1σ 2

n > 0.

Then,

1

σn

(
f (X ∩ Wn) −E

[
f (X ∩ Wn)

]) L−→N (0,1).

Proof. In order to apply Theorem 3.1, we would like to rewrite f as a sum over cubes of a
lattice. Unfortunately, for disjoint sets A, B ⊂R

d , f (X ∩ A) + f (X ∩ B) 
= f (X ∩ (A ∪ B)) in
general. Instead, we apply Theorem 3.1 to an auxiliary function, close to f , as follows. Define
S0 as the barycentre of the set S. We write

fW(X) =
∑
S⊂X

f0(S)1W

(
S0) (4.9)

for the sum over the subsets of points of X with barycentre in W ⊂ R
d . Now, we split Rd

into little cubes the following way. Let C0 be a given d-dimensional cube with a given side-
length 0 < s ≤ ν/

√
d . For all i ∈ Z

d , let Ci be the translation of C0 by the vector s · i. Let
In := {i : Ci ⊕ τ ⊂ Wn} and W̃n = ⋃

i∈In
Ci . An illustration of these definitions is provided in

Figure 1. Since fW̃n
(X) =∑

i∈In
fCi

(X) and each fCi
are E(Ci ⊕ τ)-measurable then fW̃n

is the
ideal candidate to use Theorem 3.1 on. Thus, we first prove that the difference between fW̃n

and
f (X∩Wn) is asymptotically negligible and then that fW̃n

satisfies the conditions of Theorem 3.1.
First of all, notice that dist(Ci, ∂Wn) ≥ τ for all i ∈ In. Therefore, for any point in Wn at

a distance greater than τ + s
√

d from ∂Wn, the cube Ci of side-length s containing it is at a
distance at least τ from ∂Wn, hence it is one of the Ci in W̃n and we get

|Wn \ W̃n| ≤
∣∣∂Wn ⊕ (τ + s

√
d)
∣∣

hence, by Assumption (H1), |Wn| ∼ |W̃n|. Now,

f (X ∩ Wn) − fW̃n
(X) =

∑
S⊂X∩Wn

f0(S)1Wn\W̃n

(
S0). (4.10)
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Figure 1. Example of illustration of the definition of W̃n. Here, the black border is ∂Wn, the grey area
corresponds to (∂Wn ⊕ τ ) ∩ Wn and the square lattice corresponds to W̃n.

Since f0 vanishes when two points of S are at distance further than τ , then the sum in (4.10)
only concerns the subsets S of X ∩ ((Wn \ W̃n) ⊕ τ) ∩ Wn. By Lemma B.6, the variance of
f (X ∩ Wn) − fW̃n

(X) is then a O(|(Wn \ W̃n) ⊕ τ |), whence a o(|Wn|) and finally a o(σ 2
n ) by

Assumption (H3). Therefore, σ−1
n (f (X ∩ Wn) −E[f (X ∩ Wn)]) has the same limiting distribu-

tion as σ−1
n (fW̃n

(X) −E[fW̃n
(X)]). Moreover, we have

∣∣Cov
(
fW̃n

(X),f (X ∩ Wn) − fW̃n
(X)

)∣∣≤ σn

√
Var

(
f (X ∩ Wn) − fW̃n

(X)
)

= σno
(√|Wn|

)
= o

(
σ 2

n

)
by Assumptions (H1), (H3) and Lemma B.6 proving that σ−1

n (f (X ∩Wn)−E[f (X ∩Wn)]) has
the same limiting distribution as Var(fW̃n

(X))−1/2(fW̃n
(X) −E[fW̃n

(X)]).
We conclude by showing that the random variables Yi = fCi

(X) − E[fCi
(X)] satisfy the as-

sumptions of Theorem 3.1. A rough bound on f gives us |fCi
(X)| ≤ ‖f0‖∞2N(Ci⊕τ) so, by

Lemma B.5,

∀n ∈N, sup
i∈Zd

E
[|Yi |n

]
< ∞.

This means that the Yi ’s satisfy Assumption (C2) for all δ > 0 and thus (C3) as a consequence
of (H2). Finally, since |In| = s−d |W̃n| = O(|Wn|) and Var(fW̃n

(X)) ∼ σ 2
n , we have

lim inf
n

|In|−1 Var
(
fW̃n

(X)
)
> 0

by Assumption (H3), which concludes the proof of the theorem. �

We highlight some extensions of this result.

(i) Since the superposition of independent PA (respectively NA) point processes remains a
PA (respectively NA) point process, then Theorem 4.4 holds true for α-determinantal
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point processes where α ∈ {−1/m : m ∈ N
∗}, see [37] for more information about α-

DPPs.
(ii) Theorem 4.4 also extends to R

q -valued functions f where q ≥ 2. Let �n := Var(f (X ∩
Wn)). If we replace (H3) by

lim inf
n

|Wn|−1λmin(�n) > 0,

where λmin(�n) denotes the smallest eigenvalue of �n, then Theorem 4.4 holds true with
the conclusion

�
−1/2
n

(
f (X ∩ Wn) −E

[
f (X ∩ Wn)

]) L−→ N (0, Idq)

where Idq is the q × q identity matrix. Since �n does not necessary converge, this result
is not a direct application of the Cramér–Wold device. Instead, a detailed proof is given
in [5].

(iii) In (4.7), f0 only depends on finite subsets of Rd and not on the order of the points in each
subset. Nonetheless, we can easily extend (4.7) to functions of the form

f (X) =
∑
n≥0

1

n!

=∑

x1,...,xn∈X

f0(x1, . . . , xn),

where f0 is a bounded function on
⋃

n≥0(R
d)n that vanishes when two of its coordinates

are at a distance greater than τ . Then f still satisfy Theorem 4.4. This is because we can
write

f (X) =
∑
S⊂X

f
sym
0 (S),

where f
sym
0 is the symmetrization of f0 defined by

f
sym
0

({x1, . . . , xn}
) := 1

n!
∑
σ∈Sn

f0(xσ(1), . . . , xσ(n)),

where Sn is the symmetric group on {1, . . . , n}. Since f
sym
0 is also bounded and vanishes

when diam(S) > τ then it satisfies the required assumptions for Theorem 4.4.

Let us comment the assumptions of Theorem 4.4.

• Condition (H1) makes clear the idea that Wn must grow to R
d as n → ∞, without being a

too irregular set. In the simple case where Wn is the Cartesian product of intervals, that is,
Wn = �

(1)
n × · · · × �

(d)
n , then (H1) is equivalent to |�(k)

n | → ∞ for all k.
• Condition (H2) is not really restrictive and is satisfied by all classical kernel families.

For example, the kernels of the Ginibre ensemble and of the Gaussian unitary ensem-
ble (see [26]) have an exponential decay. Moreover, all translation-invariant kernels used
in spatial statistics (see [30] and [4]) satisfy ω(r) = O(r−(d+1)/2): the Gaussian and the
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Laguerre–Gaussian covariance functions have an exponential decay; the Whittle–Matérn
and the Cauchy covariance functions satisfy ω(r) = o(r−d); and in the case of the most
repulsive DPP in dimension d (as determined in [4,30]), which is the slowest decaying
Bessel-type kernel, its kernel is given by

K(x,y) =
√

ρ�(d
2 + 1)

π
d
4

Jd
2
(2

√
π�(d

2 + 1)
1
d ρ

1
d ‖y − x‖)

‖y − x‖ d
2

⇒ ω(r) = O
(
r− d+1

2
)
,

where ρ > 0 is a constant. While this DPP satisfies Condition (H2), we point out that its
α-mixing coefficients decay too slowly to be able to derive a CLT only from them, see
the discussion before Theorem 3.1. This justifies the importance of Condition (C3) in this
theorem, obtained by the NA property, and which leads to Condition (H2).

• Condition (H3) is harder to control in the broad setting of Theorem 4.4, but we can get
sufficient conditions in some particular cases. For example, if f0(S) = 1|S|=1 and K is
a translation-invariant continuous kernel then it was shown in [38] that Condition (H3)
holds when K is not the Fourier transform of an indicator function. In the peculiar case
where K is the Fourier transform of an indicator function, [38] proved that the limiting
distribution is still Gaussian but the rate of convergence is different. As another example
extending the previous one, assume that f0 is a non-negative function supported on the set
{S ⊂ X : |S| = p} for a given integer p > 0 and assume that the highest eigenvalue of the
integral operator K associated to K is less than 1. Then, we show in Proposition B.7 that

lim inf
n

1

|Wn|
∫

W
p
n

f0(x)det
(
K[x])dx > 0

implies (H3) and is much easier to verify.

4.3. Application to the two-step estimation of an inhomogeneous DPP

In this section, we consider DPPs on R2 with kernel of the form

Kβ,ψ(x, y) =
√

ρβ(x)Cψ(y − x)

√
ρβ(y), ∀x, y ∈R

2, (4.11)

where β ∈R
p and ψ ∈R

q are two parameters, Cψ is a correlation function and ρβ is of the form
ρβ(x) = ρ(z(x)βT ) where ρ is a known positive strictly increasing function and z is a p-variate
bounded function called covariates. This form implies that the first order intensity, corresponding
to ρβ(x), is inhomogeneous and depends on the covariates z(x) through the parameter β . But all
higher order intensity functions once normalized, that is, ρ(n)(x1, . . . , xn)/(ρβ(x1) · · ·ρβ(xn)),
are translation-invariant for n ≥ 2. In particular, the pair correlation (the case n = 2) is in-
variant by translation. This kind of inhomogeneity is sometimes named second-order intensity
reweighted stationarity and is frequently assumed in the spatial point process community.

Existence of DPPs with a kernel like above is for instance ensured if ρβ(x) is bounded by ρmax
and Cψ is a continuous, square-integrable correlation function on R

d whose Fourier transform is
less than 1/ρmax, see [30]. For later use, we call H′ the previous assumptions on Kβ,ψ .
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Consider the observation of a DPP X with kernel Kβ∗,ψ∗ , along with the covariates z, within a
window Wn := [an,bn] × [cn, dn] where b > a and d > c. Waagepetersen and Guan [39] have
proposed the following two-step estimation procedure of (β∗,ψ∗) for second-order intensity
reweighted stationary models. First, β̂n is obtained by solving

un,1(β) :=
∑

u∈X∩Wn

∇ρβ(u)

ρβ(u)
−
∫

Wn

∇ρβ(u)du = 0,

where ∇ρβ denotes the gradient with respect to β . In the second step, ψ̂n is obtained by mini-
mizing m

n,β̂n
where

mn,β(ψ) :=
∫ r

rl

(( ∑
u,v∈X∩Wn

1{0<|u−v|≤t}
ρβ(u)ρβ(v)|Wn ∩ Wn,u−v|

)c

−Kψ(t)c
)2

dt.

Here rl , r and c are user-specified non-negative constants, Wn,u−v is Wn translated by u − v and
Kψ is the Ripley K-function defined by

Kψ(t) :=
∫

‖u‖≤t

gψ(u)du,

where gψ(u) := 1 − Cψ(u)2/Cψ(0)2 is the pair correlation function of X. If we define

un,2(β,ψ) := −|Wn|∂mn,β(ψ)

∂ψ
,

then the two-step procedure amounts to solve

un(β,ψ) := (
un,1(β),un,2(β,ψ)

)= 0.

The asymptotic properties of this two-step procedure are established in [39], under various
moments and mixing assumptions, with a view to inference for Cox processes. We state hereafter
the asymptotic normality of (β̂n, ψ̂n) in the case of DPPs with kernel of the form (4.11). This
setting allows us to apply Theorem 4.4 and get rid of some restrictive mixing assumptions needed
in [39].

The asymptotic covariance matrix of (β̂n, ψ̂n) depends on two matrices defined in [39], Sec-
tion 3.1, where they are denoted by �̃n and In. We do not reproduce their expression, which is
hardly tractable. An assumption in [39] ensures the asymptotic non-degeneracy of this covari-
ance matrix and we also need this assumption in our case, see (W4) below. Unfortunately, as
discussed in [39], it is hard to check this assumption for a given model, particularly because it
depends on the covariates z. We are confronted by the same limitation in our setting. On the other
hand, the other assumptions of the following theorem are not restrictive. In particular, almost all
standard kernels satisfy (W3) below, see the discussion after Theorem 4.4.

Theorem 4.5. Let X be a DPP with kernel Kβ∗,ψ∗ given by (4.11) and satisfying H′. Let
(β̂n, ψ̂n) the two-step estimator defined above. We assume the following.
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(W1) rl > 0 if c < 1; otherwise rl ≥ 0,
(W2) ρβ and Kψ are twice continuously differentiable as functions of β and ψ ,
(W3) sup‖x‖≥r Cψ∗(x) = O(r−1−ε),
(W4) Condition N3 in [39] (concerning the matrices In and �̃n) is satisfied.

Then, there exists a sequence {(β̂n, ψ̂n) : n ≥ 1} for which un(β̂n, ψ̂n) = 0 with a probability
tending to one and

|Wn|1/2[(β̂n, ψ̂n) − (
β∗,ψ∗)]In�̃

−1/2
n

L−→N (0, Id).

Proof. Let ρk be the kth intensity function of the DPP with kernel (x, y) �→ Cψ∗(y −x). In order
to apply Theorem 1 in [39], we need to show that

(i) ρ2, ρ3 are bounded and there is a constant M such that for all u1, u2 ∈R
2,
∫ |ρ3(0, v, v +

u1) − ρ1(0)ρ2(0, u1)|dv < M and
∫ |ρ4(0, u1, v, v + u2) − ρ2(0, u1)ρ2(0, u2)|dv < M ,

(ii) ‖ρ4+2δ‖∞ < ∞ for some δ > 0,
(iii) αa,∞(r) = O(r−d) for some a > 8r2 and d > 2(2 + δ)/δ.

The first property (i) is a consequence of (W3). This is because we can write∣∣ρ3(0, v, v + u1) − ρ1(0)ρ2(0, u1)
∣∣

= ∣∣2Cψ∗(v)Cψ∗(u1)Cψ∗(v + u1) − Cψ∗(0)
(
Cψ∗(v + u1)

2 + Cψ∗(v)2)∣∣
which is bounded by 2|Cψ∗(0)|(Cψ∗(v + u1)

2 + Cψ∗(v)2) and∫
R2

Cψ∗(v)2 dv ≤ 2π

∫ ∞

0
r sup

‖x‖=r

∣∣Cψ∗(x)
∣∣2 dr

which is finite by Assumption (W3). The term ρ4(0, u1, v, v + u2) − ρ2(0, u1)ρ2(0, u2) can be
treated the same way. For a DPP, (ii) is satisfied for any δ > 0. Finally, (iii) is the one that causes
an issue since, as stated before, the α-mixing coefficient we get in Corollary 4.2 decreases slower
than what we desire. But, the only place this assumption is used in [39] is to prove the asymptotic
normality of their estimator in their Lemma 5, which can also be derived as a consequence of our
Theorem 4.4 with Assumption (W3). �

Appendix A: Proof of Theorem 2.3

We use the following variant of the monotone class theorem (see [14], Theorem 22.1).

Theorem A.1. Let S be a set of bounded functions stable by bounded monotone convergence
and uniform convergence. Let C be a subspace of S such that C is an algebra containing the
constant function 1̃. Then, S contains all bounded functions measurable over σ(C).
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Now, let A,B1, . . . ,Bk be pairwise distinct Borel subsets of R
d and g : Nk �→ R be a

coordinate-wise increasing function. We denote by �A the set of locally finite point configu-
rations in A and we define S as the set of functions f : �A �→ R such that

E
[
f̂ (X ∩ A)g

(
N(B1), . . . ,N(Bk)

)]≤ E
[
f̂ (X ∩ A)

]
E
[
g
(
N(B1), . . . ,N(Bk)

)]
, (A.1)

where f̂ (X) := supY≤X f (Y ). Note that f̂ is an increasing function and that f is increasing iff

f̂ = f . Our goal is to prove that S contains all bounded functions supported over A. Because of
the definition of NA point processes (2.4), we know that S contains the set C of functions of the
form f (N(A1), . . . ,N(Ak)) where the Ai are pairwise disjoints Borel subsets of A. In particular,
since point processes over A are generated by the set of random vectors {(N(A1), . . . ,N(Ak)) :
Ai ⊂ A disjoints, k ∈ N}, then we only need to verify that S and C satisfy the hypothesis of
Theorem A.1 to conclude.

• Stability of S by bounded monotonic convergence: Since (A.1) is invariant if we add a con-
stant to f and f is bounded then we can consider f to be positive. Now, notice that for all
functions h and k, h ≤ k ⇒ ĥ ≤ k̂ and h ≥ k ⇒ ĥ ≥ k̂. So, if we take a positive bounded
monotonic sequence fn ∈ S that converges to a bounded function f , then f̂n is also a pos-
itive bounded monotonic sequence that consequently converges to a function g. Suppose
that (fn)n is an increasing sequence (the decreasing case can be treated similarly) and let us
show that g = f̂ . Let X ∈ �A, for all Y ⊂ X, fn(Y ) ≤ f (Y ). Taking the supremum then the
limit gives us g(X) ≤ f̂ (X). Moreover, for all Y ⊂ X, g(X) ≥ f̂n(X) ≥ fn(Y ). Taking the
limit gives us that g(X) ≥ f (Y ) for all Y ⊂ X so g(X) ≥ f̂ (X) which proves that g = f̂ .
Using the monotone convergence theorem we conclude that

E
[
f̂n(X ∩ A)

]→ E
[
f̂ (X ∩ A)

]
and

E
[
f̂n(X ∩ A)g

(
N(B1), . . . ,N(Bk)

)]→ E
[
f̂ (X ∩ A)g

(
N(B1), . . . ,N(Bk)

)]
,

(A.2)

which proves that f ∈ S .
• Stability of S by uniform convergence: Let fn be a sequence over S converging uniformly

to a function f then, by Lemma B.1, f̂n also converges uniformly (and therefore in L1) to
f̂ . As a consequence, (A.2) is also satisfied in this case so f ∈ S .

• C is an algebra: It is easily shown that C is a linear space containing 1̃ so we only need
to prove that C is stable by multiplication. Let A1, . . . ,Ar and A′

1, . . . ,A
′
s be two se-

quences of pairwise distinct Borel subsets of A. Let f = f (N(A1), . . . ,N(Ar)) ∈ C and
h = h(N(A′

1), . . . ,N(A′
r )) ∈ C. We can write

N(Ai) = N

(
Ai

∖⋃
j

A′
j

)
+
∑
j

N
(
Ai ∩ A′

j

)
and

N
(
A′

i

)= N

(
A′

i

∖⋃
j

Aj

)
+
∑
j

N
(
A′

i ∩ Aj

)
,
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so f · h can be expressed as a function of the number of points in the subsets Ai \⋃j A′
j ,

A′
i \⋃j Aj and Ai ∩ A′

j that are all pairwise distinct Borel subsets of A, proving that C is
stable by multiplication.

This concludes the proof that S contains all bounded functions supported over �A. By doing
the same exact reasoning on the set of bounded functions g satisfying E[f (X ∩ A)g(X ∩ B)] ≤
E[f (X ∩ A)]E[g(X ∩ B)] for a fixed f we obtain the same result which concludes the proof.

Appendix B: Auxiliary results

Lemma B.1. Let E be a set and f , g : E →R be two functions, then∣∣∣sup
x∈E

f (x) − sup
y∈E

g(y)

∣∣∣≤ ‖f − g‖∞.

Proof. The proposition becomes trivial once we write

f (x) ≤ g(x) + ‖f − g‖∞ ≤ sup
y∈E

g(y) + ‖f − g‖∞.

Taking the supremum yields the first inequality. Moreover, by symmetry of f and g the second
one follows similarly. �

Lemma B.2. Let i, j ∈ Z
d such that |i − j |1 := ∑d

l=1 |il − jl | = r . Let s,R > 0 and Ci , Cj be
the d-dimensional cubes with side length s and respective centre xi = R · i and xj = R · j . Then,

dist(Ci,Cj ) ≥ 1√
d

(rR − sd).

Moreover, each cube intersects at most (2sd/R + 1)d other cubes with centers on R · Zd and
side length s.

Proof. Since each point of a d-dimensional square with side length s is at distance at most
s
√

d/2 from its centre, we get dist(Ci,Cj ) ≥ √
(Ri1 − Rj1)2 + · · · + (Rid − Rjd)2 − s

√
d

which takes its minimum when |il − jl | = r/d for all 1 ≤ l ≤ d hence, dist(Ci,Cj ) ≥ rR/
√

d −
s
√

d .
In particular, if |i − j |1 > sd/R then Ci ∩ Cj = ∅, hence for all i ∈ Z

d

∣∣{j ∈ Z
d : Ci ∩ Cj 
= ∅, i 
= j

}∣∣≤ ∣∣{j : 0 < |i − j |1 ≤ sd/R
}∣∣≤ (

2sd

R
+ 1

)d

. �

Lemma B.3. Let M and N be two n×n semi-positive definite matrices such that 0 ≤ M ≤ N−1

where ≤ denotes the Loewner order. Then

det(Id − MN) ≥ 1 − Tr(MN).
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Proof. First, let us consider the case where N = Id. If Tr(M) ≥ 1 then det(Id − M) ≥ 0 ≥
1 − Tr(M). Otherwise, we denote by Sp(M) the spectrum of M and since all eigenvalues are in
[0,1[, we can write

det(Id − M) =
∏

λ∈Sp(M)

exp
(
ln(1 − λ)

)

=
∏

λ∈Sp(M)

exp

(
−

∞∑
n=0

λn

n

)

= exp

(
−

∞∑
n=0

Tr(Mn)

n

)

≥ exp

(
−

∞∑
n=0

Tr(M)n

n

)
= exp

(
log

(
1 − Tr(M)

))
= 1 − Tr(M).

(B.1)

Getting back to the general case, we can write N as ST S and by Sylvester’s determinant identity
we get that det(Id − MN) = det(Id − SMST ). Since we assumed that 0 ≤ M ≤ N−1 then 0 ≤
SMST ≤ Id and by applying (B.1) this concludes the proof:

det(Id − MN) = det
(
Id − SMST

)≥ 1 − Tr
(
SMST

)= 1 − Tr(MN). �

Proposition B.4. Let M be a n × n semi-definite positive matrix of the form

M =
(

M1 N

NT M2

)
,

where M1 is a k ×k semi-definite positive matrix, M2 is a (n−k)× (n−k) semi-definite positive
matrix and N is a k × (n − k) matrix. We define ‖A‖∞ := sup |ai,j | for any matrix A. Then,

0 ≤ det(M1)det(M2) − det(M) ≤ k(n − k)Tr
(
NT N

)‖M‖n−2∞ .

Proof. First, we assume that M1 and M2 are invertible. Using Schur’s complement, we can write

det(M) = det(M1)det(M2)det
(
Id − M−1

1 NT M−1
2 N

)
,

where 0 ≤ NT M−1
2 N ≤ M1 with ≤ being the Loewner order. NT M−1

2 N being semi-definite
positive implies

det(M) ≤ det(M1)det(M2),
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while the inequality NT M−1
2 N ≤ M1 gives us (see Lemma B.3)

det(M) ≥ det(M1)det(M2)
(
1 − Tr

(
M−1

1 NT M−1
2 N

))
.

Therefore,

0 ≤ det(M1)det(M2) − det(M)

≤ Tr
(
adj(M1)N

T adj(M2)N
)

≤ Tr
(
adj(M1)

)
Tr
(
adj(M2)

)
Tr
(
NT N

)
=

k∑
i=1

�i(M1)

n−k∑
j=1

�j(M2)Tr
(
NT N

)
,

where �i(M1) means the (i, i) minor of the matrix M1 and adj(M1) is the transpose of the
matrix of cofactor of M1. But, since all principal sub-matrices of M1 and M2 are positive definite
matrices then their determinant is lower than the product of their diagonal entries, meaning that
�i(M1) ≤ ∏

j 
=i M1(j, j) ≤ ‖M‖k−1∞ . Doing the same thing for the terms �j(M2) gives us the
desired result.

If M1 or M2 is not invertible, a limit argument using the continuity of the determinant leads to
the same conclusion. �

Lemma B.5. Let X be a DPP with bounded kernel K satisfying H, s > 0 and n > 0, then

sup
A⊂Rd ,|A|=s

E
[
2nN(A)

]
< ∞.

Proof. Let n ∈N and A ⊂ R
d such that |A| = s. Since the determinant of a positive semi-definite

matrix is always smaller than the product of its diagonal coefficients we get

E
[
2nN(A)

]= E

[ ∞∑
k=0

(
N(A)

k

)(
2n − 1

)k]

=
∞∑

k=0

(2n − 1)k

k!
∫

Ak

det
(
K[x])dx

≤ e(2n−1)‖K‖∞|A| < ∞. �

Lemma B.6. Let X be a DPP on R
d with bounded kernel K satisfying H such that ω(r) =

O(r− d+ε
2 ) for a certain ε > 0. Then, for all bounded Borel sets W ⊂ Rd and all bounded func-

tions g : ⋃p>0(R
d)p → R such that g(S) vanishes when diam(S) > τ for a given constant

τ > 0,

Var

( ∑
S⊂X∩W

g(S)

)
= O

(|W |). (B.2)
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Proof. Since W is bounded then N(W) is almost surely finite and we can write

∑
S⊂X∩W

g(S) =
∑
p≥0

∑
S⊂X∩W|S|=p

g(S) a.s.

Looking at the variance of each term individually, we start by developing E[(∑S⊂X∩W g(S) ×
1|S|=p)2] as

p∑
k=0

E

[ ∑
S,T ⊂X∩W

|S|=|T |=p,|S∩T |=k

g(S)g(T )

]

=
p∑

k=0

E

[ ∑
U⊂X∩W|U |=2p−k

∑
S′⊂S⊂U

|S′|=k,|S|=p

g(S)g
(
S′ ∪ (U \ S)

)]

=
p∑

k=0

1

(2p − k)!

×
∫

W 2p−k

∑
S′⊂S⊂{x1,...,x2p−k}

|S′|=k,|S|=p

g(S)g
(
S′ ∪ (U \ S)

)
ρ2p−k(x1, . . . , x2p−k)dx1 · · · dx2p−k

=
p∑

k=0

1

(2p − k)!
(

p

k

)(
2p − k

p

)

×
∫

W 2p−k

g(x1, . . . , xp)g(x1, . . . , xk, xp+1, . . . , x2p−k)ρ2p−k(x)dx. (B.3)

Since the determinant of a positive semi-definite matrix is smaller than the product of its diagonal
terms, we have |ρ2p−k(x)| ≤ ‖K‖2p−k∞ . Moreover, as a consequence of our assumptions on g,
each term for k ≥ 1 in (B.3) is bounded by

1

p!(p − k)!
(

p

k

)∫
W 2p−k

‖g‖2∞‖K‖2p−k∞ 1{0≤|xi−x1|≤τ,∀i} dx

≤ |W |
p!

(
p

k

)
‖g‖2∞‖K‖2p−k∞

∣∣B(0, τ )
∣∣2p−k−1

≤ |W |
p!

(
p

k

)
‖g‖2∞

(
1 + ‖K‖∞

)2p(1 + ∣∣B(0, τ )
∣∣)2p

.
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Hence,
p∑

k=1

E

[ ∑
S,T ⊂X∩W

|S|=|T |=p,|S∩T |=k

g(S)g(T )

]
≤ |W |‖g‖2∞

C
p

1

p! , (B.4)

where C1 = 2(1 + ‖K‖∞)2(1 + B(0, τ ))2 is a constant independent from p and W . However,
even if all terms for k ≥ 1 in (B.3) are O(|W |), this is not the case of the term for k = 0 which is
a O(|W |2). Instead of controlling this term alone, we consider its difference with the remaining
term in the variance we are looking at, that is

1

(p!)2

∫
W 2p

g(x)g(y)ρ2p(x, y)dx dy −E

[( ∑
S⊂X∩W

g(S)1|S|=p

)]2

= 1

(p!)2

∫
W 2p

g(x)g(y)
(
ρ2p(x, y) − ρp(x)ρp(y)

)
dx dy.

Using Proposition B.4, we get∣∣ρ2p(x, y) − ρp(x)ρp(y)
∣∣≤ p2‖K‖2p−2∞

∑
1≤i,j≤p

K(xi, yj )
2.

Now, notice that for all y ∈R
d and 1 ≤ i ≤ p,∫

Wp

1{0<|xk−xj |≤τ,∀j,k}
∣∣K(xi, y)

∣∣2 dx ≤ ∣∣B(0, τ )
∣∣p−1

∫
W

∣∣K(xi, y)
∣∣2 dxi

≤ ∣∣B(0, τ )
∣∣p−1

sd

∫
Rd

rd−1ω(r)2 dr

which is finite because of our assumption on ω(r). Thus, we obtain the inequality∫
W 2p

g(x)g(y)
∣∣K(xi, yj )

∣∣2 dx dy ≤ ‖g‖∞
∣∣B(0, τ )

∣∣p−1
∫

Wp+1
g(x)

∣∣K(xi, y1)
∣∣2 dx dy1

≤ |W |‖g‖2∞
∣∣B(0, τ )

∣∣2p−2
sd

∫
Rd

rd−1ω(r)2 dr.

(B.5)

By combining (B.4) and (B.5), we get the bound

Var

( ∑
S⊂X∩W|S|=p

g(S)

)
≤ |W |‖g‖2∞

(
C

p

1

p! + C2

p!
)

,

where

C2 :=
(

sup
p≥0

p4‖K‖2p−2∞ |B(0, τ )|2p−2

p!
)

sd

∫
Rd

rd−1ω(r)2 dr
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is a constant independent from p and W . Finally,

∑
p≥0

Var

( ∑
S⊂X∩W|S|=p

g(S)

)
= O

(|W |)

and

∑
p>q≥0

Cov

( ∑
S⊂X∩W|S|=p

g(S),
∑

S⊂X∩W|S|=q

g(S)

)
≤ |W |‖g‖2∞

∑
p,q≥0

√(
C

p

1

p! + C2

p!
)(

C
q

1

q! + C2

q!
)

= O
(|W |)

concluding the proof. �

Proposition B.7. Let p ∈ N, f : Rp → R+ be a symmetrical measurable function and define

F(X) =
∑
S⊂X|S|=p

f (S).

Let X be a DPP with kernel K satisfying Condition H such that ‖K‖ < 1 where ‖K‖ is the
operator norm of the integral operator associated with K . If, for a given increasing sequence of
compact sets Wn ⊂R

d ,

lim inf
n

1

|Wn|
∫

W
p
n

f (x)det
(
K[x])dx > 0, (B.6)

then

lim inf
n

1

|Wn| Var
(
F(X ∩ Wn)

)
> 0.

Proof. Let W be a compact subset of Rd . The Cauchy–Schwarz inequality gives us

Cov
(
F(X ∩ W),N(W)

)2 ≤ Var
(
F(X ∩ W)

)
Var

(
N(W)

)
.

We showed in Lemma B.6 that |W |−1 Var(N(W)) is bounded by a constant C > 0 so we are
only interested in the behaviour of Cov(F (X ∩ W),N(W)). We start by developing E[F(X ∩
W)N(W)]:

E
[
F(X ∩ W)N(W)

]
= E

[ ∑
S⊂X∩W|S|=p

f (S)
∑

x∈X∩W

1

]
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= E

[ ∑
S⊂X∩W|S|=p+1

∑
x∈S

f
(
S \ {x})+ p

∑
S⊂X∩W|S|=p

f (S)

]

= 1

(p + 1)!
∫

Wp+1

p+1∑
i=1

f
(
z \ {zi}

)
det

(
K[z])dz + 1

p!
∫

Wp

pf (x)det
(
K[x])dx

= 1

p!
(∫

Wp

f (x)

(
p det

(
K[x])+

∫
W

det
(
K[x, a])da

)
dx

)
.

We also have

E
[
F(X ∩ W)

]
E
[
N(W)

]= 1

p!
∫

Wp

f (x)det
(
K[x])dx

∫
W

K(a,a)da,

hence

Cov
(
F(X ∩ W),N(W)

)
= 1

p!
∫

Wp

f (x)det
(
K[x])(p −

∫
W

(
K(a,a) − det

(
K[x, a])det

(
K[x])−1)da

)
dx.

(B.7)

Using Schur’s complement, we get

K(a,a) − det
(
K[x, a])det

(
K[x])−1 = KaxK[x]−1KT

ax, (B.8)

where we define Kax as the vector (K(a, x1), . . . ,K(a, xp)). Moreover, since we look at our
point process in a compact window W , a well-known property of DPPs (see [26]) is that there
exists a sequence of eigenvalues λi in [0,‖K‖] and an orthonormal basis of L2(W) of eigenfunc-
tions φi such that

K(x,y) =
∑

i

λiφi(x)φ̄i(y) ∀x, y ∈ W.

As a consequence, ∀x, y ∈ W ,∫
W

K(x,a)K(a, y)da =
∑

i

λ2
i φi(x)φ̄i(y)

which we define as L(x, y). Therefore, for all x ∈ Wp , L[x] ≤ ‖K‖K[x] where ≤ is the Loewner
order for positive definite symmetric matrices and we get∫

W

KaxK[x]−1KT
ax da = Tr

(
K[x]−1

∫
W

KT
axKax da

)
= Tr

(
K[x]−1L[x])≤ p‖K‖.

(B.9)
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Finally, since f is non negative, by combining (B.7), (B.8) and (B.9) we get the lower bound

Var
(
F(X ∩ W)

)≥ Cov(F (X ∩ W),N(W))2

Var(N(W))

≥ (1 − ‖K‖)2

C(p − 1)!2|W |
(∫

Wp

f (x)det
(
K[x])dx

)2

which proves the proposition. �
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